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Enabling large-scale screening of Barrett’s
esophagus using weakly supervised deep
learning in histopathology
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Timely detection of Barrett’s esophagus, the pre-malignant condition of eso-
phageal adenocarcinoma, can improve patient survival rates. TheCytosponge-
TFF3 test, a non-endoscopic minimally invasive procedure, has been used for
diagnosing intestinal metaplasia in Barrett’s. However, it depends on pathol-
ogist’s assessment of two slides stained with H&E and the immunohisto-
chemical biomarker TFF3. This resource-intensive clinical workflow limits
large-scale screening in the at-risk population. To improve screening capacity,
we propose a deep learning approach for detecting Barrett’s from routinely
stainedH&E slides. The approach solely relies on diagnostic labels, eliminating
the need for expensive localized expert annotations. We train and indepen-
dently validate our approach on two clinical trial datasets, totaling 1866
patients. We achieve 91.4% and 87.3% AUROCs on discovery and external test
datasets for the H&E model, comparable to the TFF3 model. Our proposed
semi-automated clinical workflow can reduce pathologists’ workload to 48%
without sacrificing diagnostic performance, enabling pathologists to prioritize
high risk cases.

Early detection of cancer offers the best chance of long-term survival
and good quality of life for patients. This is the main driver behind
initiatives aimed at early detection in esophageal adenocarcinoma
(EAC), which has a poor 5-year survival rate below 20%1, primarily due
to late diagnosis2. Barrett’s esophagus (BE) is the pre-malignant tissue
that presents an opportunity to detect and treat EAC early. However, it
is estimated that less than 20% of patients with BE are diagnosed3,
resulting in the majority of EAC cases being diagnosed without the
possibility of early treatment.

Currently, the standard diagnostic test for BE is endoscopic
biopsies with histopathology in patients who are at higher risk due to
gastroesophageal reflux disease (GERD) symptoms. Considering the
high prevalence of GERD (10–30%) in the adult population4, screening

at scale is challenging, as endoscopy is resource-intensive. Of these
patients, an estimated 5–12% will be diagnosed with BE5,6. Increasing
the detection andmonitoring of BE is therefore a priority for EAC early
diagnosis and treatment.

In recent years, minimally invasive capsule sponge devices
such as the Cytosponge have been developed to enable large-scale
screening. The capsule sponge samples cells throughout the
length of the esophagus in a short procedure performed by a nurse
in a clinic, and accurately identifies patients with BE or early cancer
when coupled with specific biomarkers on a slide7–10. The bio-
marker trefoil factor 3 (TFF3) identifies goblet cells, the hallmark
for intestinal metaplasia (IM) in BE8,11, and the biomarker p53
detects malignant transformation of BE12. Lastly, hematoxylin and
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eosin (H&E) staining is used for cellular atypia as an indicator of
pre-malignant changes.

Similar to endoscopic biopsies, these tests rely on manual
inspection of histopathology specimens by pathologists for diagnosis.
In current practice, a histopathologist inspects each of the three slides
(TFF3, H&E, p53) for every patient. A BE diagnosis is made by
inspecting both H&E for cellular morphology and TFF3 for goblet
cells7. As with any large-scale screening, pathologist spends most of
their time examining negative cases, instead of prioritizing high-risk
cases; this limits the scalability of the test for population-level
screening.

Deep learning has demonstrated potential to improve screening
coverage with successful application to digital histopathological
images13. Such methods have illustrated promising diagnostic perfor-
mance in cancer detection and classification14,15. Lately, deep learning
approaches have been shown to learn the spatial organization of cells
in tumors16, classify different tumor types17, and learn histopathologi-
cal characteristics related to the underlying genomic mutations18. A
common approach to image classification problems in histopathology
has been supervised deep learning based on localized expert annota-
tions in whole-slide images9, where smaller regions in such large ima-
ges (several gigabytes in size) need to be visually inspected and
manually annotated by pathologists. Creating such annotations is
time- and resource-intensive, limiting the scalability of the supervised
deep learningmethods formodel development. Recent improvements
in weakly supervised deep learning19–21 based on the multiple instance
learning (MIL) paradigm22, enable model training from whole-slide
images, using the diagnostic information rather than specialized local
annotations. This makes it possible to leverage existing datasets
composed of slides and pathologists’ routine diagnostic reports,
including labels for multiple adjacent slides of the same patient. The
approach can be scaled to larger sample sizes for training more
effective and robust deep learning models. Consequently, the
approach can be extended to new domains such as screening exam-
inations for other cancer types in diagnostic histopathology.

In this paper, we propose an end-to-end weakly supervised deep
learning approach based on MIL to predict the presence of IM for the
detection of BE directly from the routinely stained H&E whole-slide
images (slides) of capsule sponge samples, without requiring TFF3
staining (Fig. 1). We develop and test our approach on a discovery
dataset from the DELTA implementation study23 and externally vali-
date it on the BEST2 multi-center clinical trials dataset7 (Table 1). To
ensuremodel interpretability, we conductqualitative, quantitative and
failure-modes analysis of the deep learning model outputs. We pro-
pose two semi-automated machine learning (ML)-assisted clinical
workflows for Barrett’s screening, which can considerably reduce the
pathologists’ manual workload to 48% without loss in diagnostic per-
formance, and TFF3 staining to 37%, respectively.

Results
Weakly supervised deep learning models can accurately detect
BE from H&E and TFF3 slides
The discovery dataset consists of 1141 patient samples with paired
pathology data containing adjacent H&E and TFF3 slides. It was ran-
domly divided into development and test datasets using an 80:20 split
(Table 1). Twomodels were trained using four-fold cross-validation on
the discovery development set following the BE-TransMIL model
architecture (Fig. 1b, Methods), and evaluated on the discovery test
set. The first model, H&E BE-TransMIL, addresses the main aim of
detecting BE from H&E slides directly. The second model, TFF3 BE-
TransMIL, was trained on TFF3 slides—this is intuitively an easier
computer vision task, as goblet cells are distinctively stained as
dark brown.

We benchmarked four different types of image encoders for each
of the two models, namely, SwinT24, DenseNet12125, ResNet1826, and

ResNet5026 for feature extraction (Methods). Cross-validation metrics
on the discovery development dataset reveal that the model with the
ResNet50 image encoder achieves the highest performance for
detecting BE from H&E and TFF3 slides (Supplementary Table 1 and
Supplementary Table 2). For the H&E model, ResNet50 achieves the
highest area under receiver operating characteristic curve (AUROC)
(mean± standard deviation: 0.931 ± 0.021) and area under
precision–recall curve (AUPR)AUPR (0.919 ±0.031) among the four
encoders. For the TFF3 model, ResNet50 achieves the highest or
consistent AUROC (0.967 ±0.003) with a consistent AUPR
(0.951 ± 0.014), though DenseNet121 achieves the highest AUPR.

