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Extensive DNA methylome rearrangement
during early lamprey embryogenesis

Allegra Angeloni1,2, Skye Fissette 3, Deniz Kaya 4, Jillian M. Hammond 5,6,
Hasindu Gamaarachchi 5,6,7, Ira W. Deveson 5,6,8, Robert J. Klose 4,
Weiming Li 3, Xiaotian Zhang 9,11 & Ozren Bogdanovic 1,2,10

DNA methylation (5mC) is a repressive gene regulatory mark widespread in
vertebrate genomes, yet the developmental dynamics in which 5mC patterns
are established vary across species. While mammals undergo two rounds of
global 5mC erasure, teleosts, for example, exhibit localized maternal-to-
paternal 5mC remodeling. Here, we studied 5mC dynamics during the
embryonic development of sea lamprey, a jawless vertebrate which occupies a
critical phylogenetic position as the sister group of the jawed vertebrates. We
employed 5mCquantification in lamprey embryos and tissues, and discovered
large-scale maternal-to-paternal epigenome remodeling that affects ~30% of
the embryonic genome and is predominantly associated with partially
methylated domains. We further demonstrate that sequences eliminated
during programmed genome rearrangement (PGR), are hypermethylated in
spermprior to the onset of PGR.Our study thus unveils important insights into
the evolutionary origins of vertebrate 5mC reprogramming, and how this
process might participate in diverse developmental strategies.

DNA methylation (5-methylcytosine - 5mC) is a chemical modification
to the DNA that represents one of the most pervasive gene regulatory
marks in vertebrates1–3. 5mC is predominantly found within the
cytosine-guanine dinucleotide context (mCG), occurring at ~80% of all
CpG sites in vertebrate genomes4–6. mCG is associated with long-term
silencing processes including somatic silencing of germline genes and
silencing of repetitive DNA elements, as well as X-chromosome inac-
tivation and genomic imprinting in mammals7–10. mCG is deposited by
de novo DNA methyltransferases 3 A/B (DNMT3A/B) and maintained
following DNA replication by DNA methyltransferase 1 (DNMT1)11–13.
DNA demethylation can occur passively via replication-coupled
dilution14,15, or actively via methylcytosine dioxygenase Ten-Eleven
Translocation (TET) enzymes16.

Mammalian development is characterized by two waves of global
mCG erasure occurring in the preimplantation embryo and in the
developing germline, followedby re-establishment of cell-type specific
mCG17–24. However, it appears that such mCG remodeling processes
are not evolutionarily conserved. For example, the zebrafish genome
does not undergo global DNA demethylation10,25–27. Instead, the
maternal methylome is remodeled to match the hypermethylated
paternal genome prior to the onset of zygotic genome activation
(ZGA)28. Thus, mCG patterns in the early embryo closely resemble
those of sperm. Moreover, we have recently identified maternal-to-
paternal DNA methylome remodeling in medaka embryos, revealing
evolutionary conservation of developmental epigenome dynamics in
distantly related teleost species29.
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Unlike hypermethylated vertebrate genomes, genomes of non-
vertebrate lineages typically display mosaic mCG patterns, character-
ized by regions of heavily methylated DNA interspersed with fully
unmethylated domains3,30,31. To date, it remains elusive how and why
vertebrate genomes transitioned to hypermethylation as a default
state. The sea lampreyPetromyzonmarinus is an extant jawlessfish that
can serve as a valuable model organism for understanding mCG evo-
lution in metazoans. Lampreys are, together with hagfish, the sister
group of jawed vertebrates (sharks to mammals), and the only living
representatives of jawless vertebrates.GlobalmCGhasbeenprofiled in
lamprey heart, brain, muscle and sperm, and was found to be highly
heterogeneous at the majority of CpG sites, described as an inter-
mediate between mosaic invertebrate mCG and vertebrate
hypermethylation32,33. In addition, the lamprey genome contains a
conserved mCG toolkit, including orthologues of DNMT1, DNMT3A,
DNMT3B, DNMT3L, UHRF1, and TET proteins. Notably, lampreys as
well as hagfish, only share one ancestral whole-genome duplication
(WGD) round with jawed vertebrates, which makes them unique in
terms of this major genomic event when compared to both inverte-
brates and vertebrates34–36. Moreover, lampreys undergo a peculiar
biological phenomenon termed programmed genome rearrangement
(PGR), in which genomic DNA present in the germline is physically
eliminated in somatic lineages during early embryogenesis, and is
effectively entirely removed from the genome three days post
fertilization37–41. Homologs of genes in eliminated DNA sequences are
enriched in functions related to germline development, and PGR is
thought to prevent misexpression of genes with deleterious potential
in somatic cells42–44.

Here we sought to investigate whether the mCG configuration
observed in the lamprey genome is compatible with embryonic epi-
genome remodeling processes, and whether sequences eliminated
during PGRmight be characterized by distinct 5mCpatterning. To that
end, we produced high resolution epigenome maps of sea lamprey
development, employing whole-genome bisulfite sequencing (WGBS),
biochemical identification of non-methylated DNA (BioCAP)45 and

Nanopore sequencing46 of germline, embryonic, and adult somatic
tissues. Our results demonstrate that lampreys undergo large-scale
maternal-to-paternal mCG remodeling. Unlike teleosts, however,
where 5mC dynamics are localized to a relatively small number of
defined loci, we discover developmental 5mC reprogramming occur-
ring over partially methylated domains (PMDs) covering 29% of the
entire genome, as well as at discrete gene regulatory elements (2% of
the genome). Furthermore, we show that prior to the onset of PGR,
regions eliminated during early embryogenesis are pre-targeted by
DNA methylation in sperm. Our results shed new light on mCG
dynamics in early vertebrate lineages and provide important insights
into the origins and evolution of vertebrate mCG reprogramming.

