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Reconfigurable perovskite X-ray detector for
intelligent imaging

Jincong Pang1,3, Haodi Wu1,3, Hao Li1, Tong Jin1, Jiang Tang 1,2 &
Guangda Niu 1,2

X-ray detection is widely used in various applications. However, to meet the
demand for high image quality and high accuracy diagnosis, the raw data
increases and imposes challenges for conventional X-ray detection hardware
regarding data transmission and power consumption. To tackle these issues,
we present a scheme of in-X-ray-detector computing based on CsPbBr3 single-
crystal detector with convenient polarity reconfigurability, good linear
dynamic range, and robust stability. The detector features a stable trap-free
device structure and achieves a high linear dynamic range of 106 dB. As a
result, the detector could achieve edge extraction imaging with a data com-
pression ratio of ~50%, and could also be programmed and trained to perform
pattern recognition tasks with a high accuracy of 100%. Our research shows
that in-X-ray-detector computing can be used in flexible and complex sce-
narios, making it a promising platform for intelligent X-ray imaging.

X-ray detection is crucial in multiple areas, like detecting radioactive
materials, inspecting industrial flaws, security screening, and medical
imaging1–5. Over the years, significant advancements have been made
to X-ray detectors, leading to improved sensitivity, superior image
contrast, fast response speed, and high spatial resolution. However,
these advancements have also resulted in a substantial increase in data
volume, posing challenges in data transmission, processing, and
storage6–10. For instance, high-end computed tomography (CT)
detectors generate data at a rate exceeding 40 gigabits per second
(Gbps), anoutput precipitated by factors like increased rotating speed,
slice counts, and detector rows. This outpaces the capabilities of the
transmission unit (CT slip ring, with an approximate limit of 10Gbps),
arithmetic unit (reconstruction rate of fewer than 64 images
per second), and storage unit. Similarly, dynamic digital radiography
yields data volumes asmassive as tens to hundreds of Gbps, exceeding
the transmission abilities of interfaces like CameraLink HS (10Gbps)
and GigE (6.8 Gbps). There have been attempts to bolster the trans-
mission, processing, and storage rates through methods like photo-
electric coupling, multiplexing, interface enhancements, and GPU
upgrades. However, the progress achieved so far has been limited
(Supplementary Tables 1 and 2). Additionally, traditional X-ray

detection systems, which depend on separate sensors, analog-to-
digital converters, and processingmodules, are plagued by issues such
as excessive bulk, high complexity, and considerable power
consumption.

The emerging technologyof in-sensor computing, also referred to
as neural network vision sensors, has demonstrated its potential in
achieving low power consumption, minimal latency, and overcoming
transmission bandwidth limitations in visible light detection11–13.
Inspired by these advancements, the adoption of in-sensor computing
architecture holds promise in mitigating the above limitations of
conventional X-ray detection systems. Nevertheless, the application of
similar in-sensor computing capabilities in X-ray detectors has not yet
been reported.

The in-sensor computing architecture requires detectors with
certain characteristics of polarity reconfigurability and linear
responsivity11–14, which are challenging to achieve using conventional
X-ray detectors. For example, scintillator-based indirect detectors
could hardly be reconfigured. Direct detectors based on a-Se have low
sensitivity and poor response at low doses15, while Cd(Zn)Te suffers
from poor hole collection capability and limited dynamic range at
reverse bias16. In contrast, halide perovskites have emerged as
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excellent semiconductors for direct X-ray detection17. They possess
several desirable properties including bias-tunable response, high
sensitivity, lowdetection limit, andbalanced charge collection,making
them well-suited for developing X-ray detectors with in-sensor com-
puting capability.