Summarizing theperformanceof the respectivebestmodelson
the discovery test set at the selected operating points (seeMethods
for details), the H&E BE-TransMIL model achieves specificity: 0.922
(95% CI: 0.874–0.963), sensitivity: 0.727 (95% CI: 0.647–0.833) and
AUROC: 0.914 (0.870–0.952) (Table 2). The TFF3 BE-TransMIL
model reaches specificity: 0.965 (95% CI: 0.919–0.986), sensitivity:
0.791 (95% CI: 0.707–0.882) and AUROC: 0.939 (95% CI:
0.903–0.969) (Table 2). Note that the TFF3 BE-TransMIL model
serves as the upper bound for the model trained with the adjacent
H&E-stained slides.

Both H&E and TFF3 models focus on regions with goblet cells—
the hallmark of IM for detecting BE
A key feature of BE-TransMIL models is a learnable attention
mechanism, whereby the slide prediction is computed from the
weighted feature representations of individual image tiles. Conse-
quently, we can analyze distribution of attention weights and assess
tiles contributing most (or least) to the model’s prediction. To ensure
interpretability of the trained deep learning models’ outcomes, we
perform detailed qualitative and quantitative analysis by investigating
regions where the H&E and TFF3models relatively focus on, including
visual inspection of slide attention heatmaps and tile saliency maps,
and TFF3 stain–attention correspondence analysis.

We analyze the slide attention heatmaps of themodel and visually
inspect high- and low-attention tiles, each of size 224×224 pixels (see
Methods for details). For the H&E BE-TransMIL model, we analyze a
true BE-positive slide (Fig. 2b) and observe that tiles that receive high
attention (red regions in attention heatmap) contain goblet cells,
indicative of BE. Moreover, these regions exhibit brown (positive)
TFF3 staining in the adjacent TFF3 slide that further validates the pre-
sence of BE. Similarly, we confirm that the tiles with very low attention
(blue regions in attention heatmap) do not contain goblet cells, and
depict no brown staining in the adjacent TFF3 slide. For a true BE-
negative slide (Fig. 2c), the attention heatmap shows uniform attention
values without any high-attention regions, reflecting the absence of
goblet cells. The adjacent TFF3 slide also does not indicate any positive
brown staining.We repeat the analysis on the correspondingTFF3 slide
with the attention heatmaps of the TFF3 BE-TransMIL model for the
same BE-positive and negative slides (Fig. 3b, c). Again, we observe
that the high-attention tiles indicate goblet cells clearly visible
with dark brown TFF3 stain for BE-positive slide, and nearly uniform
low-attention tiles without any brown TFF3 stain in the
BE-negative slide.

In order to understand the relative importance given by trained
model encoders at a more fine-grained level in the tiles of a slide, we
generated saliency maps using gradient-weighted class activation
mapping (Grad-CAM)27 for individual tiles (Methods, Supplementary
Fig. 3).We observe that, for both H&E and TFF3model encoders, there
is visual agreement between the locations of goblet cells indicative of
BE, and saliency map activations. Specifically, for the H&E model, we
observe that higher importance is given by the models to the mucin-
containing goblet cells (translucent, bluish appearance). The TFF3
model attributes more importance to regions with goblet cells show-
ing positive TFF3 staining.
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Going beyond qualitative visual inspection on few slides, we want
to quantitatively establish across the discovery test dataset whether
high-attentionH&E tiles correspond to brown staining on the adjacent
TFF3 slides, indicating the presence of goblet cells. A stain–attention
correspondence analysis was performed, involving the spatial regis-
tration of TFF3 slide to the corresponding H&E slide (Supplementary
Fig. 4) extracting the 3,3′-diaminobenzidine (DAB) stain ratio in the
TFF3 tiles, and computing the correspondence of the H&E attention

heatmaps with the TFF3 stain ratios (Fig. 4a), see Methods for details.
We use the same BE-positive and negative slides as in Figs. 2b, c
and 3b, c to illustrate the slide-level stain–attention correspondence.

For the example slides of theH&EBE-TransMILmodel (Fig. 4b), we
find that in the attention plot of the BE-positive slide, high-attention
tiles overlap with high stain ratio values. The higher attention values
concentrate on the tiles with highest TFF3 expression, showing a high
attention–stain agreement. The attentions are not uniform and

Table 1 | A summary of the datasets utilized in the study, with percentages of BE-positive and negative cases

Dataset Study Patients (slide pairs) BE-positive BE-negative

Discovery development set (train, validation) DELTA 912 348 (38.2%) 564 (61.8%)

Discovery test set DELTA 229 87 (38.0%) 142 (62.0%)

External test set (holdout) BEST2 725 329 (45.4%) 396 (54.6%)

Total 1866 764 (40.9%) 1102 (59.1%)

, …, K

Fig. 1 | Method overview for automatic detection of Barrett’s esophagus (BE)
from H&E and TFF3 slides, including dataset preprocessing, model training,
and data used in the study. a H&E and TFF3 stained histopathological slides are
scanned from adjacent sections and preprocessed using distinct pipelines for

H&E and TFF3, as shown in purple and blue boxes, respectively. b Preprocessed
slides are split on-the-fly into non-overlapping tiles and used to train weakly
supervised BE-TransMILmodels end-to-end fromH&E andTFF3 slides separately. A
similar training procedure is performed for both stains.
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become lower as stain ratio decreases. A Pearson’s correlation coeffi-
cient r >0.5 between stain and attentions substantiates a high corre-
spondence. For the BE-negative slide, attention is largely uniform as
the model detects no goblet cells, and attention values have a higher
normalized entropy than BE-positive slide. All 50 true BE-positive H&E
slides present a positive correlation between the stain ratio and
attention weights, with mean ± standard deviation of 0.35 ± 0.23 and
range 0.01–0.84. Additionally, the normalized attention entropies
across all slides are higher for BE-negative slides, indicating more
uniform and diffused attentions compared to BE-positive slides.

For the example slides of the TFF3 BE-TransMIL model (Fig. 4c),
we observe that high-attention tiles overlapwith high stain ratio values
and vice-versa with r > 0.5 for the BE-positive slide, similar to the
observation for the H&E model. For the BE-negative slide, attention
values are diffuse, with a higher normalized entropy than the BE-
positive slide. The latter observation is supported by the box and strip
plots of entropies over all slides. Again, all stain–attention correlation
coefficients r for the 58 true-positive TFF3 slides are positive, with
mean± std. dev. of 0.28 ±0.19 and range 0.02–0.67.

Failure-modes analysis reveals complex cases for BE detection
from histopathological slide
To specifically understand where the models were unable to correctly
detect BE, we evaluated the incorrectly predicted cases in the dis-
covery test set (see Methods for details). We observe false prediction
rates for the H&E model (27.3% false negative (FN), 7.8% false positive
(FP)) and TFF3 model (20.9% FN, 3.5% FP) on the discovery test set
(Table 2). Our failure-modes analysis (see Supplementary Table 5 for
error quantities) reveals complex cases for which visual BE detection
from histopathological slides is challenging.

