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Observation of continuum Landau modes in
non-Hermitian electric circuits

Xuewei Zhang1,2,6, Chaohua Wu 1,6, Mou Yan1,3, Ni Liu4, Ziyu Wang 5 &
Gang Chen 1,2

Continuum Landau modes — predicted recently in a non-Hermitian Dirac
Hamiltonian under a uniform magnetic field — are continuous bound states
with no counterparts in Hermitian systems. However, they have still not been
confirmed in experiments. Here, we report an experimental observation of
continuum Landaumodes in non-Hermitian electric circuits, in which the non-
Hermitian Dirac Hamiltonian is simulated by non-reciprocal hoppings and the
pseudomagnetic field is introduced by inhomogeneous complex on-site
potentials. Through measuring the admittance spectrum and the eigenstates,
we successfully verify key features of continuum Landau modes. Particularly,
weobserve the exotic voltage response acting as a rainbow traporwave funnel
through full-field excitation. This response originates from the linear rela-
tionship between the modes’ center position and complex eigenvalues. Our
work builds a bridge between non-Hermiticity and magnetic fields, and thus
opens an avenue to explore exotic non-Hermitian physics.

As the fundamental and important issue in modern physics, charged
particles subject to a uniform magnetic field have motivated the dis-
covery of many intriguing phenomena, such as integer and fractional
quantum Hall effects1–4. These phenomena are rooted in the genera-
tion of discrete Landau levels in the energy spectrum of the system.
The separated Landau level modes are highly degenerate and spatially
localized. One of the most striking examples manifesting this effect is
theDirac particlewith lineardispersionunder amagneticfield,whoare
generally mimicked in the graphene near the Dirac cones5–7. Such
separated Landau levels have been realized in electric system8, as well
as photonic9, acoustic10–12 and mechanical13,14 metamaterials.

In parallel, non-Hermitian systems, typically including complex
on-site potential and non-reciprocal hopping, have attracted con-
siderable attention. On the one hand, they host many unique proper-
ties, such as complex energy spectra15, exceptional points and
rings16–19, and skin effect20–27, which have no counterparts in Hermitian
systems. Moreover, these unconventional properties bring potential
applications in sensing28–30, lasing31,32, and wave manipulation33–36.

Recently, the interplay of non-Hermiticity and magnetic field has
generated a phenomenon termed as continuum Landau modes
(CLMs)37. The CLMs have Gaussian spatial envelopes and form a con-
tinuous spectrum filling the complex energy plane. Remarkably, these
CLMs violate the intuition in Hermitian systems where the bound
states should be quantized. However, such important CLMs have still
not been confirmed in experiments.

In this paper, we report an experimental observation of the CLMs
in non-Hermitian electric circuit networks. In our system, the non-
Hermitian Dirac Hamiltonian is simulated by non-reciprocal hoppings
and a pseudomagnetic field is introduced by inhomogeneous complex
on-site potentials. By measuring the circuit admittance spectrum and
eigenstates, the key features of the CLMs are successfully observed.
Intriguingly, we visualize an exotic steady-state voltage response
through full-field excitation. This response results from the linear
relationship between the CLMs’ center position and complex eigen-
values. We also observe the CLMs in two types of 1D non-Hermitian
electric circuits, exhibiting the unique rainbow trap and wave funnel.
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Our work provides a fertile platform to study exotic non-Hermitian
physics driven by magnetic fields.

Results
Continuum Landau modes in non-Hermitian circuit lattice
Figure 1a shows our considered 2D non-Hermitian square lattice with
both the non-reciprocal hopping and inhomogeneous complex on-site
potential. To be concrete, this model consists of reciprocal hoppings
tx along the x direction, together with non-reciprocal hoppings ± ty
along the y direction. Moreover, the sites in the x and y directions are
respectively subjected to linear imaginary and real potentials, �imBx

(the color of the dots) and nBy (the size of the dots), where m and n
denote the site indices, and Bx,y is the strength of the linear potential.
Figure 1b shows a part of the designed circuit structure for emulating
such lattice. The reciprocal hopping is achieved via capacitorsC1, while
the non-reciprocal hoppings are implemented through an impedance
converter with current inversion (INIC) of capacitance ±C2

26: Fur-
thermore, the linear real and imaginary potentials are realized by
grounding the nodes with position-dependent capacitors nC0 and
resistors R0=m, respectively.