Here, we report the in-X-ray-detector computing based on an N-I-
P type CsPbBr3 perovskite single-crystal (PSC) detector with con-
venient polarity reconfigurability, good linear dynamic range aswell as
robust stability. To address the common issue of poor linearity
observed in perovskite semiconductors, we extensively analyze the
traps at the interface of single crystals, identify them as the root cause,
and effectively passivate the surfaces. As a result, we achieve a high
linear dynamic range of 106 dB. Furthermore, we harness the fabri-
cated X-ray detector’s ability to perform intelligent edge extraction for
data compression, achieving an impressive compression ratio of ~50%.
Additionally, the constructed X-ray detector has the capability to
concurrently sense and process images with various kernels. It is also
shown that this detector can be trained for pattern recognition tasks,
achieving an impressive accuracy rate of 100%. The approach pre-
sented in this research paves the way for future applications of
advanced neural network-based X-ray detectors.

Results
The principle of imaging based on convolution kernel
As mentioned earlier, the large amount of data generated by X-ray
imaging is becoming a bottleneck in data transmission. We use CT as a
case to illustrate the rapid increase of the data generated by detectors,
which is calculated by themethod in Supplementary Note 1 and data in
Supplementary Tables 1 and 2. Our design concept involves the

construction of a macro-pixel composed of several sub-pixels, and the
combination of convolution operations to derive pre-processed ima-
ges. This diverges from the traditional X-ray detection architecture,
which transmits signals to a computing unit for processing. The
simultaneous detection of X-ray photons and preliminary data pro-
cessing can be achieved through a single readout procedure, as
depicted in the operating mechanism illustrated in Fig. 1a. Based on
Kirchhoff’s current law, the macro-pixel’s output signals are repre-
sented as

P
j Rj , with Rj denoting the sub-pixel’s signal value. The

computation within the X-ray detector becomes feasible by setting the
Rj values to specific positive and negative amounts determined by the
bias polarity.

Figure 1a illustrates the data processing through specific con-
volutional kernels to achieve the effect of edge enhancement, contrast
correction, and data compression. In detail, the central sub-pixel in the
macro-pixel is applied with a forward bias value, and the surrounding
sub-pixels are applied with reverse bias values according to the
Laplacian convolution kernel to obtain negative signals under the
same X-ray intensity, which are one-eighth of the positive signal.
Therefore, it outputs the off state (zero signal) for the position with
uniform contrast and outputs the on state (non-zero signal) for the
position with changed contrast. From the perspective ofmathematics,
the aforementioned operation is equal to the derivation of the image,
leading to the edge enhancement effect. Depending on imaging
requirements, different convolutional kernels can be achieved by set-
ting the weight matrix of the sub-pixels, resulting in varying com-
pression ratios. For example, the Laplacian of the Gaussian (LoG)
convolutional kernel depicted in Fig. 1a, can achieve a compression
ratio of 49.4% (636,164 effective pixels in a 1430 × 900 grid); whereas
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Fig. 1 | Working mechanism of in-X-ray-detector computing. a Schematic dia-
gram of the in-X-ray-detector computing using macro- and sub-pixel. It uses the
Laplacian convolution kernel, and the weight setting of the kernel is implemented
using the bias voltages of the sub-pixel. Pictures of packages containing various
metal tools are used to demonstrate the effect and results of convolution kernels.
The three picturesmean that a huge amount of raw data is obtained without image
processing, less data is obtained with the LoG convolution kernel, and little data is
obtained with the Laplacian kernel. W/O represents without, LoG represents
Laplacian of the Gaussian. Baggages-0002-0001 is from the publicly available
database, GDXray+50. b The development trends of the maximum amount of data
detected per second and the transmission rates in the computed tomography (CT)
field. The former is represented by red patterns and lines. The latter is represented

by blue patterns and lines. Among them, products from United Image are repre-
sented by circles, products fromGeneral Electric Company (GE) are representedby
squares, products from Siemens are represented by triangles, products from
Toshiba are represented by rhombus, products from Philips are represented by
stars, and products from Neusoft are represented by pentagons. Schleifring and
Moog’s products use rectangles to delineate ranges of rates, and dots to represent
typical values. The orange line is the compressed detected data rate after imple-
menting the convolutional kernel in this work. Details can be found in Supple-
mentaryNote 1, and Tables 1 and 2. cThe bias-tunable X-ray responsewith the same
magnitude of perovskite detectors. This is the premise of the in-X-ray-detector
computing architecture.
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the Laplacian convolution kernel yields an improved compression
ratio of 46.6% (600,261 effective pixels).

