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Population exposure to multiple air
pollutants and its compound episodes
in Europe

Zhao-Yue Chen 1,2 , Hervé Petetin3, Raúl Fernando Méndez Turrubiates 1,
Hicham Achebak 1,4, Carlos Pérez García-Pando 3,5 & Joan Ballester 1

Air pollution remains as a substantial health problem, particularly regarding
the combined health risks arising from simultaneous exposure to multiple air
pollutants. However, understanding these combined exposure events over
long periods has been hindered by sparse and temporally inconsistent mon-
itoring data. Here we analyze daily ambient PM2.5, PM10, NO2 and O3 con-
centrations at a 0.1-degree resolution during 2003–2019 across 1426
contiguous regions in 35 European countries, representing 543million people.
We find that PM10 levels decline by 2.72% annually, followed by NO2 (2.45%)
andPM2.5 (1.72%). In contrast, O3 increase by0.58% in southern Europe, leading
to a surge in unclean air days. Despite air quality advances, 86.3% of Europeans
experience at least one compound event day per year, especially for PM2.5-NO2

and PM2.5-O3. We highlight the improvements in air quality control but
emphasize the need for targeted measures addressing specific pollutants and
their compound events, particularly amidst rising temperatures.

Air pollution poses a major health risk in Europe and worldwide1,2. In
2021, the European Environment Agency (EEA) estimated over
253,000 premature deaths attributed to fine particulate matter
(PM2.5), 52,000 deaths to nitrogen dioxide (NO2) and 22,000 deaths to
ozone (O3) exceeding the 2021 World Health Organization (WHO)
annual limits3. These exposures, both chronic and acute, also increase
the risk of cardiovascular and respiratory diseases, allergic reactions,
diabetes, cognitive health, and childhood development, among many
others4,5. Recognizing these risks, in 2021, the WHO6 issued stricter air
quality limits for each of these pollutants separately at different time
scales, i.e. annual, peak season, 24 h and daily maximum 8h, to miti-
gate both short-term and long-term health impacts caused by air
pollutants.

To assess the threat posed by air pollution in Europe, recent
compliance studies have predominantly relied on ground-based air
pollutant monitoring networks7–9. However, these networks, con-
centrated primarily in urban areas, exhibit limited spatial coverage and
fail to comprehensively represent the entire population.While ground-
levelmeasurements offer direct, accurate, and reliable real-world data,

their spatial averaging and extrapolation introduces biases in exposure
assessment. Additional limitations include frequently incomplete daily
observation time series values, which can lead to biases when aver-
aging observations from varying numbers of sites per day. Also, data
availability from these networks is higher in more recent periods10,
leading to inconsistencies in the prior analysis of multi-decadal con-
centrations changes.

Another key limitation pertains to the conventional analysis of
guideline exceedances for each pollutant separately7–9. This approach
overlooks occurrence of compound air pollution episodes, in which
the WHO daily guidelines are simultaneously exceeded for two or
more air pollutants. This is a noteworthy omission, as individuals may
experience concentrations exceeding safe guidelines for multiple
pollutants concurrently, potentially resulting in synergistic health
effects that amplify overall health risks11,12. Although some have begun
exploring the interactive health impacts of co-exposure to specific
combinations of pollutants, such as PM2.5 and O3, further research on
other combinations is imperative. Unfortunately, the unavailability of
consistent daily ground-levelmeasurements formultiple air pollutants
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presents a challenge in comprehending the spatio-temporal patterns
of population’s co-exposure.

Using models constrained with observations represents a pro-
mising solution to these problems11. Global atmospheric composition
reanalyses provide multidecadal daily estimates integrating a diverse
range of satellite measurements12,13. However, due to their coarse
spatial resolution and the lack of integration of surfacemeasurements,
these datasets remain affected by significant biases at ground level.
The use of air pollution models constrained by surface measurements
over multidecadal periods, either for Europe or globally, have mostly
focused on long-term averages (annual or monthly values)14–16, while
models predicting daily concentrations have predominantly focused
on a single pollutant, primarily PM2.5

17,18. Consequently, consistent and
accurate air pollution datasets allowing comprehensive understanding
of population exposure to multiple air pollutants and its compound
episodes in Europe is still lacking.