Results
Disordered DNA methylation levels in lamprey tissues
To investigate the extent of mCG reprogramming in the lamprey
genome, we first questioned whether there are any observable mCG
changes between diverse embryonic and adult lamprey tissues. We
performed WGBS on seven lamprey samples comprising germline
(sperm and egg), early embryonic (day 1 and day 2) and adult somatic
tissues (brain, muscle, and peripheral blood mononuclear cells—
PBMCs) in biological replicates (Supplementary Fig. S1A, B, Supple-
mentary Table S1). The embryonic stages correspond to 64 cell (day
1) and pre-ZGA blastula (day 2), with ZGA occurring ~2.5–3 days post
fertilization41. Initial analysis of the generated data revealed that all
lamprey tissues display genomic mCG levels at an average of
~29–40% at the majority of CpG dyads, in clear contrast to the
methylomes of both divergent and closely related vertebrate and
invertebrate species, in which most CpG sites display high or low
mCG (Fig. 1A–C, Supplementary Fig. S1C)3,30. These results are sug-
gestive of considerable variation in mCG at the cellular level and are
in close agreement with previously described adult lamprey
datasets32,33. As other vertebrates, lamprey exhibits depleted (<1%)
mCG in the mitochondrial genome (Fig. 1B) and reduced non-CpG
(CpH) genomic 5mC (Fig. 1D). The exception to these trends is
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Fig. 1 | Global DNAmethylation levels in seven lamprey tissues. A Per CpG DNA
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notable mCA enrichment (2.3%) in the brain, which was previously
described as a deeply conserved epigenetic feature of the vertebrate
neural system33,47. Altogether, the lamprey genome displays an
intermediate DNA methylome state, in line with its phylogenetic
position.

Embryonic reprogramming of partially methylated domains
To better understand the origin and extent of intermediate DNA
methylation in the sea lamprey genome, we partitioned the WGBS
datasets into genomic blocks displaying highly disordered mCG levels
(partially methylated domains, PMDs), and genomic regions located
outside PMDs (non-PMDs) (Fig. 2A, Supplementary Data S1–14)4,48. We
further divided the non-PMD regions of the genome into (i) unme-
thylated regions (UMRs) (ii) lowly methylated regions (LMRs), and (iii)
hypermethylated regions (hyperMRs) (Supplementary Fig. S2A, B,
Supplementary Data S8-14). It is worth pointing out that while PMDs in
heavilymethylated (>80%mCG)mammaliangenomes typically display
reduced 5mC levels compared to the global mean4, PMDs in lamprey
had heterogenous, but increased 5mC compared to non-PMD regions
that generally showed low levels of 5mC(Fig. 2A),with the exceptionof
hyperMRs (Supplementary Fig. S2B).To interpret similarities between
PMDs in each sample, we compared the genomic locations of PMDs
between tissues and found an increased association between PMDs in;
(i) sperm, day 1 and day 2 methylomes, and in; (ii) egg, brain, muscle
and PBMC methylomes (Fig. 2B). Overall, we found that 65% of the
genome is classified as PMD in sperm, day 1 and day 2 tissues, in
comparison to egg, brain,muscle andPBMC,wherePMDs covered46%
of the genome (Supplementary Fig. S2A). We next quantified the per-
centage of the genome that transitions from PMD to non-PMD states
and vice versa and found that on average 29% of the genome displays
an altered PMD state in egg/sperm, egg/day 1 and egg/day 2 pairwise
comparisons (Fig. 2C). Most of these transitions were characterized by
PMD gain on the maternal genomic contribution prior to ZGA, to
match the paternal methylome pattern (Fig. 2D, E). Specifically, 25% of
the genomedisplayed PMDgain (UMR to PMD– 16%, hyperMR to PMD
– 7%, and LMR to PMD – 2%), on the maternal genome, whereas 4% of
the genome was characterized by maternal PMD to UMR transi-
tion (Fig. 2E).

As the regions undergoing reprogramming are partially methy-
lated in either egg or sperm, we next took advantage of our single-
molecule resolution data to study how this 5mC heterogeneity is
generated at the individual read level, with the aim of resolving how
partial 5mC states are established and lost during early pre-ZGA
embryogenesis. To achieve this, we calculated the proportion of dis-
cordant reads (PDR – proportion of reads containing both methylated
and unmethylated CpG sites)49–51 within PMDs and plotted these values
against PMD mCG levels (Fig. 2F). The maternal PMD gain (UMR to
PMD) transition was characterized by an increase in both mCG levels
and PDR, in line with unmethylated DNA gaining partial methylation,
whereas the LMR and hyperMR to PMD groups displayed a broader
range of mCG levels and decreased PDR in sperm, day 1 and day 2
samples (Fig. 2F). The second group, comprising PMDs present in egg,
exhibited higher read discordancy and higher mCG levels in egg
samples when compared to sperm and embryonic tissues, where these
regions are classified as UMRs, and read discordancy and mCG levels
were notably lower (Fig. 2F). Based on these results we conclude that
maternal-to-paternal PMD reprogramming can involve either an
increase (UMR to PMD, LMR to PMD) or a decrease (hyperMR to PMD)
in mCG levels, whereas maternal PMD loss (PMD to UMR) is always
associated with mCG loss. Moreover, our PDR analyses demonstrate
that lamprey PMDs consist of a blend of discordant (partially methy-
lated) and concordant (fully methylated or unmethylated) DNA
molecules. Finally, we also observed minor PMD transitions between
sperm/day 1 and sperm/day 2; however, those represented a relatively
lower proportionof the entire genomeandweregenerally shorter than

PMDs differentially identified between egg and sperm (Fig. 2C, Sup-
plementary Fig. S2C). Overall, distinct genomic features such as UMRs,
hyperMRs and LMRs are reprogrammed to PMDs on the maternal
genomic contribution, prior to ZGA, with a smaller fraction of UMRs
displaying PMD loss (Fig. 2F). These changes affect at least 29% of the
genome, indicative of a major DNA methylome reconfiguration event.