Figure 1b details the data volume and transmission rate bottle-
necks of CT products. The edge enhancement, or in-X-ray-detector
computing technology represented by the orange straight line, pro-
vides a potential solution to the data overload issue. The in-X-ray-
detector computing architecture requires detectors with the char-
acteristic of polarity reconfigurability. It is shown in Fig. 1c, that the
kernel value of each pixel can be tuned by the bias voltage and the
perovskite X-ray detector shows a bias-tunable linear response. This
will be explained in detail later.

High linear dynamic range single-crystal detector
To achieve the above target, we have to address the problem of poor
linearity of perovskite semiconductors, which has been observed in
many recent works18–23. Physically speaking, the deep reason is
expected from thepresence of traps and thuspolarizationeffectunder
high flux, and sublinear trap-limited photo-response effect under the
low flux of X-ray24–26. Here we select Bridgeman-grown CsPbBr3 single
crystal for study. To guarantee the quality of crystal bulk, we purify the
raw materials by zone-melting multiple times to a purity of around
99.9999%, as shown in Supplementary Table 3. This reduces defects
caused by impurity elements. The as-synthesized ingot is then cut and
polished to obtain the sample.

We fabricate an N-I-P type device Bi-ZnO-CsPbBr3-NiOx-C, where
inorganic transport layers are selected to ensure the high bias stability
and the details can be found in the Methods section and Supplemen-
tary Fig. 1. However, after directly depositing the inorganic transport
layers, we often encounter device failures and poor linearity response.
To understand the chemical origin, we obtain the X-ray photoelectron
spectroscopy (XPS) of Pb 4 f, and find that there were additional peaks
at 136.9 eV and 141.7 eV besides the binding energy peak for Pb2+ (138.7
and 143.6 eV), as shown in Fig. 2a. The two additional peaks belong to

undercoordinated Pb defects (Pb0 state) on the surface. The photo-
luminescence intensity is rather low. The presence of under-
coordinated Pb defects is probably due to surface damage from the
magnetron sputtering or polishing process and thus halide vacancies.
Consequently, we introduce an additional C60 layer, which has been
proven to be an effective passivator, to suppress the surface states27–30.
The additional peaks of undercoordinate Pb in XPS disappeared and
the photoluminescence intensity is significantly boosted in Fig. 2a.
Characterization of the C60 layer can be seen in Supplementary Fig. 2
and control experiments under different sputtering powers can be
seen in Supplementary Fig. 3.

We also quantitatively characterize the defect depth through
the thermally stimulated current spectrum (TSC). Before passi-
vation, high-intensity currents are detected at 110-135 K and 225 K,
corresponding to defect depths of 0.27 eV and 0.48 eV, respec-
tively. The defect density is estimated as 1.24 × 1014 cm−3 and
5.00 × 1014 cm−3, in Fig. 2b, aligning closely with the results for
perovskite single crystals in other studies about CsPbBr3, such as
3.84 × 1014 cm−3, 4.11–52.9 × 1014 cm−3, or 1.82–68.1 × 1014 cm−3 31–33.
According to the previous study, the defects are probably from
the Pb-Pb dimers34, which formed on the surface as a con-
sequence of halide vacancies35,36. After passivation, the device
shows negligible defects in the whole range. Detailed simulta-
neous multiple peak analysis results and defect concentration
calculation can be found in Supplementary Note 2 and Supple-
mentary Fig. 4. The presence of defects can trap photogenerated
carriers and result in the photoconductive gain effect24–26, as
shown in Fig. 2c. The gain value highly depends on the photo-
generated carrier density, which is proportional to the intensity
of X-ray photons. The above behavior results in the sublinear
response at low intensities, which is common in X-ray detectors
and photodetectors. The elimination of surface defects and per-
fect bulk state theoretically guarantee the linear response.
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Note 3. Source data are provided as a Source Data file.
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Then we characterize the electrical properties. The detector with
C60 passivation exhibits a better rectification effect. The dark current
reaches −14 nA at −100V and 166nA at 100V in Fig. 2d, which is among
the lowest for CsPbBr3 detectors31,37–39. Upon X-ray illumination, the
detector displays a good linear response to the dose rates between 32 to
494μGy s−1, a stablebaseline, anda fast switching speedunder−100V, as
shown in Fig. 2e. The sensitivity reaches 396μCGyair