According to the Kirchhoff rule, the response of a circuit system is
described by I = JV , where J is the admittance matrix or circuit Lapla-
cian, and the vector components of I and V correspond to the input
currents and voltages at the nodes in the circuit, respectively. For a
given a.c. frequency ω= 2πf , the circuit Laplacian can be expressed as

(see Supplementary Note 1 for details)

JðωÞ=ðiωÞ=
X
m,n

�
tx m,nj i m+ 1,nj+H:c:h Þð + ty m,nj ið m,n+ 1j � H:c:h Þ

+ nBy � imBx + ϵ0
� �

m,nj i m,nh j�,
ð1Þ

where tx = � C1, ty = � C2, By =C0, Bx = 1=ðωR0Þ, ϵ0 =C1 � 1=ðω2L0Þ,
and H:c: represents the Hermitian conjugate. Note that only the
parameters Bx and ϵ0 can be controlled by the frequency.

In the continuum limit and slowly varying envelope approxima-
tion (see Supplementary Note 2 for details), Eq. (1) becomes
Jk=ðiωÞ= E0

k � ð�iμk∂x � ByyÞ+ ið�iνk∂y � BxxÞ, where E0
k = ϵ0 +

2tx cos kx � i2ty sin ky, μk =2tx sin kx , νk = � 2ty cos ky, and
kx,y 2 ½�π,π�. Remarkably, Jk=ðiωÞ is an analog of the non-Hermitian
Dirac Hamiltonian with complex linear dispersion38,39 under the
symmetric-gauge pseudovector potential A= ð�Byy,BxxÞ, which cor-
responds to a uniform pseudomagnetic field B=∇×A= ðBx +ByÞẑ.
Clearly, the non-Hermitian Dirac Hamiltonian is simulated by non-
reciprocal hoppings, while the pseudomagnetic field is introduced by
inhomogeneous complex on-site potentials and can be controlled by
frequency.

The introduction of the pseudomagnetic field in such no-
Hermitian Dirac Hamiltonian may generate phenomenon such as
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Fig. 1 | Continuum Landau modes in a 2D non-Hermitian electric circuit.
a Schematic of the 2D lattice with reciprocal hoppings tx along the x direction
(black lines), non-reciprocal hoppings ± ty along the y direction (black arrows), and
complex linear on-site potential. The diameter and brilliant cyan of the circles
denote the real (nBy) and imaginary parts (�imBx) of the complex linear on-site
potential, respectively. b Schematic diagram of a part of the designed circuit net-
work for the shaded rectangle in a. Each node (red dots) is connected to two
adjacent nodes through capacitors C1 along the x direction and to two adjacent
nodes through impedance converter with current inversion (INIC) of capacitance
±C2 along the y direction. The nodes are further grounded by inductors L0 as well
as position-dependent capacitors nC0 and resistorsR0=m. cCalculated admittance
spectrum of the circuit Laplacian in Eq. (1) fed by the frequency f = 162 kHz. The

color of each point indicates the participation ratio of the corresponding eigen-
state. The maximum value of the color bar denotes the PR of the admittance
eigenstates without the linear on-site potential. d Plot of Re ½j=ðiωÞ� (Left panel) and
Im½j=ðiωÞ� (Right panel) versus the eigenstate’s position expectation value y

� �
and

xh i, respectively. The gray-dashed lines denote the bounding lines obtained from
E0
k +q in Eq. (2). e Calculated results of Im½j=ðiωÞ� versus xh i for the different fre-

quencies f = 140 and 180kHz. The dashed lines denote the theoretical central trend
lines (E0

k+q ! 0) obtained from Eq. (2). f The distribution of the eigenstate marked
by star in c. The inset shows the amplitude distribution along lines passing through
the center of the Gaussian envelope. In all subfigures, the other parameters are
given by C0 = 10 nF, L0 = 12:4μH, R0 = 100Ω, C1 = 10nF, and C2 = 10 nF.
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CLMs37. To clarify this point, we first consider a 2D Hermitian Dirac
Hamiltonian with the same pseudovector potential A, i.e.,