Governments worldwide are increasingly acknowledging the
necessity of addressing air pollutions collectively, such as the inte-
grated control programs in the United States19,20, due to their cost-
benefit efficiency, as well as the significant benefits they offer in
improving overall air quality and public health. Unfortunately, the lack
of spatial-resolved daily estimates over long period for multiple air
pollutants obtained from internally-consistent models impedes our
understanding of how multiple pollutants and their compound epi-
sodes have evolved over time in response to air pollution policies and
measures implemented in Europe. Obtaining such crucial information
is vital for evaluating the effectiveness of interventions and developing
targeted strategies to mitigate the health risks associated with the
exposure to multiple air pollutants.

This study uses Quantile LightGBM (QLG) machine learning
models21 to link ground-level station data of daily mean PM2.5, PM10,
NO2, andO3 (the primary four air pollutants contributing tomortality3)
concentrations with meteorological and air quality reanalysis data,
aerosol optical depth (AOD) model estimations and ground-level
emission data. Themodels estimate daily concentrations from 2003 to
2019 at a spatial resolution of 0.1°, which are then used to estimate
regional population-weighted (PW) averages for 1426 NUTS3 regions
in 35 European countries. These estimations were used to estimate the
spatial heterogeneity and temporal evolution of (i) air pollution con-
centrations and the (ii) population count and (iii) cumulative time of
exposure to concentrations exceeding the 2021 short-term and long-
termWHO guidelines. Moreover, we analyzed the joint exceedance of
WHO limits simultaneously for two or more air pollutants, providing a
comprehensive assessment of compound events. This study con-
tributes to the assessment of overall air quality in Europe within the
framework of the new WHO short and long-term guidelines, and
identifies spatiotemporal patterns of compound event days. This
information is crucial for environmental health assessments and pol-
icymaking aimed at mitigating the health risks associated with air
pollution in the European Union and the whole continent.

Results
Data validation
Our models demonstrate robust spatial cross-validation performance
(see Fig. 1, Figs. S2, S3 in Supplementary Information) in estimating the
European ground-level concentrations of PM2.5, PM10, NO2 and the
maximum daily 8h average of O3 (here referred to as MDA8 O3 for
simplicity), with a NRMSE (Normalized Root Mean Square Error) of
1.85%, 2.71%, 8.99% and 3.20%, and a Pearson correlation of 0.80, 0.79,
0.79 and 0.90, respectively. PM2.5 and O3 estimations were nearly
unbiased (NMB (Normalized Mean Bias) = −0.9% and 0.24%, respec-
tively), while PM10 and NO2 were slightly underestimated (NMB=
−3.81% and −2.00%, respectively). Table S4 (Supplementary Informa-
tion) shows that the model estimations clearly outperform reanalysis
data from CAMSRA12 and MERRA-213, and Table S5 (Supplementary

Information) that the temporal cross-validation of themodel estimates
is consistent over the whole period. The comparison between whole-
period averages of observed and estimated daily values is shown in
Fig. S1 (Supplementary Information), and the mean, standard devia-
tion, median, inter-quartile range, trend, and Pearson correlation in
Northern, Southern, Western and Eastern Europe in Table S6 (Sup-
plementary Information).

Population-weighted concentrations and trends
Figure 2 depicts the long-term averages (left panels) and trends (right)
in PW concentrations. Whole-period continental averages for PM2.5,
PM10, NO2 and MDA8 O3 were 14.34, 22.01, 13.46, and 74.51μg/m³,
respectively. PM2.5 and PM10 was higher in Northern Italy and Eastern
Europe, with high PM10 additionally in Southern Europe. High NO2 was
mainly observed in Northern Italy and some areas of Western Europe,
such as in the south of the United Kingdom, Belgium and the Neth-
erlands. MDA8 O3 was latitudinally orientated, with the highest con-
centrations in the Mediterranean. PM2.5, PM10 and NO2 generally
decreased in most of Europe, with an average annual rate of −1.72%,
−2.72% and −2.45%, respectively. The most important reductions in
PM2.5 and PM10 were observed in Central Europe, while for NO2 they
were found in mostly urban areas of Western Europe, which corre-
spond to the areas with the highest concentrations. In contrast, MDA8
O3 increased by 0.58% in Southern Europe, while it decreased or
showed nonsignificant trend in the rest of the continent.

