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Rapid deep learning-assisted predictive
diagnostics for point-of-care testing

Seungmin Lee1,2,8, Jeong Soo Park1,3,8, Hyowon Woo1,8, Yong Kyoung Yoo4,
Dongho Lee5, Seok Chung 3, Dae Sung Yoon 2,6,7, Ki-Baek Lee1 &
Jeong Hoon Lee 1,5

Prominent techniques such as real-time polymerase chain reaction (RT-PCR),
enzyme-linked immunosorbent assay (ELISA), and rapid kits are currently
being explored to both enhance sensitivity and reduce assay time for diag-
nostic tests. Existing commercial molecular methods typically take several
hours, while immunoassays can range from several hours to tens of minutes.
Rapid diagnostics are crucial in Point-of-Care Testing (POCT). We propose an
approach that integrates a time-series deep learning architecture and AI-based
verification, for the enhanced result analysis of lateral flow assays. This
approach is applicable to both infectious diseases and non-infectious bio-
markers. In blind tests using clinical samples, our method achieved diagnostic
times as short as 2minutes, exceeding the accuracy of human analysis at
15minutes. Furthermore, our technique significantly reduces assay time to just
1-2minutes in the POCT setting. This advancement has the potential to greatly
enhance POCT diagnostics, enabling both healthcare professionals and non-
experts to make rapid, accurate decisions.

In Point-of-Care Testing (POCT), achieving both high sensitivity and
affordable rapid diagnosis is a pivotal challenge. POCT methods are
broadly categorized into immunoassay-based and molecular-based
approaches. Recent advancements in molecular diagnostics have
shown the potential to reduce assay time to less than 10min using
plasmonics and microfluidic techniques1–3. However, in the case of
most commercialized molecular diagnostics, a sample preparation
step is inevitably involved, leading to a relatively lengthy diagnosis
time of up to several hours4–7 (See Supplementary Tables 1, 2).

On the other hand, in immunoassay-based diagnostics, short
detection times based on nanosensors, such as nanowires and field-
effect transistor (FET) sensors, have been reported8–10; however, few
have received FDA approval. The commercialized immunoassay plat-
form encompasses enzyme-linked immunosorbent assay (ELISA),

fluorescence Immunoassay (FIA), chemiluminescent immunoassay
(CLIA), and lateral flow assay (LFA). ELISA, as the most popular
immunoassay platform, requires a significant amount of time,
approximately 3–5 h for analysis11,12. In contrast, rapid kits, also known
as rapid diagnostic tests (RDT), provide quicker results, typically
within 15min, providing the fastest immunoassay13 (See Supplemen-
tary Tables 1, 2).

In the domain of emergency medical care, expeditious and
precise diagnosis within the emergency room (ER) holds utmost sig-
nificance. The patients arriving at the ERoften presentwith severe, life-
threatening, or time-sensitive conditions, necessitating prompt and
accurate diagnostic interventions14–16. For example, cardiac troponin I,
which is highly specific to myocardial tissue and undetectable in
healthy individuals, is significantly elevated inpatientswithmyocardial
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infarction and can remain elevated for up to 10 days post-necrosis.
Levels above 0.4 ng/ml indicate a notably higher 42-day mortality
risk17. Particularly formyocardial infarction patientswhopresent to the
emergency room, prompt diagnosis and management are crucial. In
such critical scenarios, the rapid identification of diseases and condi-
tions exerts a profound impact on patient outcomes.

Notably, in cases involving infectious diseases, timely diagnosis
plays a pivotal role in identifying the causative pathogens and
infections18,19, thereby facilitating the timely implementation of infec-
tion controlmeasures to avert potential outbreaks20 and safeguard the
health of both patients and healthcare providers21,22.

Furthermore, for pregnant patients in the ER, knowing their
pregnancy status is crucial, especially when considering medical ima-
ging involving radiation23,24, anesthesia25,26, or treatments27 that could
affect fetal well-being. Fast and precise diagnosis is key in guiding
informed decisions, enabling the effective management of health
conditions while simultaneously minimizing risks to both the patient
and the fetus.

While LFA is generally recognized as a rapid and commercially
viable diagnostic tool28, its significance in enabling timely interven-
tions extends beyond its immediate applications. LFA also holds a
pivotal role in reducing unnecessary tests and treatments, thereby
contributing to more efficient healthcare utilization and cost-
effectiveness29,30. Consequently, the approaches to further shorten
assay time while retaining sensitivity have elicited considerable inter-
est, given its potential to unlock numerous novel detection opportu-
nities. These advancements show promise, particularly in emergency
medicine, infectious diseasemanagement, and neonatal care, with the
potential to improve patient outcomes31–33.