Hk = ½0,Jk=ðiωÞ; J*k=ð�iωÞ,0�. In this case, the pseudomagnetic
field gives rise to discrete Landau levels. In particular, the

zeroth Landau level modes ψ0 = ½0,Ce�ηx x�x0ð Þ2e�ηy y�y0ð Þ2eiq�r�
T
, where

ηx = � Bx=ð2μkÞ, ηy =By=ð2νkÞ, C is the normalized coefficient, and T
denotes the transposition. These zeroth modes are the

Gaussian wavepackets centered at r0ðk,qÞ= ðImðE0
k+qÞ=Bx ,�

ReðE0
k+qÞ=ByÞ+Oðjqj2Þ for Bx=μk<0 and By=νk>0. For the non-

Hermitian Dirac Hamiltonian described by Jk=ðiωÞ, its eigenstates ψk

share the same Gaussian wavepackets as ψ0, but with the displaced
center position (see Supplementary Note 2 for details)

r0 j,k,qð Þ= x0
y0

� 	
=

�Im j=ðiωÞ � E0
k +q

� �
=Bx

Re j=ðiωÞ � E0
k+q

� �
=By

0
B@

1
CA+O jqj2
 �

, ð2Þ

where j=ðiωÞ is the eigenvalue of Jk=ðiωÞ. Due to the slowly-varying
envelope approximation, the solutions ψ0 and ψk are limited in the
regime q

�� ��≪ 1. Equation (2) shows that the eigenstate ψk with a given
j=ðiωÞ can map to the zeroth Landau level mode of a given Hk whose
gauge is determined by j=ðiωÞ. Since the gauge is continuous, the
eigenvalues j=ðiωÞ can form continuous spectrum filling the complex
energy plane. The eigenstates ψk are thus called CLMs.

To visualize the CLMs, we turn to the case of the finite lattice size.
In this case, even though the eigenstates are finite and countable, the
system remains the key property of the CLMs. Figure 1c shows the
complex admittance spectrum of Eq. (1) associated with the partici-
pation ratio (PR) of the eigenstates (PR=

P
i ψi

�� ��2=Pi ψi

�� ��4) for 10 × 10
size. One can find that, as expected, the admittance eigenvalues form
a finite area in the complex energy plane and all admittance eigen-
states are localized as the small values of the PR40: By requiring r0
to lie in the circuit lattice, the boundaries of the admittance spectrum
are given by By + ϵ0 � 2jtx j≤Re ½ j=ðiωÞ�≤ByNy + ϵ0 + 2jtx j and
�BxMx � 2jtyj≤ Im½j=ðiωÞ�≤ � Bx +2jtyj, whereMx andNy respectively
denote the size of the circuit lattice in the x and y directions. These
boundarieswith the frequency-dependentparameters ϵ0 andBx shows
clearly that the frequency causes the shift of both Re½ j=ðiωÞ� and
Im½ j=ðiωÞ�, while it only influences the bandwidth of Im½ j=ðiωÞ�. The
detailed numerical results are shown in Supplementary Fig. 3.

Figure 1d plots the real (imaginary) part of the admittance
eigenvalues, Re ½ j=ðiωÞ� (Im ½ j=ðiωÞ�), as a function of the eigenstate’s
position expectation values y

� �
( xh i). It is evident that the center

positions of the CLMs are linearly related to the complex eigenvalues
j=ðiωÞ, as suggested in Eq. (2). These linear relationships are given by
Re½ j=ðiωÞ�=Byy0 + ϵ0 and Im½ j=ðiωÞ�= � Bxx0 (see Supplementary
Note 3 for details), which show that the frequency only introduces a
shift constant in the linearity between Re½ j=ðiωÞ� and y0 (Supplemen-
tary Fig. 4), while it can tune the slope of the linearity between
Im½ j=ðiωÞ� and x0. In Fig. 1e, we numerically plot Im ½ j=ðiωÞ� versus the
eigenstate’s position expectation value xh i for the different fre-
quencies f = 140 and 180 kHz, respectively. These numerical results are
consistent with the theoretical analysis.