Cumulative time of exposure
Figure 3 depicts the year-to-year time-series and whole-period average
maps of the short-term unclean air exposure time (orange bars and
maps) and the percentage of population living in short-term clear air
areas (blue curves). Here, the annual unclean air exposure time
represents the PW average annual number of days in which the WHO
daily limit for an air pollutant is exceeded, while population in clean air
areas represents percentage of people living in areas where air quality
meets recommended standards. Detailed definitions are provided in
the methodology section. Overall, we observed a consistent decrease
in unclean air exposure time for PM2.5, PM10 and NO2 throughout
Europe, with approximately 60, 46, and 48 fewer unclean air days in
2019 compared to 2003, respectively. For MDA8 O3, it generally
increased, with the exception of the extreme year of 2003. In 2003,
under the record-breaking summer temperatures22, O3 levels were
similar to those registered within the period 2015–2019. Higher values
of unclean air exposure time were found in Eastern Europe and
Northern Italy for PM2.5 and PM10, inmostly urban regions (particularly
in Western and Central Europe and Northern Italy) for NO2, and in
Southern and Eastern Europe for MDA8 O3.

Population in short-term or long-term exposure to clean
air areas
As expected, in general terms, the trend of the annual percentage of
population in short-term clean air areas was found to be negatively
correlatedwith the evolution of the unclean air exposure time. Among
the four pollutants, the population in short-term clean air areas for
PM10 exhibited the largest increase, rising from 8% in 2003 to 77% in
2019, an increase that represents 367.9million people. The population
living in clean air areas for NO2 and PM2.5 also increased from 21% to
49% and from 3 to 11%, respectively, corresponding to an increase of
141.2 and 41.8million people compared to 2003, respectively. Changes
in MDA8 O3 exhibited significant annual variation. By 2019, the per-
centage of population in short-term clean air areas dropped from 62%
to 26%, equivalent to around 219 million fewer people compared to
2004 (note: we here exclude 2003, which was an exceptional year in
terms of O3 concentrations). Most short-term clean air areas were
mainly located in Northern Europe, Scotland, the island of Ireland and
Northern Spain.
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As a consequence of the general decline in air pollution levels, we
found an increasing trend in the population residing in long-termclean
air areas of PM2.5, PM10, and NO2 (Fig. 4a–c), reaching 10.1, 102.8 and
75.9 million people in 2019, respectively. These numbers constitute
about 1.90%, 19.85%, and 14.66% of the total population, compared to
around 0.05%, 2.26%, and 2.88% corresponding to 2003. The dis-
tribution of the population living in long-term clean air areas is spa-
tially heterogeneous. For example, the long-term clean air population
for PM10 and NO2 grew faster in western Europe compared to other
areas, while the increasing trend for PM2.5’s clean air population was
faster in northern Europe. The year-to-year changes in population

living in long-term clean air areas was found to be sometimes abrupt,
as soon as densely populated areas started to comply with the reg-
ulation limits. Regarding MDA8 O3, almost no areas meet the WHO
standard of 60μg/m3. Therefore, we adopted the WHO interim target
2 (70μg/m3) as the reference threshold, which showed no clear trend
over the years (Fig. 4d). Most long-term clean air population forMDA8
O3 is found in western Europe.

Population exposure to compound episodes
In Fig. 5, we analyzed the annual unclean air exposure time for the joint
exceedance of multiple air pollutants, or compound event days.

