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How heat propagates in liquid 3He

Kamran Behnia 1 & Kostya Trachenko 2

In Landau’s Fermi liquid picture, transport is governed by scattering between
quasi-particles. The normal liquid 3He conforms to this picture but only at
very low temperature. Here, we show that the deviation from the standard
behavior is concomitant with the fermion-fermion scattering time falling
below the Planckian time, _

kBT
and the thermal diffusivity of this quantum

liquid is bounded by a minimum set by fundamental physical constants
and observed in classical liquids. This points to collective excitations
(a sound mode) as carriers of heat. We propose that this mode has a wave-
vector of 2kF and a mean free path equal to the de Broglie thermal length.
Thiswould provide an additional conducting channel with a T 1/2 temperature
dependence, matching what is observed by experiments. The experimental
data from 0.007 K to 3 K can be accounted for, with a margin of 10%, if
thermal conductivity is the sum of two contributions: one by quasi-particles
(varying as the inverse of temperature) and another by sound (following the
square root of temperature).

The impact of Landau’s Fermi liquid (FL) theory1 in condensed matter
physics of the twentieth century can not be exaggerated. Before its
formulation, the success of Sondheimer’s picture of electrons in
metals as a degenerate Fermi gaswas amystery2. Even in a simple alkali
metal such as Na, the Coulomb interaction between electrons is larger
than the Fermi energy. Why wasn’t this a problem for understanding
the physics of metallic solids? Landau solved this mystery by propos-
ing that a strongly interacting system of fermions can be mapped to
an ideal system consisting of “quasi-particles” without interaction, or
rather with an interaction weak enough to be considered as a
perturbation2,3. His theory was inspired by the less common isotope of
helium, namely 3He4, the first experimental platform for testing the
theory. Decades later, the theory was also applied to strongly corre-
lated metals, known as heavy-fermion systems5.

Leggett, reviewing liquid 3He6, writes that it is “historically the first
strongly interacting system of fermions of which we have been able to
obtain a semi-quantitative description in the low-temperature limit.”
He also adds that the theory “seems to agree quantitatively with
experiment only for T≲ 100 mK”. This is very low compared to ~ 5 K,
the degeneracy temperature of non-interacting fermions calculated
with the bare mass of the 3He atoms. The properties of the ground
state (and its evolution with pressure) have been the subject of
numerous theoretical papers7–14. In contrast, the breakdown of the

Fermi liquid picture at very low temperatures, earlier noted by Emery15

and Anderson16, ceased to be widely debated afterwards.
Here, we begin by recalling that as low as T ≈0.01 K, the Fermi

liquid picture does not hold. The Fermi temperature, with the mass
normalization taken into account, is TF ~ 2K. According to the most
comprehensive set of data17, when T

TF
≈5 × 10�3 thermal conductivity,

κ, deviates from the expected T −1 behavior and the extracted scat-
tering time, τκ, is nomore∝ T −2. We show that this “non-Fermi-liquid”
(NFL) regime emerges when the fermion-fermion scattering time
becomes comparable or shorter than the Planckian time18,19, the time
scale often invoked in the context of “strange” metallicity20.
Remarkably, in this regime, the thermal diffusivity, Dth, of quantum
liquid 3He matches the minimum empirically observed21 and theo-
retically justified22,23 in classical liquids. We conclude that collective
excitations play a role in heat transport comparable to the
role played by phonons in classical liquids. We find that the magni-
tude and the temperature dependence of the thermal conductivity
can be accounted for if heat is carried by a hydrodynamic sound
mode with a 2kF wave-vector and a spatial evanescence set by the
thermal thickness of the Fermi surface in the momentum space24.
This phononic mechanism of heat propagation is distinguished from
all those previously identified in solids and liquids, either classical or
quantum. On the other hand, when the temperature becomes of the
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order of the Fermi temperature, its expression becomes another
version of the Bridgman formula25 for classical liquids.