Figure 1f shows the spatial distribution of a chosen admittance
eigenstatemarked by a star in Fig. 1c. A Gaussian-type wave function is
clearly identifiedwhose center position is consistent with the results in
Fig. 1d. Similarly, the frequency can also affect the localization of the
CLMs in the x direction through the localization parameter ηx of the
Gaussian-type wave function (Supplementary Fig. 4). Since ηx / 1=ω,
this effect is veryweak and is thus hard to be observed in experiments.

The roots of the admittance spectrum jðωÞ=0 form the complex
eigenfrequency spectrum of the system. This complex eigenfrequency
spectrum has the same number of eigenstates as the complex

admittance spectrum, and can thus form a continuum filling the com-
plex frequency space, as shown in Supplementary Fig. 5. When the
complex admittance or eigenfrequency spectra have a continuum, the
voltage response is continuous, i.e., any frequency can excite the cor-
responding eigenmode of the circuit. For the complex eigenfrequency,
its positive (negative) imaginary part indicates the dissipation (ampli-
fication) of the voltage. Since the oscilloscope could not capture the
fast-changing dynamics of the exponentially oscillating amplitudes, it is
hard tomeasure the complex eigenfrequency spectrum in experiments.

Experiments in 2D circuit lattice
For the experimental realization of the CLMs, a circuit board con-
taining 10× 10 nodes was constructed. The circuit elements were pre-
selected to showdeviations less than 1% from their nominal values (see
Methods for details). A photograph of a part of the circuit board is
presented in Fig. 2a. The admittance eigenvalues and eigenstates are
readily accessible bymeasuring the voltage response at each node to a
local current input. Specifically, we measure the impedance matrix
Gab =Va=Ib, whereVa is the voltage response at any nodea in response
to the local input current Ib at node b. The complete matrix G is the
inverse of the circuit Laplacian JðωÞ and therefore shares the same
eigenvalues and eigenstates (see Supplementary Note 5 for details). In
our experiments, all impedance measurements were performed with
an impedance analyzer (Keysight E4990A).

In Fig. 2b, we measure the admittance spectrum together with PR
in the complex energy plane at the frequency f = 162 kHz. It can be
seen that the admittance eigenvalues are distributed over a finite
region in the complexplane, and all eigenstates are localized.Note that
for the clean circuit Laplacian considered in Eq. (1), the admittance
spectrum exhibits a highly symmetrical pattern, as shown in Fig. 1c. In
our experiment, the errors of the circuit components are about ± 1%. In
this case, the admittance spectrum is cluttered, which agrees well with
the simulated results in Supplementary Note 6.

In Fig. 2c, wemeasure the distributionofone localized admittance
eigenstate marked in Fig. 2b. This admittance eigenstate exhibits a
Gaussian-type envelope, which is consistent with the theoretical pre-
diction (Fig. 1f). Figure 2d shows the experimental observations of
Re ½ j=ðiωÞ� and Im ½ j=ðiωÞ� versus the eigenstate’s position expectation
values y

� �
and xh i, respectively. This figure shows clearly that the

center position of the CLMs is linearly related to the complex eigen-
value j=ðiωÞ, as expected. As shown in Supplementary Fig. 8, when the
errors of the circuit components increase to about ± 5%, the linear
relationship still exists, which demonstrates the robustness of the
CLMs. In Fig. 2e, we plot the measured results of Im ½ j=ðiωÞ� versus xh i
for the different frequencies f = 140 and 180kHz. It shows that the
frequency indeed affects the slope of the linearity between Im ½ j=ðiωÞ�
and xh i. More experimental observations, including the frequency-
dependent shift of the admittance spectrum and the linearity between
Re½ j=ðiωÞ� and y

� �
, are shown in Supplementary Fig. 9. These experi-

mental observations are consistent with the calculated results in
Figs. 1d, e.

