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An organism-wide atlas of hormonal
signaling based on the mouse lemur
single-cell transcriptome

Shixuan Liu 1,2,3, Camille Ezran 2,3, Michael F. Z. Wang4, Zhengda Li1,
Kyle Awayan 5, The Tabula Microcebus Consortium*, Jonathan Z. Long 6,7,
Iwijn De Vlaminck4, Sheng Wang 8, Jacques Epelbaum9, Christin S. Kuo10,
Jérémy Terrien9, Mark A. Krasnow 2,3 & James E. Ferrell Jr. 1,2

Hormones mediate long-range cell communication and play vital roles in
physiology, metabolism, and health. Traditionally, endocrinologists have
focused on one hormone or organ system at a time. Yet, hormone signaling by
its very nature connects cells of different organs and involves crosstalk of
different hormones. Here, we leverage the organism-wide single cell tran-
scriptional atlas of a non-human primate, the mouse lemur (Microcebus mur-
inus), to systematicallymap source and target cells for 84 classes of hormones.
This work uncovers previously-uncharacterized sites of hormone regulation,
and shows that the hormonal signaling network is densely connected,
decentralized, and rich in feedback loops. Evolutionary comparisons of hor-
monal genes and their expression patterns show that mouse lemur better
models human hormonal signaling than mouse, at both the genomic and
transcriptomic levels, and reveal primate-specific rewiring of hormone-pro-
ducing/target cells. This work complements the scale and resolution of clas-
sical endocrine studies and sheds light on primate hormone regulation.

Hormones are chemical messengers that circulate through the
bloodstream and control and coordinate functions of both nearby and
distant cells. Since the discovery of the hormone secretin over a hun-
dred years ago1, about 100 mammalian hormones have been
identified2. Over the decades, these hormones have been purified,
sequenced, and synthesized, their receptors have been identified, and
the intracellular signaling pathways they regulate have been explored3.
Hormones regulate diverse biological processes ranging from growth
and development, reproduction, metabolism, immune responses, to
mood and behavior. Many hormones are also therapeutically

significant. For example, the discovery of insulin4 changed type I dia-
betes from an inevitably fatal disease to a manageable one. Likewise,
corticosteroids, a class of small-molecule adrenal hormones, are used
to treat diverse pathological conditions, including the inflammation
attendant to COVID-19, where corticosteroids reduce the death rate in
severe cases by ~30%5,6.

The classical endocrine hormones are produced by secretory cells
residing in one of the nine endocrine glands. However, it is now clear
that other cell types, like fat cells and leukocytes, secrete global reg-
ulators into the circulatory system7. In addition, some endocrine

Received: 16 August 2022

Accepted: 7 February 2024

Check for updates

1Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA. 2Department of Biochemistry, Stanford University
School of Medicine, Stanford, CA, USA. 3HowardHughesMedical Institute, Stanford, CA, USA. 4Meinig School of Biomedical Engineering, Cornell University,
Ithaca, NY, USA. 5Chan Zuckerberg Biohub, San Francisco, CA, USA. 6Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
7Sarafan ChEM-H, Stanford, CA, USA. 8Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA. 9Adaptive
Mechanisms and Evolution (MECADEV), UMR7179, National Center for Scientific Research, NationalMuseumofNatural History, Brunoy, France. 10Department
of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA. *A list of authors and their affiliations appears at the end of the paper.

e-mail: krasnow@stanford.edu; james.ferrell@stanford.edu

Nature Communications |         (2024) 15:2188 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-4972-415X
http://orcid.org/0000-0003-4972-415X
http://orcid.org/0000-0003-4972-415X
http://orcid.org/0000-0003-4972-415X
http://orcid.org/0000-0003-4972-415X
http://orcid.org/0000-0001-5706-4847
http://orcid.org/0000-0001-5706-4847
http://orcid.org/0000-0001-5706-4847
http://orcid.org/0000-0001-5706-4847
http://orcid.org/0000-0001-5706-4847
http://orcid.org/0000-0002-4442-3270
http://orcid.org/0000-0002-4442-3270
http://orcid.org/0000-0002-4442-3270
http://orcid.org/0000-0002-4442-3270
http://orcid.org/0000-0002-4442-3270
http://orcid.org/0000-0003-2631-7463
http://orcid.org/0000-0003-2631-7463
http://orcid.org/0000-0003-2631-7463
http://orcid.org/0000-0003-2631-7463
http://orcid.org/0000-0003-2631-7463
http://orcid.org/0000-0002-0439-5199
http://orcid.org/0000-0002-0439-5199
http://orcid.org/0000-0002-0439-5199
http://orcid.org/0000-0002-0439-5199
http://orcid.org/0000-0002-0439-5199
http://orcid.org/0000-0002-1976-5471
http://orcid.org/0000-0002-1976-5471
http://orcid.org/0000-0002-1976-5471
http://orcid.org/0000-0002-1976-5471
http://orcid.org/0000-0002-1976-5471
http://orcid.org/0000-0003-4767-3926
http://orcid.org/0000-0003-4767-3926
http://orcid.org/0000-0003-4767-3926
http://orcid.org/0000-0003-4767-3926
http://orcid.org/0000-0003-4767-3926
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-46070-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-46070-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-46070-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-46070-9&domain=pdf
mailto:krasnow@stanford.edu
mailto:james.ferrell@stanford.edu


functions, like menstrual cycles in human females, depend upon
interplay and feedback between multiple hormones and cell types8.
For these reasons, a complete understanding of endocrine physiology
requires comprehensive, global approaches. Variations in hormone
regulation and function in different species further complicate the
situation. Although comparative studies have shown that many hor-
mones are highly conserved across vertebrates3, the hormone-
producing and -receiving cells and their physiological functions are
sometimes different9.

The graymouse lemur (Microcebusmurinus) is a small non-human
primate with a lifespan of 5-13 years. Because of its small size, rapid
reproduction, and close genetic proximity to humans, the mouse
lemur is an appealing model organism for studies of primate biology,
behavior, aging, and disease10–14. As described in detail elsewhere15,16,
we have recently created, using single-cell RNA sequencing (scRNA-
seq), a molecular cell atlas of the mouse lemur by profiling mRNA
sequences from ~225,000 cells from 27 mouse lemur organs and tis-
sues from 4 individuals. Given the ethical concerns of primate studies,
tissue samples used in the study were collected opportunistically from
aged lemurs. Histopathology was assessed for all organs17; many
looked histologically normal, although age- or pathology-related
changes were detected in certain tissues such as spontaneous
tumors in the uteri of two animals andmetastasis in the lung of one16,17.
Presumably, the overall hormone network is still operative in these
lemurs, but the age of the animals is both a limitation and an oppor-
tunity to study disease-associated changes in hormone profiles.
Nevertheless, this extensive, organism-wide dataset provides an
unprecedented opportunity to study global hormone regulation at
single-cell resolution in a non-human primate.

In this study, we present a comprehensive analysis of primate
hormone signaling based on the information in the mouse lemur
molecular cell atlas15. We systematically mapped hormone-producing
and target cells for 84 hormone classes, and created a browsable atlas
that depicts gene expression of hormone ligands, modulators, and
receptors. These systematic analyses detected both canonical and
unreported sites of hormone secretion and action. We also analyzed
the global expression patterns of hormone ligands and receptors,
constructed, and characterized an organism-wide cell communication
network for hormone signaling, and systematically searched the net-
work for feedback circuits. This analysis revealed a few remarkable
principles of hormone signaling and a long list of potential feedback
mechanisms. Lastly, we compared hormonal gene expression across
humans, lemurs, and mice in selected tissues and cell types, and
examined their conservation in expression patterns. This revealed
both hormonal genes with a highly conserved expression pattern and
ones that show a primate or species-specific expression pattern.

Results
Acomprehensive table of genes involved in thebiosynthesis and
sensing of human and mouse lemur hormones
Althoughmanyhormones havebeen studied fordecades, there is not a
well-annotated database of hormone ligands, synthases, processing
enzymes, and receptors. Therefore, we integrated multiple sources to
compile a comprehensive gene table for human hormone signaling
(Supplementary Dataset 1). For the hormone list, wemainly referenced
the Handbook of Hormones2, the “Wikipedia List of human hormones
[https://en.wikipedia.org/wiki/List_of_human_hormones]”, and the
Handbook of Biologically Active Peptides18, and added newly dis-
covered hormones including asprosin19 and the endocrine fibroblast
growth factors FGF21, FGF19, and FGF2320. To collect the genes
involved in hormone production, we assembled the ligand genes for
peptide and protein hormones and the hormone synthesis genes for
small-molecule hormones. Maturation or activation of many hor-
mones requires specific enzymes such as angiotensin-converting
enzyme (ACE) for angiotensin, the deiodinases DIO1/DIO2 for

thyroid hormones, and prohormone-processing enzymes (e.g., PCSK1,
PCSK2, CPE) for many peptide hormones18. In addition, hormone
function may involve endocrine modulators such as IGF-binding pro-
teins (IGFBPs) for IGF1 and specific plasma-binding proteins for most
steroid hormones21,22. Accordingly, we added these processing
enzymes andmodulators for the corresponding hormones. Finally, we
curated the hormone receptor genes that are responsible for signaling
in the target cells. Most hormones have characterized ligands and
receptors, except for endomorphins (tetrapeptides), the ligand gene
of which remains unknown. In total, we collected information for 84
groups of hormones and 350 genes, including 102 ligand genes, 41
synthases, 33 processing enzymes/modulators, and 174
receptor genes.

When a hormone included multiple ligand, receptor, synthase, or
processing enzyme genes, we incorporated AND/OR logic gates
among the genes to determine if a cell type produces or is targeted by
a hormone (Supplementary Dataset 1).When two ormore of the genes
were required for signaling, genes were connected by AND (&) gates.
For example, amylin receptors are heterodimeric complexes of CALCR
and RAMP proteins, and both subunits are required for function; thus,
CALCR and RAMP were connected by an AND symbol. Similarly, AND
gates were applied among hormone synthases that catalyze different
steps, and between hormone ligands and the corresponding proces-
sing enzymes. On the other hand, OR (|) gates were applied when only
one of the genes is required for function. For example, there are nine
adrenergic receptor genes, all of which function independently and
therefore were linked by OR gates.

We next looked up the mouse lemur orthologs of the human
hormonal genes in the most up-to-date mouse lemur genome assem-
bly (Mmur_3.0) with both NCBI and Ensembl ortholog databases
(Supplementary Dataset 2). Almost all (98.9%, 346/350) of the human
hormone-related genes were annotated in the mouse lemur genome,
and most (98.0%, 339/346) were one-to-one mappings; seven were
many-to-one. The four genes without lemur orthologs (LHB, GALP,
INSL4, and DRD5) and seven many-to-one mappings could have resul-
ted from incomplete annotation of the mouse lemur genome. For one
lemur-unannotated gene LHB (luteinizing hormone beta subunit), we
identified by sequence homology23 a candidate LHB gene region that
has high sequence similarity and the conserved neighboring gene
(RUVBL2) as human LHB24 and was selectively expressed in the
expected cells (pituitary gonadotrophs) (Supplementary Fig. S1-lutei-
nizing hormone). We concluded that the identified region is likely the
mouse lemur LHB gene and included it in follow-up analyses. Thus, at
least 347/350 (99.1%), and possibly all, of the human hormonal genes
are present in the mouse lemur. For comparison, the mouse genome
lacks orthologs for six genes (98.3% present, 344/350), five of which
are known pseudogenes or have been lost in the mouse genome
(GNRH2, MCHR2, MLN, MLNR, NPBWR2 (Gm14489)) (Supplementary
Dataset 2). In addition, 14 human-mouse orthologs are one-to-many
(6), many-to-one (4), or many-to-many (4) mappings, suggesting gene
family expansions or contractions inmice or humans. The percentages
of human hormonal orthologs present in lemur or mouse genomes
were higher than the percentage of all protein-coding genes (PCGs)
(>98.9% vs. 89.5% in the mouse lemur genome, and 98.3% vs. 89.8% in
the mouse genome). Most (85.8%) human hormone-related proteins
were more similar in sequence to their lemur orthologs than to their
mousehomologs (Supplementary Fig. S2a). These findings underscore
the close similarity between human and lemur hormonal genes.

Organism-wide identification of hormone-producing and
target cells
We systematically identified the source and target cells for each hor-
mone by examining the expression of the hormone ligand, synthase,
and receptor genes across 739 lemur cell types from 27 different tis-
sues profiled by 10x scRNAseq15. Source cells were defined as cell types
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that expressed above-threshold levels of the ligand (for protein/pep-
tide hormones) or synthase(s) (for small-molecule hormones) plus any
necessary modulator genes. Target cells were those that expressed
hormone receptor genes. We generated a browsable set of figures and
a web portal that depicts the global expression profiles of the hor-
monal genes (Supplementary Figs. S1 and S3 and Supplementary
Dataset 3). Figure 1a–g shows the expression of four representative
examples of hormones (in red) and their receptor(s) (in blue) in the
identified cell types across the seven, color-coded cell compartments
(epithelial, endothelial, stromal, neural, germ, lymphoid and myeloid
cells). This analysis identified many canonical sites of hormone secre-
tion and targets, affirming the validity of the single-cell transcriptomic
measurements and analysis approach. The analysis also revealedmany
less-recognized or unreported hormone source/target cells and
interesting global patterns of hormone signaling. Below,wehighlight a
few examples of well-known, lesser-known, and previously unknown
sources and target cells. We also showcase examples where hormonal
expression is unique in the mouse lemur versus mice or humans.

Prolactin (PRL). Prolactin is a classical endocrine hormone25 secreted
by pituitary lactotrophs. In addition to its milk-promoting effect in
females, PRL also plays pleiotropic roles in both sexes2. These roles
include regulation of water and electrolyte balance in the kidney, and
control of skin cell proliferation and hair/feather growth and
shedding26. Prolactin also plays a major role in energy homeostasis by
regulating cell growth andmetabolism in the liver, adipose tissues, and
pancreas in both sexes27, and may be involved in the immune
response28. These sex-non-specific functions are conserved, not just
among milk-producing mammals, but across all vertebrates.