−1 cm−2. It should be
noted that this value is lower than previously reported values37–39, while
the previously high sensitivity is typically due to the photoconductive
gain effect and thus negatively results in a nonlinear response.

In order to confirm that the sensitivity value is exclusively due to
the intrinsic response of the detector, rather than photoconductive
gain, we calculate the intrinsic sensitivity of CsPbBr3 by taking into
consideration charge collection efficiency and electron-hole pair
creation energy40. Under our experimental X-ray source (Target: gold;
Driving voltage: 70 kVp), the theoretical intrinsic sensitivity of CsPbBr3
is 474μCGyair

−1 cm−2 (Fig. 2f), given a mobility-lifetime product (μτ)
value of 2.05 × 10−3 cm2 V−1, a bias voltage of 100V, and a thickness of
2mm. Details about the simulation method and parameters can be
found in Supplementary Note 3. The experimentally measured sensi-
tivity is very close to the intrinsic sensitivity in Fig. 2f, validating that
the defects in our device are well-passivated and the device is gain-
independent.

Then we systematically evaluate the key performance metrics of
the passivated detectors for in-X-ray-detector computing. The
mobility-lifetime product, μτ is obtained by fitting the photo-
conductivity curves using the modified Hecht equation:

I =
I0μτV

L2
1� expð�L2=μτV Þ

1 + Ls=μV
ð1Þ

where I is the X-ray-response current, I0 is the saturated photocurrent,
L is the thickness, V is the bias voltage, μ is the carrier mobility, τ is the
carrier lifetime and s is the surface recombination rate.

Here we derive the specific μτ value for electron and hole
according to the illumination direction. The (μτ)e is
2.05 × 10−3 cm2 V−1, which is close to the (μτ)h (0.58 × 10−3 cm2 V−1), as
shown in Fig. 3a. In comparison, conventional X-ray detection
semiconductors exhibit seriously imbalanced electron/hole μτ, as
seen in examples like CdZnTe ((μτ)e = 7 × 10−3 cm2 V−1,
(μτ)h = 9 × 10−5 cm2 V−1)16, CdTe ((μτ)e = 1.9 × 10−3 cm2 V−1, (μτ)h = 7.5 ×
10−5 cm2 V−1)41, a-Se (μτ)e = 4 × 10−7 cm2 V−1, (μτ)h = 2 × 10−5 cm2 V−1)15,
TlBr (μτ)e = 1 × 10−2 cm2 V−1, (μτ)h = 4 × 10−4 cm2 V−1)42, as shown in
Supplementary Fig. 5a. The μτ product represents the distance that
the charges can transit under specific electric field strength, and
the balanced μτ values guarantee the response linearity under
forward and reverse biases when programmed in the convolutional
kernels, based on the analysis in Supplementary Note 4. As shown
in Fig. 3b, we record the I–V curves of the detector under both X-ray
illumination and the dark state. The response of the detector
depends on the polarity of the bias, which is necessary to achieve
the as-described convolution kernel. As the X-ray dose rates vary,
the signals under forward and reverse bias voltages (95 and −73 V)
remain almost the same magnitude and the on-off ratio, as shown
in Fig. 3c. This is the prerequisite for in-X-ray-detector computing.