Results and discussion
Figure 1 reproduces figures reported by Greywall, who performed the
most extensive study of thermal transport in normal liquid 3He17.
Samples with different molar volumes correspond to different pres-
sures in the T =0 limit. As seen in Fig. 1a, thermal conductivity, κ, at low
temperature is inversely proportional to temperature, as expected in
the FL picture. But the temperature window for this behavior, already
narrow at zero pressure, shrinks with increasing pressure. By the
melting pressure, the FL regime has almost vanished. The breakdown
is evenmore visible in Fig. 1b. It shows the temperature dependence of
the inverse of of τκT2, the scattering time extracted from thermal
conductivitymultiplied by the square of temperature, which should be
constant in the Fermi liquid picture. A deviation is visible even at 8mK
and shoots up with increasing pressure.

The deviation from the Fermi liquid behavior was usually attrib-
uted to spin fluctuations (see for example9). While such a correction is
expected at very low temperature, it is hard to see how they can play a
role in our temperature of interest given the small amplitude of the
exchange energy (See Supplementary Note 1).

In Fig. 2a, we compare the temperature dependence of τκ accord-
ing to Greywall’s data (Fig. 1b) with the Planckian time, τP =

_
kBT

18,19. One
can see that, at zero pressure, τκ becomes of the order of τP at T ≈0.1 K.
At 3MPa, near the melting pressure, τκ falls below τP at ≈0.043K.
As seen in Fig. 2b, which reproduces the phase diagram of 3He4,10,14, the
crossover between the FL and the NFL regions of the phase diagram is
concomitant with the passage from τκ≫ τP to τκ≲ τP. The possibility of a
Planckian bound on dissipation is a subject hotly debated in condensed
matter physics18.

An important clue is provided by the temperature dependence of
thermal diffusivity,Dth, obtained from κ17 and specific heat26. As seen in
Fig. 3a, it shows a minimum, both at zero pressure and at 3MPa.

In all classical fluids, thermal diffusivity goes through a minimum
at the intersection between a liquid-like regime, where it decreases
with temperature, and a gas-like regime where it increases with
temperature21,27. We illustrate this in Fig. 3b, which shows the tem-
perature dependence of Dth in two fluids with slightly different atomic
or molecular masses, namely H2 and

4He27. In all three cases, there is a
minimum of thermal diffusivity, consistent with other classical
liquids21,27. Although the minima are seen at different temperatures,
theminimumDth has a similar amplitude: Expressed inmm2 s−1,Dmin, is
0.063 in 3He, ~0.049 in 4He, and ~0.065 in H2. This minimum is set by
fundamental physical constants (See Supplementary Note 2).

The closeness of the minima in 3He and other classical liquids
suggests an important role played by phonon-like collective excita-
tions of 3He in heat transport as they do in classical liquids considered
earlier21. Indeed, diffusion at high temperature is driven by the random
walk of the particles. Cooling lowers the diffusion constant by
decreasing the velocity and the mean free path close to interatomic
separation. Below a given temperature, collective excitations (e.g.,
sound) begin tooperate. In a quantum liquid, this processoccurs along
the opposite direction: the diffusion constant is dominated by quasi-
particles at low temperature. With warming, the mean path decreases
and approaches its minimal value as in classical liquids21, as is seen in
Fig. 3a. When thermal conductivity due to quasiparticles becomes
small, the other remaining mechanism becomes important, namely
conductivity due to collective excitations, sound. Using Landau’s own
words, “sonic excitations in the gas of quasi-particles (phonons of the
“zeroth sound”)”28, are to become the main carriers of heat above this
minimum.

Fig. 1 | The narrow validity of the Fermi liquid picture of the thermal con-
ductivity in 3He. a Thermal conductivity, κ as a function of temperature. b The
scattering time τκ extracted from the same data and specific heat, times the square
of temperature, T2. Contrary to what is expected in the standard Fermi liquid

theory, τκT2 is never constant. The figures are from Ref. 17. The horizontal red solid
line in a represents what is expected for a classical liquid according to Bridgman’s
formula. Reproduced with the permission from the American Physical Society.
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Collision time becomes shorter than the Planckian time when the
frequency of thermally excited zero sound (which increases linearly
with temperature (ωzs =

kBT
_ )) becomes smaller than the scattering rate

(which increases quadratically with temperature). This inequality
(ωzsτκ < 1) means that the thermally excited zero sound is in the
hydrodynamic limit, where the distinction between zero sound and
first sound fades away3. In liquid 3He, this occurs at a remarkably low
temperature, because τκT

2≪ _EF

k2
B
compared to electrons in metals29,30

(see Supplementary Note 3).
As seen in Fig. 1a, Greywall observed that above 0.5 K, κ∝ T 1/2.