As expected, prolactin transcripts were selectively expressed in
the lactotrophs of the lemur pituitary gland, and were not detected in
other tissues (Fig. 1a–g and Supplementary Fig. S1-prolactin). The
prolactin receptor (PRLR) message was expressed in both male and
female lemurs in the expected cell types, including kidney nephron
tubule cells, skin epithelial cells, pancreatic ductal and acinar cells,
hepatocytes, intestinal epithelial cells, adipocytes, reticular cells,
plasma cells, choroid plexus cells, and the neighboring TSH-secreting
thyrotrophs and FSH/LH-secreting gonadotrophs in the pituitary gland
(Fig. 1a–g and Supplementary Fig. S1-prolactin). Thus, scRNAseq data
confirm that prolactin signaling is similar in mouse lemurs and other
animals.

Adiponectin (ADIPOQ) and leptin (LEP). Mouse lemurs undergo
dramatic seasonal changes in body weight and fat reserves29–31 and
therefore may experience seasonally varying levels of adipokines.
Adiponectin and leptin are two important metabolic hormones
secreted by adipocytes32,33. Although adipocytes were originally
regarded only as nutrient storage cells, it is now clear that they also
serve an endocrine role34. Surprisingly, leptin transcripts were almost
undetectable in the adipocytes captured in the atlas (see discussion in
the accompanying manuscript16) (Supplementary Fig. S1-leptin).

However, adiponectin was abundantly and specifically expressed
in mouse lemur adipocytes captured from multiple tissues, including
four adipose depots (subcutaneous, mesenteric, interscapular brown,
and perigonadal), as well as kidney, limb muscle, pancreas, and bone
(Fig. 1a–g and Supplementary Fig. S1-adiponectin). Both UCP1-low
white-like and UCP1-high brown-like adipocytes highly expressed
ADIPOQ.

Previous research has characterized tissue-specific functions of
adiponectin in the liver, pancreas, skeletal muscle, endothelial cells,
macrophages, and adipocytes35. While we indeed observed expression
of the adiponectin receptor ADIPOR1 in these tissues in the mouse
lemur, we also foundADIPOR1 to be abundantly expressed in almost all
lemur cell types (Fig. 1a–g). Similar ubiquitous expression of ADIPOR1
has been found in humans and mice (Supplementary Fig. S4). These

results suggest that adiponectin exerts an organism-wide effect
through ADIPOR1.

In comparison, ADIPOR2, the other adiponectin receptor, was
expressed more selectively, most notably in the male germ cells and
adipocytes (Fig. 1a–g). Interestingly, the lemur expression pattern of
ADIPOR2differed from that of thehuman andmouse inwhichADIPOR2
was highly expressed in the liver and only lowly expressed in the
testis36 (Supplementary Fig. S4). Alveolar macrophages from themice,
but not humans or lemurs, also showed high ADIPOR2 expression
(Supplementary Fig. S4), suggesting differential ADIPOR2 effects
across the three species.

Motilin (MLN). Motilin is canonically considered a gastrointestinal
hormone that is secreted by enteroendocrine cells and regulates gas-
trointestinal smooth muscle movement18. However, rodents have lost
both the motilin and the motilin receptor genes in evolution37 (Sup-
plementary Dataset 2). The lack of motilin signaling in rodent models
has hampered progress on further characterizing motilin function as
well as the development of motilin agonists for the treatment of
gastroparesis38. Consistent with the canonical view, we observed
motilin expression in lemur enteroendocrine cells in the small intestine
but not colon (Fig. 1a–g). However, we also observed a broad range of
other motilin-expressing cell types, including kidney nephron tubule
cells, chemosensory tuft cells from both the airway (lung and trachea)
and small intestine, certain brain neurons, adipocytes (higher in UCP1-
high brown-like adipocytes than in white-like adipocytes), mesothelial
cells, and the majority of the CD4 +CD8-CCL5- helper T cells (Fig. 1a–g
and Supplementary Fig. S1-motilin). The receptor was found to be
most highly expressed in pancreatic delta cells and several epithelial
cell types of the skin (e.g., sweat gland cells). Together, this expression
pattern suggests that motilin is involved in a diverse array of mouse
lemur physiological functions in addition to the regulation of gut
motility.

Motilin had been detected in the human brain18, as is the case in
the lemur (Fig. 1d), but was not previously known to be expressed in
the kidney nephron tubule cells. Therefore, we performed RNAscope,
a single molecule mRNA fluorescent in situ hybridization (smFISH)
assay to further test whether motilin is expressed in the mouse lemur
kidney. This revealed abundant motilin transcripts in the epithelial
cells of the proximal tubules but not in the glomerulus, which are
mainly composed of podocytes and glomerular capillary cells
(Fig. 1h–j). This supports the validity of the scRNAseq results
(Fig. 1a–g). It will be interesting to examine, in future studies, motilin
expression in other uncanonical cell types outside the intestine,
explore what functions motilin plays in these cells, and whether their
expression is conserved in humans.

Resistin (RETN). Resistin is a phylogenetically recent hormone, pre-
sent only inmammals2. It is expressedmainlyby adipocytes inmicebut
by macrophages, monocytes, and neutrophils in humans39,40. In the
mouse lemur, we found that resistin is highly expressed in macro-
phages, monocytes, and neutrophils, and nearly absent from adipo-
cytes (Fig. 1a–g and Supplementary Fig. S1-resistin), as it is in humans
(Supplementary Fig. S4). Interestingly, resistin is also highly expressed
inmany of the vascular endothelial cell types and inmetastatic uterine
tumor cells, suggesting additional sources for this hormone in mouse
lemurs (Supplementary Fig. S4).

Prohormone-processing enzymes. Prohormone-processing enzymes
are required for the maturation of many peptide hormones, including
insulin, adrenocorticotropic hormone (ACTH), gastric inhibitory
polypeptide (GIP), and somatostatin18. The required processing
enzymes have been identified for somebut not all hormones41,42. In this
study, we considered both the ligand and the known or suggested
processing enzymes when determining if a cell type produces a
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Fig. 1 | Global expression of selected hormone ligands and receptors. a–g Dot
plot showing expression of four sets of hormone ligands and receptors across the
~700 mouse lemur cell types, including: prolactin (ligand: PRL; receptor: PRLR),
adiponectin (ADIPOQ; ADIPOR1, ADIPOR2), motilin (MLN; MLNR), and resistin
(RETN; CAP1,DCN, ROR1, TLR4). Cell types are arranged by compartment: epithelial
(a), stromal (b), endothelial (c), neural (d), germ (e), lymphoid (f), andmyeloid (g).
Rows are cell types, ordered by tissue of origin. Cell-type names are labeled on the
right, organs/tissues on the left, and gene symbols on the top (red for ligands, blue
for receptors).Dots represent averagegene expression (circle color) andpercent of
cells positive for the gene (circle size). Circle edges indicate above-threshold
expression (see Methods) for the ligand (red) or receptor (blue). Potentially low-
quality cell types are excluded. Note that granulosa cells and acinar cells, which
presumably are derived from the ovary and pancreas, respectively, were also found
in perigonadal and mesenteric fat samples, likely caused by accidentally including

small pieces of adjacent tissues during tissue procurement. A complete set of fig-
ures that display ligand and receptor gene expression for all 84 hormone classes
can be found in Supplementary Fig. S1 and cross-species expression patterns in
Supplementary Fig. S4. h–j Single-plane confocal images of mouse lemur kidney
assayed by RNAscope for precursors of two hormones, motilin (MLN) and angio-
tensin (AGT), and the proximal tubule marker cubilin (CUBN). Cells were also
stainedwithDAPI to visualize nuclei. Note theMLN andAGT expression in theCUBN
+ proximal tubule cells and not in the glomerulus, which is mainly composed of
podocytes and glomerular capillary cells. Panel h shows a global view (merged 20×
tile scans) with a single glomerulus in the view and many proximal tubules. The
glomerulus and a representative proximal tubule are outlined by dashed curves.
i, j are magnified views of the boxed areas in (h) showing a proximal tubule and
glomerulus, respectively. See also Fig. 3b for scRNAseq data on MLN and AGT
expression across kidney nephron epithelium.
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hormone. Selective expression of the processing enzymes can help
distinguish hormones that share the same precursor gene. For exam-
ple, proglucagon (GCG) is the precursor for both glucagon and
glucagon-like peptide-1 (GLP-1). GCGwas expressed in both pancreatic
α cells and intestinal enteroendocrine cells, but the two cell types
expressed different processing enzymes: α cells expressed only PCSK2
which is required for glucagon synthesis, and enteroendocrine cells
expressed only PCSK1 which is required for GLP-1 synthesis (Supple-
mentary Fig. S1-glucagon). Thus, as is the case inmice and humans43, α
cells are sources of glucagon and enteroendocrine cells are sources of
GLP-1 in the mouse lemur.

Interestingly, we noticed that some cell types in the mouse lemur
transcribed prohormone genes without expressing the respective
processing enzymes. For example, proopiomelanocortin (POMC),
which is the precursor of ACTH, melanocyte-stimulating

hormone (MSH), β-endorphin, and lipotropin, is first processed
by PCSK144. As expected, ACTH-secreting corticotrophs expressed
both POMC and the necessary processing enzymes, but lemur
male germ cells expressed abundant POMC without detectable
PCSK1 transcripts (Supplementary Fig. S1-proopiomelanocortin-
derived hormones). Similarly, human and mouse male germ
cells expressed POMC but no PCSK1 (Supplementary Fig. S4). In addi-
tion, lemur male germ cells expressed GIP, which also requires
PCSK1 processing; the intestinal and airway tuft cells expressed renin
(REN) without the necessary PCSK1 (Supplementary Fig. S1). These
results suggest several possible hypotheses: different peptidases
are involved, the prohormone transcripts are not translated, the
prohormone proteins may function without proteolysis, or
the processing enzymes may be expressed below detection levels in
the sampled cells.
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Fig. 1 | Continued
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Plasma-binding proteins. Plasma-binding proteins are not only pas-
sive hormone transporters, but can affect hormone functions by
modulating hormone half-life and levels of free, active hormones
accessible to target cells. Other plasma-binding proteins have been
reported to potentiate the binding of hormones to their targets45.

Steroid and thyroid hormones are transported in the blood by
plasma-binding proteins of the albumin family. While serum albumin
(ALB) binds steroids with low specificity and affinity, four other albu-
mins bind these hormoneswith high specificity andnanomolar affinity,
including sex hormone-binding globulin (SHBG) for androgens and
estrogens, vitamin-D binding protein (GC) for vitamin D, SERPINA6 for
cortisol and progesterone, and SERPINA7 for thyroid hormones21,22

(Supplementary Dataset 1). Consistent with the notion that these
hormone-binding albumins are produced in the liver21,22, we identified
specific expression of SHBG, SERPINA6, and SERPINA7 in the lemur
hepatocytes, and interestingly higher levels in the CPN2hi hepatocytes
than in the CPN2lo subtype (Supplementary Fig. S1 and see below). GC
was also expressed in the lemur hepatocytes with a higher level in the
CPN2hi subtype; however, we also detected notable expression in
pancreatic endocrine, ductal, enteroendocrine cells, and cholangio-
cytes. These sources may contribute to the circulating pool of GC or
may have local or exocrine effects, such as regulating intestinal
vitamin-D absorption46.

In addition, peptide hormones IGF1 and activin are known to be
bound by IGF-binding proteins (IGFBPs) and FST, respectively. In
contrast to albumins, IGFBPs and FST were expressed by multiple
distinct cell types and showed high cell-type variability (Supplemen-
tary Fig. S1).

In summary, we have depicted the organism-wide, single-cell
expression patterns for hormones, synthases, hormone modulators,
and receptors from 84 classes of hormones, and have systematically
identified their sources and targets (Supplementary Fig. S1). This glo-
bal analysis detected canonical cell types underlying hormone secre-
tion and target functions while also revealing previously unreported
source and target cells.

Hormonal gene expression is highly cell-type-specific
Next, we clusteredmouse lemur cell types based on the transcriptional
profiles of the hormonal genes (Fig. 2a, b). We identified 74 clusters
and summarized the hormones and hormone receptors that were
expressed by each cluster (Supplementary Dataset 4). We noted that
cells of the same type almost always clustered closely irrespective of
their tissue of origin, or of the sex or identity of the sampled individual,
whereas different cell types were well-separated (Fig. 2b and Supple-
mentary Fig. S5). For example, all lymphatic endothelial cells clustered
closely and showed characteristic IGF1 expression despite their com-
ing from nine different tissues and four individuals (cluster 45, Fig. 3b
and Supplementary Fig. S1). Mesothelial cells sampled from eight
visceral organs formed a cluster distant from other stromal cells and
showed distinctive expression of NPR1, CFB, PTGIS, ITGB3, and PNMT
(cluster 35, Fig. 2b and Supplementary Fig. S1). Although there are only
~300 hormonal genes, ~1% of all detected genes, their expression
pattern proved to be indicative of cell-type identity regardless of tissue
source or location.

To further test this conclusion, we compared cell-type clustering
by either the hormonal genes (~300 genes) or the full transcriptome
(>30,000 genes). To visualize the results, we projected the high-
dimensional transcriptional data into two-dimensional cell-type maps
by uniform manifold approximation and projection (UMAP), which
illustrate cell-type similarity based on the selected genes. The cell type
UMAPs by either the hormonal genes (~300 genes) (Fig. 2b) or the full
transcriptome (Supplementary Fig. S6a) were remarkably similar. The
cell-type pairwise distances defined by hormonal genes versus the full
transcriptome were also positively correlated, with a Pearson corre-
lation coefficient (r) of 0.70 (Supplementary Fig. S6b). There were

nevertheless minor differences between the two UMAPs. For example,
airway and intestinal tuft cells are both chemosensory but are involved
in different functions47. In the space of hormonal genes, tuft cells from
different tissues formed one cluster (cluster 58) with distinctive
expression of renin (REN), cyclooxygenase 1 (PTGS1), arachidonate 5-
lipoxygenase-activating protein (ALOX5AP, required for leukotriene
production), and motilin (MLN) (Fig. 2b and Supplementary Fig. S1).
However, in the space of all genes, the lung, trachea, and intestinal tuft
cells were separated from each other (labeled as 58A*, 58B*, and 58C*
in Supplementary Fig. S6). Another notable exception was skin mela-
nocytes, which clustered with oligodendrocytes (cluster 31)
when analyzed by only the hormone-related genes (Fig. 2b) but clus-
tered more closely with skin epithelial cell types in the space of all
genes (Supplementary Fig. S6a, oligodendrocytes and melanocytes
labeled as 31A and 31B, respectively). Thus, cell types were overall
similarly clustered by the hormonal genes or the full transcriptomes,
and the exceptions showcase rare examples of converged hormonal
signaling in distant cell types.