Artificially intelligent (AI) technology has emerged as a focal point
inmedical image-baseddiagnostics using convolutionneural networks
(CNN), encompassing modalities such as X-ray34,35, computed tomo-
graphy (CT)36, and magnetic resonance imaging (MRI)37,38, with its
application promising significant enhancements in diagnostic accu-
racy while revolutionizing the interpretation and analysis of complex
medical images. Recently, our group proposed deep learning-assisted
smartphone-based LFA (SMARTAI-LFA) and demonstrated that inte-
grating clinical sample learning and two-step algorithms enables a
cradle-free on-site assay with higher accuracy (>98%)39. However, the
earlier study primarily highlighted the performance of AI-enhanced
colorimetric assays and did not specifically address the reduction of
assay time using AI.

Several recent studies in medical diagnostics have emphasized
the reduction times by integrating deep learning techniques40–45. Pre-
vious studies have successfully achieved shorter histopathology tissue
staining times using generative adversarial network (GAN)-based vir-
tual staining40,41 and applied deep learning methodologies to enhance
efficiency in plaque assays42. Moreover, the utilization of long short
term memory (LSTM) deep learning algorithms has expedited poly-
merase chain reaction (PCR) analysis43, enabled the prediction of
infections based on time-series data from affected individuals44, and
facilitated the utilization of longitudinal MRI images for predicting
treatment responses45. Meanwhile, the demand for diagnostic tools
achieving shortened assay time and maintained sensitivity remains
high, but few studies address for achieving AI-assisted fast assay,
especially for POCT. Consequently, there is a pressing need for AI
technology to enable rapid diagnosis in POCT, representing a trans-
formative step in enhancing diagnostic efficiency beyond traditional
hardware optimization.

In this study, we present an approach that combines a time-series
deep learning algorithm with lateral flow assay platforms, notably the
most affordable and accessible POCT platform, to achieve a significant
reduction in assay time, now as short as 1–2min. Our method, which
utilizes an architecture comprising YOLO, CNN-LSTM, and a fully
connected (FC) layer, notably accelerates the COVID-19 Ag rapid kit’s

assay time, facilitated by the Time-Efficient Immunoassay with Smart
AI-based Verification (TIMESAVER). This approach is versatile, applic-
able to a range of conditions including infectious diseases like COVID-
19 and Influenza, as well as non-infectious biomarkers such as Tropo-
nin I and hCG. In blind tests with clinical samples, ourmethod not only
achieved diagnostic times as short as 2min but also surpassed the
accuracy of human analysis traditionally completed in 15min.

Results
Workflow of TIMESAVER for fast assay
Figure 1 presents three representative commercialized diagnostic
tools: commercial LFA, PCR, and ELISA, along with their performance
in terms of time, labor, cost, and accuracy. Generally, commercial PCR
andELISA tests take several hours, are labor-intensive, and incur higher
costs. In contrast, rapid kits typically provide cost-effective, on-site
diagnostics. We introduce TIMESAVER-assisted LFA, an approach that
combines time-series deep learning architecture, AI-based verification,
and enhanced result analysis to optimize LFA immunoassays. Our
objective is to establish the fastest diagnostic time among existing
commercially available kits while maintaining accuracy and afford-
ability. Conventional rapid kit protocols typically require 10–20min
for analysis, posing challenges in time-sensitive applications like
emergency medicine, infectious disease management, neonatal care,
and heart stroke, where further assay time reduction is crucial.

As shown in Fig. 1, our approach utilizes a time-series deep
learning architecture and AI-based verification, resulting in a sig-
nificant reduction in assay time to within 1–2min using TIMESAVER. A
more detailed discussion of the time-series deep learning architecture,
known as the TIMESAVER algorithm, is provided in Fig. 2. This algo-
rithm is specificallydesigned for learning from time-series data andhas
effectively reduced diagnosis times. Notably, the results demonstrate
diagnosis times as short as 1–2min for LFA when utilizing a smart-
phone or reader (See Supplementary Movie 1).

Model optimization for TIMESAVER algorithm
In Fig. 2, we present the deep learning architecture, TIMESAVER, uti-
lized for predicting results, which consists of three components:
YOLO, CNN-LSTM, and the FC layer. Figure 2a illustrates the overall
scheme of TIMESAVER, a deep learning architecture consisting of
three interconnected components. This involves transforming the
entire image into a cropped image containing the test line, which is
then processed through CNN and LSTM networks to generate a vector
representation. Subsequently, the CNN and LSTM outputs are com-
bined andpassed through the FC layer to produce the predicted result.