We first focus on false negatives (FNs) due to their high incidence
rate and clinical relevance. Out of all the FNs (Supplementary Table 5),
themajority (56% of the total FNs) are shared across both the H&E and
TFF3 BE-TransMIL models. An expert pathologist reviewed these
shared cases and reported that, in majority of the shared cases (48%),
the goblet cell (i.e., hallmarks of IM) groups were not well-represented
on theH&E slide, in 28%, therewere small or fewgroups of goblet cells,
and in 16% of these cases, the H&E slide was not well-preserved and
mucin was not clearly visible. These observations suggested that such
features may not be representative in the training dataset and were
difficult to identify as positives. In addition, we analyzed the unique
FNs of each model. H&E-only FNs (38% of the total FNs) may indicate
‘pseudo-adjacent’ tissue sections, wherein a TFF3 slide contains goblet
cells but the paired H&E slide, obtained farther along the tissue block,
maynot. TFF3-only FNs (6% of the total FNs) contain background noise
with low contrast between foreground tissue and background, and
higher levels of stain blush (a faint or lower intensity staining, not
necessarily associated with the location of goblet cells; also noticed in
a few true negative cases), leading to nearly uniform attentions and a
negative prediction. In summary, themajority of FNs were observed as
non-trivial to visually detect BE by the pathologist, with none or sparse
goblet cells in the H&E slide and unclear or equivocal staining in the
adjacent TFF3 slide. These cases were labeled BE-positive by default to

avoid missing any suspicious cases by the Cytosponge-TFF3 test; this
observation informs our deployment strategy to design workflows to
maximize specificity.

In the cases that were FP calls (Supplementary Table 5), we
observe that the shared FPs for the H&E and TFF3 BE-TransMILmodels
are much fewer (23% of the total FPs) than the shared FNs. Qualitative
analysis of the shared andH&E-only FP slides reveals that very few (1–2)
tiles show high attentions suggesting goblet cells. This appears to be
related to the presence of pseudogoblet cells, which have a goblet cell-
like appearance in the H&E slide and non-specific staining on the
adjacent TFF3 slide28. Other artifacts were alsomistaken by themodels
as goblet cells with high attentions due to darker intensities resem-
bling positive TFF3 staining (e.g., borders of air bubbles), and other
non-specific staining.

To further address failure modes of the trained models, we
explore ML-assisted workflows involving pathologists and both H&E
and TFF3 BE-TransMIL models at appropriate operating points and
discuss results in later sections (details in Results, Methods).

The trained model for BE detection from H&E slides generalizes
well to an external dataset
We used an external dataset of 725 cases from the multi-center BEST2
case-control clinical trial study7 for external validation (Table 1). An
overview of patient demographics is available in Supplementary
Table 7 for discovery and external datasets. The H&E stain preparation
method varies for discovery and external slides (see Methods for
details of sample, slide and stain preparation).

We observe that the H&E BE-TransMILmodel achieves 0.873 (95%
CI: 0.843–0.900) AUROC (Table 3). The model achieves a comparable
performance on the external test dataset that is similar to the dis-
covery test dataset (Table 2) with 0.914 (95% CI: 0.870–0.952) AUROC.
It is worth noting the promising predictive performance on the
external dataset despite the H&E stain variation and tissue sample
differences between the discovery and external datasets, as seen in
slide montages (Fig. 5a). In the visual inspection of the attention
heatmaps (Supplementary Fig. 1), we find high-attention tiles con-
taining goblet cells for the BE-positive slide and uniform attention for
BE-negative slide, suggesting the model’s capability to identify the
relevant features (i.e., goblet cells) for predicting BE on the out-of-
domain dataset.

Since manual expert annotations previously used in the BEST2
dataset9 were unavailable here, a direct comparison is not feasible.
However, the AUROC reported in that study was 0.88 (95% CI:
0.85–0.91) on their internal validation cohort (1,050 slides from the
BEST2 study). The H&E BE-TransMIL weakly supervised model trained
on H&E slides on the discovery dataset (DELTA study), achieves a
comparable AUROC of 0.873 (95% CI: 0.843–0.900) when the BEST2
dataset (725 slides) is used as our validation.

The average predictive performance of a pathologist on capsule
sponge samples from the BEST2 study dataset with respect to endo-
scopy labels is discussed in ref. 9, with a specificity of 0.927 and sen-
sitivity of 0.817.We observe that on the external dataset from the same
study, our weakly supervised deep learning model achieves a specifi-
city of 0.881 and sensitivity of 0.720 at the selected operating point
using only pathologists’ diagnostic labels. Although the model per-
formance is not directly comparable to the pathologist’s predictive
performance, this observationon theBEST2study informed thedesign
of semi-automated ML-assisted workflows, as discussed in the next
section.

Proposed ML-assisted workflows can substantially decrease
manual review workloads
Integration of ML-assisted workflows in clinical practice could reduce
pathologist workloads to assess histopathology slides by markedly
lowering the cases requiring pathologist’s manual review, and can

Table 2 | Metric values (95% CI) at the selected operating
point for H&E BE-TransMIL and TFF3 BE-TransMIL models on
the discovery dataset

Metric H&E BE-TransMIL TFF3 BE-TransMIL

AUROC 0.914 (0.870–0.952) 0.939 (0.903–0.969)

AUPR 0.901 (0.813–0.925) 0.930 (0.850–0.946)

Accuracy 0.847 (0.803–0.900) 0.899 (0.855–0.934)

Sensitivity 0.727 (0.647–0.833) 0.791 (0.707–0.882)

Specificity 0.922 (0.874–0.963) 0.965 (0.919–0.986)
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Fig. 2 | Quantitative and qualitative analysis of the H&E BE-TransMIL
(ResNet50) model on the discovery test dataset. a ROC curve (with boot-
strapping for confidence intervals (CIs) between 2.5th and 97.5th percentiles) and
AUROC (95% CI) at the selected operating point. b Example of a BE-positive H&E
slide. Attention heatmap is heterogeneous, showing regions of high and low
attentions that correspond to TFF3 staining in the adjacent TFF3 slide. Goblet cells

are visible in the tiles with high attention values; tiles with low attention values do
not showany goblet cells. c Example of a BE-negative H&E slide. Attention heatmap
shows uniform attention without any high-attention regions; high- and low-
attention tiles are without any goblet cells. Color bars along heatmaps show the
range of attention values with marked mean value.

Article https://doi.org/10.1038/s41467-024-46174-2

Nature Communications |         (2024) 15:2026 5



Fig. 3 | Quantitative and qualitative analysis of the TFF3 BE-TransMIL
(ResNet50) model on the discovery test dataset. a ROC curve (with boot-
strapping for CIs between 2.5th and 97.5th percentiles), and AUROC (95% CI)
at the selected operating point. b Example of a BE-positive TFF3 slide. Brown
TFF3-stained goblet cells are visible in the tiles with high attention values,

whereas tiles with low attention values do not show any brown TFF3 stain or
goblet cells. c Example of a BE-negative TFF3 slide. Attention heatmap shows
uniform attention without any markedly high-attention regions; tiles with
highest and lowest attention values do not have any positively stained TFF3
regions, indicating absence of goblet cells.
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Fig. 4 | Model attentions of BE-TransMIL models show high correspondence
with TFF3 stain in BE-positive slides, and are uniform and diffused for BE-
negative slides. a Overview of TFF3 stain ratio computation. Left: slide-level
attentionplots for true positive slide (overlapwith stain ratio, Pearson correlation r,
and entropy) and true negative slide (with entropy). Right: Overlay of box and strip