We then assessed how well hormonal gene expression dis-
criminates amongdifferent cell types compared to all genes or random
sets of PCGs (Fig. 2c–e and Supplementary Fig. S6b–e). As a gold
standard, we used the cell annotations described in the accompanying
manuscript15, which are based on the expression of canonical cell
markers and iterative clustering with highly variable genes. We then
scored how well the cell-type pairwise transcriptional distances for
these different sets of genes correlated with a cell annotation-based
distance (Supplementary Fig. S7). This annotation-based distance is
defined as an integer between 0 and 3: 0 when cell types were anno-
tated with identical names but from different tissues, 1 when the cell
annotation namesweredifferent but classical histological assignments
(Cell Ontology48) were identical (i.e., different molecular subtypes), 2
when classical Cell Ontologies were different but cell types were from
the same compartment (e.g., both were epithelial), and 3 if cells were
different cell types and fromdifferent compartments (e.g., endothelial
vs. stromal). The pairwise transcriptional distances based on the hor-
monal genes alone correlated with this annotation-based distance
better than that based on the full transcriptome (r =0.51 vs. r =0.30)
(Fig. 2c–e). Likewise, the hormonal-based distances correlated better
than distances from random sets of PCGs (r =0.51 vs. r =0.29 ± 0.03,
mean± SD, n = 100) (Fig. 2e). This appeared to be because hormonal
genes were more variably expressed across different cell types than
average PCGs (Fig. 2f); although the full transcriptome contains more
information, the discriminative power is diluted by a large number of
low-specificity genes. In support of this idea, when sets of randomly
selected PCGs with similar expression variability (dispersion) as hor-
monal genes were used, the correlation coefficients were similar to
that of the hormonal genes (Fig. 2e).

As a further test, we used a continuous Cell Ontology48-based
metric as the benchmark (Supplementary Fig. S6c–e). This metric was
calculated as the mean of the Cell Ontology embedding-based dis-
tances from theCell Ontology graph and the text-baseddistances from
the text descriptions of the Cell Ontology terms49. Cell-type distances
defined by the Cell Ontology-based metric were positively correlated
with those defined by the transcriptional distances of the hormonal
genes or all genes, although the coefficient was low (Supplementary
Fig. S6c, d). Nevertheless, the hormonal-based cell-type pairwise dis-
tances correlated better with this Cell Ontology-based distance than
those based on all genes or random sets of PCGs (r =0.45 vs. r =0.23,
0.22 ± 0.04) (Supplementary Fig. S6e), aswas the casewith thediscrete
annotation-based distance. Thus, by both measures, hormonal genes
do an unusually good job of predicting cell identity.

Finally, we examined if the expression of hormone ligands or
receptors alone could distinguish cell types. Interestingly, for most
cell-type clusters, hormone ligands or receptors alone classified cell
types similarly (Supplementary Fig. S8a–c). This suggests that most
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Fig. 2 | Hormonal gene expression is cell-type-specific. a Clustering of mouse
lemur cell types by hormonal gene expression. At the top is a dendrogram of the
hierarchical clustering. Clusters of cell types are color-coded, and cluster numbers
are labeled as space allows. The cell types included in each cluster are listed in
Supplementary Dataset 4. The lower part of the panel shows a heatmap of relative
gene expression levels. Cluster-specific genes are ordered based on the clusterwith
the highest expression level, with the genes preferentially expressed in the left-
hand cell-type clusters on the top. Broadly expressed genes (expressed in more
than 35% of cell types) are placed in the bottom and ordered from least to most
broadly expressed. b UMAP visualization of mouse lemur cell types based on the
expression of hormonal genes. Circles are cell types (unique combination of
annotation name and tissue of origin) and color-coded by cell-type compartment

types (epithelial, neural, germ, stromal, endothelial, lymphoid, and myeloid).
Dashed lines circumscribe the cell-type clusters as in panel a, and cluster IDs and
names were labeled nearby. One extremely distant cluster (# 35. mesothelial cells)
was shifted up in UMAP-2 toward the center of the figure for display purposes.
c, d Hormonal (c) or full transcriptome (d) -based cell-type pairwise distances
compared to the benchmark cell annotation-based distance. r represents Pearson’s
correlation coefficient. Black vertical lines show distributionmeans. Red lines show
the linear fitting of the data. e Correlation coefficients of cell-type transcriptional
distances based on different sets of genes with the benchmark cell annotation-
based distance. The error bar represents mean and 95% confidence interval of the
data (n = 100). fDistributions of expression variability (dispersion) of the hormonal
genes or all protein-coding genes (PCGs).
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cell types have stereotypical expression of genes involved in both
incoming andoutgoing hormonal signaling. A small fractionof clusters
were mainly defined by only the ligands or receptors. For example,
clusters of pituitary neuroendocrine cells (cluster 7) and tuft cells
(cluster 21) were distinguished mainly by hormone ligands, whereas
clusters of the skeletal muscle stem cells (cluster 17) and lung

endothelial cells (cluster 51) were mostly based on differences in hor-
mone receptor expression (Supplementary Fig. S8c).

In summary, we found that cells generally show stereotypical and
cell-type-specific expression of hormone ligands and receptors. Thus,
hormone secretion and sensing essentially labels the identity of
the cells.
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Fig. 3 | Specific hormonal regulation in related cell types. a, b, e–h Dot plots
showing expression of hormone ligand, synthase, modulator, and receptor genes
that are differentially expressed in a male germ cells across different stages of
spermatogenesis, b epithelial cells along the spatial axis of the kidney nephron
tubule, e endothelial cells along the arteriole-to-venule spatial axis of the kidney
vasa recta, f CPN2hi vs CPN2lo subtypes of hepatocytes, g between metastatic
tumor cells in the lung (L2) and the putative cell type of metastatic origin (MUC16+
non-ciliated uterus epithelial cells, L3), and h endothelial cells of the lung and brain
compared to other organs. c Diagram of the nephron and vasa recta showing the
cell types’ spatial distribution, related to (b,d, e).dUMAPvisualization of vasa recta
cells based on expression of all genes. The black line shows the detected arteriole-
to-venule trajectorywith the arrow pointing in the direction of blood flow. Cells are
color-coded according to the cell-type annotation names in the atlas. Gray lines
show the alignment of the individual cells to the trajectory. In a, cell types are

arranged along the course of the spermatogenesis. b Cell types are arranged
according to their spatial distribution along the kidney nephron tubule. Solid
arrowheads point to AGT and MLN; their kidney expression was confirmed by
RNAscope (Fig. 1h–j). h Endothelial cells are arranged by tissue of origin. e Scatter
plots show gene expression levels along the arteriole-to-venule trajectory for the
endothelial markers and hormonal genes that are differentially expressed. Shown
here is representative data from L4, with similar results in other animals. PCT
proximal convoluted tubule, PT proximal tubule, PSTproximal straight tubule, LHd
loop of Henle thin descending limb, LHa thin loop of Henle thin ascending limb,
LHa thick loop of Henle thick ascending limb, DCT distal convoluted tubule, MD
macula densa, CDp collecting duct principal cell, Cdiα collecting duct α inter-
calated cell, CDiβ collecting duct β intercalated cell, VRD vasa recta descending
section, VRA vasa recta ascending section.

Article https://doi.org/10.1038/s41467-024-46070-9

Nature Communications |         (2024) 15:2188 8



Specific hormonal gene expression in cell subtypes
Hormonal expression could sometimes distinguish cell subtypes that
are at different developmental stages, from different locations within
anorgan, fromdifferent organs, or fromnormal vs. pathological tissue.
Below we highlight several such examples (Fig. 3).

Spermatogenesis. Spermatogenesis occurs continuously and asyn-
chronously in the male testis50. Thus, sampling the testis at one fixed
time point can capture snapshots of the entire process. The atlas
includes seven sperm and sperm progenitor cell types that are at dif-
ferent spermatogenesis stages as indicatedby the expressionof known
stage markers15. The seven cell types fall into three major stages: the
undifferentiated spermatogonia, the spermatocytes (which undergo
meiosis), and the haploid spermatids that elongate and form mature
sperms. Interestingly, these cells exhibited stage-dependent hormone
signaling, with over 50 differentially expressed hormone ligands,
enzymes, and receptors (Fig. 3a). Previous studies on spermatogenesis
have mainly focused on testosterone and on the supporting cells
rather than sperms and sperm progenitors51,52. The present data sug-
gest that sperms and sperm progenitor cells are not only differentially
regulated by a variety of hormones but may also secrete a changing
array of signalingmolecules as theymature. The data also clarify some
incompletely understood aspects of sperm regulation. For example,
progesterone was known to activate a sperm-specific calcium channel
prior fertilization to induce Ca2+ influx, but the receptor(s) responsible
for this effect were unidentified53. The present data show that twonon-
classical progesterone membrane receptor genes (PAQR5, PAQR9) are
highly expressed in the lemur spermatids and therefore may mediate
the process (Fig. 3a). Interestingly, two additional membrane proges-
terone receptors (PAQR8, PGRMC1) were specifically expressed in the
undifferentiated spermatogonia (Fig. 3a), suggesting that progester-
onemay also regulate early spermatogenesis54. In addition, insulin-like
factor 6 (INSL6), a member of the secretory relaxin family, was selec-
tively expressed in the lemur spermatocytes (Fig. 3a). Supporting a
function in these cells, knockout of Insl6 arrests spermatogenesis at
latemeiotic prophase inmice55. This analysis suggests that sperms and
sperm progenitor cells may directly communicate with other cells via
hormones that regulate spermatogenesis and sperm functions. Cross-
species comparison among human, lemur, and mouse germ cells
identified many of the spermatogonia hormonal genes that exhibited
conserved dynamics among all three species, and others showing
primate/species-specific expression dynamics (Supplementary
Fig. S9a, b, and more discussion below).

Kidney nephron and vasa recta. Although discrete cell types were
common in themouse lemur cell atlas, we noted several cell types that
displayed a continuum of gene expression, including the epithelial
cells of the nephron and the endothelium of the vasa recta, the blood
vessels that supply the renal medulla15 (Fig. 3d). Interestingly, these
cells also displayed gradients of hormone signaling along their spatial
axes (Fig. 3b–e).

Nephrons are single-cell layered, one-directional tubules that
serve as the structural and functional units of the kidney.We identified
a large number of hormonal genes specific to different sections of the
nephron epithelium (Fig. 3b, c). Some of these were receptors for
hormones known to target specific nephron sections to regulate urine
formation. For example, the antidiuretic vasopressin specifically pro-
motes water reabsorption in the collecting duct principal cells2, and
indeed, the vasopressin receptor gene AVPR2 was expressed exclu-
sively in the lemur collecting duct principal cells. Interestingly, the
collecting duct intercalated cells expressed another vasopressin
receptor, AVPR1A (Fig. 3b), which has been recently reported to
mediate the regulation of acid homeostasis by vasopressin56. Although
the kidney epithelium is not commonly considered to be an endocrine
tissue, many hormone ligands/synthases were expressed in different

nephron sections, including angiotensinogen (AGT), adrenomedullin 2
(ADM2), motilin (MLN), and neuropeptide Y (NPY). Consistent with the
scRNAseq results, smFISH by RNAscope confirmed expression ofMLN
and AGT in the nephron proximal tubule cells but not in the podocytes
and capillary cells of the glomerulus (Fig. 1h–j). Taken together, these
data suggest that nephron epithelium may play important roles in
hormone production in addition to urine formation.

The vasa recta aligns parallel to the nephron tubules in the kidney
medulla (Fig. 3c) and functions collaboratively with the nephrons in
urine formation57. The vasa recta cells also exhibited a gradual shift in
hormonal signaling along its arteriole-to-venule spatial gradient
(Fig. 3d). Figure 3e shows the hormonal genes that are significantly
differentially expressed along the vasa recta axis. Notably, several
genes involved in IGF signaling were differentially expressed: IGF1,
which was highly expressed in the lemur lymphatic endothelial cells
but almost absent from other vascular endothelial types (Supple-
mentary Fig. S1 and Fig. 3h), was highly expressed at the lymphatic-
like58 venule end of the vasa recta (Fig. 3e); in contrast, IGF2 and IGF1R
were more highly expressed in the arteriole end; and four IGFBPs
(IGFBP3-6), which modulate IGF signaling, also exhibited different
spatial patterns (Fig. 3e). This spatial organization of IGF signalingmay
be evolutionarily conserved, as a recent study on mouse kidney vas-
culature development shows a similar pattern of IGF1 expression in the
mouse vasa recta59.

Hepatocyte subtypes. The mouse lemur cell atlas identified multiple
previously uncharacterized molecular subtypes of known cell types.
For example, the liver hepatocytes of the mouse lemur clustered into
two discrete subtypes, the CPN2hi and CPN2lo hepatocytes. They dif-
fered significantly by total transcript count, andmay correspond to the
small diploid and large polyploid hepatocytes15. These subtypes were
found in both females andmales (Supplementary Fig. S10), and seems
to be independent of the known zonal heterogeneity15. Interestingly, a
number of hormone-related genes were differentially expressed
(Fig. 3f). Hormones including glucagon, androgens, and prolactin
appear to selectively target the CPN2hi hepatocytes as indicated by
differential expression of the corresponding receptors (GCGR, AR,
PRLR). In addition, angiotensinogen (AGT), precursor for the canonical
hepatic hormone angiotensin, was expressed at a much higher level in
the CPN2hi hepatocytes, whereas no subtype difference was detected
in the expression of hepcidin (HAMP) or IGF1, two other hormones
abundantly produced by the liver.