Region of Interest (ROI) selection is a crucial step in rapid kit
diagnosis (Fig. 2b). The selection of the Region of Interest (ROI)
enhances the accuracy of detecting the specific concentration of the
target biomarker or pathogen, thereby increasing sensitivity and spe-
cificity and minimizing the occurrence of false negatives and false
positives39. As detailed in our previous research, we investigated two
methods for ROI selection in LFAs: focusingon thewindowand the test
line exclusively. The approach centered on thewindow area achieved a
prediction accuracy of 92.9%, while a focus exclusively on the test line
enhanced the prediction accuracy to 95.2%. Data augmentation is a
vital technique, particularly for limited or imbalanced datasets
(Fig. 2c). It involves applying various transformations to existing data,
generating synthetic images to enrich the dataset and enhance the
model’s robustness. In our study,weacquiredRGBchannel images and
transformed them into HSV channel images. The data augmentation
results were as follows: RGB achieved an accuracy of 95.2%, HSV
achieved 64.3%, and combining RGB and HSV yielded a perfect accu-
racy of 97.6%.

In Fig. 2d, we optimized the CNN model. For feature extraction
from images, we used a CNN specifically designed for image recogni-
tion and processing tasks, making CNNs essential in computer vision
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applications. Among the four frameworks evaluated (ResNet-18,
ResNet-34, ResNet-50, DenseNet-12139), ResNet-50 exhibited the high-
est accuracy at 97.6%, surpassing the performance of shallow-layer
models. In Fig. 2e, we optimized the LSTM model. When forecasting
using time-series data, we employed advanced recurrent neural net-
work (RNN) algorithms, including LSTM and gated recurrent unit
(GRU). LSTM, a type of recurrent neural network, excels in handling
sequential data and addresses the vanishing gradient problem by
employing a sophisticatedmemory cell. LSTM achieved an accuracy of
97.6%, while GRU obtained 91.7%.

In Fig. 2f, we present the trade-off curve between root mean
squared error (RMSE) and normalized graphics processing unit (GPU)
memory consumption across various assay time frames, effectively
illustrating the AI-based optimized assay time. Note that assay time
refers to the sequential images used in training and testing. As we
incorporated additional time-series data, the RMSE values were
exponentially reduced, indicating enhanced accuracy. However, this
improvement was accompanied by a linear increase in GPU memory
consumption. Controlling GPU memory consumption is a key para-
meter for achieving optimal deep learning operation, as higher GPU

Fig. 1 | Figure of merit of AI-powered TIMESAVER algorithm. This schematic
illustrates three representative commercialized diagnostic tools: commercial LFA,
PCR, and ELISA, along with their performance metrics, including time, labor, cost,
and accuracy. The TIMESAVER algorithm, utilizing a comprehensive time-series
deep learning architecture, provides enhanced result analysis through AI-based

verification, all within a rapid 1–2min assay time, outperforming human experts
with a 15-min assay. LFA, lateral flow assay; PCR, polymerase chain reaction; ELISA,
enzyme-linked immunosorbent assay; TIMESAVER, Time-Efficient Immunoassay
with Smart AI-based Verification; AI, artificial intelligence.
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memory consumption leads to longer training/test times and requires
more expensive hardware. Consequently, we postulate that a 2-min
time series may represent the optimal condition when employing the
TIMESAVER model.

In Fig. 2g, we show the acquired images over time. After
approximately 30 s, the samples loaded in the sample reservoir
reached the test line, and the test line appeared after 1–2min,
depending on the concentration/titers of the target. All the images
were taken at 10-s intervals, resulting in 6 images acquired per minute.
For example, in a 2-min assay, we trained on 12 sequential images, then
tested sequential images with a 2-min assay time. Interestingly, in the
time scale of 1 to 2min, we observed unclear background signals with

the naked eye; however, the TIMESAVER model could detect the col-
orimetric signal with higher accuracy.

Assay of infectious diseases via TIMESAVER
Figure 3 presents the assessment of infectious diseases, specifically
COVID-19 antigen and Influenza A/B, using a 2-min assay facilitated by
the TIMESAVERmodel. To assess the diagnostic accuracy of COVID-19
in Fig. 3a, we employed standard data (target protein spiked rapid kit
running buffer) and trained the TIMESAVER model using our training
set, which included both the training data (n = 594) and a validation
subset (10% of the training set). We developed a regression model for
TIMESAVER and categorized the regression values into five classes:

Fig. 2 | Algorithm optimization. a TIMESAVER algorithm comprises object
detection using YOLO, time series image analysis through CNN-LSTM, and the FC
layer. b Object Finding: Two ROI selection methods in LFA compared. Selecting
only the test line resulted in higher accuracy (95.2%) compared to using thewindow
(92.9%). c Data Augmentation using RGB and HSV: combining both yielded an
accuracy of 97.6%. d CNN Model Optimization: ResNet-50 demonstrated the
highest accuracy at 97.6%, outperforming other models. e LSTM optimization:
LSTM achieved an accuracy of 97.6%, while GRU obtained 91.7%. f Trade-off

between Root Mean Squared Error (RMSE) and normalized GPU memory con-
sumption, illustrating the AI-based optimized assay time. g Time-series Images:
Sequential images show the progression of the assay over time. TIMESAVER, Time-
Efficient Immunoassay with Smart AI-based Verification; CNN, convolution neural
network; LSTM, long short term memory; FC, fully connected; ROI, region of
interest; GRU, gated recurrent unit; RMSE, rootmean squared error; GPU, Graphics
Processing Unit; AI, artificial intelligence.
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high,middle,mid-low, low, and negative control. It’s important to note
that we categorized the images from data into these classes following
the manufacturer’s supplied guidelines, which are as follows: high
(levels 8–7), middle (levels 6–5), mid-low (levels 4–3), low (levels 2–1),
and negative control (level 0). The manufacturer’s color chart is pre-
sented in Fig. S1. Utilizing standard data enables us to categorize into
five classes, as opposed to the binary classification employed with
clinical samples. Consequently, we can conduct a more comprehen-
sive examination of the underlying causes of false positive and false
negative signals. Since each dataset comprises 12 time frame images
with 10-s intervals, the total number of images used for training was

7,128. We conducted tests with 84 data (54 positive and 30 negative).
Our results indicate that the AI-based decision-making process, per-
formed within 2min, achieved a sensitivity of 96.3%, specificity of
100%, and accuracy of 97.6%, showcasing the excellence of the TIME-
SAVER model in making initial decisions.

In Fig. 3b, c, we present receiver operating characteristic (ROC)
curves and a confusion matrix for the 2-min assay of COVID-19 using
the TIMESAVER algorithm. ROC curves provide a comprehensive view
of the model’s performance, with a higher area under the curve (AUC)
indicating better classification ability. Our analysis revealed that the
TIMESAVER model achieved an AUC of 0.99, affirming its excellent

Fig. 3 | Evaluation of a commercial LFA for infectious disease (COVID-19,
Influenza A/B) with a 2-min assay using the TIMESAVER Model. a–c COVID-19
assay: a TIMESAVER achieved a sensitivity of 96.3%, specificity of 100%, and accu-
racy of 97.6% from84data, demonstrating themodel’s proficiency inmaking initial
decisions. b The ROC curve illustrates an AUC of 0.99. c The confusion matrix
highlights that the false negativeswereprimarily associatedwith low-concentration
samples. d–f Universality of COVID-19 assay by assessing its performance on var-
ious commercialized LFA Kits: d The average sensitivity, specificity, and accuracy
across these five different models (n = 600), each with distinct form factors, were

94.5%, 93.5% and94.2%, respectively. eTheAUCvalue reached0.98, as shown in the
ROC curve. f The confusion matrix demonstrates that the ability to discriminate
lower concentrations and negative controls is pivotal in LFA assays for achieving
higher accuracy. g–i Influenza assay: g The sensitivity, specificity, and accuracy of
the influenza model were 93.8%, 100%, and 95.8%, respectively. h The AUC value
attained 0.97, as indicated by the ROC curve. i The confusion matrix indicates that
the false negatives were predominantly linked to samples with low concentrations.
TIMESAVER, Time-Efficient Immunoassay with Smart AI-based Verification; ROC,
receiver operating character; AUC, area under curve; LFA, lateral flow assay.
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performance as an assay classifier. The confusion matrix (Fig. 3c)
highlights the critical nature of accurately diagnosing low-
concentration data, a challenge even for experts when relying solely
on visual inspection. We observed that the false negatives (n = 2) were
caused by the low-concentration samples. This provides valuable
insights for improving sensitivity and specificity. One viable strategy
involves augmenting the training data. By incorporating more data
with low concentrations, we can fine-tune sensitivity and specificity, as
demonstrated in our previous paper39. In the following section, we will
demonstrate the enhanced accuracy of our clinical assay. This will be
achieved by integrating clinical data from 84 patients, including 13
with Ct values > 29, corresponding to low concentration/titer, and 32
healthy controls, as detailed in Fig. 5.