plots of normalized entropy of attention distributions of test dataset slides
(n = 229 slides) using b H&E BE-TransMIL (ResNet50) model and (c) TFF3 BE-
TransMIL (ResNet50) model. Box plots show the median (center line), 25th per-
centile (lower box boundary), and 75th percentile (upper box boundary), with
whiskers extending to the minimum and maximum entropy values.
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improve cost-effectiveness by reducing the need for specialized stains.
Comparing several workflows based on the above two criteria (see
Methods), we propose two semi-automated ML-assisted workflows. In
the first approach, we use either the H&E or TFF3 BE-TransMIL positive
predictions to be followed by pathologist review. The second
approach prioritizes the H&E model alone, such that TFF3 staining
could be limited to cases with a positive finding in H&E. These are
illustrated in Fig. 6 and Table 4 (see Supplementary Table 6, Supple-
mentary Fig. 5 for detailed results). The workflows are designed to
optimize specificity, to enable pathologists to review fewer negative
cases and focus on the high risk cases.

The first workflow, “Pathologist reviews any positives” (Fig. 6a),
requires bothH&E andTFF3models to analyze a sample, deferring to a
pathologist if either model predicts positively. In other words, if both
models agree that there are no signs of BE on either stain, the sample is

assumed to be likely BE-negative and is not manually reviewed. This
configuration can achieve 1.00 sensitivity and 1.00 specificity on the
discovery dataset with respect to the pathologists’ diagnosis alone,
suggesting that the two models and pathologist are complementary
(Supplementary Fig. 5). In this scenario, only 48% (41–55%) of samples
would need manual review, implying a 2.1 × (1.8–2.5×) reduction in
pathologist’s workload. Among the samples that would reach pathol-
ogist review (i.e., likely positives), 14–20% are expected to be BE-
positive, compared to the baseline prevalence of 5–12% in the fully
manual clinical setting5. However, this workflow still relies on both the
routine H&E and immunohistochemical TFF3 stains, similar to the
current manual screening pathway.

The secondworkflow, “Pathologist reviews H&Emodel positives”,
stipulates that a sample is only manually reviewed if the H&E alone is
positive (Fig. 6b), which would require TFF3 staining only for the 37%
(31–45%) of samples that get reviewed by a pathologist. However, this
workflow would result in a lower sensitivity of 0.91 (0.84–0.96) (Sup-
plementary Fig. 5) compared to thefirstworkflowwhich uses bothH&E
and TFF3 models. In this scenario, pathologist workload could be
reduced by 2.7 × (2.2–3.4×). Among the samples reaching pathologist
review, the observed prevalence of BE-positive would be 16–24%.

Discussion
Detection of BE from histopathology slides presently relies on a
pathologist manually inspecting both the routine H&E and specialized
TFF3 stained slides for each patient. The current resource-intensive

Fig. 5 | Generalization capabilities of the H&E BE-TransMIL (ResNet50) model
on the external dataset. a Stain and sample variations between the two datasets.
Montages of the H&E slides in discovery (on the left) and external (on the right)
datasets show lighter stain intensities and sparser tissue samples in the external

dataset. b ROC curve (with bootstrapping for CIs between 2.5th and 97.5th per-
centiles) and AUROC (95% CI) at the selected operating point based on the dis-
covery dataset shows competitive results despite the stain and tissue preservation
variations.

Table 3 | Metric values (95% CI) at the selected operating
point for H&E BE-TransMIL model on the external dataset

Metric H&E BE-TransMIL

AUROC 0.873 (0.843–0.900)

AUPR 0.883 (0.850–0.902)

Accuracy 0.808 (0.780–0.837)

Sensitivity 0.720 (0.682–0.775)

Specificity 0.881 (0.846–0.910)

Article https://doi.org/10.1038/s41467-024-46174-2

Nature Communications |         (2024) 15:2026 8



clinical workflow represents a big hurdle for large-scale screening for
BE using the Cytosponge-TFF3 test. Our work has demonstrated that
weakly supervised deep learning models can detect BE using only the
H&E slides. Most importantly, these models were able to identify the
salient features used by pathologists, namely goblet cells. This
approach shows that accurate models can be trained directly from the
reported histopathology at the slide-level. This is an important dif-
ference from the previous models9, as large-scale localized annota-
tions in these slides require significant time and effort from expert
pathologists.

Screening for BE currently requires pathologists to spend the bulk
of their time reviewing cases that are negative. Exploring the potential
of integrating deep learning models into clinical practice, we imagine
that the first steps in a disease screening setting would be to optimize
pathologists’ manual workload to enable them prioritize high risk
cases. We suggest an alternative using semi-automated workflows,
including one that uses both H&E and TFF3 models. We estimate that
the number of cases pathologists would need to review could be cut in
half (48% current cases for manual review) without any loss of accu-
racy. This implies a 2.1× increase in screening coverage with the same
number of pathologists by screening out the negatives and enabling
pathologists to focus on positives.

Weobserve thatourmodels generalizewell to an external dataset,
demonstrating a comparable predictive performance as the discovery
test set. These results are encouraging, considering the significant
differences between the discovery and external datasets, such as the
slide preparation and staining protocols, patient populations, and
reporting pathologists. The external evaluation demonstrates that our
trained models could become a stepping stone to (semi-) automating
the Cytosponge-TFF3 screening test, potentially allowing to scale it to
larger populations.

One of the limitations of this study is that, while the discovery
dataset is derived from various sites in the UK across different patient
populations, the samples were sectioned and stained at a single site.
This limitationwas highlighted in the external validation dataset which
showed greater variation in the stain, artifacts such as pen marks, and

tissue preservation differences.We could not quantify whether or how
much these differences relate to the failure cases. Future studies can
account for this by mixing these now well-characterized datasets in
training and test, aswell asby continuing to include newdata over time
as sample processing protocols change. Additionally, we observed
occasional inconsistencies in extraction of slide labels from patholo-
gists’ reports during model development. This was due to manual
transcription errors made when reading the pathologist reports and
creating a summary table. Such errors (estimated to be 10-15 slides)
were found in the earliest cases where the report formats were less
standardized, making any automated extraction difficult. In standard
pathology reports this process could be improved using large lan-
guage models (e.g., GPT-4) to extract diagnostic information from
unstructured text, however in this case standardizing the report for-
mat for pathologists due to the singular use and nature of the sample
would also ensure accurate automation of label extraction.

Additionally, we recognize that there is still scope for enhancing
our H&E BE-TransMIL based on ResNet50. As demonstrated in Sup-
plementary Table 4 for SwinT type of encoders, one could leverage
extensible publicly accessible H&E datasets for pretraining the image
encoder through self supervised learning (SSL). This approach could
serve as an excellent continuation to this study, potentially bridging
the gap between the H&E and TFF3 versions of BE-TransMIL. However,
this may not be easily applicable for TFF3 due to the unavailability of
large-scale datasets for the immunohistochemical stain TFF3 to the
best of our knowledge.