We also identified similar hepatocytes in humans and mice and
many of the subtype-specific hormonal expressions were conserved
(Supplementary Fig. S9c, d). The hepatocyte subtypes and the
subtype-specific hormonal expression were found in both male and
female lemurs studied (Supplementary Fig. S10), so are not attribu-
table to sex-specific differences in hormone regulation. However,
there may exist other sex-dependent differences in hormone regula-
tion of hepatocytes as observed in other species.

The liver is a central organ of metabolism and plays important
roles in hormonal regulation. The detected heterogeneity in hormone
signaling suggests potentially important functional divergence
between the two subtypes. A deeper understanding of themechanisms
and regulation of hepatocyte hormone heterogeneity would be parti-
cularly relevant to the study of mouse lemur-specific physiology, like
hibernation/torpor and seasonal body weight changes30.

Metastatic vs. primary tumor cells. The atlas also contains diseased
cells, including potential primary endometrial tumor cells in the uterus
(MUC16+ non-ciliated uterus epithelial cells) and lung metastatic cells
of endometrial cancer origin, as assessed by tumor gene signatures
and histology (see accompanying manuscripts15,16). Both tumor cell
types clustered with the non-tumor epithelial cells of the uterus16 and
shared characteristic expression of the oxytocin receptor (OXTR) and
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the inhibin beta B subunit (INHBB) (Fig. 3g and Supplementary Fig. S1),
suggesting that the lung metastatic tumor originated from cells
resembling the primaryMUC16+uterine tumor cells. Certain aspects of
hormone signaling seem to have been altered in the metastatic tumor
(Fig. 3g). Notably, the tumor cells showed a loss of estrogen receptor
(ESR1) expression, a change associated with high-grade and advanced-
stage endometrial cancers in humans60 and more often reported in
high mortality type 2 human endometrial cancers61.

Interestingly, the metastatic tumor cells also acquired new abil-
ities in hormone production. For example, elevated expression of the
prostaglandin E2 synthase gene (PTGES2) was present in metastatic
cells (Fig. 3g). PGE2 has been suggested to be a tumorigenic factor in
many cancers62. A recent study identified that the PGE2 synthase gene
PTGES2 was elevated in human endometrial cancer tissues and found
that PGE2 promotes cell proliferation and invasion in in vitro cell
assays63. Resistin was also found to be highly expressed in the meta-
static cells (Fig. 3g). Resistin has been reported to promote invasive-
ness of breast cancer cells in vitro64. Thus, endometrial tumors may
utilize autocrine resistin signaling to promote metastasis. The shift in
hormone signaling identified in the lemur metastatic endometrial
tumor is similar overall to that reported in the human. This suggests
that the shifts in hormone signalingmaybe an important step in tumor
development and metastasis. Mouse lemurs may serve as a useful
animal model to study human cancers that are not well modeled in
mice such as endometrial cancers16.

Vascular endothelium. While hormonal gene expression is generally
determined more by cell type than by organ of origin, lung and brain
vascular endothelial cells from arteries, veins, and capillaries all
exhibited unique organ-specific hormonal signatures (Fig. 3h).

Lung endothelial cells expressed higher levels of mRNAs for the
hormone receptors VIPR1, CALCRL, and RAMP1 (Fig. 3h) than did
endothelial cells from other organs. VIPR1 is a receptor for vasoactive
intestinal peptide (VIP), a strong bronchodilator and one of the most
abundant signaling peptides in the lung65. Lung-specific VIPR1
expression was also observed in human but not mouse endothelial
cells (Supplementary Fig. S9e, see more discussion below). RAMP1
forms heterodimeric receptors with CALCR or CALCRL that are regu-
lated by several hormone ligands including CGRP, adrenomedullin,
amylin, and calcitonin, all of which have been reported to have vaso-
dilatory effects2. Interestingly, RAMP1 is expressed in the lung endo-
thelium of the mouse lemur but not in mice or humans, whereas
RAMP2 is expressed in all three species and RAMP3 is only highly
expressed in humans (Supplementary Fig. S9e, see more discussion
below). These results suggest that lung vascular endothelium is a
unique hormonal target in comparison to vasculature elsewhere,
possibly because of the distinctive nature of the pulmonary circulation
(e.g., high volume, lowpressure) compared to the systemic circulation.

In contrast, brain vascular endothelium was found to express
higher levels of a few hormone ligands/synthases. Endothelin-3 (ET-3),
a member of the vasoconstricting endothelin family, was selectively
expressed in the brain vascular endothelium (Fig. 3h). ET-3 peptide has
been detected at various brain locations in rodents, but it remained
unsettledwhat cells secreted the peptide andwhatphysiological role it
played66. Our results suggest that ET-3 is synthesized by the endo-
thelial cells in the brain, which could target the nearby EDNRB-
expressing SLC7A10+ astrocytes and the EDNRA-expressing brain vas-
cular smooth muscle cells and pericytes (Supplementary Fig. S1-
endothelin). In addition, the brain endothelium also expressed high
levels of PTGES and PTGS2/COX-2 (Fig. 3h), which encode the synthases
of prostaglandin E2 (PGE2). PGE2 has been suggested to regulate
inflammation-induced fever in mice67,68. Interestingly, brain endothe-
lial cells also selectively lacked expression of IGFBP4, which was
abundantly expressed in the endothelium of all other tissues in lemurs
(Fig. 3h), as in humans and mice (Supplementary Fig. S4).

These organ-specific hormone signatures were expressed at
higher levels in endothelial cells than other cell types from the same
organ (Supplementary Fig. S1). Thus, it is unlikely that they resulted
from cross-contamination (signal spreading). Altogether, lung and
brain endothelial cells showcase rare examples of organ-specific (and
cell-type-independent) hormonal signaling, whichmay underlie organ-
specific control of the blood flow.

In summary, we have highlighted five examples where closely
related cells show detailed specification in their hormone signaling.
These examples demonstrate the precise and specialized control of
hormonal regulation across different cell types and/or organs.

The hormonal cell communication network is densely
connected
Long-range hormonal signaling connects both nearby and distant cells
through the bloodstream and enables cross-organ communication. By
linking the source cells that produce a hormone ligand to the target
cells that express the corresponding receptor, we constructed a global
cell communication network for mouse lemur hormone signaling
(Fig. 4a). Nodes of the network are cell types, and edges are directed
from hormone source to target cells.

The hormone network was remarkably densely connected; 54% of
all possible directed edges were found to be present. In fact, in the
graphical depiction of the network (Fig. 4a), individual edges are
hardly distinguishable because the edges are so dense. The density of
the hormone network is comparable to that of the cytokine network69,
and much higher than the densities of other characterized biological
networks (Fig. 4b). For example, the network densities of the yeast, fly,
and human protein–protein interaction networks are all estimated to
be less than 1%70–72, and the yeast genetic interaction networkdensity is
~3%73. The average degree of a node in the hormonal network was also
exceptionally high (Fig. 4c), emphasizing that the average cell com-
municates with a large number of different cell types. The dense
connections between cell types by hormonal regulation are also highly
robust: 72% of all existing edges are connected by more than one
ligand-receptor pair, and the network maintains high-density connec-
tion when randomly removing 10% of the ligand-receptor pairs (Sup-
plementary Fig. S11a).

The hormone network has a high density becausemost cell types
expressmultiple hormone ligands and receptors (Fig. 4d). On average,
cell types expressed 18.3 ± 8.2 (mean± SD) receptors or receptor
complexes. In comparison, fewer hormone ligands were expressed
(2.8 ± 2.6). Only a few cell types expressed 10 or more hormone
ligands, and 37.6% of cell types expressed a single ligand or no ligand.
This indicates that cells in general respond to more hormones than
they produce.

Classical endocrine hormone-producing cells such as enter-
oendocrine cells, pancreatic endocrine cells, hepatocytes, andneurons
were among cells secreting the largest numbers of hormone ligands
(Supplementary Fig. S12). Unexpectedly, many stromal cells such as
fibroblasts also secreted a large number of ligands, including IGF1,
adrenomedullin, angiotensin, and asprosin (Supplementary Figs. S12
and S1). Stromal cells were also particularly rich in the expression of
hormone receptors, making them among the most connected cell
types in the hormone network (as indicated by their high hubs and
betweenness scores, Supplementary Fig. S12). Given the abundance of
stromal cells across various tissues, these results suggest stromal cells
must play vital roles in endocrine regulation.

Canonically, hormones are believed to be regulated in a hier-
archical fashion. Among the most well-known examples are the neu-
roendocrine cell types of the anterior pituitary—corticotrophs,
thyrotrophs, gonadotrophs, lactotrophs, and somatotrophs. These
cells are components of regulatory cascades, receiving regulatory
signals from one or a few hormones produced in the hypothalamus
and in turn producing one or a few hormones to regulate a peripheral

Article https://doi.org/10.1038/s41467-024-46070-9

Nature Communications |         (2024) 15:2188 10



endocrine gland. Yet these cells were found to express numerous
receptors, ranging from 18 (corticotrophs) to 30 (somatotrophs)
(Supplementary Dataset 5). These cells appeared to be regulated by
growth factors, neuropeptides, neurotransmitters (e.g., dopamine),
classical hypothalamic hormones. Likewise, they were found to pro-
duce hormones in addition to the classical hormones (Supplementary
Dataset 5). For example, corticotrophs expressed the transcripts for
galanin (GAL), gastrin (GAS), and cortistatin (CORT), as well as the
ACTH precursor POMC and its processing enzymes PCSK1, PCSK2,
and CPE.

Taken together, this analysis suggests that virtually all cell types
across the body are extensively engaged in cell communication via
hormonal signaling and that the connections are likely evolutionarily
robust to random mutations that disturb hormone regulation. The
dense connection of the network results in a large number of highly
connected nodes and no obvious network cores (Fig. 4a and Supple-
mentary Fig. S12). This differs from the commonly studied scale-free
networks,which aredominated by a small number of highly connected
hub nodes74. Studies on hormone regulation usually focus on one
specific site of secretion and/or target; our analysis emphasizes the
importance of a systems view in understanding hormone regulation.

A small number of hormones are global regulators
We next examined the properties of the hormone network edges. In
contrast to the protein–protein interaction network and the genetic
interaction network, the edges of the hormone communication

network are directional and can be distinguished into different types
according to the specific ligand-receptor pairing. The hormone net-
work included 350 different edge types that are selected pairings of
129 ligands and 175 receptors.

Some ligands and receptors were expressed in highly specific cell
types, while others were more broadly expressed. We therefore
quantified for each ligandor receptor a generality score to evaluate the
range of its expression across different cell types in the atlas (Fig. 4f, g,
Supplementary Fig. S13a, and Supplementary Dataset 6). Strikingly, a
small number of hormone receptors were globally expressed. As
mentioned above, the adiponectin receptor 1 gene (ADIPOR1) was
expressed in 95.7% of the cell types. Other broadly expressed hormone
receptor genes included the renin receptor ATP6AP2 (92.3%), the
membrane-associated progesterone receptor PGRMC1 (85.3%), the
cortisol receptor NR3C1 (76.8%), a putative resistin receptor CAP1
(77.3%), the IGF1 receptor IGF1R (67.1%), the opioid growth factor
receptor OGFR (66.0%), and the thyroid hormone receptor THRA in
complex with RXRB (53.1%). While it has been recognized that some of
these hormones exert organism-wide effects, our results suggest that
they target not only a broad range of tissues but likely regulate a large
portion or perhaps majority of the cells of the body.

However, the majority of hormone ligands and receptors were
expressed in specific cell types; ~85% of the hormone ligands and ~56%
of the hormone receptors were detected in less than 5% of the cell
types. Certain hormone genes like follicle-stimulating hormone (FSHB
and CGA) were only expressed by a single-cell type. Only a few
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hormone ligands were relatively broadly expressed, including adre-
nomedullin (ADM, 19.1%), acylation stimulating protein (C3, 19.4%),
IGF2 (18.0%), and resistin (RETN, 18.9%). The generality score
followed a power-law distribution toward the tail where a small
number of globally expressed receptors dominated the distribution
(Supplementary Fig. S13b, c). This resulted in a bimodal distribution of
the network node outdegree (abundance of outgoing edges/down-
stream regulation) (Fig. 4a, e and Supplementary Fig. S12). Cells
expressing hormone ligand(s) to the high-generality receptors (e.g.,
adipocytes which secrete adiponectin) sent globally connected out-
going edges, and other cells that only expressed ligand(s) to specific
receptors sent a much smaller number of outgoing edges. In contrast,
the nodes’ indegree (abundance of incoming edges/upstream
regulation) was more homogeneously distributed because of the
higher specificity of hormone ligand expression and large number
of hormone receptors expressed per cell type (Fig. 4d, e and
Supplementary Fig. S12).

Alternative receptors for the same hormone tend to be expres-
sed in mutually exclusive cell types
Many hormones can bind to multiple receptors, which may mediate
different functions (Supplementary Dataset 1). We therefore examined
if receptors for the same ligand tend to be co-expressed or if their
expression is mutually exclusive. To quantitatively compare the target
cell-type profiles, we calculated a Jaccard index (JI, intersection over
union) for each qualifying receptor pair, namely the ratio of cell types
that co-expressed both receptors to the cell types that expressed
either of the receptors. This analysis revealed that the majority of
receptor pairs had low JIs: 24% (41/168) of the receptor pairs had a JI
equaling zero, meaning no overlap in their target cell types, and 56%
(94/161) had a JI of less than 5% (Fig. 4h). A telling case is the adreno-
ceptors; although epinephrine (adrenaline) targets many cell types,
different adrenoceptor subtypes were selectively employed in differ-
ent cell types (Fig. 4h and Supplementary Fig. S1-epinephrine/nor-
epinephrine). For example, the adrenoceptor genes ADRA1D and
ADRB3 shared no target cell types; ADRA1D was expressed broadly in
vascular smoothmuscle cells and pericytes ofmultiple organs, certain
glial cells, and leptomeningeal cells, whereas ADRB3 mainly targeted
adipocytes. Vasopressin receptor genes AVPR1A and AVPR2 also had
less than 3% overlap in their target cell types; AVPR2 was pre-
dominantly expressed in the kidney collecting duct principal cells,
while AVPR1A was highly expressed in the kidney collecting
duct intercalated cells and broadly expressed in many stromal cells
(Supplementary Fig. S1-vasopressin).