Figure 4a shows the temperature dependence of κ/T in normal liquid
3He. It includes Greywall’s data at T < 1 K17, measured at the constant
molar volumeof 36.68 cm3/mol (corresponding to zeropressure in the
low-temperature limit) and the data reported by Murphy and Meyer31,
measured at saturating vapor pressure (SVP) above 1.2 K (Fig. 4a).
Despite the imperfect agreement (unsurprising given the change in the
molar volume at SVP), one can see that Murphy and Meyer31 roughly
confirm Greywall’s observation about the asymptotic tendency of
thermal conductivity: κ∝ T1/2. This temperature dependence is distinct
from what is known to occur in different regimes of phonon thermal
conductivity in crystals and glasses (see Table 1) and also from the
Bridgman formula (κB = rkBn2/3vs)25,32–34 for classical liquids, which does
not contain any temperature dependence.

To find the source of the temperature dependence of thermal
conductivity, let us turn to Landauer’s picture of conduction as
transmission35. When heat is transmitted by a wave, thermal con-
ductivity becomes24,36,37 (See Supplementary Note 4):

κ
T

=
π2

3
k2
B

h
T ð1Þ

Here, π
2

3
k2
B
h is the quantum of thermal conductance38. The transmis-

sion coefficient T is set by the number of carrier modes and their mean
free path. Its units depends on dimensions (meters in 1D, dimensionless
in 2D andmeters−1 in 3D). In three dimensions, a spherical Fermi surface
of radius kF contains 8π

3λ2F
conducting modes and with a quasi-particle

mean-free-path setby scattering, ℓqp, the thermal conductivitybecomes :

κ
T
jqp =

2π
9

k2
B

h
k2
F‘qp

ð2Þ

At very low temperature, the response to temperature gradient is
dominated by quasi-particles (Fig. 4b). These are plane waves within a
thermal window of the Fermi level which can carry heat. κ/T decreases
quadratically with temperature, due to the temperature dependence
of ℓqp.

Fig. 2 | Scattering time, Planckian bound, and the FL-NFL cross-over. a Fermion-
fermion scattering time, τκ as a function of temperature for two molar volumes17.
The blue solid line represents the Planckian time: τP =

_
kBT

. Note that τκ tends to fall

below τP at sufficiently high temperature. b The phase diagram of 3He10 and the
fuzzy border between the Fermi liquid (FL) and the non-Fermi liquid (NFL) regimes.
Also shown are temperatures below which τκ > τP or τκ > 2τP.

Fig. 3 | Bounds to thermal diffusivity. a Thermal diffusivity, Dth = κ/C, of 3He, as a
function of temperature. The Fermi liquid regime (∝ T −2) is restricted to low
temperatures. It is followed by a saturation and aminimum. The curves are plotted
using Greywall’s thermal conductivity17 and specific heat26 data. b Thermal

diffusivity as a function of temperature in two classical fluids (H2 and
4He in the

classical regime)27. In all three cases, Dth has close values at theminimum, as shown
by the arrows.
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To identify the collective transport mode leading to the T1/2 tem-
perature dependencedominant above0.5K, let us compare itwith two
other cases. In crystals, the cubic temperature dependenceof phonons
at low temperature reflects the temperature dependence of the
volume of the Debye sphere when themean-free-path is saturated to a
constant value. In glasses, the asymptotic low-temperature depen-
dence of thermal conductivity is close to quadratic. The slower tem-
perature dependence κ is due to an increase in themean-free pathwith

cooling. In both cases, the presence of long wavelength carriers leads
to a superlinear exponent (between 2 and 3) in the temperature
dependence. Our case requires a scenario circumventing the cubic
temperature dependence of a Debye sphere.

A collective transmission by thewhole Fermi surfacewillmeet this
requirement. This would be a sound mode with a wave-vector fixed at
twice the Fermi radius (Fig. 4c). There are two reasons for distin-
guishing 2kF as a wave vector. The first is theoretical. The Lindhard
function, which quantifies the susceptibility of a fermionic gas to an
external perturbation has a singularity at q = 2kF39. The second is
experimental. Inelastic X-ray scattering experiments40,41 find that the
dispersion of zero sound has a pronounced anomaly near q = 2kF (see
Supplementary Note 5).