Figure 2b–e demonstrates experimentally the existence of the
CLMs.Note that the localizedCLMs are centered at different positions,
each localized CLM can thus be excited by feeding an a.c. current into
the corresponding node of the circuit. Around the position of the
excited node, the voltage response profile can exhibit a predominant
weight. In experiments, the spatial feature of the CLMs can also be
detected by injecting an a.c. current to excite one node of the circuit at
its resonance frequency and thenmeasuring the voltage responseof all
the circuit nodes. Here, we separately excite three nodes m,nð Þ= ð2, 2Þ,
ð5, 5Þ, and ð9, 9Þ for the different resonance frequencies f r = 197, 179,
and 151kHz. As shown in Fig. 2f, there is a dominant voltage signal at
each excited node, demonstrating again the spatial feature of the
CLMs. Note that the peak amplitude of the voltage response indicates
the impedance of the node (i.e., Im ½ j=ðiωÞ�).
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Interestingly, the linear relationship between the admittance
spectrum and the localized position of its eigenstatesmanifests itself as
a steady-state voltage response of full-field excitation. It should be
noticed that the eigenmodes of the circuit correspond to the fre-
quencies for which an exact eigenvalue Re j= iωð Þ� �

=0 exists41.
Accordingly, we calculate the resonance frequency spectrum of the
circuit Laplacian by scanning the frequency. As shown in Fig. 3a, this
resonance frequency spectrum is tilted due to the existence of the
frequency-dependent coefficient ϵ0. Figure 3b shows the resonance
frequency and Im ½ j=ðiωÞ� of the resonance frequency spectrum versus
the position expectation values y

� �
and xh i, respectively. We can find

that, in contrast to the admittance spectrumand eigenstates, the center
position of the eigenmodes and the resonance frequency spectrum
exhibit power-law behaviors, resulting from the coefficient ϵ0 ∼ 1=ω2. In
Fig. 3c, we show the steady-state voltage profile as a function of the
frequency obtained from the LTSPICE simulation by feeding an a.c.
current into all nodes of the circuit simultaneously. We find that the
voltage accumulates at different nodes of the left edge of the circuit
lattice for the different frequencies, i.e., position-frequency locking
response at one side of the 2D circuit lattice. This is a consequence of
the power-law relationship between Re ½ j=ðiωÞ� and y

� �
, causing a

localized voltage response whose position is proportional to the exci-
tation frequency in the y direction. While the relation of Im ½ j=ðiωÞ� and
xh i implies the voltage response concentrating on the boundary with
lowest relative loss in the x direction. The combination of these two
effects leads to such voltage response behavior of full-field excitation.

To observe the steady-state voltage of full-field excitation, multi-
channel a.c. current feeds generated from a voltage source are injected

into all nodes through a shunt resistance (Rs = 50Ω) separately. Then,
we measure the voltage distribution on each node at different driving
frequency. Figure 3d shows the detected voltage response versus fre-
quency for the different nodes at the top (n = 10) and left (m= 1) circuit
boundaries. For the nodes at the top boundary, the peak voltage
amplitudes of all nodes are nearly frozen at a certain frequency.
Moreover, the voltage is squeezed at the nodes with small grounding
resistors, i.e., small values of x. As for the nodes at the left boundary, the
frequency of the peak voltage response varies with the nodes y. Due to
the frequency-dependent coefficient ϵ0 ∼ 1=ω2, the frequency response
spectrum broadens as y decreases. These observations confirm the
distinct response behaviors for the two directions of our circuit lattice,
arising from the power-law relationship between admittance eigenstate
center position and complex eigenvalues. The full voltage response as a
function of frequency in the x-y plane is displayed in Fig. 3e, showing
good agreement with simulation results (Fig. 3c).