A few receptor pairs showed a tendency toward co-expression,
suggesting possible interactions in cell signaling. Supporting this
possibility, a top-ranked pair was the IGF receptors IGF1R and IGF2R
(JI = 0.40), which are known to interact in IGF2 signaling. IGF2R inter-
nalizes after IGF2 binding and clears IGF2 from the cell surface, and
therefore functions as a competitive inhibitor of IGF2-IGF1R
signaling75,76. Two other top-ranked pairs were NPY1R/NPY5R (recep-
tors for neuropeptide Y, peptide YY and pancreatic polypeptide77,
JI = 0.49), and ADIPOR1/ADIPOR2 (receptors for adiponectin, JI = 0.39).
Co-expression of NPY1R and NPY5R has been identified in the rodent
brain, and recent studies indicate that the two GPCRs may form het-
erodimers, resulting in modulated agonist binding properties78,79.
Similarly, biochemical studies on ADIPOR1 and ADIPOR2 in cell culture
systems suggest that the two receptors can form heterodimers pro-
moting membrane expression of ADIPOR280,81.

Taken together, this analysis showed that the expression of dis-
tinct receptors for the same hormone tends to be mutually exclusive,
reflecting functional divergence and specification among hormone
receptor subtypes. The rare cases of co-expressed receptors appear to
involve functional interaction or cross-regulation between the
receptor pairs.

Feedback circuits are widespread in the hormonal cell commu-
nication network
Hormone regulation often involves feedback control. We therefore
searched the mouse lemur hormonal cell–cell communication net-
work to systematically identify potential feedback regulation. For
simplicity, we focused on two-node feedback circuits, namely cell-type
pairs that are connected by edges in both directions (Fig. 5a). This
systematic search revealed a vast number of feedback circuits; 32% of
all node pairs formed feedback circuits, showing that feedback control
is widespread in the hormone network (Supplementary Dataset 7). We
then tested if feedback circuits are enriched in the hormone network,
i.e., more prevalent than would be expected by chance. We applied
degree-preserving random rewiring82 to randomly permute edge
connections without changing node degree (i.e., network edge num-
ber and distribution). Figure 5b shows the distribution of the feedback
circuit counts from such randomly permuted networks (n = 1000).
Results suggest that feedback circuits are enriched in the hormone
network compared to random permutations (P =0.047). However, the
difference was small (<1% on average). In addition, we randomly
removed 10% of ligand-receptor pairs to test how perturbations to
ligand-receptor binding affect the feedback distribution of the net-
work. This analysis found that the network feedback circuits remained
abundant despite edge removal (Supplementary Fig. S11b) as cell–cell
connections usually involved multiple ligand-receptor pairs
(Fig. 4d, e). Taken together, this analysis suggests that feedback cir-
cuits are abundantly and robustly distributed as a result of the dense
connection of the hormone network. Evolution may have further
enriched hormonal feedback circuits as suggested by the random
rewiring analysis.

We next reviewed selected feedback circuits between endocrine
cell types (Fig. 5c–l). The analysis successfully detected well-known
feedback regulation. Figure 5c shows the detected feedback loop
between pituitary gonadotrophs and the estrogen-producing granu-
losa cells of the ovary (fortuitously obtained from female perigonadal
fat), a classical example of hormonal feedback control that is evolu-
tionarily conserved across vertebrates83. Consistent with humans,
lemur gonadotrophs expressed two highly conserved gonadotropins,
follicle-stimulating hormone (FSH, a dimer of FSHB and CGA) and
luteinizing hormone (LH, LHB/CGA dimer), which target granulosa
cells through the corresponding receptors FSHR and LHCGR. Granu-
losa cells, in turn, expressed key synthases required for the production
of sex hormones, which feed back to gonadotrophs through androgen
and estrogen receptors (AR, ESR1). Additional feedback regulation
from granulosa cells to gonadotrophs was alsomediated through anti-
Müllerian hormone (AMH) and inhibin/activin signaling. We also
detected the well-established feedback loop between pituitary soma-
totrophs and hepatocytes in the liver, which was mediated through
growth hormone (GH), IGF12,84, and potentially FGF2185 and hepcidin
signaling (Fig. 5d). In addition, feedback circuits were detected
between pancreatic α and β cells through glucagon and insulin sig-
naling and between α and δ cells through glucagon and somatostatin
signaling86 (Fig. 5e, f).

The analysis also revealed a long list of potential endocrine
feedback circuits that have not been reported, or only sparsely
reported (Fig. 5g–l). For example, we detected a feedback loop
between pancreatic α cells and hepatocytes mediated by glucagon,
IGF1 and FGF21 (Fig. 5g). Regulation of hepatocyte glycogenolysis and
gluconeogenesis by glucagon iswell-established87. Less is known about
how glucagon affects hepatocyte hormone secretion, and whether the
two cell types were involved in feedback regulation. Interestingly, two
previous studies have separately shown that injection of glucagon
increases plasma FGF21 in humans88 and injection of FGF21 reduces
glucagon in mice89. A recent study also observed that plasma IGF1 and
glucagon levels are negatively correlated in non-diabetic humans and
found that IGF1 negatively modulates glucagon secretion in an α cell
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culture model90. Considering that the liver is a major source of circu-
lating IGF1 and FGF21, these data suggest that α cells likely form a
negative feedback loop with hepatocytes in maintaining metabolic
homeostasis.

In addition, adipocytes, through adiponectin, formed possible
feedback loops with pituitary neuroendocrine cells, including the
growth hormone-secreting somatotrophs, the prolactin-secreting lac-
totrophs, and the ACTH-secreting corticotrophs (Fig. 5h–j). It has been
reported that growth hormone, prolactin, and ACTH reduce adipo-
nectin secretion in adipocytes91–93, but much less is known about the
effect of adiponectin onpituitary neuroendocrine cells. Interestingly, a
recent study using cultured primary pituitary cells from two non-
human primate species found that adiponectin decreases growth
hormone and ACTH release and increases prolactin release94. Alto-
gether, it suggests that adipocytes form a negative feedback loop with
lactotrophs which possibly stabilizes prolactin and adiponectin levels,
and form double-negative feedback loops with somatotrophs and
corticotrophs, possibly functioning as bistable switches95. It remains to
be characterized how adiponectin affects pituitary hormone secretion,
what are the physiological functions of the pituitary-adipocyte feed-
back control, and whether this regulation is specific to primates.

Some of the individual legs of the feedback loops shown in Fig. 5
may not be biologically significant. For example, oxytocin and vaso-
pressin are part of the feedback circuits among pancreatic endocrine
cells (Fig. 5e, f), between pancreatic α cells and hepatocytes (Fig. 5g),
and between enteroendocrine cells and pancreaticβ cells (Fig. 5k). The
intra-pancreatic feedback regulation (Fig. 5e, f) may be plausible local
circuits, but the vasopressin and oxytocin mediated cross-organ
communications (Fig. 5g, k) seem less plausible, because most of the
oxytocin and vasopressin in the bulk circulation is derived from spe-
cific hypothalamic neurons and secreted in the posterior pituitary2.
The lemur pancreatic endocrine and enteroendocrine cells expressed
lower levels of oxytocin and vasopressin than many of the neuronal
cell types (Supplementary Fig. S1-oxytocin, vasopressin), thus are
unlikely major sources of these hormones in circulation despite their
potential role in local communications.

Several others of the regulatory circuits identified heremaynot fit
well with the conventional view, but could nevertheless be biologically
significant, such as IGF1- and FGF21-mediated communication from
adipocytes to somatotrophs, corticotrophs, and enteroendocrine cells
(Fig. 5h, j, l). Canonically, circulating IGF1 and FGF21 are believed to be
predominantly produced by hepatocytes20,96,97. However, we identified
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high IGF1 expression in the mouse lemur stromal compartment, in
particular adipocytes and fibroblasts (Supplementary Fig. S1-IGF1).
FGF21 expression levels were also comparablebetween adipocytes and
hepatocytes (Supplementary Fig. S1-FGF21). Given that adipocytes are
abundant in the mouse lemur and their weight varies by season, it is
plausible that adipocytes contribute significantly to the production
and temporal variations of the circulating IGF1 and FGF21.

Taken together, this analysis identified an extensive list of
potential feedback circuits in the global hormonal cell communication
network (Supplementary Dataset 7), providing a rich resource for
generating hypotheses on endocrine regulations and to compare their
regulatory mechanisms in different species.

Exploring hormonal regulation of the circannual rhythms that
control organismal biology
The mouse lemur hormone atlas may bring insights to the study of
mouse lemur-specific physiology, such as their circannual rhythms31,98,
social interactions99, and aging12–14,100. As an adaptation to seasonal
environmental changes, mouse lemurs have evolved striking seasonal
rhythms in metabolism, behavior, and reproduction that persist
throughout their 5–10-year lifespan.Mouse lemursbuild fat reserves in
preparation for the winter and enter daily torpor, a hypometabolic
state, to preserve energy, while in the summer, the animals maintain a
lean body and regrow their reproductive organs formating. The global
nature of these phenotypic changes suggests that they may be hor-
monally mediated. To date, only 12 circulating hormones have been
measured in mouse lemurs, but all showed dramatic seasonal changes
(Fig. 6a and Supplementary Dataset 8). This suggests that hormones
are likely the key messengers coordinating and driving various sea-
sonal changes among different organs. The hormone atlas suggests
that these seasonally changing hormones target a broad array of cells
and tissues; 95%of the cell types possessed receptors for at least oneof
these 12 hormones (Fig. 6b–l). Several of the seasonal hormones, such
as cortisol, thyroxine, and IGF1 are global regulators, targeting over
50% of the cell types (Fig. 6e–g). Others, such as GLP and GIP, are
highly specific, targeting 0.2% and 5% of the cell types, respectively
(Fig. 6h, k). Estrogen, androgen, insulin, PYY/PPY target many cell
types, but their receptor expression was restricted to only certain cell-
type compartments (e.g., stromal, epithelial) (Fig. 6c, d, i, j). For mel-
atonin, receptor expression was not detected (Fig. 6l), possibly due to
incomplete sampling of melatonin-expressing brain regions. Com-
paring across cell types, stromal and epithelial cell types tend to be
targeted by most seasonal hormones (Fig. 6c–l). These data suggest
that seasonal rhythms engage not only tissues that demonstrate
obviousmorphological changes (e.g., adipose tissues and gonads), but
involve global shifts in cellular metabolism and physiology. While it is
now clear that ligands of at least 12 hormones are produced in a sea-
sonal manner in the mouse lemur, it remains to be explored if more
hormones are seasonal and if hormone receptors are seasonally
expressed to control mouse lemur seasonal rhythms.

Evolution of hormonal gene expression in the human, lemur,
and mouse
Lastly, to study the evolution of hormone signaling, we compiled
comparable scRNAseq datasets of human and mouse and performed
cross-species comparison of hormonal gene expression across human,
mouse lemur, and mouse. Six tissues were studied, including lung,
skeletal muscle, liver (epithelium only), testis (germ cells only), and
two immune tissues, bonemarrow and spleen (immune cells only). For
consistency, cells from the human and mouse datasets were re-
annotated through the same pipeline and with the same cell-type
markers as for the mouse lemur cell atlas. Data from different species
were further integrated, and cell annotations unified to ensure that cell
types are comparable across species15. This resulted in 62 orthologous
cell types with enough cells for comparisons in all three species. We

next identified the hormonal genes with one-to-one-to-one orthology
mapping across the three species and examined if the gene exists in
all the analyzed scRNAseq datasets (Supplementary Dataset 2). A total
of 295 genes were identified and their cross-species expression pat-
terns plotted in Supplementary Fig. S4. By comparing the correlation
of the overall hormonal gene expression, we found that human and
lemur showed a higher (P value = 0.006) correlation coefficient
(r =0.50) compared to that between human and mouse (r = 0.48)
(Fig. 7a), suggesting that overall hormonal gene expression is more
similar between humans and lemurs compared to mice. For compar-
ison, themean sequence identity between these 295 human and lemur
one-to-one orthologs was 0.86, and for human and mouse orthologs
0.82 (Supplementary Fig. S2b). Thus, humans are more similar to
lemurs in both gene sequences and expression patterns, than they are
to mice.

Next, we examined individual hormonal genes and compared the
conservation of their expression patterns between the orthologous
cell types of human and lemur vs. that between human andmouse. For
each gene, we calculated the correlation coefficient for expression in
the 62 orthologous cell types for human vs. lemur (i.e., r(human,
lemur)), human vs. mouse (r(human, mouse)), and lemur vs. mouse
(r(lemur, mouse)), and we used the correlation coefficients as a gauge
of expression pattern similarity (Fig. 7b, c). Many of the genes showed
a conserved expression among all three species, such as endothelium-
specific RAMP2, liver-specific GC, and fibroblast- and pericyte-specific
EDNRA (Fig. 7b–d and Supplementary Fig. S4).

Interestingly, four genes (RETN, VIPR1, PROK2, and PTGDR) were
highly correlated between human and lemur but poorly correlated
between human and mouse (Fig. 7b, c), suggesting that their expres-
sion patterns are conserved in primates and/or diverged in mice. As
discussed above, VIPR1 (vasoactive intestinal peptide receptor 1) was
selectively expressed in the lung endothelial cells of humans and
lemurs but not mice (Fig. 7d and Supplementary Fig. S9e). RETN
(resistin) was most highly expressed in the neutrophils, monocytes,
and macrophages in humans and lemurs but not mice (Fig. 7d). Simi-
larly, PTGDR (prostaglandin D2 receptor) was expressed in the natural
killer (NK) and NK T cells in humans and lemurs but not mice (Fig. 7d).
PROK2 (prokineticin 2) was selectively expressed in neutrophils and at
lower levels in other myeloid cells in humans and lemurs, but was not
expressed in these cell types in mice; instead it was expressed in
spermatocytes (Fig. 7d).