Differential DNA methylation at gene regulatory regions
Following observations that the lamprey epigenome could be parti-
tioned into two major groups according to global tissue mCG pat-
terning, we next wanted to explore whether similar distinctions could
be observed at discrete regulatory regions.We focused this analysis on
CpG islands (CGIs), also called non-methylated islands (NMIs), which
are hypomethylated DNA sequences coinciding with vertebrate gene
regulatory elements52–55. We experimentally identified NMIs in six
lamprey tissues (Supplementary Table S2) (sperm, day 1, day 2, brain,
muscle, PBMCs)usingBioCAP, a biochemicalmethodbasedonprotein
affinity pulldown of unmethylated CpG-rich DNA45. As with the DNA
methylome, we found that the NMI signal clustered into two major
groupswhen compared between tissues: (i) sperm, day 1, day 2, and (ii)
brain, muscle, PBMC (Fig. 3A). This association was confirmed by
Principal Component Analysis (PCA), (Supplementary Fig. S3A) and by
k-means clustering of mCG levels at NMIs merged from all examined
tissues (Fig. 3B, Supplementary Fig. S3B). We next identified a core set
of NMIs present in all tissues (n = 62,332) (Fig. 3C, D, Supplementary
Data S15), which are distinct from adult tissue-specific, or embryonic
NMIs. We found DNA hypomethylation, increased CpG density and GC
content, and association with accessible chromatin profiled in dorsal
neural tube and whole heads56, at core NMIs, thus confirming that the
chromatin and sequence features of lamprey NMIs resemble canonical
vertebrate CGIs (Fig. 3C, Supplementary Fig. S3C–E). We next per-
formed motif calling on core NMIs and found enrichment for tran-
scription factor binding sites associated with ubiquitously active CGI-
like promoters in both vertebrate57,58 and invertebrate59 genomes,
including the methyl-sensitive transcription factor E2F, the enhancer
box (E-box) regulatory motif and the transcription factor nuclear
respiratory factor (NRF) (Fig. 3E). Furthermore, we found that NMIs
were associated with ~20–25% of all transcription start sites (TSS),
underscoring their potential for gene regulatory function53 (Fig. 3F,
Supplementary Fig. S3F). Finally, we found a greater enrichment of
brain/muscle/PBMC NMIs (n = 24,381) in genic regions compared to
core NMIs and sperm/day 1/day 2 NMIs (n = 9,895), suggestive of dif-
ferentialmCGusage atNMIs in developmental and tissue-specific gene
regulatory processes (Fig. 3G).

To obtain a more comprehensive view of developmental mCG
dynamics in the lamprey, we performed pairwise comparisons of tis-
sue- and stage-specific 5mC by identifying differentially methylated
regions (DMRs) (ΔmCG>0.2,p value < 0.05). This approach resulted in
the identification of ~112,000 genomic regions displaying localized
changes in methylation state (Fig. 3H, Supplementary Data S16). To
determine tissue-specificity of DMRs, we assessed genomic co-
localization of all pairwise DMRs (Fig. 3I). Overall, we found the
greatest number of overlaps between egg/sperm, egg/day 1 and egg/
day 2 DMRs, suggestive of maternal-to-paternal DMR reprogramming,
as previously described in zebrafish and medaka10,26–29. Next, we
merged all DMRs into a single dataset and performed clustering of
mCG levels (Fig. 3J).mCG levels atDMRs grouped into twomajor tissue
categories: (i) sperm, day 1 and day 2; and (ii) egg, brain, muscle and
PBMC, in line with previous analyses. Notably these two major DMR
groups were characterized by distinct features, including differences
in mCG levels, genomic localization, CpG density distribution, PMD
content, and BioCAP signal (Supplementary Fig. S4A–F), indicative of
different biological functions (see discussion). Altogether, we identi-
fied that DMRs and differentially enriched NMIs represent 4% of the
entire genome. While mCG patterns at these sequences recapitulate
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PMD dynamics, we found that 2% of the genome contains DMRs and
differentially enriched NMIs located outside reprogrammed PMDs
(Supplementary Fig. S4E). Finally, we wanted to assess whether DMRs
anddifferentially enrichedNMIs overlapping regulatoryelementswere
linked to expression changes at corresponding genes. As 5mC-
mediated CGI silencing is most commonly characterized by gain of

somatic mCG at gene promoters10, we focused our analysis on pro-
moters of protein-coding genes overlapping an NMI (n = 5188 genes),
and assessed the correlation between NMI 5mC levels and transcrip-
tion for an adult somatic tissue (brain) (Supplementary Fig. S4G)60.
Overall, in line with canonical 5mC function, we identified a weak
negative correlation between 5mC and transcription (r = −0.23). To
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study the dynamics of 5mC-mediated gene silencing during develop-
ment, we next identified promoters of protein-coding genes over-
lapping both i) regions hypermethylated in egg/brain/muscle/PBMC
compared to sperm/day 1/day 2, and (ii) NMIs enriched in sperm/day 1/
day 2 compared to brain/muscle/PBMC (n = 13 genes) (Supplementary
Fig. S4H). We then compared the expression profiles of these genes in
diverse embryonic and adult somatic tissues60. Again, we observed an
overall negative correlation between the presence of mCG and
absence of NMI signal in adult tissues, and transcriptional activity,
which was most notable in adult brain, kidney, and liver tissues (Sup-
plementary Fig. S4H). Nevertheless, it is worth pointing out that rela-
tionships between promoter mCG and transcriptional silencing are
complex55,61,62 and that even in organisms with highly methylated
genomes, like zebrafish andmedaka10,26,27,29, such clear anti-correlation
can only be observed on a small number of genes. Altogether, our
results indicate discrete mCG remodeling occurring not only within,
but also alongside large-scale genomic transitions in PMD state during
early development, affecting at least 2% of the genome.