Fig. 1 | Validation of estimated pollutants. Comparison between observed and model-estimated PM2.5 (a), PM10 (b), NO2 (c), MDA8 (maximum daily 8 h average) O3 (d)
concentrations from 2003 to 2019 under spatial cross-validation.
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Generally, the annual unclean air exposure time for various types of
compound event days decreased significantly in Europe, dropping
from 78.5 days to 17.4 days. During 2012–2019, around 86.26% of the
European population experienced at least one day per year with

compound event days, which is approximately 10% lower than the
figures from 2003 to 2011 (see Table S7 in Supplementary Informa-
tion). We identified four primary types of compound event days in
Europe, namely PM2.5-NO2, PM2.5-PM10, PM2.5-O3 and PM2.5-PM10-NO2

Fig. 2 | Spatial Distribution and Trends of air pollution in Europe. 17-year Mean
Population-Weighted Concentrations of estimated PM2.5 (a), PM10 (c), NO2 (e), and
MDA8 (maximum daily 8h average) O3 (g) (Unit: μg/m³), and its Average Annual

percentages Changes (in %, calculated using Theil-Sen slope dividing mean esti-
mates) (b, d, f, h).
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Fig. 3 | Population exposure to short-term air pollutants in Europe. Annual
unclean air exposure time (Unit: Days, presented by bar plots) exceeding WHO
Daily Limits, and the population (%) in short-term clean air areas (depicted by the
blue line) for PM2.5 (a), PM10 (c),NO2 (e), andMDA8 (maximumdaily 8 h average)O3

(g) in Europe. The spatial distribution of 17-years average annual unclean air
exposure time (b, d, f, h). Short-term clean air areas here indicate those regions
with 17-Year average annual unclean air exposure time Less Than 4 Days (WHO
standard).
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days, which collectively accounted for over 94.6% of all compound
event days during the entire study period (see Fig. 5). Notably, com-
pound event days also played a particularly important role in con-
tributing to unclean air days, accounting for over 87% and 88% of
unclean air days for PM10 and NO2, respectively (see Figure S4 in
Supplementary Information).

The decreasing trends in compound event days are consistent
across different subcontinental domain, although their contributions
of compound event days vary (Fig. 5). Eastern Europe was found to be
dominated by PM2.5-PM10 days, while PM2.5-NO2 days were more fre-
quent inWestern Europe. Southern Europe experiences awider variety
of types of compound event days, mainly PM2.5-NO2, PM2.5-O3 and
PM2.5-PM10-NO2. Although most compound event days are decreasing
over decades, PM2.5-O3 days is theonly one that increased (seeTable s8
in Supplementary Information), going from 4.62 to 5.30 days per year
when comparing the periods from 2012–2019 to 2003–2011. And

PM2.5-NO2 declined more slowly than other major types of compound
event days. Consequently, PM2.5-NO2 and PM2.5-O3 days became the
two predominant types of combinations in Europe during 2012–2019.
Compound event days also exhibited a clear seasonal pattern in Fig. S5
(Supplementary Information). Compound event days with unclean
levels of O3 were more common from March to October, while those
compounds involving PM2.5, PM10, or NO2 tend to occur during colder
seasons. Additionally, Figs. S6, S7 (Supplementary Information) illus-
trates a noticeable year-to-year decreasing trend in compound event
days involving PM2.5, PM10, or NO2.

Discussion
In general, our study provides a comprehensive assessment of spatial
and temporal inequities in population exposure to air pollutants in
1426 regions across 35 European countries, representing 543 million
people. Our findings reveal a substantial reduction in European
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Fig. 4 | Population exposure to long-term air pollutants in Europe. Annual Population in long-term clean air areas (million, depicted by bar plots) and annual
concentration (μg/m³, represented by blue line) in Europe for PM2.5 (a), PM10 (b), NO2 (c), and MDA8 (maximum daily 8 h average) O3 (d).
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population exposure to most air pollutants. However, PM2.5 and O3

levels continue to surpass WHO guidelines in numerous regions,
resulting in a relatively higher number of people exposed to unclean
air levels. Moreover, our assessment of compound event days showed
annual occurrence of compound event days decreased from
78.5–17.4 days over 2003–2019, but over 86.3% of the European
population still experienced at least one compound event days per
year in 2012–2019. PM2.5-O3 was the only compound event days that
increased and became the second most frequent type of compounds
in Europe during 2012–2019. Overall, our findings present compre-
hensive evidences of both short and long-term exposure to the main
pollutants with largest impact on human health and mortality, by
performing an exhaustive continental-wide regional analysis not
restricted to urban settings only. Additionally, it introduces valuable
insights into compound event days involving these pollutants, sig-
nificantly enriching our understanding of multi-hazard exposure, and
potentially guiding air pollution management policies.