Experiments in 1D circuit lattices
In fact, the 1D circuit lattices described by the vertical or horizontal
directions of Fig. 1a also exhibit the CLMs (see Supplementary Note 8
for details). Physically, it corresponds to the non-Hermitian Dirac
Hamiltonian under the magnetic field with Landau gauge. To confirm
this, we first consider the 1D lattice with non-reciprocal hoppings ± ty
and linear real on-site potential nBy, whose circuit structure is shown
in Fig. 4a. The circuit Laplacian is J ωð Þ=ðiωÞ= P

n
½tyðjnihn+ 1j �

H:c:Þ+ ðnBy + ϵ0Þjnihnj� with ϵ0 = � i=ðωR0Þ � 1=ðω2L0Þ. In the con-
tinuum limit, it becomes Jk=ðiωÞ= i2ty sinky + νk∂y +Byy, which
amounts to imposing a pseudovector potential A= ð�Byy, 0Þ on the
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Fig. 2 | Experimental observations of continuum Landau modes. a Photograph
of part of the circuit board, with numbers labeling themain circuit components: (i)
the position-dependent capacitornC0 (C0 = 10nF) built of parallel surfacemounted
device (SMD) capacitors; (ii) grounding for each node with an SMD inductor
(L0 = 12:4μH) and parallel SMD resistors yielding position-dependent resistorR0=m
(R0 = 100Ω); (iii) INIC made of an SMD capacitor (C2 = 10nF), the operational
amplifier LT1363 with supply voltages, and an equal pair of SMD resistor (Ra = 1kΩ);
(iv) the reciprocal coupling built of SMD a capacitor (C1 = 10nF). b Measured
admittance spectrum for the frequency f = 162kHz. The color of each point indi-
cates the participation ratio of the corresponding eigenstate. c Measured

distribution of the eigenstate marked by star in b. d Experimental observations of
Re½j=ðiωÞ� (Left Panel) and Im[j/(iω)] (Right Panel) versus the eigenstate’s position
expectation values y

� �
and xh i, respectively. The gray-dashed lines are the cor-

rected bounding lines by introducing loss offset and modified inductor.
e Experimental observations of Im[j/(iω)] versus xh i for the different frequencies
f = 140 and 180kHz. The dashed lines denote the corrected central trend lines
(E0

k+q ! 0) obtained from Eq. (2). f Measured voltage responses |V| by separately
exciting three positions ð2,2Þ, ð5,5Þ, and ð9,9Þ at their resonance frequencies
f r = 197, 179, and 151kHz, respectively.
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eigenvalues (top) and eigenstates (bottom) of the circuit chain in a for the fre-
quency f = 162kHz. c Steady-state voltage response versus the full-field excitation
frequency for the circuit in a. d Schematic of the circuit chain with linear imaginary

potential given by the position-dependent resistors. e Measured admittance
eigenvalues (top) and eigenstates (bottom) of the circuit chain in d for the fre-
quency f = 162kHz. f Steady-state voltage response versus the full-field excitation
frequency for the circuit in d. In subfigures b–f, the experimental parameters are
the same as those in Fig. 2.
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response Vj j as a function of the frequency f through injecting the a.c. current feed
at all nodes simultaneously. d Measured steady-state voltage responses |V| as
functions of frequency for the different nodes in the top (n= 10, top panel) and left
(m= 1, bottompanel) circuit boundaries. eMeasured steady-state voltage response
|V| as a function of the frequency f in the x-y plane. In all subfigures, the parameters
are the same as those in Fig. 2.
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non-Hermitian Dirac Hamiltonian. The corresponding eigenstates are
the CLMs centered at y0 =Re½ j=ðiωÞ�=By (independent of ky). This
suggests that the system can be used as “rainbow traps” where the
eigenstates are localized at positions proportional to eigenvalues42–44.
We constructed a circuit chain containing 10 nodes to demonstrate
this scenario. Figure 4b plots the measured complex admittance
eigenvalues (top panel) along with the eigenstates (bottom panel) for
the frequency f = 162 kH. The results agree with the theoretical pre-
dictions. The steady-state voltage response through full-field excita-
tion is visualized in Fig. 4c. As expected, the voltage response has an
amplitude peak positioned proportional to the excitation frequency.