DNA eliminated during PGR is hypermethylated in sperm
PGR represents a unique biological mechanism for silencing poten-
tially deleterious gene loci37–42. During PGR in lamprey, DNA sequences
containing several hundreds of genes are physically eliminated from
the genome during early embryogenesis, effectively producing a
somatic genome that is a smaller, reproducible fractionof thegermline

genome. PGR eliminates potential for somatic misexpression of
germline-specific genes and is thus analogous to epigenetic silencing
mechanisms described in vertebrates, such as somatic gene silencing
of cancer testis antigens10,63–65. As PGR is a crucial component of proper
embryonic development in lamprey, we next interrogated the epige-
netic landscape of sequences eliminated during PGR. We assembled
whole-genome sequencing reads from blood and sperm42 and called
homozygous deletions in blood using CNVkit66, identifying a total of
1050 DNA sequences that we classified as eliminated sequences. We
found that ~81% of regions identified by our analysis overlapped pre-
viously published eliminated sequences42 (Fig. 4A, B, Supplementary
Fig. S5A). We then selected 849 regions (~9.3Mb) overlapping both
eliminated sequences identified by CNVkit and those previously
published42 as a stringent dataset for further genome-scale analyses
(Fig. 4A, B, Supplementary Fig. S5A, Supplementary Data S17). These
overlapping eliminated sequences contain 277 genes, the function of
which have been described elsewhere42–44 (Supplementary Fig. S5B,
Supplementary Data S18). Also, in line with previous reports, we
observed that a considerable percentage (~50%) of the eliminated
fraction comprised diverse repetitive element classes, reflective of
high genomic DNA repeat content (Supplementary Fig. S5C). We used
whole-genome sequencing42 and WGBS read coverage to confirm that
the presence of eliminated sequences was restricted to the germline
(sperm) (Fig. 4C, Supplementary Fig. S5D).We also identified increased
readdensity at eliminated sequences in day 1 andday 2WGBSdatasets,
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which is in agreement with previous findings that PGR occurs pro-
gressively during early development37,40. Finally, to confirm our find-
ings using an orthogonal sequencing approach, we generated whole-
genome Nanopore sequencing datasets for PBMCs and sperm in two
biological replicates (Supplementary Table S3) and found increased
read density at eliminated sequences in sperm, and read depletion in
PBMCs (Fig. 4C, Supplementary Fig. S5E). Using our defined set of
eliminated regions, we next set out to interrogate whether these
genomic sequences exhibit a distinct mCG profile. Long-read
sequencing is particularly useful for this analysis as eliminated
sequences contain repetitive elements thatmay not be as well covered
by short-read datasets (Supplementary Fig. S5C). Using sperm Nano-
pore sequencing data and sperm, day 1 and day 2 WGBS and BioCAP
data, we identified DNA hypermethylation and depleted BioCAP signal
at sequences eliminated during PGR (Fig. 4D, Supplementary Fig. S5F).
We quantifiedmCG levels at these regions and found that themajority
of CpG sites contained mCG >75%, indicating a clear exception to
global heterogeneous mCG (Fig. 4E and Supplementary Fig. S5G, H).
Nevertheless, we could not identify any notable sequence features that
would distinguish these targeted sequences from the genomic back-
ground (Supplemental Fig. S5I), suggestive of sequence-independent
mCG targeting. Although further research is necessary to clarify this, it
is possible that mCG contributes to the selection or perhaps even
germline protection of eliminated DNA, underscoring the significance
of mCG dynamics in diverse developmental processes.

Discussion
The goal of this study was to identify and explore the dynamics and
conservation of developmental 5mC reprogramming in the basal ver-
tebrate sea lamprey. Lamprey represents an important model organ-
ism for studies of developmental 5mC function as it displays a
distinctive, highly heterogeneous DNA methylome and undergoes
genome-wide structural rearrangement during early
embryogenesis32,37–42. Our study establishes for the first time that ~30%
of the lamprey genome undergoes extensive developmental mCG
reprogramming. We demonstrate that mCG patterns in the early
embryo closely resemble sperm, thereby reflecting a maternal-to-
paternal epigenome transition event upon fertilization. Lamprey
exhibits developmental mCG dynamics similar to zebrafish and
medaka, thus providing valuable insights into the evolutionary origins
of vertebratemCG reprogramming10,25–27,29 (Fig. 5). Given this similarity
in early developmental epigenomedynamics to teleost fish, it will be of
interest to investigate to what extent mCG contributes to the devel-
opment of body plans67 and phenotypic plasticity68,69 in the agnathan
lineage.

Evolutionary studies of developmental 5mC dynamics will be
useful in clarifying why vertebrate genomes shifted to hypermethyla-
tion as a default state during the invertebrate-to-vertebrate
transition70,71. One plausible hypothesis is that genomic hypermethy-
lation was developed as a mechanism to fine tune the increase in
regulatory complexity arising from WGD events in vertebrate
lineages7–10,72. It is currently thought that the sea lamprey genome
underwent only a single duplication event, while gnathostome (jawed
vertebrate) genomes are shaped by two rounds of WGD34–36. It is
therefore possible that major epigenetic reprogramming observed
during lamprey development is an ancient mechanism developed to
balance genomic hypermethylation, which could be linked to verte-
brate genome expansion. While our results suggest that maternal-to-
paternal epigenome reprogramming is likely conserved in anamniotes,
we observed notable differences between lamprey and previously
profiled teleost species in the extent of these processes. In zebrafish,
much of developmental 5mC reprogramming is limited to discrete
gene regulatory elements, such as promoter CGIs10,26,27. In the lamprey
however, while we identify changes to 5mC levels at putative reg-
ulatory elements, we also describe vast changes in genomic 5mC

content between egg and sperm, with the sperm methylome being
inherited in the early embryo. Approximately 29% of the lamprey
genome transitions in PMDstate post fertilization (Fig. 5), representing
a large-scale developmental 5mC remodeling event in comparison to
other anamniotes profiled to date. Moreover, we observed that
maternal-to-paternal reprogramming of PMD states involves both
developmental gain and loss of PMDs on the maternal allele, even
though developmental PMD gain before the ZGA onset was the pre-
dominant transition, affecting ~25% of the genome.