Although we offer two options for integrating deep learning
models into the current clinical workflow, this continues to be an area
of active research. Lower-risk workflow scenarios can involve manual
review of all slides by pathologists where either the H&E or TFF3 BE-
TransMIL model outputs (e.g., predictions, attention heatmaps) are
provided to pathologists to guide their review and speed-up assess-
ment time. User interfaces have recently been introduced in ML-
assisted histopathology workflows29–31, where open questions include
how specific visualizations can best assist pathologists’ practice to
accelerate their visual assessment of slides or aid their diagnostic

Fig. 6 | ProposedML-assistedworkflows. aWorkflow “Pathologist reviews any positives”.bWorkflow “Pathologist reviewsH&Emodel positives”. “Pos” and “Neg” refer to
BE-positive and negative, respectively.

Table 4 | Quantitative comparison of the proposedworkflows in terms of the requirements for pathologist review as fraction of
the current reviewed cases, TFF3 staining as fraction of the current cases, observed prevalence of BE, sensitivity and speci-
ficity (with 95% CIs in parentheses)

Proposed ML-assisted workflow Pathologist review TFF3 staining Observed prevalence Sensitivity Specificity

Pathologist reviews any positives 48% (41–55%) 100% 17% (14–20%) 1.00 (1.00–1.00) 1.00 (1.00–1.00)

Pathologist reviews H&E model positives 37% (31-45%) 37% (31–45%) 19% (16–24%) 0.91 (0.84–0.96) 1.00 (1.00–1.00)
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decision-making. For instance, an overlay of model-generated atten-
tion heatmap on the whole-slide image with the ability to adjust opa-
city could help pathologists focus on the highlighted regions, which
could lead to a reduction of overall review time. Future work is
required to quantify ML-assisted pathologist review times and com-
pare with time to confirm or reject model results. Lastly, a compre-
hensive assessment of resource requirements of the proposed
approach is recommended for integration in clinical practice.

In summary, a weakly supervised deep learning approach using
only routine H&E slides enables the training of a pathologically accu-
rate model that offers the potential to reduce pathologist workloads
through semi-automated workflows, allowing them to prioritize high
risk cases, thereby facilitating large-scale screening of BE. Further-
more, the approach requires no extra efforts to create localized expert
annotations. This also means that future models could be trained
continually in real-time as new diagnostic data is generated, plausibly
leading to further improvements in the performance of the trained
models. Moreover, reliance on only diagnostic labels from pathologist
assessments or reports facilitates the adoption of the approach to
other screening applications in clinical histopathology.

Methods
Discovery and external evaluation datasets
The discovery dataset consists of 1,141 cases with both hematoxylin
and eosin (H&E)- and trefoil factor 3 (TFF3)-stained whole-slide images
from patients in the DELTA implementation study (integrated diag-
nostic solution for early detection of esophageal cancer study; funded
by Innovate UK; ISRCTN91655550)23. Ethics approval was obtained
from the East of England Cambridge Central Research Ethics Com-
mittee (DELTA 20/EE/0141) and written informed consent was
obtained from each patient. The DELTA slides were stained by the
Cyted laboratory in Huntington, UK in 2020-2022 using the Ventana
Benchmark Autostainer.

The external test dataset consists of 725 cases with H&E slides
from the BEST2 (ISRCTN12730505) clinical trials11,32. Ethics approval
was obtained from the East of England Cambridge Central Research
Ethics Committee (BEST2 10/H0308/71) and the trials are registered in
the UK Clinical Research Network Study Portfolio (9461). Written
informed consent was obtained from each patient. After retrieval, the
Cytosponge was placed in SurePath Preservative Fluid (TriPath Ima-
ging, Burlington, NC, USA) and kept at 4° Celsius. The sample was then
processed to a formalin fixed block7. The BEST2 slides were stained
within the Tissue Bank laboratory at Addenbrookes Hospital, Cam-
bridge, UK for cases collected between 2011-2014. TFF3 staining was
performed on slides 2 and 15 on serial sections according to estab-
lished protocol (proprietary monoclonal antibody) using standard
protocols on a BOND-MAX autostainer (Leica Biosystems, Newcastle
upon Tyne, UK) as previously described13. Expert histopathologists
scored the TFF3 slide in a binary fashion, where a single TFF3 positive
goblet cell is sufficient to classify the slide as positive.

DELTA was a prospective trial with both known Barrett’s eso-
phagus (BE) patients and reflux screening patients. For this analysis, no
follow-up endoscopic information was available. In the BEST2 trial, all
patients underwent an endoscopy within an hour of the Cytosponge
procedure7. All class labels were based on the expert pathologists’
reading of the Cytosponge slides. See Supplementary Table 7 for
details of patient demographics in the two datasets. Figure 5a
demonstrates slide montages suggesting the stain variation and slide
quality differences between DELTA and BEST2 datasets.

Slides in both discovery and external datasets were scanned in
digital pathology image formats (NDPI and SVS, respectively), with 5×,
10×, 20×, and 40× as the available magnifications, with a resolution of
0.23μm/pixel at the highest magnification. Quality control was per-
formed to exclude the slides whose capsule sponge sample contained
insufficient gastric tissue9. Additionally, visual quality control was

performed to ensure correct H&E or TFF3 categorization of all images.
Diagnostic labels for TFF3 positivity (a BE biomarker in the sponge
samples) were manually extracted from routine pathologist reports.

Data preprocessing
Preprocessing was performed to mitigate undesirable artifacts (e.g.,
bubbles, shadows, penmarks), standardize background effects, and to
remove control tissue in TFF3 slides. Foregroundmasks for H&E slides
were extracted via HistoQC33 with configuration ‘v2.1’ (https://github.
com/choosehappy/HistoQC), and all background pixels were set to a
fixed plain-white value (255, 255, 255) in the RGB color model. Each
H&E slide contains two tissue sections side-by-side, whose separate
bounding boxes were determined based onmorphological processing
of the foreground masks. For the immunostained TFF3 slides, the low
staining contrast led to unsatisfactory automatic foreground seg-
mentation for some slides. Therefore, tissue section bounding boxes
for TFF3 slides were obtained semi-automatically, using the Microsoft
Azure Machine Learning (https://azure.microsoft.com/en-us/services/
machine-learning/) data labeling tool. Foreground masks were then
obtained for each section using the 80th percentile of the estimated
hematoxylin concentration via stain deconvolution34, as a threshold to
select cell nuclei, followed by binary closing to fill in the gaps between
the cells and finally binary opening to remove false positive pixels in
the background. Both morphological operations were applied using a
disk of 8 pixels radius at 1.25×objective magnification (equivalent to
60μm). Lastly, the H&E and TFF3 tissue sections were cropped and
stored at a single resolution in TIFF format (10× objective magnifica-
tion at a fixed scale of approximately 0.92μm/pixel), resulting in a
tenfold reduction in dataset size and improved training throughput.
The specific preprocessing pipelines for H&E and TFF3 slides are
demonstrated in Fig. 1a.