Another 1D circuit lattice supporting the CLMs, depicted
in Fig. 4d, has reciprocal hoppings tx and linear imaginary
potential �imBx . The corresponding circuit Laplacian is given by
J ωð Þ=ðiωÞ= P

m
tx mj ið m+ 1j+H:c:h Þ+ ðϵ0 � imBxÞ mj i�

mjh � with ϵ0 =C0

�1=ðω2L0Þ. In this case, we have Jk=ðiωÞ= 2tx cos kx + iμk∂x � iBxx,
which is equivalent to introducing the Landau gauge A= ð0,BxxÞ. The
localized position of its eigenstates satisfies x0 = Im½ j=ðiωÞ�=Bx . Simi-
larly, we plot themeasured admittance eigenvalues and eigenstates for
a circuit chainwith 10 nodes and f = 162 kH, as presented in Fig. 4e. It is
clear that the center positions of the eigenstates are linear related to
the imaginary part of eigenvalues. Figure 4f shows the distribution of
the steady-state voltage response. In contrastwith the former case, the
voltage response is concentrated at a boundary at which the modes
with the lowest relative loss occupy. This implies that the system can
act as a wave funnel with a finite bandwidth.

It should be noticed that for the current two cases of the 1D circuit
lattices, the observed admittance eigenvalues in the complex plane are
both localized around a distinct line (Fig. 4b and e). By tuning the
parameters, the admittance eigenvalues can fill the complex plane (see
Supplementary Fig. 12), in which the CLMs were predicted37.

Discussion
To summarize, we have employed non-Hermitian electric circuit net-
works to experimentally demonstrate themagneticfield-inducedCLMs
by measuring the admittance spectrum and eigenstates. Intriguingly,
wehave visualized an exotic steady-state voltage response through full-
field excitation, resulting from the linear relationship between the
CLMs’ center position and complex eigenvalues. In particular, the
voltage responses in 1D cases exhibit thebehaviors of rainbow trapping
or wave funneling. Our work provides a fertile platform to study rich
non-Hermitian physics driven by the magnetic field45–50.

Our experimental observations result from the non-Hermitian
Dirac Hamiltonians with a uniform magnetic field. In this case, the
Landau quantization and the edge states are missing. For the non-
reciprocal model under a similar uniform magnetic field48–50, the
semiclassical trajectories of thewavepacketmay turn out to be closed/
skipping orbits in the 4D complex space50. The Landau levels exhibit
the usual quantized spectra, and the Hall-like edge states are still
found. In the circuits, the Landau levels can be measured through the
admittance and impedance spectra, and the localized Landau modes
and the Hall-like edge states can be observed by steady-state voltage
response or dynamics of the excitation.

Methods
Circuit construction and measurements
The specific component values used for the non-Hermitian circuit
implementation were pre-selected as C0 = 10nF (± 1%), L0 = 12:4μH
(± 1%), R0 = 100Ω ( ± 1%), C1 = 10nF (± 1%), and C2 = 10nF (± 1%). For
the implementation of the INIC, we used the unity-gain stable opera-
tional amplifier model LT1363.

To perform the measurements for the admittance eigenvalues and
eigenstates, wemeasure the impedancematrix Gab =Va=Ib, where Va is
the voltage response at any node a in response to the local input current

Ib at nodeb. The completematrixG is the inverse of the circuit Laplacian
JðωÞ, and thus contains full information on admittance eigenvalues and
eigenstates of the Laplacian. The impedance measurements were per-
formed with an impedance analyzer (Keysight E4990A). For the mea-
surements of steady-state voltage response through full-field excitation,
multichannel a.c. current feeds generated from a voltage source are
injected into all nodes through a shunt resistance separately. Then, we
measure the voltage distributions on all nodes at different driving fre-
quencies by using the oscilloscope (Keysight DSOX4024A).

Data availability
The data that support the findings of this study are provided in the
Source data file. Source data are provided with this paper.

Code availability
Circuit simulations were performed using LTspice (https://www.
analog.com/en/design-center/design-tools-and-calculators/ltspice-
simulator.html#).
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