Our research fills a critical gap in the literature by offering daily
estimations of multiple air pollutants in Europe over the period
2003–2019, including PM2·5, PM10, NO2, and MDA8 O3. Unlike prior
studies providing annual or monthly estimations over multidecadal
periods14–16, our daily air pollution estimations fill a crucial need for
detailed data (either short-termor long-term) essential for conducting
health impact studies and environmental monitoring. While prior
studies focused mainly on single-pollutant estimations, mostly on
PM2·5

12,13, our study simultaneously provides estimations for multiple
pollutants with enhanced predictive accuracy, achieving a strong
correlation coefficient of approximately 0.79 to 0.90 for spatial cross-
validation and 0.81 to 0.91 for temporal cross-validation. For example,
Lary et al. estimated daily PM2·5 concentrations globally over the per-
iod 1997–2014byusing remote sensing andmeteorological data17, with
a correlation coefficient of 0·52–0·75. Moreover, Yu et al. used deep
ensemble machine learning to estimate global daily PM2·5 concentra-
tions in 2001–201918, with Spearman correlation of around 0.76 with
ground-level observations throughout Europe. Furthermore, our esti-
mates also outperformCAMSRA andMERRA-2 reanalysis (see Table S4
in Supplementary Information).

Regarding the concentrations of the pollutants, we observe the
largest declines in PM10 inmost of Europe, with an approximate annual
decrease of 2.72%, followed by NO2 (2.45%) and PM2.5 (1.72%). Instead,
we find that MDA8 O3 rose by about 0.5% per year if the outlier
representing year 2003 is excluded. These trends align with previous
studies, which reported annual declines of around 1.7–2.2% in NO2

23,24

and 1–2% in PM2.5
14,24,25, as well as undefined trend between (−0.3 and

+0.5%) in MDA8 O3
24,26, over last two decades in Europe. These trends

were also in agreement with10 reanalysis products (CAMSRA and
Merra-2) and ground-level observations11, with an annual average
decrease of 2.1–3.3% in PM10, 2.3–2.5% in NO2, 0.9–1.7% in PM2.5 and a
0.1–0.9% annual increase inMDA8O3. Overall, our estimations provide
further evidenceof the slight upward trend ofMDA8O3 in Europe over
the last decades, when other pollutants decreased under the European
Union’s (EU) efforts to implement air quality control measures. Nota-
bly, this upward trend ofMDA8O3 is latitudinally oriented, and largely
related to temperatures and sunlight. These conditions promote the
formation of O3 from precursor pollutants like nitrogen oxides (NOx)
and volatile organic compounds (VOCs). Previous studies27–29 sug-
gested that the reduction of NOx may have alleviated O3 depletion in
and around cities, particularly at night, due to lower titration of O3 by
NOx. Moreover, these studies underscore the necessity of prioritizing
stronger control measures on VOCs over NOx for effective urban O3

mitigation27,28.
Previous analyses with WHO 2021 guideline7–9,30 have primarily

focused on urban areas, constrained by limited monitoring stations.
These studies often faced inconsistencies in assessing different air
pollutants against WHO guidelines, discrepancies in the availability of
daily observations across different pollutants over space and time. Our
study overcome these limits by providing full-coverage estimations
covering European population exposure and time, enhancing a more
thorough understanding of spatial and temporal disparities related to
WHO guidelines. It highlighted a notable decrease in European popu-
lation exposure to PM2.5, PM10 and NO2, contrasting with the rise in
MDA8 O3 exposure. Additionally, the average exposure time and
population exposed to unclean air areas for PM2.5 and O3 is much
higher than for the other two pollutants, highlighting the urgency for
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greater control for these pollutants. Furthermore, recent studies31,32

have also linked MDA8 O3 exposure exceeding WHO daily limits to
substantial rises in hospital admissions for heart attacks, heart failure,
and strokes. This further emphasizes the importance of addressing the
increasing role of O3 exposure, especially in the context of rapidly
increasing threats from climate change in Europe.