We selected a 10× objective magnification for model training and
inference, as it offers an adequate balance of contextual tissue archi-
tecture and cellular morphology, specifically for goblet cells, in the
given field-of-view for a tile of 224×224 pixels (Supplementary Fig. 2).
We also performed a sensitivity study of the H&E BE-TransMIL model
using different objective magnifications at 5×, 10×, and 20× (Supple-
mentary Table 3). Error bars were estimated via replication across
random initializations of BE-TransMIL model parameters. We report
the performance on a 10% random data split from the discovery
development dataset, the rest 90% used for training. We found that
10× achieves superior overall predictive performance compared to
other magnifications, corroborating our visual assessment of tiles
containing goblet cells at different magnifications (Supplementary
Fig. 2). Additionally, we observed that 10×magnification offers a good
trade-off between slide coverage during training phase and predictive
performance, due to GPU memory limitations.

Model description
Due to high number of pixels in a slide (gigapixel sizes), it is not pos-
sible to process the entire slide at once with current hardware. The
most commonapproach is to split the slide into tiles of equal size, such
that batches of tiles can be easily handled by computer vision enco-
ders. In the existing supervised learning approaches, each tile is given a
label based on expert annotations of local regions on the slide (“dense
annotations”); at prediction time, the results on individual tiles are
aggregated as a proxy for the slide label9,35. Pathologists spend sig-
nificant time and effort labeling specific cellular structures on a slide
that are then used to train amodel to classify new slides into one of the
slide labels.

However, in a weakly supervised setting, instead of having access
to a label for each tile, only slide-level labels are available. Classifying a
set of tiles using a singlebinary slide label is a formofmultiple instance
learning (MIL), where we call the set of K instances (tiles) in a slide as a
“bag”, and assume that K could vary for each bag, that is, not all slides
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will have the sameamount of tiles.We also assume that eachbag (slide)
has a binary label; in our case BE-positive or negative, and at least one
instance (tile) should be positive for the entire bag (slide) to be
positive20,22. In contrast to the supervised setting, the ground-truth
label for each slide was obtained from pathologists’ diagnostic labels
for the cases, without the need to curate a training dataset with loca-
lized manual annotations.

Preprocessed slides were used to train weakly supervised models
on H&E and TFF3 slides separately. For training and inference, the
preprocessed slide were split on-the-fly into non-overlapping tiles of
224×224 pixels ( ≈ 200μm×200μm) with or without random offset
(for training and inference, respectively) and background tiles were
excluded, using the open-source MONAI library36. Tiling on-the-fly, as
opposed to offline pre-tiling, offers greater flexibility in generating a
wider variety of tiles that prevents the deep learning model from
overfitting to the training set as tiling starts from a random offset at
each iteration. At evaluation time, all the foreground tissue tiles in the
slide were used to compute the model output (whole-slide inference).
However, during training, only a subset of tiles (bag of sizeK) was used
due to the limited GPU memory size. In order to ensure that relevant
tissue regions were included in the bag during training, we applied a
minimum intensity filter; this heuristic is based on the fact that dense
cellular regions have an inherently darker appearance. Therefore, if K
does not cover the entire slide, we ensured that the most relevant
regions are selected. Additionally, we set an intensity threshold at 90%
to exclude background regions previously set to plain-white in the
preprocessing step for the H&E slides in the discovery dataset. Finally,
we applied random geometric augmentations including 90∘ rotations
and horizontal and verticalflipping to reduceoverfitting effects during
training.

The network architecture, depicted in Fig. 1b, is inspired by the
model variant Transformer-MIL proposed in20. It is built upon
attention-basedMIL22 paradigm, wherein a trainablemodule attributes
an “attention” weight to each instance (tile) in the bag (slide). The
learnable attention-based MIL has shown to outperform other aggre-
gation types for several histopathological tasks22. Moreover, this
method has the benefit of being highly interpretable, as it facilitates
inspection of whether the tiles with highest attention values are
abnormal tissue sections that contain goblet cells in this context.

The overall model architecture is composed of four main com-
ponents. First, a feature extractor that encodes each image tile into
lower-dimensional featuremaps; it consists of oneof the convolutional
neural network (CNN) or vision transformer encoders. Second, a
dependency module that captures spatial dependencies between
individual tilemaps in a bag into compact vector representations (“tile
embeddings”); it is composed of four consecutive Transformer37

encoder layers. Next, an attentionMIL pooling module22 using amulti-
layer perceptron (MLP) with a single hidden layer of dimension 2048.
Finally, a fully connected classifier layer that receives a linear combi-
nation of all tile embeddings weighted by attention values to compute
the final probability to predict a label for the slide. We trained the
model in end-to-end manner, where the deep image encoder, trans-
former, and attention MIL modules are jointly trained using tiles of
whole-slide images (Fig. 1b), in contrast to previous weakly supervised
approaches19,38 that involve two ormore steps to train the encoder and
aggregation layers separately.

We benchmarked different deep learning image encoder archi-
tectures including the ‘tiny’ version of Shifted Window Transformer
(Swin-T)24, DenseNet12125, and two variants of ResNet26, namely,
ResNet18 and ResNet50. These encoders have achieved promising
results on a variety of computer vision tasks, such as image classifi-
cation, object detection, and segmentation. All encoders were initi-
alized using weights from models pretrained on natural images
ImageNet39. At 10× objective magnification, capsule sponge histo-
pathological slides have a mean number of 3779 tiles (range:

428–14,278 tiles), hence, it is not feasible to encode all tiles at once due
toGPUmemory constraints. To optimize themaximumsupported bag
size K for each encoder, we implemented activation checkpointing40,
where we reduced the amount of memory required to store inter-
mediate activations used to compute gradients during the backward
pass, freeing up GPU memory for larger bag sizes processing. To
perform whole-slide inference at evaluation time, we encoded the bag
of tiles in chunks, concatenated the sub-feature maps into a large
tensor, before feeding it to the transformer encoder that computes
attention across the entire slide. Note that encoding in chunks is not
feasible at training time due to parallel processing limitations that
require exact number of forwardpasses to synchronize sub-processes,
in addition to higher GPU memory requirements to store activations
and gradients during the training phase. Hence, we improved the slide
coverage by optimizing memory consumption with the help of acti-
vation checkpointing during training and encoding in chunks for
whole-slide inference, given the unique characteristic of capsule
sponge samples that contain two adjacent tissue sections per slide
(Fig. 1a), in contrast to single/smaller slide sections available in public
benchmark datasets (PANDA, CAMELYON16) used in previous
studies19,20.

Comparative analysis of the encoders using four-fold cross-vali-
dation (Supplementary Tables 1 and 2) depicts that ResNet50
(K = 1200) encoder outperforms the other three encoders for detec-
tion of BE fromH&E and TFF3 slides, which is then selected for further
result analysis. Intuitively, ResNet50, owing to a deeper network
architecturewithmore trainableparameters than ResNet18 (K = 2300),
encodes the image tiles more favorably and leads to superior perfor-
mance even with a lower bag size. The other two encoders, SwinT
(K = 1100) and DenseNet121 (K = 700), are more computationally
expensive to train than the ResNets (leading to lower bag sizes), and
exhibit lower performance compared to ResNets.