Subsequently, the linearity of the PSC device’s response is eval-
uated. It’s important to highlight that this high linearity not only
enables the adjustment of convolutional kernels but also aids in the
facilitation of weight updates during the convolutional neural net-
work’s training phase. Furthermore, it is of more importance for in-X-
ray-detector computing devices than for conventional detectors, as
mentioned in Supplementary Note 5. In Fig. 3d, the well-passivated
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Article https://doi.org/10.1038/s41467-024-46184-0

Nature Communications |         (2024) 15:1769 4



detector exhibits no trap-limiting sublinear response under low X-ray
intensity. Moreover, there is no significant self-limiting response
deviation caused by limited electron mobility at high X-ray intensity.
The good linearity ranges from 0.165 to 32,920μGy s−1, and the linear
dynamic range (LDR) reaches 106 dB. In sharp contrast, the control
device without passivation exhibits a trap-limiting gain effect under
low dose rates, with a linear dynamic range of merely 68 dB. Here, we
compare the documented linear dynamic range for various X-ray
detectors. The detector in this study surpassed the previously repor-
ted results and state-of-the-art commercial products in Fig. 3e,
including SiPM 84 dB18, CdTe 83 dB (from ANSeeN, CdTe sensor), a-Se
75 dB (from KA Imaging, BrillianSe), and perovskites 20 dB (Bi-
based)19,20, 26-84 dB (2D perovskite)21,43,44, 24-90 dB (3D
perovskite)22,23,45–47. In addition, the device exhibits very good robust-
ness, and the performance does not change much under long-term
placement and irradiation as shown in Supplementary Fig. 6. The
device exhibits relatively fast response and decay times under the
irradiation of X-ray and visible light in Supplementary Fig. 7. For the
comparison of the response speed between the device and other PSC
detectors, readers can viewSupplementaryTables 4 and 5. Readers can
view Supplementary Table 6 to find the summary performance
comparison.

We further integrate the PSC device onto the complementary
metal-oxide-semiconductor (CMOS) die using the flip-chip bonding
method (see details in Supplementary Figs. 8–10, and Methods). The

optical images of them are shown in Fig. 3f. The area array on it has a
total of 32 × 32 pixels, and the outermost circle is used to meet the
needs of the process and does not participate in imaging. Previous
studies all focus on the integrationof perovskitewith TFT arrays48,49. As
far as we are concerned, there is no report on the heterogeneous
integration of PSC on CMOS. We note that the low-temperature cured
conductive film and the macroscopically flat sample surface are very
important for the flip-chip process of PSC and CMOS. These help us
achieve high-contact-yield integration.

The effect of edge extraction and data compression
With the bias-tunable linear X-ray detectors, we can implement
convolutional kernels to achieve edge sharpness and data com-
pression effect. For imaging real objects, we utilize a macro-pixel
detector with an aforementioned device structure. The test sys-
tem is depicted in Fig. 4a and Supplementary Fig. 11. A collimator,
placed between the target object for imaging and the detector, is
a crucial component of the system. After passing through the
steel reticle object with a HUST pattern and lead collimator, the
X-ray photons are captured by the PSC X-ray detector. The 3 × 3
detector is equivalent to a single-point macro-pixel in-X-ray-
detector computing device, which can obtain images by con-
tinuously detecting moving objects.

The center pixel of the detector is subjected to a higher forward
bias voltage. If only the signal detectedby the centerpixel is readout, it
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will be the sameas the traditionalX-ray imagingmethod, and the result
is shown in Fig. 4b (some ragged boundaries may occur due to the
translation of steel reticle objects). At this point, reverse bias voltages
are further applied to the surrounding pixels, guided by the Laplacian
kernel. The final picture in Fig. 4c shows the effect of edge extraction.
We can see that, except for the pixels near the edges of the objects, the
gray values of other pixels are closer to the background. The macro-
pixel detector can achieve the effect of the processing of the Laplacian
convolution kernel without software-based computing. Further ana-
lysis shows that the pixels with grayscale values of less than 2 con-
stitute 53.6% (4820/8990) of the total, as the grayscale histogram of
the image is shown in Fig. 4d. If a reconfigurable integrated detector is
used and the threshold comparison is integrated into the CMOS array
circuit, the purpose of only transmitting the electrical signals of the
effective pixels at the edge will be easily achieved. It can significantly
reduce the amount of data, achieving a compression ratio of 46.4%
(100-53.6 = 46.4%).