In contrast, only one gene, neurotensin (NTS) was found to be
more similar between human and mouse versus that of human and
lemur, when applying the same threshold (Fig. 7b, c). Among the cell
types examined in all three species, NTS was selectively expressed in
the lymphatic cells in humanandmouse but not lemur (Fig. 7d). Across
all mouse lemur atlas cell types, NTS was most highly expressed in the
small intestine enteroendocrine cells (Supplementary Fig. S1-neuro-
tensin/neuromedinN),which is also the canonical site of NTS secretion
in humans18. However, we currently lack cross-species scRNAseq data
of the enteroendocrine cells for comparison. Presumably, the major
site of NTS secretion is conserved across the three species (in enter-
oendocrine cells), whereas the uncanonical lymphatic NTS expression
is specific in humans and mice but not lemurs. It will be interesting to
compare, in human and mouse, levels of NTS expression in the lym-
phatic cells to that of enteroendocrine cells and explore the functionof
this uncanonical source of NTS.

We also identified one gene (PAQR5, which encodes a membrane
progesterone receptor) whose expression pattern is more similar
between lemur and mouse than between either of the species and
human (Fig. 7c). Both lemur and mouse spermatids show the highest
PAQR5 expression, whereas human cholangiocytes show the highest
expression among the cell types examined (Fig. 7d).

In addition, a number of genes showed low conservation in their
expression patterns among all three species, such as RAMP1, RAMP3,
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PTGDS, PNMT, PAQR6 (Fig. 7b–d). For example, RAMP1, as previously
discussed, was most highly expressed in the lung vascular endothelial
cells in the lemur. However, mouse myeloid cells, such as monocytes,
macrophages, and dendritic cells show the highest RAMP1 expression.
In humans, RAMP1 was moderately expressed in the lung ciliated epi-
thelium, hepatocytes (CPN2hi subtype), and skeletal muscle cells, two
of which also displayed moderate RAMP1 expression in the lemur
and mouse.

Lastly, the cross-species dataset included male germ cells which
form a continuous gradient of expression patterns (Fig. 7e, f). Sper-
matogenesis is known to have undergone extensive molecular
evolution101. Thus, we analyzed the expression dynamics of the stage-
specific hormonal genes identified in Fig. 3a and examined their con-
servation across the three species (Fig. 7g, h and Supplementary

Fig. S9a, b). Although many spermatogonia-specific hormonal genes
showed a conserved expression across the three species, some genes
displayed species differences. Some involve small shifts or modifica-
tions in the expression dynamics. For example, consistent across all
three species, PTGES3 expressed in spermatogonia and spermatocytes
and not in spermatids (Fig. 7g, h). However, in humans and lemurs,
PTGES3 expression was gradually reduced in the course of sperm dif-
ferentiation, whereas inmice expressionwasmaintained at a high level
through mid to late spermatocytes (Fig. 7g, h). Other species-specific
expression involved lack of expression, or substantially reduced
expression. Examples include the previously discussed PAQR5, which
was highly expressed in spermatids in lemurs and mice, but only
slightly expressed in human spermatids. In addition, PGRMC1 was
expressed only in spermatogonia in humans and lemurs, and was
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highly expressed during the spermatocyte-spermatid transition in
mice (Fig. 7g, h).

Taken together, cross-species comparison revealed an overall
more similar pattern of hormonal gene expression between human
and lemur vs. human and mouse. Analysis of individual hormonal
genes identified interesting examples that are highly conserved or
display primate/species-specific expression. This analysis revealed
interesting candidates for future studies to understand the evolution
of individual and global hormone signaling.

Discussion
Hormonal signaling is vital to multicellular life, allowing cells to com-
municatewith both surrounding cells and remote cells in other tissues.
In this study, we systematically mapped hormone-producing and
-target cells across the 739 cell types from 27 different tissues from the
mouse lemur molecular cell atlas. We generated a browsable atlas that
depicts gene expression of ligands, modulators, and receptors for 84
hormone classes (Supplementary Fig. S1). This dataset complements
the scale and resolution of classical endocrine studies and brings a
cellular and molecular foundation for studying primate hormone
regulation.

The hormone atlas also provides an opportunity to extract global
principles of hormone signaling. The hormone-related genes exhibited
cell-type-dependent, stereotypical expression patterns, and their
transcriptional profiles faithfully define cell-type identities, despite
their constituting less than 1% of the transcriptome (Fig. 2). Ligands or
receptors alone also classified cell types well, with certain clusters
mostly defined by their ligands and others by their receptors (Sup-
plementary Fig. S8). Cell-type clusters defined by the hormonal genes
often show further cell type, subtype, or stage-dependent specification
within clusters, such as the extensive shifts in hormonal signaling
during spermatogenesis, across the spatial gradient of the kidney
nephron epithelium and vasa recta endothelial, between subtypes of
hepatocytes, and during tumor metastasis (Fig. 3a–g). There is also an
interesting organ-dependent clustering of the lung and brain vascular
endothelial cells, showcasing a rare example of organ-specific rather
than cell-type-specific hormone signatures (Fig. 3h). Altogether, it is
remarkable how well a cell’s intercellular communication repertoire
encapsulates the cell’s identity, indicating precise and highly specia-
lized hormonal control in different cells across the body.

To study the properties of global hormonal regulation, we con-
structed an organism-wide cell communication network for mouse
lemur hormone signaling, by connecting the hormone-producing cells
to the corresponding target cells (Fig. 4). This hormone network was
exceptionally dense (Fig. 4a, b), which mainly resulted from two net-
work features. First, most cells in the network expressed multiple
hormone receptors and/or ligands (Fig. 4d). Second, although most
hormone ligands and receptors were expressed in specific cell types, a
small fraction of hormone receptors were nearly ubiquitously
expressed, resulting in almost global connection of the relevant
hormone-producing cells (Fig. 4e–g). Thanks to its dense connection,
the hormone network is highly robust to random perturbations that
delete individual edges (Supplementary Fig. S11). Although the reg-
ulatory circuits of individual hormones may be hierarchical, as classi-
cally viewed, overall the network is decentralized, which de-
emphasizes the contribution of any one hormone receptor pair.
Many of the hormone-secreting cells are diffusely distributed
throughout the organism, in line with the concept of a diffuse neu-
roendocrine system espoused by Feyrter102. It is worth noting that,
although changes to a single hormone receptor pair may only mini-
mally affect the overall hormone network structure, the impact to
animal physiology and metabolism could be significant. Information
flow in the hormone network depends not only on whether an edge
exists but also the identity of the connecting edge(s), i.e., the hormone
receptor pair(s). Interestingly, despite the density of the hormone

signaling network, subtypes of hormone receptors that bind to the
same ligand were generally expressed in a mutually exclusive fashion,
supporting the notion that different hormone receptor subtypes
usually mediate different physiological functions through separate
target cells (Fig. 4h).

Feedback regulationwaswidespread in hormonal signaling, and it
was robust to network perturbations (Fig. 5b and Supplementary
Fig. S11b). The analysis identified well-known feedback circuits among
several endocrine cell pairs and detected additional, previously unre-
ported, hormones involved in feedback control (Fig. 5c–f). We also
identifiedmany previously unreported feedback circuits (Fig. 5g–l and
Supplementary Dataset 7) which may be involved in adaptation or
homeostasis (negative feedback circuits) or in generating switch-like
responses (positive and double-negative feedback circuits). It is worth
emphasizing that not all detected feedback circuits will necessarily be
biologically significant. In particular, for hormones that travel and mix
in the bulk circulation for long-distance cell communication, signals
from a particular hormone-producing cell type could be overwhelmed
by other cell types that produce larger amounts of the same hormone.
Future analysis may include information on cell numbers of individual
cell types and genes responsible for rate-limiting steps to more sys-
tematically compare total hormone production in each cell type and
discriminate major and minor hormone sources. Nevertheless, this
analysis represents an initial step to systematically identify endocrine
feedback circuits for future functional validation and characterization.
Our findings may also inform studies of the systems biology and net-
work topology of hormone signaling (see for example, ref. 103).

Mouse lemurs display dramatic seasonal changes in body weight,
hibernation propensity, and reproductive activities31,98,104. Such seaso-
nal rhythms are likely regulated, at least in part, by seasonally varying
long-range hormones that coordinate the changes across different
organs of the body (Fig. 6a). The hormone atlas shows that almost all
(95%) of themouse lemur cell types are regulatedby seasonally varying
hormones (Fig. 6b). This suggests that most, if not all, mouse lemur
cells across all organs of the body experience seasonal changes in
metabolism, growth, and function. By systematic mapping of
hormone-secreting and target cells, the atlas also points to candidate
cell types and signaling to explore the upstream and downstream
regulation for each of the seasonally varying hormones. Given that all
12 hormones measured in the mouse lemur showed significant sea-
sonal changes, we suspect that more hormones will prove to be sea-
sonal. Future work should systematically characterize seasonal
patterns of hormones with higher temporal resolution, and to sample
animals in different seasons to detect seasonal expression changes in
hormone receptors, ligands, and synthases, which could indicate sea-
sonal restructuring of the hormone network. Circannual rhythms are
widespread in nature105,106 and humans display seasonally varying
hormone levels and cellular transcriptomes107–109. The findings of the
present studymay apply to species beyond themouse lemur, andmay
provide insight into season-associated human diseases110–112.

Mouse lemurs are genetically closer to humans than mice are.
Likewise, the lemur better models human hormonal signaling than
does the mouse. At the genomic level, there were fewer hormonal
genes that were lost (or became pseudogenes) in lemurs (3) thanmice
(6). More human genes had one-to-one mapping in lemur (338, if
counting LHB) than mouse (330). Further, more human genes (85.8%)
had a higher sequence identity with their lemur ortholog than their
mouse ortholog (Supplementary Fig. S2). Given that mouse lemur
genome and gene annotations remain lower in quality than those of
humans and mice, some of the lemur genes may be unannotated or
incorrectly annotated, like LHB. Thus, the above comparisons may
underestimate human–lemur similarity. Lastly, by comparing the
expression patterns of the one-to-one orthologs across the three
species, we also found mouse lemurs had an overall higher similarity
with humans compared to mice (Fig. 7a). For hormonal genes that

Article https://doi.org/10.1038/s41467-024-46070-9

Nature Communications |         (2024) 15:2188 17



show a highly species-specific expression pattern, more (4) were
conserved between humans and lemurs and unique inmice compared
to the opposite (only 1) (Fig. 7b).

Single-cell RNA sequencing is a powerful tool for assaying cellular
function and activity, but there are limitations. Although the technique
has improved rapidly in sensitivity, accuracy, and efficiency, scRNAseq
still faces low capture efficiency and high transcript dropout113. With
the large number of cells assayed in the mouse lemur molecular cell
atlas, we averaged gene expression across cells of the same cell type to
smooth the noise in individual cells from dropout. In the analysis of
hormone regulation, genes involved in hormone production, such as
ligands and modulators, tended to be abundantly expressed; but cer-
tain hormone receptor proteins may be low in copy number and slow
in turnover, and therefore may result in false-negative errors. In
addition, there can be false-positive errors caused by contamination
fromother cells in the same sample (i.e., signal spreading). This ismost
notable for abundantly expressed ligand genes and tissues affected by
endogenous digestive enzymes (e.g., pancreas). In this study, we
scored positive expression of a hormone ligand only when both the
ligand gene and the necessary modulators (such as prohormone-
processing enzymes) were present. This approach mitigated false-
positive detection of highly abundant ligands. Lastly, scRNAseq has
low capture efficiency for certain cells such as neurons and large-sized
adipocytes. Particularly relevant for the study, hypothalamic neurons
were not captured in the current lemur dataset. Nevertheless, the
mouse lemur cell atlas included several neuronal subtypes from the
brain cortex, brainstem, and retina, as well as both UCP1-high and
UCP1-low adipocytes from multiple tissues15. Although not yet a com-
plete nor ideal sampling, the mouse lemur cell atlas is one of the most
comprehensive and accurately annotated organism-wide scRNAseq
datasets reported to date. Other organism-wide scRNAseq atlases have
been created or are being created for other species, including
mouse114–116, ascidian117, macaques118,119, and human120, bringing exciting
resources to the study of the evolution of hormone signaling.

Finally, it is worth emphasizing that the mouse lemur scRNAseq
atlas used in the study was constructed with four aged and diseased
donors. For example, both females had uterine tumors with metas-
tasis, and all four lemurs exhibited chronic kidney disease which may
have affected the transcriptional profiles of the kidney cells. None-
theless, in the cross-species analysis, we have shown that hormone
profiles of individual cell types are overall conserved across human,
lemur, andmouse. Human and lemur actually correlated better in their
overall transcriptional andhormonal profiles thanbetweenhumanand
mouse, despite the fact that mouse data were derived from younger,
healthier animals114 and that human data was possibly affected by dif-
ferent pathologies120. While previous studies reported that con-
centrations of hormones may change over age121, we suspect that the
global principles of hormone signaling—e.g., a densely connected,
decentralized network with abundant feedback regulation —learned
through the mouse lemur atlas may also be pertain to younger lemurs
and likely apply to other species. In addition, we have taken advantage
of the disease conditions of themouse lemurs, such as the two females
with primary and metastatic uterine adenocarcinoma, which revealed
interesting metastasis-associated changes in hormone profiles.

Traditionally, biologists focus on one particular cell type and/or
organ system.However, hormone signaling by its very nature connects
different cell types and organs. The emerging organism-wide atlases
open adoor in understanding the cross-organ communication systems
that allow organisms to function as a reliable robust whole.

Methods
Animals husbandry, tissue procurement, and processing
Details on animal husbandry and sample collection and processing
have been described in accompanyingmanuscripts15,17. In brief, mouse
lemurs (Microcebus murinus) were maintained for noninvasive

phenotyping and genetic research as approved by the Stanford Uni-
versity Administrative Panel on Laboratory Animal Care (APLAC
#27439) and in accordance with the Guide for the Care and Use of
Laboratory Animals122. Animals were housed indoors in an AAALAC-
accredited facility in a temperature (24°) and light-controlled envir-
onment (daily 14:10 h and 10:14 h light:dark alternating every 6months
to stimulate seasonal breeding behavior and metabolic changes).
Animals (n = 4) in declining health that did not respond to standard
therapy were euthanized by pentobarbital overdose under isoflurane
and tissue samples were collected for scRNAseq and histopathology
analysis. Euthanasia took place during summer-like long-photoperiod
season for all lemurs. Age and sex of the individualswere as follows: L1,
male, 9.8 y; L2, female, 10.1 y; L3, female, 11.8 y; L4, male, 11.8 y. Details
of animal histopathology can be found in Casey et al17. and tissue
sampling/processing pipelines has been described in the accompany-
ingmanuscript15. Pathologies common to all four animals were fibrous
osteodystrophy, chronic renal disease, uterine tumors (females only),
cataracts, and osteoarthritis. Tissues not described in ref. 17 were
histologically normal.