Universality is a key characteristic of the TIMESAVER algorithm.
We validated its universality by assessing its performance on various
commercialized LFA models (Fig. 3d–f). In this study, we tested an
additional five LFA models (n = 600, Fig. 3d, Fig. S2, Supplementary
Table 3). We exclusively trained the TIMESAVER model with an addi-
tional set of time-series data (n = 300) combined with the pre-existing
dataset (n = 594), resulting in a total training dataset of 894. Given that
each dataset consists of 12 time frame images, the total number of
images used for training amounted to 10,728. To test the algorithm,we
applied the TIMESAVER model initially trained with LFA model 1
(COVID-19 Ag LFA kits, Calth Inc.). Interestingly, the average sensitivity
and specificity across these five different models (n = 600), each with
distinct form factors, were 94.5% and 93.5%, respectively. The variation
in performance can be attributed to differences in membrane types,
designs, materials, flow rates, and other factors among LFA kits from
various manufacturers. Such variations are expected due to the
hardware-related disparities between these different LFAs. The AUC
value reached 0.98 as shown in the ROC curve (Fig. 3e). Furthermore,
from the confusion matrix (Fig. 3f), it is evident that the ability to
discriminate lower concentrations and negative controls plays a
pivotal role in LFA assays for achieving higher accuracy. We anticipate
that further training with various LFA models will lead to increased
accuracy, as demonstrated in our previous works39.

We broadened our validation efforts to include influenza testing.
The influenza kit in our study had A, B, and control lines, but due to
limited sample availability, we only tested for influenza A. Illustrated in
Fig. 3g, h, the manuscript details the sensitivity, specificity, and accu-
racy in detecting Influenza A, based on a dataset of 192 test samples.
The influenza test kits exhibited a sensitivity of 93.8%, specificity of
100%, and an accuracy of 95.8%. The AUC value derived from the ROC
curve was 0.97. It was observed that the false negatives (n = 8) were
predominantly due to samples with low concentrations, which
adversely affected sensitivity. However, the Lateral Flow Assay (LFA)
enhanced by the TIMESAVERmodel demonstrated that it is possible to
achieve a quick assay time while still maintaining the essential sensi-
tivity and specificity for effective point-of-care diagnosis.

Assayof non-infectious biomarkers for emergency room(ER) via
TIMESAVER
Next, we further validated the performance of the TIMESAVER assay
for non-infectious biomarkers, including Troponin I and hCG for ER.
Initially focusing on Troponin I, as shown in Fig. 4a–c, we acknowl-
edged its clinical relevance above 0.4 ng/ml, following previous
research17. Therefore, we set a cut-off at 0.5 ng/mL and established a
five-class multi-classification using recombinant protein, based on LFA
manufacturer’s guideline. This involved training with 618 data, vali-
dation with 62 data, and testing with 96 data. The results yielded a
sensitivity of 96.9%, specificity of 98.4%, and accuracy of 97.9%
(Fig. 4a). In Fig. 4b, the AUC value from the ROC curve was 0.99, and
the TIMESAVER demonstrated high accuracywithin a 2-min diagnostic
timeframe. TIMESAVER showed some false signals at lower con-
centrations (Fig. 4c), which appear to be more a limitation of the LFA

rather than the algorithm. These results confirm the effectiveness of
our algorithm in achieving multi-classification within just 2min of
testing, underscoring its utility in rapid diagnostic scenarios.

In emergency room settings, rapid diagnosis of hCG is essential,
particularly for assessing pregnancy in patients. (Fig. 4d) demonstrates
the sensitivity, specificity, and accuracy for hCG detection within
2min, using test data (n = 60). The results revealed that the sensitivity,
specificity, and accuracy for hCG were 97.5%, 95.0%, and 96.7%,
respectively. The AUC value derived from the ROC curve was 0.95
(Fig. 4e), and the confusion matrix (Fig. 4f) suggests the effective
performance of the classifier, even when applied in a 2-min assay uti-
lizing the TIMESAVER model.

We aimed to assess the feasibility of achieving the assay within
1min using commercially available diagnostic tests (Fig. 4g–i). Gen-
erally, hCG self-tests exhibit rapidflowvelocity, and signal readings are
typically recommended after a 5-min wait according to the manu-
facturer’s guidelines. In our primary training data (n = 594), initially
trained for COVID-19, we incorporated an additional hCG dataset
(n = 24), resulting in a total training set of 618 data (Fig. 4g). The hCG
dataset consisted of 30 images captured at 2-s intervals. We then used
12 images taken between 36 and 60 s. The test dataset consisted of
94 standarddata. Evenwith a 1-min assay facilitated by TIMESAVER, we
achieved a sensitivity of 90.6%, specificity of 93.3%, and an overall
accuracy of 91.5%. The sensitivity, specificity, and overall accuracy of
five human experts at 5min were 90.9%, 87.3%, and 89.8%, respec-
tively. In Fig. 4h, we observed that the accuracy with TIMESAVER at
1min surpassed the accuracy of five experts at 5min. As anticipated,
false positives and false negatives of TIMESAVER at 1min were pri-
marily associated with lower concentrations (15 mIU), particularly
those near the cutoff threshold (Fig. 4i).