Furthermore, for the SwinT image encoder, we explored the
benefits of SSL pretraining with a publicly available encoder
CTransPath41 that has been trained on a large corpus of H&E whole-
slide images, using ≈15 million image patches from public datasets
such as TCGA and PAIP, including multiple tissue and disease types.
Similar to ref. 42, we first experiment with freezing the encoder,
(second row in Supplementary Table 4), where we find that the vanilla
SwinTpretrainedon ImageNet39 andfine-tuned end-to-end (first row in
Supplementary Table 4) performs largely better. A possible reason for
lower performance could be the characteristic visual task to detect
goblet cells with a unique morphology and tissue type (esophageal),
hence, the encoder may not benefit from pretraining with diverse
histopathological datasets containing multiple tissues from various
organs without any further adaptation to the capsule sponge samples.
Therefore, we adapt the pretrained encoder to Cytosponge slides by
fine-tuning it as well, as shown in the last row of Supplementary
Table 4, where we finally see some benefits from initializing the
encoder with weights from a more closely related histopathology
domain rather than natural images. Nevertheless, this approach
remains less optimal compared to our top performing model,
ResNet50, initializedwith ImageNetweights andfine-tuned end-to-end
(Supplementary Table 1) especially in terms of sensitivity. This analysis
indicates that our H&E BE-TransMIL model could benefit from SSL
pretraining using publicly accessible H&E datasets similar to ref. 41.
However, this would still necessitate end-to-end fine-tuning of the
encoder to adapt it the esophageal tissue type. While the H&E model
can further be improved, the TFF3 variant has reached peak perfor-
mance (with the current strategy) due to the lack of large-scale data-
sets for the immunohistochemical stain TFF3.

The complete (end-to-end) networks were finetuned using binary
cross entropy lossusing solely slide labels.Hyperparameter tuningwas
performed for high specificity, so that the models could confidently
identify negative cases automatically. For training themodels, we used
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a batch size of 8 slides. Learning rate was fixed at 3×10−5 with a weight
decay of 0.1, and models were trained for 50 epochs. Due to unba-
lanced datasets, class reweighting was applied using the Scikit-learn
library43. Training of all BE-TransMIL models was performed using
compute nodes of 8 NVIDIA V100 GPUs in the Microsoft Azure cloud
(https://azure.microsoft.com/). Inference was run on a single V100
GPU. 40 CPU cores were used to tile the WSIs on the fly. Using the
described experimental setup and datasets, inference on each slide
took ≈4 s.

Statistical methods
We split the discovery dataset into development and test as an
80:20 split (Table 1). We performed four-fold cross-validation experi-
ments on the discovery development set; this led to an effective train/
validation/test split of 60:20:20 on the discovery dataset. Validation
and test sets were randomly selected, stratified according to dis-
tributions of class labels and patient pathway (surveillance or
screening).

To compare the performance of different weakly supervised
models, we calculated area under receiver operating characteristic
curve (AUROC) and area under precision-recall curve (AUPR),which
are threshold-agnostic metrics, as well as accuracy, specificity, and
sensitivity at 0.5 probability threshold. We report these metrics on
the discovery validation set for each of the H&E and TFF3models in
Supplementary Tables 1 and 2. We also performed replication
experiments at different magnifications to observe the variation of
metrics across random initializations of model parameters (Sup-
plementary Table 3).

After training the cross-validation models, we computed AUROC
values for each fold on the validation dataset. For clinical relevance,
the classification threshold was chosen at 0.85 sensitivity on the vali-
dation set for each model. The cross-validation fold with the highest
AUROC was then used for inference and computing standard metrics
(accuracy, AUROC, AUPR, specificity, and sensitivity) on the discovery
and external test datasets at the selected probability threshold
(Tables 2, 3). In addition, we plotted ROC curves with bootstrapping
for confidence interval (CI) (Figs. 2a, 3a, and 5b). CIs were defined as
the 2.5th and 97.5th percentiles on distributions of 1,000 samples
(with replacement) of the test dataset size.

Qualitative analysis
For qualitative analysis, including visualization of results for inter-
pretability of the BE-TransMIL models, we plotted attention heat-
maps overlaid on the slides. For each tile, we color-coded the
attention values based on the reversed spectral colormap (high to
low values coded from red, yellow, green, to blue), and stitched the
tile maps to get the slide attention heatmap. Also, we visually
investigated the tiles with high and low attention values, for fine-
grained inspection of the regions where the models gave highest or
lowest importance while performing the prediction (Figs. 2b, c, 3b, c,
Supplementary Fig. 1).

Gradient-weighted class activation mapping (Grad-CAM)27 gen-
erates class localizationmapsby visualizing the gradients thatflow into
the last convolutional layer of the encoder of the weakly supervised
model, which retains the class-specific spatial information from the
input image before the fully connected and pooling layers. The high-
lighted areas on these maps depict the specific locations within an
image that are crucial for amodel to identify a specific class. Grad-CAM
requires no architectural modifications or retraining of the model,
making it convenient to use. For the example BE-positive slide in the
test set (Figs. 2b and 3b), we generated Grad-CAM saliency maps for
both H&E and TFF3 BE-TransMIL models. The target layer from the
encoder architecture was the fourth ResNet block. We generated sal-
iency maps of the 10 tiles of the example true-positive slide with
highest attention (Supplementary Fig. 3).

TFF3 expression quantification and stain–attention correspon-
dence analysis
To quantify whether the high-attention tiles of the learned models
correspond to tiles with high TFF3 expression, a detailed analysis was
performed as follows. To obtain fine-grained TFF3 staining corre-
spondence with the H&E tiles, the reference TFF3 tissue crops were
spatially registered to the corresponding H&E crops44 (Supplementary
Fig. 4). For registration, we first estimated the hematoxylin con-
centration from RGB pixel values via stain deconvolution34, using the
Macenko method45 to estimate the stain matrix for H&E slides and
employing the default hematoxylin–eosin–DAB (HED) stain matrix
using the Scikit-image library46 for TFF3 slides. The hematoxylin ima-
ges were then registered with an affine transform (16× / 4× down-
sampled) followed by a coarse cubic B-spline deformation (5 × 5 grid,
4× / 2× downsampled), optimizing a mutual information criterion
using SimpleITK47. The same fitted transform was then applied to the
corresponding 3,3′-diaminobenzidine (DAB) image (DAB is the chro-
mogen used in TFF3 staining). As registration is a computationally
intensive process for gigapixel-sizedwhole-slide images, we registered
the TFF3 slides at 5×objectivemagnification (1.84μm/pixel). The fitted
transformparameterswere then applied to register the corresponding
slides at 10× objective magnification.

To analyze the correspondence of TFF3 expression and model
attentions, we quantified the proportion of the DAB-stained pixels
out of all tissue pixels in the TFF3 slides. We created a binary mask of
the positive DAB stained regions based on the method described in
ref. 44. Firstly, we separated the channels of the H&E into constituent
hematoxylin and DAB stains, then we detected the foreground mask
on the hematoxylin channel and the stain mask on the DAB channel
using Otsu thresholding, and post-processed the stain mask to
remove small holes, using parameters in ref. 44 (only variance
threshold was changed to take into account the difference in slide
sizes). To compute the stain ratio for each tile in the TFF3 slides, the
tiling operation was applied to the TFF3 slides using the same para-
meters as H&E slides. Tile coordinates were used to retrieve the
foreground mask and DAB mask of each tile in the TFF3 slides. The
tile-level stain ratio was calculated by dividing the number of positive
pixels in the tile DAB mask by the total number of positive pixels in
the tile foreground mask.