The Landauer transmission rate of such a heat-carrying mode
depends on its evanescence. The wave is attenuated by the thermal
fuzziness of the Fermi surface in themomentum space, which is set by
the inverse of the de Broglie thermal length24. We can consider the

latter, Λ= hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πm*kBT

p (m* is the effective mass), as a mean free path. The

number of involved states is identical to the one used to quantify the
quasi-particle contribution. Replacing T in Eq. (1) then gives:

κ
T
js =

2π
9

k2
B

h
k2
FΛ ð3Þ

Substituting Λ by its explicit value and the Fermi wave-vector with
the particle density (with n = k3

F
3π2) leads to:

κs ’ rkBn
2=3

ffiffiffiffiffiffiffiffiffiffiffi
2kBT
m*

r
ð4Þ

Here r = π11=6

34=3
≈1:88.

Equation (4) has two parameters, the particle density, n, and the
effective mass, m*. In Fig. 4a, it is plotted using the effective mass
(m*= 2.7 m3

26= 1.35 × 10−26 kg) and the zero-pressure carrier density
(n = 1.64 × 1028m3, corresponding to amolar volumeof 36.68 cm3/mol17)
of normal liquid 3He. At 1 (2) K, the experimentally measured thermal
conductivity is 11 (20)percent largerwhat is expected fromequation (4).

An additional conduction channel by sound would provide an
explanation for the narrow validity of the standard Fermi liquid
approach. As the red line in Fig. 4a shows, at any arbitrary temperature
between 0.01 K and 3 K, the experimentally measured κ/T can be
described by a sum of T −2 and T −1/2 terms. Fig. 4b shows the same data
in a plot of κ(T ). One can see that in the whole temperature range, the
total thermal conductivity can be expressed as a sum of two terms:

κðTÞ= κqpðTÞ+ κsðTÞ ð5Þ

where κqp∝ T −1 is given by Eq. (2) and κs∝ T 1/2 is given by Eq. (3) (or
equivalently by Eq. (4)).

The fit parameters used for the red curves in Fig. 4, a2 and a1/2 for
κqp/T = a2T−2 and κs/T = a2T−1/2, are listed in Table 2. The table also
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Fig. 4 | Experimental data and our model. a Thermal conductivity is divided by
temperature as reported by Greywall17 (at zero pressure) and by Murphy and
Meyer31 (at saturated vapor pressure). At very low temperatures (T ~ 0.01 K) in the
Fermi liquid regime, κ/T∝ T−2 (purple line). Above 0.5 K, κ/T∝ T−1/2. The blue line
represents what is expected by Eq. (4), using the effective mass and the carrier
density of 3He. The red solid line represents a fit to the experimental data in the
whole temperature range assuming that κ/T consists of the sum of T−1/2 (sound
transmission) and T−2 term (quasi-particle transmission) terms.b Samedata plotted
for κ(T). The maximum discrepancy between data and theory is about 10%. Also
shown are the two components of the total κ(T).

Table 1 | Different cases of phonon thermal conductivity

System Sonic heat carriers Temperature dependence Mechanism Reference

Crystal (T→0) small-q phonons κ∝ T3 Boundary scattering 39,47

Crystal (T ~ TD) large-q phonons κ∝ T−1 Umklapp scattering 47–49

Glass (T→0) "propagons” κ∝ T~2 Rayleigh scattering 50–52

Glass (high T) "diffusons” κ∝ T0 Minimum mean free path 52–54

Classical liquid large-q phonons κ∝ T0 Minimum mean free path 25

Quantum liquid 3He q ~ 2kF phonons κ∝ T1/2 Fermi surface thermal fuzziness This work

Comparison between the present case of heat propagation by collective excitations with other and better-understood regimes of phonon thermal conductivity.
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compares the amplitude of a2 with previous experimental17,42 and
theoretical8,9 estimations of it.