Blind tests using clinical samples
Figure 5 illustrates the clinical evaluation of COVID-19 through blind
tests. We assessed the blind tests from three different groups:
untrained individuals, human experts, and TIMESAVER, utilizing 252
test data (156 positives and 96 negatives). Clinical samples were col-
lected from COVID-19 patients at Seoul St. Mary’s Hospital, including
SARS-CoV-2 patients (n = 52) and healthy controls (n = 32). The 252 test
data come from the three different rapid kit tests performed on
COVID-19 patients (n = 84). This information encompassed sample
collection details, variants, sex, ages, and Ct values (Supplementary
Tables 4, 5). All samples underwent RT-qPCR analysis, followed by the
LFA assay. The data from the LFA assay were classified into five groups:
high/middle/middle-low/low titer, and negative control, using a color
chart level (high with levels 8–7, middle with levels 6–5, middle-low
with levels 4–3, and low titer with levels 2–1 for positive, and negative
with level 0). Among the positivedata (n = 156), we distributed the data
across four groups (high: 30,middle: 48,mid-low: 39, low: 39).We also
included negative data from healthy controls (n = 96).

For the blind test, ten untrained individuals and ten human
experts each tested 252 data, including 30 high, 48middle, 39 middle-
low, 39 low, and 96 negative data. This resulted in a total of 5040 blind
tests for both untrained individuals and human experts. As shown in
Fig. 5a, the colorimetric assay results were captured using a custom-
made charge-coupled device (CCD) camera, or potentially a smart-
phone camera, displaying clear positive images in high and middle
concentrations. However, below the mid-low concentration, no dis-
tinct positive signal could be captured. Interestingly, the assay con-
ducted within 2min exhibited a larger background signal, which
hindered the clear observation of the colorimetric signal by the
naked eye.

Wepresented the results of blind tests using images froma 15-min
assay (Fig. 5b) followed by a 2-min assay (Fig. 5c), involving both
untrained individuals and human experts, as well as the TIMESAVER
algorithm, which demonstrated a notable reduction in assay time. The
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15-min assay shown in Fig. 5b was conducted following the manu-
facturer’s guidelines for conventional assays. In these 15-min assay
images, untrained individuals reached an accuracy rate of 70.7%, while
human experts attained 78.1%. The lower accuracy compared to the
manufacturer’s claim of >90% sensitivity and >99% specificity can be
attributed to our inclusion of a substantial number of lower titer data.
Nevertheless, the TIMESAVER model surpassed both human experts
and untrained individuals in performance, achieving a higher accuracy
of 80.6% even in a shortened 2-min assay.

When the assay time was reduced to 2min (Fig. 5c), identifying
clear positive signals for mid-low concentrations became problematic
for the naked eye, and the reddish background often led tomore false
positives. As a result, the accuracy rates for untrained individuals and
human experts fell to 59.4% and 64.6%, respectively. In contrast, the

TIMESAVER algorithm maintained a high accuracy of 80.6% in the
2-min assay. While the accuracy of human interpretation significantly
decreased at lower concentrations (lower viral load), indicating a
tendency for human error in rapid assessments, the AI-driven TIME-
SAVER algorithm showed greater precision, effectively handling
background noise and unclear colorimetric signals. This allowed for
fast assays with improved accuracy, showcasing the potential of AI in
enhancing rapid diagnostic techniques.

Figure 5d displays the influence of clinical training data on ROC
curves. Initially, we present ROC curves trainedwith a standarddataset
(n = 594, shown in blue and labeled as ‘standard only’). We then
demonstrate improved ROC curves achieved after additional training
with clinical data (n = 694, shown in red and labeled as ‘standard and
clinical’). The ROC curve is a widely used tool for assessing the clinical

Fig. 4 | Evaluationof non-infectious biomarkers (Troponin I and hCG) using the
TIMESAVER Model. a–c Troponin I assay: a The sensitivity, specificity, and accu-
racy for the detection of Troponin I were 96.9%, 98.4%, and 97.9%, respectively.
b The AUC from the ROC curve was 0.99. c The confusion matrix between ground
truth (y-axis) and predicted label (x-axis). d–f hCG test: d hCG detection achieved
sensitivities of 97.5%, specificities of 95%, and an accuracy of 96.7% from 60 test
data. e The ROC curve produced an AUC of 0.95. f. The confusion matrix.
g–i Evaluating the feasibility of a 1-min assay with hCG self-tests from 94 test data:

g With a 1-min assay with TIMESAVER sensitivities of 90.6%, specificities of 93.3%,
and an overall accuracy of 91.5%were achieved. h The accuracy with TIMESAVER at
1min surpassed the accuracy of five experts measuring at 5min. i The confusion
matrix illustrates that false positives and negatives were predominantly associated
with lower concentrations. TIMESAVER, Time-Efficient Immunoassaywith Smart AI-
based Verification; hCG, human chorionic gonadotropin; ROC, receiver operating
character; AUC, area under curve; LFA, lateral flow assay.
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effectiveness of diagnostic models. The AUC with the inclusion of
clinical data (0.80) exceeded that with the standard dataset alone
(0.76). Although the TIMESAVER algorithm with a 2-min assay might
not entirely match the accuracy standards of clinical laboratories, its
ability to continuously improve diagnostic accuracy through learning
from acquired images is notable. By further incorporating deep
learning with clinical samples, we can enhance the clinical accuracy of
our diagnostic approach.

We demonstrate the capability of TIMESAVER to achieve accuracy
levels comparable to those of human experts in the shortest possible
time frame (Fig. 5e). We initiated the assay timer when the sample was
introduced into the sample reservoir, capturing sequential images
over time. We established five distinct datasets, each representing
varying assaydurations (0.5, 1, 2, 3, and4min). For example, in the case

of a 1-min assay, we obtained 6 images with 10-s intervals. Our TIME-
SAVER model demonstrated that it requires only 1min to attain
accuracy equivalent to that achieved by untrained individuals. With a
2-min assay, we achieved an accuracy rate of 80.6%, surpassing the
accuracy of human experts at the 15-min mark (78.1%). As depicted in
Fig. S3, the samples reached the test line within 1min, enabling the AI
to precisely ascertain the assay results during the initial color devel-
opment phase. In comparison to conventional human-conducted
assays, where TIMESAVER completes the assay in just 2min, it con-
sistently outperforms human experts in terms of accuracy.

The heatmap indicates that human visual assessment, conducted
by both untrained individuals and experts, shows a decrease in accu-
racy, particularly within the mid-low titer ranges (Fig. 5f). In the mid-
low titer category, untrained individualsmanaged an average accuracy

Fig. 5 | Clinical validation via blind tests. a In the blind test, ten untrained indi-
viduals and ten human experts assessed 252 data, including various concentration
levels and negative data fromCOVID-19 clinical samples. b, cBlind test results from
a 15-min assay and a 2-min assay demonstrate significant fast assaywith TIMESAVER
(n = 3): b TIMESAVERwith 2-min assay achieved higher accuracy (80.6%) compared
to human experts (78.1%) and untrained individuals (70.7%) in the 15-min assay. c In
the 2-min assay, TIMESAVER maintained high accuracy (up to 80.6%), while
untrained individuals and human experts experienced lower accuracy rates (59.4%
and 64.6% respectively). d Additional clinical data improved AUC (0.80) compared

to the standard dataset alone (0.76). e With a 2-min assay, TIMESAVER out-
performed human experts with 15-min assay, achieving an accuracy rate of 80.6%
(compared to 78.1%) (n = 3). f The heat map shows that in the mid-low titer range,
TIMESAVER demonstrated an accuracy rate of 84.6%, surpassing both untrained
individuals (29.2%) and human experts (37.2%). Error bars represent standard
deviation from the mean. TIMESAVER, Time-Efficient Immunoassay with Smart AI-
based Verification; hCG, human chorionic gonadotropin; ROC, receiver operating
character; AUC, area under curve; LFA, lateral flow assay.
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of only 29.2%, while human experts fared slightly better at 37.2%. In
contrast, our algorithmachieved anaccuracy rate of 84.6%. For the low
titer category, the accuracy was even lower, with untrained individuals
at 2.8% and human experts at 5.4%, but our deep learning algorithm
significantly outperformed at 38.5% accuracy. In cases of high and
middle titer concentrations, the TIMESAVER algorithm consistently
provided reliable and accurate data, effectively eliminating the varia-
bility seen in human visual assessments.

Discussion
In diagnostics, the twin goals of achieving high sensitivity and rapid
processing are crucial for POCT. The TIMESAVER system, with its three
core components—object detection, CNN-LSTM networks, and FC
layers—exemplifies its proficiency in delivering results within a notably
short span of 2min. This achievement underscores a range of sig-
nificant practical benefits associated with the TIMESAVER algorithm:

1. Fast assay: We have introduced one of the fastest assays among
commercially available biofluid-based tests (Supplementary Table 1-2).
Our system is capable of delivering results in just 1–2min, rivaling the
accuracy achieved by human experts in a traditional 15-min assay. This
feature ismadepossible by theuseof theTIMESAVER algorithm,which
learns from the initial colorimetric image changes and makes decisive
determinations in these crucial early stages.