It remains elusive exactly how mCG remodeling is achieved in
lamprey. Based on mCG reprogramming dynamics identified in our
study, it is not unlikely that lamprey utilize placeholder nucleosomes
enriched in H2A.Z and H3K4me1 in a similar manner to zebrafish28.
These placeholder nucleosomes are specific to the paternal germline
in zebrafish and establish pre-ZGA chromatin in the early embryo. In
zebrafish, placeholder nucleosomes are found at hypomethylated
regulatory regions associated with developmental and housekeeping
genes, where they deter DNMT activity while maintaining a tran-
scriptionally quiescent state during cleavage stages28. Thus, it is plau-
sible that NMIs and hypomethylated DMRs in sperm and embryonic
tissues, represent sequences associated with a similar chromatin
configuration in lamprey, which consequently display reduced mCG
levels compared to tissues where such nucleosome positioning may
not be present. In terms of DMRs that we find hypermethylated in
lamprey sperm and embryonic tissues, a recent zebrafish study iden-
tified that DNA hypermethylation of CpG-rich enhancers in sperm and
pre-ZGA embryos safeguards embryonic programs by preventing
premature activation of transcriptional programs associated with
adult tissues67. Depletion of dnmt1 resulted in severe developmental
defects and embryonic lethality thatwas linked to ectopic activationof
these enhancers, emphasizing that inheritance and maintenance of
paternal-like 5mC states plays a critical role in regulating develop-
mental programs. It is important to note that in zebrafish, establish-
ment of the embryonic epigenome is not dependent on the paternal
genome; even in parthenogenetic embryos (maternal haploids that
lack sperm DNA), a sperm-like chromatin configuration is still
observed27,28,67. This suggests that in zebrafish, and probably also
lamprey, the embryonic methylome is already established in tran-
scriptionally quiescent sperm, potentially to ease the establishment of
totipotency by only reprogramming one parental allele. In addition,
H3K27me3 is a repressive chromatin modification deposited by
Polycomb-group proteins, and is widely recognized to mediate silen-
cing of developmental genes73,74. Some murine homologs of genes
eliminated during PGR were found to be targets of Polycomb repres-
sive complexes inmouse embryonic stem cells42. It will therefore be of
particular importance to understand the genomic distribution and
concentration of H3K27me3-marked regions in lamprey compared to
vertebrate species that do not undergo PGR.

Our quantitative, base-resolution results of mCG targeting
demonstrate that genomic regions eliminated during PGR are hyper-
methylated in sperm. This indicates that prior to fertilization and the
onset of PGR, eliminated sequences are already epigenetically mod-
ified in the germline, which may facilitate accurate targeting and
removal during PGR. Previous experiments performed using immu-
nofluorescence assays suggested that mCG modification of targeted
sequences could occur following their elimination and packaging into
micronuclei40. It is important to note that the regions used in this study
donot represent all sequences eliminatedduring PGR, due to technical
challenges associated with the abundance of highly repetitive
sequences in eliminated DNA. PGR is not a lamprey-specific biological
phenomenon; it has been described in several protozoan, invertebrate
and vertebrate species, albeit with differences in timing andmolecular
mechanisms75,76. A common theme inPGRacross diverse species is that
eliminated sequences are associated with heterochromatin, such as in
zebra finch77, the ciliated protozoan Tetrahymena78,79, and in sciarid
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flies80,81. Currently, genomic and epigenetic studies of PGR in lamprey
havemostly been limited to analyses of themale germline. However, in
some species, such as the zebra finch, the germline-restricted chro-
mosome, which is found in both the male and the female germline, is
eliminated from mature sperm82,83. In our study, we found that WGBS
read coverage at eliminated sequences in the egg was comparable to
that of somatic tissues, suggestive of some degree of DNA elimination.
Previously, RNA-seq analyses of male and female lamprey gonad
development have shown that eliminated genes are 36Xmore likely to
be expressed in testes than in ovaries and that strikingly, ~70% of those
genes were not expressed in differentiated ovarian samples43. This
indeed suggests that the complement of eliminated genesmight differ
between themale and female germline and that programmedDNA loss
from mature oocytes is indeed a possibility. Nevertheless, given the
high content of repetitive DNA at those regions and the fact that our
observations are basedonWGBSdata alone, at this point no conclusive
statement can be made regarding the structure and content of PGR
sequences in the female germline. Further studies, preferably

involving long-read DNA sequencing technologies, will be required to
resolve this issue. Finally, an important question that remains open is
how these regions remain refractory to elimination during germ cell
development, which may be explained at least in part by the DNA
hypermethylation observed in this study. Unlikemammals, fish do not
undergo global mCG reprogramming in primordial germ cells, rather
the paternal mCG configuration is retained10,84. If a similar mechanism
would beobserved in the lamprey, itwouldbeplausible to suggest that
DNA hypermethylation at eliminated sequences in sperm contributes
to their retention in germline lineages. Further studies involving
genomic localization of DNMTs during lamprey embryonic develop-
ment, including co-factors that are necessary for DNMT targeting to
defined genomic locations, will deepen our understanding of the
reprogramming processes described in this study.

In summary, we have demonstrated that despite high levels of
mCGheterogeneity, the sea lamprey undergoes extensivematernal-to-
paternal developmental DNA methylome remodeling predominantly
associated with partially methylated DNA states. Moreover, we have
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shown that regions eliminated during PGR are marked by high mCG
levels in sperm and pre-ZGA embryos. Altogether, this research
demonstrates that the last common ancestor of vertebrates might
have already presented extensive mCG reprogramming, and that this
occurred before the second round of WGD that characterizes jawed
vertebrates. Lampreys show lineage specific variations in the way in
which they establish developmental mCG patterns, yet their epigen-
ome configuration is suggestive of an early establishment of complex
regulatory states that characterize the vertebrate lineage.

Methods
Lamprey procedures
All lamprey embryonic and adult material was collected at the Ham-
mond Bay Biological Station (Michigan, USA). Embryos were obtained
and grown as previously described85. All experimental procedures for
culturing embryos were approved by Michigan State University Insti-
tutional Animal Care and Use Committee (AUF# 02/17-031-00). To
produce sexually mature males and females for embryo fertilization,
sea lamprey were transferred to the Ocqueoc River, Millersburg
Michigan and held in cages (0.5m3) to allow natural sexual maturation
in a riverine environment. Sea lamprey were checked daily for sexual
maturity; sexually mature individuals were identified by applying
abdominal pressure and checking milt expression or for ovulated
oocyte expression. Sexually mature males and female lamprey were
returned to HBBS and held until use for culturing lamprey embryos.