The macro-pixel PSC detector shows the functionality of simul-
taneous sensing and processing, and the target object can only be
detected and transmitted edge information. To further illustrate the
effectiveness of this method for data compression, then, we perform
computer simulations using massive images from publicly available
databases. The image Baggages-0002-0001 in Fig. 1a, from theGDXray
+database50, is elected as a representative and shownagain in Fig. 4 for
illustration. This public database, GDXray+, contains 20,966 X-ray
images in categories such as castings, welds, baggage, and settings.
Figure 4e contrasts the original grayscale histogramwith the grayscale
histogram after image stylization12,51. As the simulation result shows,
the latter can achieve a data compression ratio of 46.6% by not
transmitting pixel signals with gray values less than 1. The average
compression ratio of all 20,966 images in the GDXray+ database is
58.8%, which is similar to our experimental results. This indicates that
the in-X-ray-detector computing imaging, based on the Laplacian
convolution kernel, will promise to achieve about a data compression
of ~50% in practice.

Notably, the bias voltages applied to themacro-pixel PSCdetector
are reconfigurable. It means that we can re-apply differing bias vol-
tages on multiple pixels to implement kernels with other functions,
such as the edge softening or noise mean filtering effect in Fig. 4f, the

horizontal and vertical Sobel operator processing in Fig. 4g, h, and one
kind of Kirsh processing in Fig. 4i. On the basis of the above, we
implement the heterogeneous integration of PSC according to the
process flow in Supplementary Figs. 8, 9. Supplementary Fig. 10a
shows the blade edge image of the integrated detector using tradi-
tional methods. Supplementary Fig. 10b–e shows the simulation
effects of various convolution kernels above. Since the placement of
the blade edge is directional, it is obvious that the y-direction Sobel
kernel has the best edge extraction effect. In addition, for simple
objects such as the edge of a blade, their image can achieve better data
compression rates. Supplementary Fig. 10b can obtain a data com-
pression ratio as, 275/1024= 26.8% at a threshold of 10% of maximum
brightness, or 418/1024 = 40.8% at a threshold of 5%.

Implementation of a convolutional neural network
Themacro-pixel PSC X-ray detector, with its adjustableweights, shows
potential in forming a convolutional neural network and performing
image classification tasks11,14,52, as shown in Fig. 5a. By adjusting the bias
voltages across each pixel, it’s possible to update the weights of the
network. The X-ray information, obstructed by the object and repre-
sented as electrical signals, is multiplied by the weight values signified
by the bias voltages to compute the total output current. Its output
value feedback modulates the bias voltage of each pixel, and the
process is repeated.

Real objects are sampled to create a new dataset used to train the
network. (The equivalent 3 × 3 convolution kernel of this weight value
is [0 0 0, 0 1 0, 0 0 0]) In practical application, we use iron sheets
shaped into the letters H, U, S, and T at varying horizontal displace-
ments and rotation angles for testing, with a size of 3 × 3mm2 as
depicted in Fig. 5b. And they are detected by the discrete PSC detec-
tors above and sampled as images in the dataset. This makes the gray
values of the image in Fig. 5c corresponding to eachH letter iron sheet
different after sampling. The sameoperation is applied to the letters U,
S, and T, as shown in Supplementary Fig. 12. Initially, the weights are
randomly assigned for processing images in the training dataset. The
network contains the convolution layer and the softmax activation
layer. During each epoch, the network outputs 4 probability values,
with a sum of 1, through the activation layer, representing the prob-
ability of the image being identified as one of the letters, such as fH for
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Fig. 5 | Implementation of a convolutional neural network. a Training process
diagram. PC, personal computer. b, c Some objects and their detected X-ray pic-
tures are used in the database. All scale bars in red color are 1 cm. d Accuracy of
recognition over the epochs. e Output values, fH, fU, fS, and fT, for each epoch. The
four boxplots, the y-axis of which are fH, fU, fS, and fT, respectively, from top to
bottom, represent the processing results of the four feature convolution kernels.