Despite significant progress in reducing air pollution, our assess-
ment found that over 85% of Europeans still experienced at least one
day per year with compound event days, notably prevalent in Eastern
and Western Europe (see Table S7 in Supplementary Information). It
highlights the persistent need for heightened attention to exposure of
compound event days.We also found that PM2.5-O3 days have become
the second most prevalent category of compound event days in Eur-
ope, with their contribution increasing from4.43% in 2004 to 35.23% in
2019. Recent increases in PM2.5-O3 days, especially in lower latitudes
during warm seasons, are likely linked to climate change and complex
interplay between PM2.5 and O3. Emission sources such as vehicle
exhaust and industrial processes releaseboth PM2.5 andO3 precursors
like VOCs and NOx. Global warming intensifies sunlight and raises
temperature, particularly in summer, accelerating O3 formation
through photochemical reactions33. Subsequently, higher levels of O3

will oxidize volatile organic gases or secondary organic aerosols in the
atmosphere34, leading to the condensation of certain oxidized com-
pounds, ultimately forming secondary PM2.5 particles. Also, climate
change increases the likelihood of wildfires, contributing to elevated
O3 and PM levels35. Lastly, biogenic VOCs (BVOCs) have been identified
as second largest sources of the O3 production in summer36. The
emission rate of BVOCs also rises with increasing temperatures,
reaching peak levels at around 38–40 °C37, due to heightened meta-
bolic activity in vegetation.

Ozone management presents a complex challenge due to its
secondary formation pathway. Conventional air pollution control
strategies, which focus on reducing primary pollutant emissions, may
not be sufficient to effectivelymitigate O3 exceedances and associated
compound event days. However, addressing climate change, which
influences ozone formation through increased sunlight and rising
temperatures, is crucial for long-term ozone management and pro-
tection of public health. This approach not only slows global warming
but also curtails the rise of O3 formation triggered by photochemical
reactions in warmer seasons. Moreover, surface or tropospheric O3,
beyond impacting air quality, acts as a greenhouse gas. Its ability to
absorb infrared radiation contributes to the trapping of heat in the
lower atmosphere. By reducing tropospheric O3 levels, we can help
mitigate its role in the greenhouse effect, potentially breaking the
cycle that leads to further O3 generation. Implementing policies to
prevent and manage wildfires can help in controlling the release of
these compounds into the atmosphere, thereby reducing O3 forma-
tion. Lastly, vehicles stand as the most prominent contributor to
anthropogenic VOC emissions36. Implementing rigorous policies to
control and diminish VOC emissions from vehicles can notably impact
O3 formation, particularly in urban areas characterized by dense
vehicular traffic. Additionally, choosing low-BVOCs emission plants for
urban green spaces also aids in mitigating BVOCs emissions, further
improving air quality and reducing O3 precursors.

while EEA8 and WHO7 provided varying compliance estimates for
long-term unclean air populations in urban settings (see Table S9 in
Supplementary Information), possibly due to differences in the ana-
lyzed urban areas, countries, periods or calculation methods, our
analysis suggests around 98.10%, 80.15% and 86.34% of the population
in the 35 European countries lived in 2019 in unsafe air areas for PM2.5,
PM10 and NO2, respectively. These results align closely with EEA’s
urban estimates of 97%, 81% and 94% for the 27 countries of the Eur-
opean Union (EU-27), respectively. However, our NO2 estimates are
more consisted with WHO’s estimates in boarder human settlements
settings, possibly due to wider inclusion of population beyond urban