RNAscope experiments
Mouse lemur-specific RNAscope® probes for MLN, AGT, and CUBN
were designed and produced byAdvancedCell Diagnostics, Inc. (ACD)
(cat #. 1260231, 1263051, 1263061). The kidney samples analyzed were
collected from one of the lemurs (L4) profiled by scRNAseq15 and
analyzed in this study. Samples were procured, fixed, dehydrated,
OCT-embedded, and biobanked at −80 °C. Cryosections (15-µm thick
coronal sections) of the kidney were prepared using a Leica Cm3050s
cryostat, stored overnight at −80 °C, and subsequently processed
using the standard RNAscope multiplex fluorescent v2 protocol for
fixed-frozen samples (UM 323100 Rev B), with the RNAscope® Multi-
plex Fluorescent Reagent Kit v2 (cat#. 323270). In brief, two sections
were first pre-treated during which tissue slides were PBS washed,
baked, post-fixed, dehydrated by ethanol, treated with hydrogen
peroxide, submerged in RNAscope 1X Target Retrieval Reagent (99°)
for 5min, and finally treatedwith RNAscope Protease III. Next, sections
were hybridized with all three probes for 2 h at 40 °C. To visualize the
probes, sections were incubated with each of the three RNAscope
Multiplex FL v2 AMP for 30min at 40 °C, and then with RNAscope
Multiplex FL v2 HRP for 15min at 40 °C, and the respective TSA Vivid
Dye for 30min at 40 °C, and finally the RNAscopeMultiplex FL v2 HRP
blocker for 15min at 40 °C. Lastly, tissue slides were mounted with
Prolong Gold Antifade Mounting containing DPAI and stored in 4 °C
before imaging. Images were taken using a Zeiss LSM 880 Confocal
Laser Scanning Microscope under the Airyscan mode (ZEN v.2.3). The
MLN, AGT, and CUBN channels were stained with TSA Vivid Fluor-
ophore 570, 650, and 520, and imaged using the Cy3, Cy5, and FITC
filters, respectively.

Hormone concentration measurements (related to Fig. 6)
Urine and blood was collected frommouse lemurs under summer-like
longdays (14:10 h light:dark) andwinter-like short days (10:14 h). Blood
was collected in EDTA-coated capillary tubes and centrifuged at
1000× g for 10min for plasma extraction. Urine and plasma samples
were stored at −80 °C before follow-up assays.

Cortisol concentrations (ng/ml) were measured in duplicates
from urine samples by Cortisol Urine ELISA (LDN®, catalog no. MS E-
5100; standard range: 0/1 to 200ng/ml; sensitivity: 0.47 ng/ml) fol-
lowing standard protocol. In brief, 10 µl urine samples, standards (0, 1,
5, 30, and 200ng/mL), and controls were each incubated with 300 µl
conjugate at 37 °C for 1 h in antibody-coated microplate. Wells were
then washed with wash solution and incubated with 100 µl substrate
solution at room temperature for 15min in the dark. Afterwards, 100 µl
stop solution was added to each well and absorbance was read at
450nm. Sample cortisol concentrations were calculated using the
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standard curve. rine creatinine concentration was used as an indicator
of renal filtration activity to normalize urine cortisol levels. Cortisol
measurements are thus expressed in ng/mg creatine. Urine creatinine
(mg/ml) was measured using MicrovueTM Creatinine Elisa kit (Quidel
R Corporation, catalog no. 8009) following standard protocol. In brief,
urine samples, standards (0, 5, 20, 40mmol/L), and controls were first
diluted 1:40 with deionized water, and then 50 µl of each were incu-
bated with 150 µl of Working Color Solution at room temperature for
30min. Next, absorbancewas read at 490nm for eachwell and sample
creatine concentrations were calculated using the standard curve.

Thyroxine (T4, nmol/L) was assayed in plasma samples using T4
ELISAkit (LDN®, catalogno.TFE-2400; standard range:0/25–250nmol/L;
sensitivity: 8.0nmol/L) following standard protocol. In brief, 10 µl plasma
samples, standards (adapted to 0, 10, 20, 40, 70, and 100 nmol/L), and
controls were each incubated with 100 µl enzyme conjugate at room
temperature for 80min in antibody-coated microplate. Wells were then
washed with wash solution and incubated with 100 µl substrate solution
at room temperature for 10min in the dark. Lastly, 100 µl stop solution
was added to each well and absorbance was read at 450nm. Sample T4
concentrations were calculated using the standard curve.

Mapping and counting transcript reads
The single-cell gene expression matrix of the mouse lemur cell atlas
was obtained from the accompanying manuscript15 where methods
and parameters to extract the transcript counts can be found. In this
study, we used only the 10x droplet-based sequencing derived data for
all analysis. In brief, theMicrocebus murinus genome assembly (Mmur
3.0, NCBI) was used to create a genome FASTA file. Sequencing reads
were processed with Cell Ranger (version 2.2, 10x Genomics) to gen-
erate cell barcodes and the gene expression matrix. We additionally
counted reads for three genes (MC1R, SCT, LHB) that are unannotated
in Mmur 3.0, NCBI. ForMC1R and SCT, we used their annotation in the
Ensembl Microcebus murinus genome. For LHB, we used the uTAR-
scRNAseq pipeline described by Wang et al.23 to first predict its chro-
mosome location in the mouse lemur genome. In brief, the pipeline
employs the approach of groHMM123 to detect transcriptionally active
regions (TARs) from aligned sequencing data and annotates these
TARs as unannotated (uTARs) or annotated (aTARs) based on their
overlap with the existing annotation. For the LHB_uTAR counts, we
uncovered uTARs from the mouse lemur pituitary and hypothalamus
dataset and used BLASTn124,125 to find nucleotide sequence homology
of all uTARs against human LHB. We found one uTAR at position
NC_033681.1:19143249-19145949 with high sequence homology to
human and macaque LHB. The LHB_uTAR is highly differentially
expressed in the expected cell type (gonadotroph). The LHB_uTAR is
located next to gene RUVBL2, in conservation with the co-location
pattern of the genes in humans andmice24.We therefore conclude that
the identified LHB_uTAR is the likely coding region of themouse lemur
LHB gene. We then used Drop-seq tools126 to extract transcript counts
for the three genes (MC1R, SCT, LHB_uTAR).

Orthology and protein sequence analysis
Gene orthologymapping across human, mouse lemur, andmousewas
based on the combination of both the NCBI and Ensembl ortholog
databases. Details to combine the two databases were described in the
accompanyingmanuscript15. To compare sequence similarity between
orthologs of human and mouse or lemur, protein sequences were
retrieved from NCBI according to protein RefSeq using the Matlab
built-in function getgenpept. Conversion between gene ID and protein
Refseq identifier was performed using “bioDBnet [https://biodbnet.
abcc.ncifcrf.gov/db/db2db.php]”. We aligned ortholog protein
sequences and used the maximal scores in the cases of multiple tran-
script sequences and non-one-to-one ortholog mapping. Global
alignment was carried out using the Needleman–Wunsch algorithm
and default parameters of the function nwalign.

Identification of hormone-producing and target cells
The functional concentration is different for different proteins, so we
applied adaptive thresholding to determine if a gene is positively
expressed in a cell type, where cell type is defined as a unique com-
binationof the cells’ annotation and tissueoforigin, asdescribed in the
accompanying Tabula Microcebus manuscript15. For example, vein
cells of the lung and brain were considered two different cell types.
Cell types that were of low quality (low gene count or transcript count)
or annotated as technical doublets were removed from the analysis.
For each gene, two cell-type parameters were used, mean expression
level and percentage of nonzero (positive) cells. Single-cell expression
levels were first normalized by total transcript counts, multiplied by
10,000, averaged across all cells in the cell type, then natural log-
transformed (i.e., log(1+Average_UMI_count_Per_10K_Transcripts);
note that 1 is added to the average so that genes with zero transcripts
will yield zero rather than negative infinity). To determine positive
expression at the cell-type level, we applied adaptive thresholding that
compares the expression to the maximally expressing cell types. The
algorithm involves four parameters which were selected to capture a
list of well-studied cell types and hormonal genes. We first applied a
low-level absolute threshold on average expression level (0.037) and
percent of nonzero cells (5%) below either of which we considered the
expression to be negative. Second, we calculated a robust maximal
expression level of the gene by searching the high-expression levels
across the atlas. Specifically, we considered the 99th percentile of the
cells that passed the first thresholding to be the maximum to increase
the robustness of the analysis. Lastly, we applied relative thresholding
of the robust maximal level (for circulating proteins such as ligand
genes at 20% and other gene types at 5%). Cell types that passed all
thresholding criteria were considered to have functional expression of
the gene. We used a higher relative threshold for the ligand genes
because (1) ligands are secreted into the circulation so a highly
expressing sourceovershadows a low expressing source, whereas non-
ligand products of other genes (e.g., receptors, synthases, processing
enzymes) function inside individual cells; (2) we noted that ligand
genes were usually expressed at higher levels and were more easily
affected by cross-contamination (signal spreading) inside a tissue. For
hormone ligands and receptors that included multiple genes, we
applied ANDor OR logic gates as indicated in Supplementary Dataset 1
to determine if a cell type expressed the ligandor receptor. For anAND
logic gate, a functional cell type should express all its components
above the functional level;while for anOR logic gate, expression of any
of its components would suffice.

Cell-type distances, clustering, and visualization
We performed hierarchical clustering of the cell types included in the
mouse lemur atlas based on the transcriptional profiles of hormone
ligand, synthase, modulator, and receptor genes. Analysis was carried
out at the cell-type level and relative average gene expression levels
were used to calculate cell-type pairwise distances. To test consistency
of hormone-related gene expression among mouse lemur individuals,
we separated cells from different lemurs. Because circulating immune
cells sampled from different tissues were already kept as different cell
types, immune cell types were not separated for different lemurs to
avoid overcrowding of the data. We found that this simplification only
slightly influenced the clustering results of individual cell types anddid
not affect the overall clustering pattern (Supplementary Fig. S5). Next,
cell typeswerefiltered to remove potentially low-quality cell types that
were: (1) low in cell number, (2) technical doublets, or (3) low in tran-
script and/or gene count. We also manually corrected for notable
cross-contamination in certain cell types. For example, almost all non-
endocrine cell types of the pancreas showed high expression of insulin
(INS) andproglucagon (GCG), probably causedby cross-contamination
due to autolysis in the pancreasduring tissue processing.We therefore
removed INS and GCG expression from all non-endocrine pancreatic
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cell types. In addition, we corrected contamination of GUCA2A,
GUCA2B, GIP, NTS, and SST from stromal, endothelial, and immune
cells of the intestine (small intestine and colon). Matlab built-in func-
tions were used in the hierarchical clustering analysis. We used cosine
distances to calculate cell-type pairwise distances and then applied
average linkage to construct the dendrogram (cophenetic correlation
coefficient = 0.81). Cell-type clusters were then divided at a threshold
of 0.49 with minor manual inputs to further divide certain large clus-
ters or merge an apparently close neighboring leaf. We obtained 74
total clusters and numbered them according to their sequence in the
dendrogram shown in Fig. 2a. We also named the clusters according to
the shared characteristics of its cell types. Cell types included in each
cluster are listed in Supplementary Dataset 4with the list of hormones,
hormone receptors, and hormone-related genes that were expressed
in the majority (≥50%) of the cell types for each cluster.

In addition to visualizing the cell-type clustering via dendrogram,
we also applied uniform manifold approximation and projection
(UMAP)127 to embed the high-dimensional expression data to 2D using
a Matlab UMAP package128. Cell-type pairwise cosine distances were
used as input when generating the UMAPs.

For comparative analysis, we additionally calculated cell-type pair-
wise distances by the transcriptomes of all genes, the non-hormonal
transcriptome, 100 random sets of PCGs (same number of genes as the
hormonal genes), 100 random sets of PCGs controlling for expression
variability (dispersion). These transcriptional distances were calculated
similarly as the hormone-based distances were, with relative expression
levels of genes used to calculate pairwise cosine distances. To select for
gene sets with a similar distribution of expression specificity, we first
binned genes based on their cell-type expression dispersion (i.e.,
variance-to-mean ratio) to 21 uniform bins and then randomly selected
the same number of genes in each bin as the hormonal genes.

These transcriptional distances were compared to a benchmark
cell annotation-based distance by Pearson correlation. Cell annota-
tions, as defined in the accompanying manuscript15, was based on
expression of canonical cell markers and iterative clustering with
highly variable genes. This annotation-based distance was defined as
an integer between 0 and 3 based on the following criteria: distance is
0 when cell types were annotated with identical names but from dif-
ferent tissues, 1 when our cell annotation names were different but
classical histological assignments (Cell Ontology48) were identical (i.e.,
different molecular subtypes), 2 when classical Cell Ontologies were
different but cell types were from the same compartment (e.g., both
were epithelial), and 3 if cells were different cell types and from dif-
ferent compartments (e.g., endothelial vs. stromal).

We additionally calculated a Cell Ontology-based distance. Each
cell type was assigned a Cell Ontology term (i.e., its classical histolo-
gical cell-type category) during cell-type annotation15. Cell Ontology
distances were calculated as the mean of Cell Ontology embedding-
based distances and text-based distances49. Cell Ontology embedding-
based distances represent distances between cell types in the Cell
Ontology graph. Text-based distances were calculated using an adap-
ted version of Sentence-BERT49,129.

To estimate the quality of the clustering results, we calculated
silhouette values and compared cluster average silhouette values
based on only the hormone ligand genes, hormone receptor genes, or
the full transcriptome. Silhouette values for a cell type i is from the
equation s ið Þ= b ið Þ�a ið Þ

max b ið Þ,a ið Þf g , for cell types belonging to a cluster with
more thanonemember.a(i) is themean in-cluster distance, namely the
mean distance between cell type i and all other cell types in the same
cluster. b(i) is the minimal out-cluster distance, namely the minimal
mean distance between cell type i and members of other clusters.