The grid lines of the box are divided according to 25%, 50%, and 75% of the data.
Percentiles are represented by horizontal lines forminimum andmaximum values,
crosses for 1% and 99%, and squares for mean values. The colors black, red, blue,
and yellow represent the letters H, U, S, and T, respectively. Source data are pro-
vided as a Source Data file.
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the letter H and fT for the letter T. The largest probability among them
is considered the epoch’s output, and the accuracy is defined as the
correct identifications’ proportion for all images in the test dataset.
Loss Function is defined by Cross Entropy, from which we perform
gradient optimization and get new weight values. The convergence of
neural network outputs is assessed by examining the precision of
image recognition over various epochs, subsequent to dividing the
dataset, conducting training, andperforming tests. As shown inFig. 5d,
the accuracy on the test dataset reaches 100% within less than 8
epochs. Other computational procedures with different initial values
are shown in Supplementary Figs. 13 and 14, which also shows that the
model is convergent. Figure 5e presents the detailed evolutionprocess
of the training dataset. Among them, the four sub-figures from top to
bottom represent the processing results of the four feature convolu-
tion kernels, and the ordinate is the output of each convolution kernel
(fH, fU, fS, and fT). The black, red, blue, and yellow boxplots represent
the data distribution characteristics of numerous image results of H, U,
S, and T letters under a certain convolution kernel, respectively. More
details about the convolutional neural networks can be found in
Methods, Dataset, and Code. As the epochs increase, the extremum
and quartile values of each boxplot with different colors are separated
in turn,which proves that themodel achieves the taskof classifying the
target images.

This experiment demonstrates that the reconfigurable-weight
macro-pixel PSC X-ray detector can effectively identify objects in a
specific scene without the help of software algorithms (i.e., distin-
guishing between iron sheets shaped as H, U, S, and T) and is easily
compatible with random placement errors (less than ±15°, 1/5 macro-
pixel size, according to Fig. 5b). The function holds potential applica-
tions in fields dealing with complex and multi-solution problems in
reality, such as the identification of dangerous objects in security
inspection, or the detection of tiny nodules in medical inspection,
and so on.

Discussion
In this article, we report the in-X-ray-detector computing device.
Benefiting from the low defect concentration and effective passiva-
tion, the N-I-P type CsPbBr3 PSC detector has achieved ideal perfor-
mance for in-sensor computing, including polarity reconfigurability,
good linear dynamic range, and robust stability. The hardware itself
canperformedge extraction for the data compression, process images
using distinct kernels, and performpattern recognition tasks with high
accuracy, which is equivalent to the performance of complicated and
energy-extensive software-based computing processes. This research
offers potential solutions to overcome challenges associatedwith data
transmission, processing, and storage in X-ray detection systems,
paving the way for future development and application of advanced
neural network-based X-ray detectors.

Methods
Materials
CsBr (99.999%), PbBr2 (99.999%), and C60 (99.9%) were from
Advanced Election Technology Co. Ltd. Andwere further purified. The
quartz ampoules were from KaiDe (Beijing) quartz Co., Ltd. Abrasives
and tools were from Trojan (Suzhou) and Kejing (Shenyang) Co. Ltd.
The ZnO target (99.99%), NiO target (99.9%), Au particles (99.999%),
and Bi particles (99.999%) were from ZhongNuo Advanced Material
(Beijing) Co. Ltd.