areas in EEA’s analysis. Notably, urban areas are more susceptible to
experience higher NO2, primarily driven by emissions from vehicles
and residential sources30,38. Spatially, Northern Europe exhibits a sig-
nificantly higher population proportion living in long-term clean air
areas for PM2.5, PM10, and NO2 compared to the rest of the continent
(see Fig. S7 in the Supplementary Information). Additionally, with the
introduction of the new long-term guideline for O3 in 2021, the EEA8,30

started to report non-compliance in all countries with the peak season
O3 standard in 2021 and 2022, which concurs with our findings from
2003 to 2019. These results underscore the significant improvements
made in European air quality control for PM10 and NO2, while chal-
lenges in controlling O3 levels underscore the need for a policy shift.
Addressing global warming and air quality together with more com-
prehensive solutions is essential, requiring a macro perspective to
collaborate with policymakers for effective action.

This study has several limitations worth acknowledging. Although
wehave conducted spatial and temporal cross-validations to assess the
quality of our air pollution estimates, biases might persist due to the
uneven distributionof ground-level stations and the limited number of
observations in earlier periods. Also, the population exposure in this
studydoes not includepopulation changeswithin a year. Despite these
limitations, our study serves as a solid foundation for future research
and policy development addressing air quality management and
public health concerns throughout Europe.

Methods
Exposure estimation and validation
In this study, we trained four separated Quantile LightGBM (QLG)
models21 for daily PM2.5, PM10, NO2 and MDA8 O3, with ground-level
measurements from European environment information and obser-
vation network (Eionet). These four individual models for each pollu-
tant are developed separately to maximize the information gathered
from the varying numbers of background monitoring sites for each
pollutant. Specifically, we used 1310, 2438, 1867 and 2021 sites for
PM2.5, PM10, NO2 and MDA8 O3. To train these models, we gathered
data from multiple sources, which are further described in the Sup-
plementary Information (pp 3–6). The datasets encompassed various
atmospheric aerosol data, like model predictions of size-resolved
aerosol optical depth (AOD)39, Atmospheric composition reanalysis
data from CAMSRA12 and MERRA-213. Additionally, we incorporated
reanalysis data from ERA5-land and ERA540, Gridded climate observa-
tions from E-OBS41, Land use data, including road density data from
GRIP global roads database42, vegetation-related data from ERA5-land,
Köppen-Geiger climate classification and local climate zone data from
world urban dataset43, Emission data from CAMSRA global emission
inventories. Thesedatasets spanned from January 1, 2003 toDecember
31, 2019, with different spatial and temporal resolutions provided in
Table S1(Supplementary Information).

We computeddaily averages if thedatawere originally available at
hourly or 3-hourly resolution. To ensure consistent spatial resolutions,
all continuous gridded data were bilinearly resampled to a horizontal
resolution of 0.1° × 0.1°. For the Köppen–Geiger climate classification
(approximately 0.08° × 0.08°), nearest neighbor interpolation was
applied during resampling. Regarding the local climate zone data
(1 km), resampling involved the use of the most frequent category.
Subsequently, to align with the stations’ observation, we extracted
modeling data within a 0.05-degree buffer around each station’s
location. This extraction process employed the area-weighted average
for continuous variables and the dominant category for
categorical data.

To select the most relevant features for each air pollutant model,
we employed the Boruta feature selection procedure44. This method
considers interactions and nonlinear relationships during the selection
of variables, making it robust and efficient for removing noise45. The
selected variables for each air pollutant model are listed in
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Table S2(Supplementary Information), and the 20 most important
variables are listed in Figure S8(Supplementary Information).

As ground-level monitoring stations tend to be in and around
urban areas30,46, thismay weaken the capacity of themodel to estimate
the concentrations in regions farther away from these sites, while
causing overfitting in areaswith higher station density.We employed a
distance-weighted loss function (Supplementary Information pp9)
during model training to address this issue and ensure that the model
properly represents the areas with fewer monitoring sites. This
approach involved assigning weights to the loss function based on the
normalized distances between each site and its nearest neighboring
sites. By doing so, we aimed tomitigate the potential biases associated
with the non-uniform distribution of monitoring stations across the
study area.