Genomic DNA extraction from lamprey germline, embryonic
and somatic tissues
All lamprey samples were lysed in buffer containing 20mM Tris, pH
8.0, 100mMNaCl, 15mMEDTA, 1% SDSand0.5mg/ml proteinaseK for
3 h at 55 °C. Additionally, before DNA extraction, the egg samples were
rinsed extensively under distilled water to eliminate debris. Lysis was
followed by two phenol:chloroform:isoamyl alcohol (25:24:1) extrac-
tions and subsequent centrifugation (5min at 17,949 × g). DNA was
then precipitated by adding 0.2 volumes of 4M ammonium acetate
and three volumes of 96% ethanol. The reaction was left on ice for a
minimum of 30min. The DNA precipitate was centrifuged for 20min
at 4 °C (17,949 × g), and the pellet was washed with 500μl of 70%
ethanol and centrifuged for 5min (17,949 × g) at room temperature.
The pellet was then resuspended in 200μl of TE buffer, and 1μl of
RNase A (20 μg/μl) was added. The reaction was left to proceed for
30min at room temperature, after which time the DNA was pre-
cipitated with 0.1 volumes of 4M ammonium acetate and 1 volume of
isopropanol on ice for 2 h. The tubes were centrifuged for 30min at
4 °C (17,949 × g), and the pellet was resuspended in TE buffer.

WGBS library preparation
WGBS was performed as described previously10. Briefly, DNA was
spiked with unmethylated lambda phage fragments (Promega) and
sonicated to approximately 300 base pairs. Sonicated DNA was con-
centrated in a vacuum centrifuge to a final volume of 20 µL, required
for bisulfite conversion with the EZ DNA Methylation-Gold Kit (Zymo
Research). Bisulfite-converted DNA was then subjected to low input
library preparation using the Accel-NGS Methyl-seq DNA Kit (Swift
Biosciences). Briefly, the single-stranded, bisulfite-converted DNA was
subjected to an adaptase reaction, followed by primer extension,
adapter ligation (Methyl-seq Set A Indexing Kit-Swift Biosciences), and
indexing PCR. Libraries were quantified using KAPA qPCR Library
Quantification Kit (KAPA Biosystems) according to manufacturer
instructions. Methylome libraries were sequenced on the Illumina
HiSeqX platform (high-throughput mode, 150 bp, paired-end).

WGBS read assembly
Read assembly was performed as described previously10. Briefly,
sequenced reads in FASTQ format were trimmed using the fastp

v0.12.5 tool (https://github.com/OpenGene/fastp) with the following
settings: (fastp -i ${read_1} -I ${read_2} -o ${trimmed_read_1} -O ${trim-
med_read_2} -f 10 -t 10 -F 10 -T 10). Trimmed reads were mapped
(petMar3 genome reference, containing the lambda genome as chrL)
using WALT with the following settings: -m 10 -t 24 -N 10000000 -L
2000 (https://github.com/smithlabcode/walt). The petMar3 germline
reference genome is available from https://www.ncbi.nlm.nih.gov/
datasets/genome/GCA_002833325.1. PCR and optical duplicates were
removed using Picard tools v2.3.0 (https://broadinstitute.github.io/
picard/). Genotype and methylation bias correction was performed
using MethylDackel software (https://github.com/dpryan79/
MethylDackel). The number of methylated and unmethylated calls at
each genomic CpG position were determined using MethylDackel
(MethylDackel extract genome_lambda.fa $input_bam –mergeContext
–minOppositeDepth 10 –maxVariantFrac 0.5 $input_bam -@ 32 –OT
0,0,0,0 –OB 10,0,0,0). Bisulfite conversion efficiency was estimated
from the lambdaphage spike-ins. Bedgraphswere converted tobigWig
format using the bedGraphToBigWig script from kentUtils (https://
github.com/ENCODE-DCC/kentUtils).

WGBS methylome PCA
PCA ofmCG levels was calculated usingmethylKit PCASamples on two
replicates of tissue methylomes using default parameters86.

Identification of partially methylated domains
Methylome replicates were merged and PMDs were called using
MethylSeekR segmentPMDs function on scaffold PIZI01000001v1
using default parameters48. UMRs and LMRs were called using
MethylSeekR segmentUMRsLMRs function. For UMRs and LMRs that
partially overlap PMDs, intersecting bases are counted as PMDs for
further analysis. hyperMRs are defined as regions that are not called as
UMRs, LMRs or PMDs by MethylSeekR. Tissue PMDs were intersected
using Intervene pairwise (–compute frac) and Spearman correlation
was found using the Intervene web application (https://asntech.
shinyapps.io/intervene/)87. mCG levels from WGBS methylomes at
PMDs and non-PMDs were found using bedtools intersect function88.
Reprogrammed PMDs were identified through pairwise intersections
of PMD and non-PMD regions using bedtools intersect function. To
identify the percentage of discordant reads (PDR) at egg non-PMDs/
sperm PMDs, per-read mCG status was determined from WGBS data-
sets using the MethylDackel perRead function. Discordant reads with
at least four CpG sites were intersected with egg non-PMDs/sperm
PMDs using bedtools coverage function (-counts) andmCG status was
found by intersectingWGBS datasets with egg non-PMDs/spermPMDs
using bedtools map function (-o mean -null na). Scatterplots of PDR
and mCG were generated using the smoothScatter function in R
(nrpoints = 0). PMD genome coverage is calculated relative to the size
of the petMar3 reference genome.