Preparation of CsPbBr3 single crystal
We mixed CsBr and PbBr2 in the quartz ampoule according to the
molar ratio, sealed the ampoule, and placed it in a swing furnace to
fully react. The composite CsPbBr3 polycrystalline raw material was
first purified by directional solidification and then subjected to several
zone-melting passes at variable speeds and temperature fields. After

removing thehead and tail impurity-rich regions, the ingot had apurity
of 99.9999% (6N, GDMS tested by www.sci-go.com, as shown in
Supplementary Table 3) and was used to grow single crystals. The
CsPbBr3 perovskite single crystals were grown using the Bridgman
quartz-crucible descent method, through a temperature gradient of
1.05 Kmm−1 at a velocity of 0.40mmh−1. The ingots that were formed
were then gradually cooled to ambient temperature at rates of 8 K h−1

(initial phase) and 1 K h–1 (during phase transition stages). Then, the
crystal went through several process steps, including sample mount-
ing, ingot cutting, various mesh-abrasive-paper grinding, and ethanol-
DMSO-mixed-solution polishing.

Device fabrication
We successively conducted thermal evaporation of the C60 (~6 nm,
through the ellipsometer analysis) layers on both sides of the CsPbBr3
PSC, magnetron sputtering of ZnO (~200nm) and NiOx (~150 nm), and
thermal evaporation of bismuth electrode layer (~4 μm). Aluminum-
cored carbon-side tape (7311, Nisshin EM) was used to peel off the
functional layers.More information about the detector canbe found in
Supplementary Figs. 2 and 3. We showed the discrete, reconfigurable
PSC macro-pixel detector in Supplementary Fig. 11.

Detector performance measurement
Different bias voltages were applied and signals were collected using
the Keithley 6517B Source Meter. To assess the X-ray detection cap-
abilities, the AmptekMini-X2 tube (Au target, Newton Scientific M237)
was employed to generate X-ray photons, and a horizontal displace-
ment stage was utilized for moving the object along the x–y-axis. And
the accu-diode ionization chambers included DDX6-W and DDX6-WL
(Accu-Gold+, Radcal). During the test process, we used the photo-
current to subtract thedarkcurrent andfit the I–V curvewith theHecht
formula.

Processing and testing of the integrated detector
The CMOS dice were taped out at Semiconductor Manufacturing
International (Shanghai) Corporation, using the 180 nm 1P6M Mixed
Signal process. On the CMOS wafer, we first performed under-bump-
metal plating and then performed dicing and goldwire ball bonding at
Shandong Senspil Semiconductor Co., Ltd. After bonding the CMOS
die and the self-made printed circuit board (PCB), we used the 6005 T
anisotropic conductive tape for the flip-chip bonding, via the bonder,
FC150. During imaging tests, the control signals were input by FPGA.
We used the oscilloscope (Keysight DSO-S054A) to get the serial out-
put differential signals, which were processed and composed of ima-
ges in the software. We demonstrated the experiments based on the
PSC-CMOS detector in Supplementary Figs. 8–10.

Classification task
We used the discrete PSC detector to acquire images from which the
databasewas formed. For the classification task, our dataset contained
200 images. The iron pieces corresponding to each letter were pho-
tographed 50 times in different placement states. They were divided
into two parts, with 160 images in the training set and 40 in the test
dataset. We simulated changes in sub-pixel weights through software
operations on the computer. The backpropagation process andweight
update process referred to the measured signal value of the discrete
PSC detector. The results of the training set were output in Fig. 5e, and
the results of the test dataset were output in Fig. 5d. The attachment
contained Dataset and Code files.

Data availability
The X-ray images including Baggages-0002-0001 in this study are
provided in thepublicGDXray+database, under the accessionwebsite,
https://domingomery.ing.puc.cl/material/gdxray/. On the site, all X-ray
images are available at the Download tab. The self-made database for
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convolutional neural networks, including all letter images used in
Fig. 5, is provided in the attachment SupplementaryData 1. The sub-file
names, h, u, s, and t, respectively, represent the corresponding ima-
ging objects. All data is free to use. Source data are provided in
this paper.

Code availability
The source code for convolutional neural networks is available in the
folder Supplementary Software 1.
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