Trajectory analysis
Analysis was performed independently for kidney samples from three
mouse lemur individuals and for the cross-species spermatogenesis

dataset using an in-house program written in Matlab. To detect the
vasa recta arteriole-to-venule trajectory, data were first pre-processed
following the standard procedure as in Seurat130. In brief, single-cell
transcript counts for all sequenced genes were normalized to total
transcript counts, log-transformed, and linearly scaled so that each
gene has a mean expression of 0 and standard deviation of 1. Then,
geneswithhighdispersion (variance-to-mean ratio) compared toother
genes with the samemean expression were selected as highly variable
genes for principal component analysis (PCA). Following PCA, the top
20 principal components that were not driven by extreme outlier data
points or immediate early genes were used to generate a 2D UMAP
using cell–cell Euclidean distances as input127. For the cross-species
spermatogenesis, we used species-integrated UMAP of the testis germ
cells15. To quantify the trajectories, we detected the probability density
ridge of the data points in the UMAP using automated image proces-
sing. The direction of the trajectory was manually assigned according
to marker gene expression. Individual cells were aligned to the tra-
jectory by finding the shortest connecting point to the trajectory. Data
points that were too distant from the trajectory were deemed outliers
and removed from the following analysis. To detect the vasa recta
hormone-related genes that follow a trajectory-dependent expression
pattern, we calculated the Spearman correlation coefficient between
the gene expression level and 20 unimodal patterns. These preas-
signedpatterns have their data smoothly changing along the trajectory
and have a single peak. We let the 20 patterns have their peaks uni-
formly distributed from 0 to 1. This analysis tested, for each gene,
whether its distribution along the trajectory followsone ormoreof the
20 unimodal patterns. Allp valueswere thenmulti-testing corrected to
detect significant genes and their associated patterns. Lastly, we
compared results from the three kidney samples and kept the genes
that showed consistent patterns in all three samples.

Identification of differentially expressed genes
We used theWilcoxon rank-sum test to detect differentially expressed
hormone genes among cell populations. Genes that were expressed
above functional level in any of the analyzed cell populations were
included in the analysis. For hormone-related genes differentially
expressed during spermatogenesis, we tested whether each gene is
differentially expressed in one of the three sperm cell clusters com-
pared to the other two clusters. For the analysis of endothelial cells, we
tested whether each gene is differentially expressed in the lung or
brain endothelial cells compared to all other endothelial cells. For the
kidney nephron analysis, we tested whether each gene is differentially
expressed in one of the nephron clusters compared to the rest of the
nephron epithelial cells. For the hepatocyte analysis, we tested whe-
ther each gene is differentially expressed in one subtype compared to
the other in both the mouse lemur and the mouse. The mouse hepa-
tocyte data was obtained from the Tabula Muris Senis114 smartseq2
plate-based sequencing of mouse hepatocytes. For the tumor cell
analysis, we tested whether each gene is differentially expressed in the
metastatic cells versus the MUC16+ non-ciliated uterus epithelial cells.
All P values were multi-testing corrected, and then all genes with cor-
rected P values less than 0.05 were examined to confirm consistent
expression of the gene in all relevant cell types and mouse lemur
individuals.

Constructing and analyzing the hormonal cell communication
network
Cells with the same cell-type annotation and tissue of origin were
grouped as a cell type/node. Data from different lemur individuals
weremerged in the analysis. Cell types thatwere likely lowqualitywere
removed. Edge connections were determined independently for all
possible cell-type pairs. For example, if cell type A expressed a hor-
mone ligand and cell type B expressed the corresponding hormone
receptor(s), a directed edge from A to B was drawn. Note that this
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allows self-loops on any cell type that expresses both the ligand and
corresponding receptor.Whenmultiple directed edges connected two
cell types, they were merged for the purpose of edge counting.

Network density is defined as the number of edges divided by the
number of possible edges in the network. Because the hormone and
cytokine networks are directed, its network density is calculated as
Nedges

N2
nodes

For comparison, the density of an undirected network is calcu-

lated as
2*Nedges

Nnodes �ðNnodes + 1Þ if it allows self-loops (e.g., protein interaction

network), or
2*Nedges

Nnodes �ðNnodes�1Þ if it does not allow self-loops (e.g., genetic

interaction network).

Outdegree and indegree are node features and defined as the
relative number of outgoing edges (node expressing a ligand) and
incoming edges (node expressing a receptor). Edge counts were nor-
malized by cell-type abundance so that node degrees range from 0 to
100% and represent the fraction of the cell types that the node con-
nects with by outgoing or incoming edges. To normalize the node
degrees, we used a weighted cell-type abundance determined by the
clustering so that each cluster contributes the same weight. This is
because certain cell types like circulating immune cells are likely over-
represented in the network as they appear in multiple tissues and
would be categorized as different cell types by our definition. We did
not merge circulating cell types from different tissues because it is
challenging for some cell types like T cells to determine whether they
are circulating or potentially tissue-specific or tissue-resident. We also
tried simply normalizing the node degree by the total number of
nodes; similar conclusions were reached using either method.

Calculating generality scores for hormone ligands and receptors
To calculate generality scores for the hormone ligands and receptors,
we counted the cell types that express the ligand or receptor. Cell
types that were likely low quality were removed from the analysis. Cell-
type counts were normalized by cell-type abundances similarly as was
the node degree, so that the generality score was not dominated by
over-represented cell types. In comparison, we also counted the cell-
type clusters that express thehormone ligands and receptors. Here, we
defined that a gene was expressed in a cell-type cluster if more than
50% of the cell types in the cluster positively expressed the gene.

To analyze the distribution of generality scores, we tested if the
distribution followed normal, exponential, lognormal, or gamma dis-
tributions. We first performed parametric distribution fitting and then
performed Kolmogorov–Smirnov tests comparing the fitted versus
data cumulative distribution functions. This analysis usedMatlabbuilt-
in functions fitdist and kstest. In addition, we tested if the data fol-
lowed a power-law distribution using plfit and plpva functions131.

Calculating target cell Jaccard indices for different receptors
that bind to the same ligand
We calculated Jaccard indices for pairs of receptors that (1) can bind to
the same ligand as described in Supplementary Dataset 1, and (2) were
both expressed in at least one atlas cell type. Jaccard index here is
calculated as the number of cell types that express both receptors
divided by the number of cell types that express either of the
receptors.

Network perturbation analysis
We performed two types of network perturbations: degree-preserving
random rewiring and random edge removal. For degree-preserving
random rewiring, we applied the algorithm developed by Maslov and
Sneppen82. The algorithm starts with the original network and per-
forms repeated rewiring steps. For each rewiring, it randomly identifies
two edges (e.g., A→B andC→D) and swaps the connections (i.e., A→D
and C→B). This allows constructing a random network while preser-
ving the node indegree and outdegree of the original network. For the

perturbation by edge removal, we randomly selected 10% of the edge
types (ligand-receptor pairs) and removed these edges from the ori-
ginal network. Note for this analysis, multiple directed edges con-
necting the same cell-type pairs were not merged. Therefore, the
connection between two cell types would be removed only if all of its
redundant edges (of different ligand-receptor pairs) were selected to
be removed.

Cross-species comparisons of hormonal gene expression
We compared cells of the lung, skeletal muscle, liver, testis, bone
marrow, and spleen. All lemur data was from the 10x data of the
accompanying Tabula Microcebus manuscript15. Human data were
from the 10x data of the Tabula Sapiens120, except for the lung which
we used the 10x data from the Human Lung Cell Atlas132 and the testis
which we used drop-seq data from ref. 133. Mouse data were from 10×
data of the Tabula Muris Senis114 except for the testis which we used
10x data fromref. 134. For lung andmuscle, all cell typeswere included
in the analysis, whereas we only analyzed the epithelial cells for the
liver, immune cells for the bonemarrow and spleen, and germ cells for
the testis. If a dataset contained cells from early or postnatal devel-
opment, these cells were excluded and only cells from adult animals
were used, for consistency. The number of individuals analyzed are as
follows: three donors for human spleen, bone marrow, lung; four for
human testes; two for human liver, abdominal muscle; three for lemur
spleen, bonemarrow, and liver; four for lemur lung; one for lemur limb
muscle and testes; ten for mouse spleen; thirteen for mouse bone
marrow; twelve for mouse limbmuscle; seven for mouse liver; ten for
mouse lung; and two for mouse testes. We used one-to-one orthologs
across all three species. This resulted in ~15,000 genes (324 hormonal
genes), ~13,000 of which were included in all scRNAseq datasets (295
hormonal genes).

To unify cell-type annotations, human and mouse datasets were
first separately re-annotated according to the same pipeline and
marker genes as for the lemur data. Cells thatwere deemed lowquality
(i.e., low in transcript and/or gene count) and technical doublets were
removed from downstream analysis. Next, to ensure cell types are
comparable across species, we applied Portal135 to integrate data (one-
to-one orthologs only) fromdifferent species. Portal projects data into
a space that minimizes species differences, from which an integrated
UMAP is generated to visualize cell clustering from different species.
Integration was performed separately for each tissue, except for bone
marrow and spleen which were integrated jointly. We manually
inspected each integration UMAP and ensured that cells of the same
type showed reasonable cross-species co-clustering and separation
from other cell types. We also made small modifications to the cell
annotations/clustering during this process to unify annotations across
species. For example, proliferating cellsmight co-cluster with themain
non-proliferating population in the original dataset if the number of
cells are too few, but cluster separately with the proliferating popula-
tions of the other species in the integrated UMAP. In such a scenario,
we would separately annotate these cells as a proliferating subtype.
Additional details to compile the cross-species scRNAseq datasets
were described in the accompanying manuscript15.

Cell types with more than 15 cells in all three species were then
used for the cross-species comparisons, resulting in a total of 62
orthologous cell types (62 × 3 = 186 cell-type entries in all three spe-
cies). Cell-type average expressions were calculated separately for
each species. Note that cellular expression levels in the species-
integrated dataset were normalized by the sum of only the one-to-one
orthologs, rather thanall the genes, thus at high levels compared to the
non-integrated data. Cross-species similarity was calculated separately
for individual genes. We first identified genes that are at least moder-
ately expressed in the analyzed cell types (≥3 cell-type entries with
meanexpression>1),which resulted in a total of 90genes for follow-up
analysis. Expression levels were then normalized by the maximally
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expressed cell type in each species and cross-species correlation
coefficients betweenhumanand lemur (r(human, lemur)) andbetween
human and mouse (r(human, mouse)) were calculated. Δr = r(human,
lemur)-r(human, mouse) was calculated. Lastly, we identified genes
that are more conserved between humans and lemurs compared to
mice (Δr > 0.5), and in contrast genes that aremore conservedbetween
humans andmice compared to lemurs (Δr < −0.5). To compare overall
similarity of transcriptional profiles of the hormonal genes or all genes,
we concatenated cell-type expression profiles for individual genes and
calculated correlation coefficients between human and lemur and
between human and mouse. P values of the difference in correlation
coefficients were calculated using Fisher’s Z-transformation136. Inte-
grated cross-species data are available at Stanford Digital Repository
(see “Data and Code Availability”), providing detailed information of
individual cell barcodes, original datasets, individuals, cell annotation
assigned in original publications, revised/unified annotation used for
cross-species comparison, coordinates for the Portal-integrated
UMAPs, as well as per cell read count for all one-to-one orthologs.

Statistics and reproducibility
A total of fourmouse lemurs (L1-4) were used in this study. The sample
size was determined by the availability of the animals in accordance
with the approved animal protocol, and no statisticalmethodwasused
to predetermine sample size. For the RNAscope experiments, kidney
samples from L4 were used based on availability. Two tissue sections
were stained with similar results.

In the analysis of the scRNAseq data, we excluded cell types that
were (1) low in cell number, (2) technical doublets, or (3) low in tran-
script and/or gene count. In addition, we excluded several notable
cross-contamination genes when clustering the cell types by hormonal
genes. In the cross-species analysis, cells that were deemed low quality
(i.e., low in transcript and/or gene count) or technical doublets were
removed from the integration analysis. In addition, if a dataset inclu-
ded cells sampled from animals during early or postnatal development
(frommousedatasets), these cellswere notused, andweonly analyzed
cells sampled from adult animals for consistency. Cell types (after
unification across species) with fewer than 15 cells in any of the species
were excluded from the downstream analysis of evolutionary com-
parisons. Additional details on data exclusions are described in
“Methods”.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Tabula Microcebus mouse lemur scRNAseq gene expression counts/
UMI tables, and cellular metadata used in this study are available on
“figshare [https://figshare.com/projects/Tabula_Microcebus/112227]”,
and can be explored interactively using cellxgene and in dot plot for-
mat on the “TabulaMicrocebusweb portal [https://tabula-microcebus.
ds.czbiohub.org/]”. For the cross-species comparison, human data
were from the 10x data of the “Tabula Sapiens for the liver, spleen, and
bone marrow [https://figshare.com/projects/Tabula_Sapiens/
100973]”, 10x data of the “Human Lung Cell Atlas for the lung
[https://www.synapse.org/#!Synapse:syn21041850/wiki/600865]”,
and the drop-seq data from “Shami et al. for the testis [https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE142585]”. Mouse data
were from 10x data of the “Tabula Muris Senis [https://figshare.com/
articles/dataset/Processed_files_to_use_with_scanpy_/8273102/2]”
except for the testis which we used 10x data from “Ernst et al. [https://
www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-6946]”.
Metadata generated in this study, including the integrated cross-
species metadata, have been deposited in the “Stanford Digital Repo-
sitory [https://purl.stanford.edu/yp860tc1411]”, https://doi.org/10.

25740/yp860tc1411. Selected data discussed in the manuscript,
including the assembled hormonal gene table and the list of analyzed
cell types and their clustering results, are also provided as Supple-
mentary Datasets. All other data supporting the findings of this study
are available within the article and its supplementary files. Any addi-
tional requests for information can be directed to, and will be fulfilled
by, the corresponding authors. Source data are provided with
this paper.

Code availability
Computer codes have been deposited in the “Stanford Digital Repo-
sitory [https://purl.stanford.edu/yp860tc1411]”, https://doi.org/10.
25740/yp860tc1411.
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