Given the simplicity of the picture drawn above, this is a sur-
prisingly good agreement. Let us recall that in the case of the S.V.P.
data by Murphy and Meyer31, particle density is not constant and
decreases with warming. Moreover, the effective mass also changes
with temperature. Finally, not only our simple model neglect any
change in density and mass, but it also does not take into account
a finite coupling between the two carriers of heat (particles
and sound). Nevertheless, the quantitative difference between the

expected and themeasured thermal conductivity does not exceed 10
percent.

Equation (4) has a striking resemblance to the Bridgman for-
mula for classical liquids25,32–34 (see Supplementary Note 6), with the
speed of sound replaced by a group velocity of

ffiffiffiffiffiffiffiffi
2kBT
m

q
. This can be

accounted for by noticing that the time scale for randomness in a
quantum liquid is set by the ratio of the Fermi velocity to the de
Broglie thermal length (and not by the ratio of the sound velocity to
the inter-particle distance, as in a classical liquid or a glass). Inter-
estingly, the two equations become similar at the classical/quantum
boundary, that is when the de Broglie thermal length becomes equal
to the Fermi wavelength (see Supplementary Note 6).

Figure 5 summarizes our main message. It appears that in a
Fermi liquid twomodes of conduction are at work. The first (Fig. 5a)
has been understood for decades and is based on collisions
between quasi-particles. The second, identified here, is the
breathing of the whole Fermi surface (Fig. 5b). Interestingly, the
two channels differ only by their respective relevant length scale,
the distance between two successive collisions, and the thermal de
Broglie length.

In the real space, this collective mode is presumably a visco-
elastic4,43 soft phonon with the shortest possible wavelength, which is
the interatomic distance. As seen in Fig. 5c, the wavelength of the
sound in question is almost identical to interatomic distance. Such a
wave can be generated either by a leftward or rightward shift of all

Fig. 5 | Two channels for the conduction of heat. a Transmission by quasi-
particles is dominant at low temperatures. Collisions inmomentum space between
quasi-particles lead to a∝ T−2 transmission. b Transmission by collective response
of the Fermi surface. The amplitude of transmission, set by the square of the Fermi

radius and the de Broglie thermal wavelength, the thermal thickness of the Fermi
surface, is∝ T −1/2. c Sound mode with a 2kF wavevector has a wavelength of the
order of the interatomic distance. A thermal gradient will cancel the equivalency
between two modes propagating in opposite orientations.

Table 2 | Numerical amplitudes of a2 and a1/2

a2 (10
−4W ⋅m−1) a1/2 (10

−2 W ⋅m−1 ⋅K−3/2) Reference

3.3 8.5 This work (Fit in Fig. 4)

— 7.6 This work (Eq. (4): m* = 2.7m3

& n = 1.63 × 1022)

2.9 — Ref. 17 (experiment)

3.5 — Ref. 42 (experiment)

3.3–5.4 — Ref. 9 (theory)

5 — Ref. 8 (theory)

Theparameters of thefit to κ
T = a2T

�2 + a1=2T
�1=2 plotted inFig. 4a. Also listed area1/2 according to

Eq. (4) (with no adjustable parameter) and previous experimental and theoretical reports on the
magnitude of the prefactor of the quasi-particle contribution, a2[≡ κT].
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atoms. A thermal gradient lifts this degeneracy. The fundamental
reason behind the success of this simple approach is yet to be rigor-
ously understood.

After this paper was written, we learned of two relevant early
works, by Brazovskii44 on the role played by a soft mode in the crys-
tallization of a liquid, and by Dyugaev45 on 2kF rotons in

3He.
Arguably, normal liquid 3He is the cleanest and the simplest

known Fermi liquid. If collective excitations play such a central role in
its transport properties across such a wide temperature range, what
about other strongly interacting systems of fermions residing beyond
Landau’s paradigm46? We leave this question to future studies.

Methods
The thermal conductivity data published in references17,31 were obtained
using standard one-heater-two-thermometer set-ups either with a
dilution17 or a 4He31 refrigerator. Measuring the thermal conductivity of
Cu70-Ni30, Greywall17 estimated that the precision of the data obtained
by his cell was a few tenths of a percent. Horst and Meyer31 discarded
possible experimental errors emanating from convection by perform-
ing measurements at different temperature gradients.

Data availability
All data generated during this study are included in this paper. The
experimental data supporting the findings of this study are taken from
Fig. 6 in ref. 17 and from Fig. 1 in ref. 31.
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