We analyzed the correspondence between the TFF3 stain ratio
and model attentions of each tile for BE-positive slides from the test
set. We visually inspected the registration results between the corre-
sponding TFF3 and H&E slides by plotting the differences of fore-
ground masks of the registered slides (example in Supplementary
Fig. 4), and ensured that the registration quality was acceptable for
most slide pairs for the correspondence analysis. To quantify the
correspondence of TFF3 stain ratio and model attentions, we per-
formed several types of analyses. Firstly, we computed normalized
stain ratio and normalizedmodel attentions (range 0–1) for each tile in
the paired slides and found Pearson’s correlation (r) between the two
variables, higher values denoting higher correspondence between
stain ratio and attention values.We computed normalized entropies of
attention distributions for each slide to measure the dispersion of the
learned attentions.

Visual inspection of the slides with lower correlation coefficients
reveals noisy stainmask extraction due to low contrast and spuriously
stained regions in the TFF3 slides, or sub-optimal registration in the
case of H&E stain–attention correspondence analysis due to occa-
sional mismatches in amount of tissue present in adjacent H&E- and
TFF3-stained sections (e.g., missing pieces, ragged edges).

Failure-modes analysis
We computed the model agreement Fagree of H&E and TFF3 BE-
TransMIL models on their false predictions (false positives (FPs) or
false negatives (FNs)). This was computed as the Jaccard index
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(intersection over union) of the sets of false predictions made by TFF3
andH&Emodels independently. In addition,we inspectedmontages of
false predictions made by both models. Specifically, the TFF3 slides
were visually inspected to detect errors as the stain is specific for
goblet cells, andwe found sources of error that can confound the deep
learning models occur, including background staining or low contrast
between foreground and background. We observed that Fagree was
much higher for the FNs than for FPs, hence, we prioritized these
shared FNs to be manually reviewed by a trained pathologist.

Workflow analysis
We define a workflow as a semi-automatic decision process involving
the H&E and TFF3models as well as manual pathologist review of the
corresponding H&E and TFF3 histopathology slides. We first outline
two ML-assisted scenarios that still involve manual review by
pathologists of all slides to minimize the risk of missed detections.
Firstly, the provision of either the H&E or TFF3 BE-TransMIL model
outputs (e.g., predictions, attention heatmaps) to pathologists to
guide their review and speed-up assessment time of potential posi-
tives. Secondly, given the demonstrated prediction performance of
the H&E model alone, the need to conduct the more expensive
TFF3 staining if a positive finding is confirmed with the H&E model
alone can be reduced; thereby lowering preparation costs. Upon
demonstration of continued robustness and greater gains over
manual pathology reviews, ML-assisted workflows to (semi-)auto-
matically filter out certain cases (detected negatives, for example)
could be particularly valuable.

We analyzed the performance (sensitivity, specificity) and the
requirement for pathologist review and TFF3 stain for multiple com-
binations of H&E and TFF3models as well as pathologist, leading to 14
different ML-assisted workflows (Supplementary Fig. 5, Supplemen-
tary Table 6).We analyzed theworkflowperformance on the discovery
test dataset at an operating point corresponding to 0.95 sensitivity on
the validation set. As majority of our proposed workflows are semi-
automated involving a pathologist, this setting can help prevent
overlooking suspicious positives. Note that the discovery dataset is
heavily enriched for BE-positive cases (38.1%) (Table 1), whereas the
expected prevalence in a screening population is 5–12%5. Therefore, to
simulate the real-world impact of integrating the presented systems
into a clinical pathway, we applied importance re-weighting to the
samples to achieve a more representative effective prevalence of 8%.
Pathologists’ workload reduction is computed as the reciprocal of the
fraction of manual reviews.

The 14ML-assistedworkflows (SupplementaryTable6) are named
according to Boolean expressions and briefly explained as follows.
“Pathologist”, “H&E only”, and “TFF3 only” are workflows involving the
detection of BE solely by the pathologist, H&E BE-TransMILmodel, and
TFF3 BE-TransMIL model, respectively. “H&E and TFF3” refers to a
workflow where a sample is BE-positive only if both TFF3 and H&E
models predict it as BE-positive. “H&E or TFF3” workflow will detect a
sample as BE-positive if either of the two ML models detect it as
positive. The next four workflows are similar configurations as the
previous two, combining pathologist and/or either of the twomodels.
The workflow “H&E and (TFF3 or Pathologist)” will consider a sample
BE-positive if it is labeled as positive by the H&E model and one of the
TFF3 model or pathologist. “H&E and TFF3 and Pathologist” will con-
sider a sample BE-positive only if it is labeled positive by the pathol-
ogist and both ML models. “(H&E or TFF3) and Pathologist” workflow
will label a sample BE-positive if any of the two ML models and the
pathologist label it as BE-positive, whereas “(H&E and TFF3) or
Pathologist” workflow will consider a sample BE-positive if either both
ML models or the pathologist call it BE-positive. Lastly, "Consensus or
Pathologist” workflow will return the label of a sample as predicted by
both ML models if they agree (consensus), otherwise it will consider
the label of the pathologist.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data cannot be shared by the corresponding author due to license
agreements of Cyted Ltd with partners. The study protocols for
DELTA and BEST2 are publicly available. All data used was deidenti-
fied. The dataset is governed by data usage policies specified by the
data controller (University of Cambridge, Cancer Research UK). We
are committed to complying with Cancer Research UK’s Data Sharing
and Preservation Policy. Whole-slide images used in this study will be
available for non-commercial research purposes upon approval by a
Data Access Committee according to institutional requirements.
Applications for data access should be directed to rcf29@cam.ac.uk.
Source data for graphs presented in the paper (Figs. 2a, 3a, 4b–c, 5b)
are provided with this paper. Source data are provided with
this paper.

Code availability
All the code associated with the paper is open-sourced and available
for public use “The software described in the repository is provided for
research and development use only. The software is not intended for
use in clinical decision-making or for any other clinical use, and the
performance of model for clinical use has not been established. You
bear sole responsibility for any use of this software, including incor-
poration into any product intended for clinical use.” The main repo-
sitory, BE-TransMIL, can be found at https://github.com/microsoft/be-
trans-mil. It provides code for data processing and result analysis. It
includes Microsoft Health Intelligence Machine Learning toolbox (hi-
ml) https://github.com/microsoft/hi-ml as a submodule, which con-
tains code and library requirements for data preprocessing, network
architectures, and training and evaluation of weakly supervised deep
learning models for computational pathology (https://github.com/
microsoft/hi-ml/tree/main/hi-ml-cpath#readme).Detailed instructions
on using the hi-ml software are provided at https://github.com/
microsoft/hi-ml/blob/main/docs/source/histopathology.md.
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