To evaluate the out-of-sample predictive capacity of the models,
we used two different approaches. First, we randomly selected 10% of
the ground-level sites as test sites to validate the model performance.
Second, we conducted nested 5-fold cross-validation to obtain spatial
and temporal out-of-sample predictions separately. For spatial out-of-
sample predictions, we randomly divided themonitoring sites into five
equal-sized subsamples. In each loop of predictions, four subsamples
were used for model training and tuning, while the remaining sub-
samplewas used toobtain the out-of-sample predictions. For temporal
out-of-sample predictions, we split the 17-year period into six sub-
periods consisting of three or two consecutive years. After obtaining
these out-of-sample predictions, we calculated validation metrics
(Supplementary Information pp9) such as the Pearson Correlation,
NMB, and NRMSE to assess the performance of the models.

Indicators calculation
We developed indicators describing three main aspects: (i) air pollu-
tion concentrations and the (ii) population count and (iii) cumulative
time of exposure for individuals to air pollution values exceeding the
guidelines (formulas and threshold of WHO guidelines (Table S3) are
provided in the Supplementary Information, pp9–11):

We used the Re-Gridded Population of the World Version 4
(GPWv4) to calculate the daily PW regional concentrations for PM2.5,
PM10, NO2 and O3 for all the grid-cells included in each of the 1426
NUTS3 regions. Further details are provided in the Supplementary
Information (pp9). Changes over time were compared to annual PW
concentrations with the Theil-Sen slope10,24, which estimates the
annual rate of change by taking the median of all possible pairwise
slopes between data points. The Theil-Sen slope is less sensitive to
outliers and is suitable for analyzing time series data with potential
fluctuations and irregularities. Additionally, we used theMann-Kendall
test to evaluate the significance level of the trends24.

We developed an indicator to represent the cumulative time of
exposure for individuals to air pollution values exceeding the guide-
lines. Thus, the annual unclean air exposure time represents the PW
average annual number of days in which the WHO daily limit for an air
pollutant is exceeded. The indicator involves calculating person-days
surpassing daily limits for each grid-cell annually, aggregated them
over a region or set of regions (unit: person*day), and finally dividing
by the total population of the region(s) (unit: day). The annual unclean
air exposure time can be calculated for one individual air pollutant, or
for two or more air pollutants simultaneously exceeding the WHO
limits the same day and grid-cell (for compound event days). More
details are provided in Supplementary Information (pp 10, 11).

To assess the population exposed to air pollution values in rela-
tion to established guidelines,wedefined indicators called “Population
in clean air areas” and “Population in unclean air areas”, as the per-
centage of people living in areas where air quality either meets or
exceeds recommended standards. Notably, ‘clean air’ aligned with
WHO standardswidespread adopted bymany governments, balancing
current expenditure and practicality against health benefits, but not

imply entirely safe air level. For short-term guideline, we imposed that
daily or 8h maximum values are met 99% of days in a given year, while
for long-term limits, annual or peak season limits are not exceeded.
Complementary criteria were used for unclean air areas. The mathe-
matical formulation is described in the Supplementary Information
(p10, 11).

Data availability
The daily mean observations of PM2.5, PM10, NO2 andMDA8 O3 were
collected from two main databases in European environment infor-
mation and observation network (Eionet): the Airbase (2003–2012)
and the Air Quality e-Reporting (2013–2019). The total AOD, Fine-
modeAOD (fAOD), andCoarse-modeAOD (cAOD)products generated
from our previous works39. Reanalysis meteorological data primarily
came from the ERA5_land dataset. Air quality reanalysis data were
collected from the CAMSRA. High-resolution gridded population data
is from the Gridded Population of the World, Version 4 (GPWv4)
database. The annual unclean air exposure time dataset generated in
this study have been deposited in the github database [https://github.
com/junesw2/Europepollu/tree/main/Sharedata] and are publicly
available.

Code availability
All analyses and visualizations in this study are facilitated by data and
codes, which have been deposited in the Github [https://github.com/
junesw2/Europepollu/tree/main]. https://doi.org/10.5281/zenodo.
10551935. Other mapping and data processing are conducted using
QGIS, R, and Python.
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