BioCAP library preparation
BioCAP was performed on genomic DNA extracted from sperm, day 1,
day 2, brain, muscle and PBMC in replicate and with input controls
using published methods89. Briefly, genomic DNA was sonicated to
approximately 200 base pairs and incubated with biotinylated zinc-
finger CxxC protein domain from human KDM2B. NMIs were eluted in
buffer containing 700mM-1M NaCl, 0.1% Triton X-100, 20mM HEPES
pH 7.9 and 12.5% v/v glycerol, then DNA was purified using the Wizard
SV Gel and PCR Clean-Up System (Promega) according to manu-
facturer instructions. Library preparation was performed on BioCAP
samples usingTruSeqChIP Sample Preparation (Illumina) according to
manufacturer instructions. Libraries were amplified using 18 PCR
cycles and quantified using KAPA qPCR Library Quantification Kit
(KAPA Biosystems) according to manufacturer instructions. Libraries
were sequenced on the Illumina NovaSeq 6000 (150bp, paired-end),
generating 33M-307M read pairs per sample.
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BioCAP read assembly
BioCAP reads in FASTQ format were trimmed using trimmomatic
(ILLUMINACLIP:TruSeq3-PE-2.fa:2:30:10 SLIDINGWINDOW:5:20 LEAD-
ING:3 TRAILING:3 MINLEN:25)90 and aligned to the petMar3 reference
genome using bowtie2 (-p 10 -N 1 –very-sensitive -X 2000 –no-mixed
–no-discordant)91. The resulting alignments in BAM format were
deduplicated using Picard MarkDuplicates (REMOVE_DUPLICATES=-
true). NMIs were identified using the macs2 callpeak function92. When
replicate is not specified, dataset refers to NMIs common to both
replicates. Bigwig (log2 IP/input) files were generated using deepTools
bamCompare (–ignoreDuplicates –binSize 50 –centerReads
–extendReads)93.

ATAC-seq read assembly
Publicly available ATAC-seq data in FASTQ format was downloaded56.
ATAC-seq reads were trimmed using trimmomatic (ILLUMINACLIP:-
TruSeq3-PE-2.fa:2:30:10 SLIDINGWINDOW:5:20 LEADING:3 TRAILING:3
MINLEN:25) and aligned to the petMar3 reference genome using bow-
tie2 (-p 10 -N 1 –very-sensitive -X 2000 –no-mixed –no-discordant). To
include only nucleosome-free read alignments, alignments exceeding
100bp were removed. Aligned reads were deduplicated using Picard
MarkDuplicates (REMOVE_DUPLICATES=true). Bigwig (RPGC) files
were generated using deepTools bamCoverage (–normalizeUsing
RPGC –numberOfProcessors 4 –ignoreDuplicates –binSize 50
–centerReads –extendReads –effectiveGenomeSize 1040808129).

Epigenetic features of NMIs
Clustering and PCA of NMI read counts was performed using DiffBind
dba.count and dba.plotPCA functions, respectively94. To calculate mCG
clustering, all NMI datasets were concatenated and overlapping
sequences were merged using bedtools merge function. Heatmaps of
mCG signal at merged NMIs were generated using deepTools compu-
teMatrix function (computeMatrix reference-point –referencePoint
center –binSize 10 –afterRegionStartLength 500
–beforeRegionStartLength 500), with replacement of NaN values with
mean mCG (0.33) after the matrix file was generated, followed by the
plotHeatmap function (–k-means 5 –yMin 0 –yMax 1). NMIs present in
every tissue were found by intersecting all NMI datasets using bedops
intersect function95. Heatmaps of BioCAP signal at core NMIs were
generated using deepTools computeMatrix function (computeMatrix
reference-point –referencePoint center –binSize 10
–afterRegionStartLength 1000 –beforeRegionStartLength 1000
–missingDataAsZero), followed by the plotHeatmap function
(–sortRegionsno).HeatmapsofmCGsignal at coreNMIsweregenerated
using deepTools computeMatrix function (computeMatrix reference-
point –referencePoint center –binSize 10 –afterRegionStartLength 1000
–beforeRegionStartLength 1000), with replacement of NaN values with
mean mCG for each tissue after the matrix file was generated, followed
by the plotHeatmap function (–sortRegions no). Heatmaps of ATAC-seq
signal at core NMIs were generated using deepTools computeMatrix
function (computeMatrix reference-point –referencePoint center
–binSize 10 –afterRegionStartLength 1000 –beforeRegionStartLength
1000 –missingDataAsZero), followed by the plotHeatmap function
(–sortRegions no).

Sequence motifs at core NMIs
Enriched sequence motifs at core NMIs were found using Homer
findMotifsGenome.pl function (-size 200) with default parameters96.
Sequence logos were visualized using the ggseqlogo package in R97.
CpGobserved/expected andGCcontentwas calculatedusingbedtools
getfasta and an in-house generated R script.

Localization of NMIs at genomic features
NMIs differentially enriched in sperm/day 1/day 2 and brain/muscle/
PBMC were found using DiffBind dba.analyze function (false

discovery rate <0.05, fold change >2). petMar3 gene predictions
were downloaded42 and overlap with NMIs was identified using
bedtools intersect function. Barplots were generated using ggplot2
geom_bar function in R98. Heatmaps of BioCAP signal at TSS were
generated using deepTools computeMatrix function (computeMa-
trix reference-point –referencePoint center –binSize 10
–afterRegionStartLength 1000–beforeRegionStartLength 1000
–missingDataAsZero), followed by the plotHeatmap function
(–sortRegions no).

Differentially methylated regions
DMRs were called from WGBS data (replicates merged) with the DSS
software99,100 with the following parameters: delta=0.2, p.thresh-
old=0.05, minlen=100, minCG=10, dis.merge=100. DMRs were inter-
sected using Intervene pairwise (–compute frac) and the heatmap was
generated using the Intervene web application (https://asntech.
shinyapps.io/intervene/). To calculate mCG clustering, all DMRs were
concatenated and overlapping sequencesweremerged using bedtools
merge function. Heatmaps of mCG signal at merged DMRs were gen-
erated using deepTools computeMatrix function (computeMatrix
reference-point –referencePoint center –binSize 10
–afterRegionStartLength 300 –beforeRegionStartLength 300), with
replacement of NaN values with mean mCG (0.33) after the matrix file
was generated, followed by the plotHeatmap function (–k-means 5
–yMin 0 –yMax 1). mCG levels at DMRs were found using bedtools
intersect function and histograms ofmCG at DMRswere created using
ggplot2 geom_histogram function. Heatmaps of BioCAP signal at
DMRs were generated using deepTools computeMatrix function
(computeMatrix reference-point –referencePoint center –binSize 10
–afterRegionStartLength 300 –beforeRegionStartLength 300
–missingDataAsZero), followed by the plotHeatmap function
(–sortRegions no). CpG density was calculated using bedtools getfasta
and an in-house generated R script.

Localization of DMRs at genomic features
petMar3 gene predictions were downloaded42 and overlap with DMRs
was identified using bedtools intersect function. Barplots were gen-
erated using ggplot2 geom_bar function in R.

Transcriptome analyses
RNA-seq reads in FASTQ format were downloaded from60. Reads were
trimmed for Illumina sequencing adapters using trimmomatic and
mappedwithKallisto101 with the following settings: -l 300 -s 100 –single
to the PMZ_v3.1.gff transcriptome reference. Mean 5mC frommerged
brainWGBS datasets was calculated at all promoters of protein-coding
genes (TSS±1 kb) containing anNMIdirectlyoverlapping theTSSusing
bedtools intersect function and bedtools map function (-o mean -null
na). 5mC levels were plotted against adult brain transcription levels
using ggplot2 geom_point function in R. Correlation was calculated
using ggplot2 geom_smooth function (method=lm, se=FALSE) and
cor() function in R.

Nanopore library preparation and sequencing
Library preparation was performed using ONT ligation sequencing
(SQK-LSK110). Samples were sequenced across two PromethION (FLO-
PRO002) flow cells for 72 hours.

Nanopore read assembly and mCG calling
Raw ONT sequencing data was converted to BLOW5 format102 using
slow5tools v0.3.0103 then base-called using Guppy v5.0.13 (high-accu-
racy model). Resulting FASTQ files were aligned to the petMar3
reference genome usingminimap2 v2.22104. 5mCprofiling onCpG sites
within petMar3 was performed using f5c v0.7105 with BLOW5 data
input. CpG methylation frequencies were determined using the meth-
freq tool in f5c.
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Identification of sequences eliminated during PGR
Publicly available blood and sperm whole-genome sequencing reads in
FASTQ format were downloaded42. Reads were trimmed using trim-
momatic and aligned to the petMar3 reference genome using bowtie2
(-p 10 -N 1 –very-sensitive -X 2000 –no-mixed –no-discordant). Read
alignments in BAM format were input into CNVkit (cnvkit.py -batch -m
wgs -f petMar3.fa) to identify sequences eliminated during PGR, with
blood used as input and sperm used as the control sample (–normal)66.
We defined homozygous deletions as regions with a copy number of 0
in blood. We intersected eliminated sequences identified by CNVkit
with a set of previously published eliminated sequences42 as a stringent
dataset for further analysis. Sequences were validated using coverage
metrics from short-read whole-genome sequencing, WGBS and Nano-
pore sequencing. Read depth was calculated using samtools depth
function106 and converted to bigWig format using the bed-
GraphToBigWig script from kentUtils. Heatmaps of read coverage at
eliminated sequences were generated using deepTools computeMatrix
function (computeMatrix reference-point –missingDataAsZero
–binSize 10 –afterRegionStartLength 15000 –beforeRegionStartLength
15000), followed by the plotHeatmap function. petMar3 gene predic-
tions were downloaded42 and overlap with eliminated sequences was
identified using bedtools intersect function.

mCG at eliminated sequences
Heatmaps ofmCG signal at eliminated sequences were generated using
deepTools computeMatrix function (computeMatrix reference-point
–binSize 10 –afterRegionStartLength 15000 –beforeRegionStartLength
15000), with replacement of NaN values with mean mCG for each
sequencing technique after the matrix file was generated, followed by
the plotHeatmap function. Heatmaps of BioCAP signal at eliminated
sequences were generated using deepTools computeMatrix function
(computeMatrix reference-point –binSize 10 –afterRegionStartLength
15000 –beforeRegionStartLength 15000 –missingDataAsZero), fol-
lowed by the plotHeatmap function. mCG status at eliminated
sequences was found by intersecting WGBS datasets with eliminated
sequences using bedtools intersect function and violin plots were
generated using ggplot2 geom_violin function in R. Repeat content was
found by intersecting the petMar3 RepeatMasker track with eliminated
sequences using bedtools intersect function. Dinucleotide frequency at
eliminated sequences was calculated using the faCount script from
kentUtils. Correlation between Nanopore and WGBS datasets was cal-
culated and plotted using methylKit getCorrelation function
(plot=TRUE) in R.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw and processed BioCAP-seq and WGBS data generated for this
study are available from NCBI Gene Expression Omnibus under
accession code GSE220553 [https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE220553]. Nanopore sequencing data generated for
this study is available from NCBI under accession code PRJNA783432
[https://www.ncbi.nlm.nih.gov/bioproject/PRJNA783432]. ATAC-seq
data used in this study is available from NCBI Gene Expression Omni-
bus under accession code GSE112072 [https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE112072]. Whole-genome sequencing data
used in this study is available fromNCBI Sequence Read Archive under
accession codes SRR5535434 [https://www.ncbi.nlm.nih.gov/sra/?
term=SRR5535434] and SRR5535435 [https://www.ncbi.nlm.nih.gov/
sra/?term=SRR5535435]. RNA-seq data used in this study is available
from NCBI under accession code PRJNA50489 [https://www.ncbi.nlm.
nih.gov/bioproject/50489]. All sequencing data was aligned to the
petMar3 reference germline genome available from NCBI under

GenBank accession codeGCA_002833325.1 [https://www.ncbi.nlm.nih.
gov/datasets/genome/GCA_002833325.1]. Source data are provided as
a Source Data files.
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