2. Universality Across Diverse LFA Models and Targets: The vali-
dation of the TIMESAVER algorithm across various LFA models for
both infectious and non-infectious biomarkers highlights its broad
applicability. Capitalizing on the sequential image methodology, we
envision extending this adaptable algorithm to smartphones. Given
the global population of over 6 billion smartphone users, the fusion of
TIMESAVER with smartphone technology has the potential to revolu-
tionize point-of-care testing (POCT), making it more accessible and
affordable.

3. Time-DomainDecision Framework: At the core of our approach
is an algorithm based on time-domain decisions, specifically designed
for assays dependent on binding kinetics. This encompasses techni-
ques such as surface plasmon resonance (SPR), isothermal titration
calorimetry (ITC), and fluorescence resonance energy transfer (FRET).
Our algorithm’s versatility enables the potential adaptation to a variety
of sensing technologies, including nanowire sensors, field-effect tran-
sistor (FET) sensors, and digital immunoassays, broadening its utility
across diverse biomedical research and clinical environments. Addi-
tionally, we are advancing the integration of this framework with
sophisticated biosensing methods like electrochemical impedance
spectroscopy (EIS) and quartz crystal microbalance (QCM), with the
aim of offering comprehensive analytical capabilities across a wide
range of biomolecular interactions.

4. Implications for Public Health: Strategies for reducing assay
times hold transformative potential, not only in enhancing individual
patient care and treatment but also in bolstering public health. We
have demonstrated the versatility of LFAs in early detection, covering a
spectrum from infectious diseases to non-infectious biomarkers. This
achievement has the potential to significantly impact diagnostics, by
providing healthcare professionals with the agility to make rapid
decisions.

In the continually evolving field of medical diagnostics, the
TIMESAVER algorithm represents a significant advancement in the
realm of rapid and reliable assays. The convergence of speed, accu-
racy, and affordability presents a promising path for the future of
healthcare through AI-based POCT.

Methods
Ethical statements
Samples of individuals diagnosed with COVID-19 were collected at
Seoul St. Mary’s Hospital from April 2021 to May 2022. Approval for
this study was granted by the institutional review board

(KC21TIDI0134K) at Seoul St. Mary’s Hospital, and participants pro-
vided informed consent to be involved in the research study, including
the sharing of individual-level and potentially identifying data.

Infectious disease: COVID-19 antigen
This study used commercially available Lateral Flow Assay (LFA) kits
for COVID-19 antigen detection (Calth Inc., Republic of Korea), strictly
following themanufacturer’s protocol.We introduced a 100 µL sample
into each LFA kit and captured images at 10-s intervals over various
time periods (0.5, 1, 2, 3, and 4min). For detailed data analysis, we
developed a custom LFA reader using LabVIEW v2019 SP1 (National
Instruments Co., USA). A blind test was conducted to compare the
TIMESAVER-AI’s performance with human analysis, involving both
trained experts and untrained individuals. Theymade diagnoses based
on data from the LFA reader, typically at a fixed time point of
around 15min.

For the COVID-19 assay, we used the SARS-CoV-2 virus Nucleo-
capsid protein (FPZ0516, Fapon Biotech) as a standard. Eight different
concentrations were prepared by diluting the protein in the kit’s run-
ning buffer at 1/2-fold increments, from 50 ng/mL to 0.39 ng/mL. We
obtained positive lateral flow assay data, categorized into four col-
orimetric classes (High, Middle, Mid-low, and Low) using these serially
diluted samples. Negative control data were obtained solely from the
kit’s running buffer. The COVID-19 Ag LFA kits were utilized to gen-
erate both positive and negative data from all standard samples.
Classification into five classes (High, Middle, Mid-low, Low, Negative)
was based on the color chart provided by the manufacturers, com-
monly used in LFA production and evaluation. The collected data
included both positive and negative samples, captured as a time series
at 10-s intervals.

Infectious disease: COVID-19 Ag and its universality
Toevaluate the versatility of our deep learningmodel for COVID-19, we
assembled a dataset using data from five distinct LFA models. The
COVID-19 Ag kits incorporated in this study were obtained from five
different manufacturers: Panbio COVID-19 Ag (Abbott, USA), GENEDIA
COVID-19 (GCMS, Republic of Korea), COVID-19 Ag Test (Humasis,
Republic of Korea), COVID-19 Ag (Genbody, Republic of Korea), and
InstaView COVID-19 (SGmedical, Republic of Korea). For generating
time-series data related to COVID-19, we carefully diluted the nucleo-
capsid protein (N-protein) target into eight concentrations using the
running buffers provided in the kits fromeachmanufacturer. Since the
limit of detection (LOD) for N-protein varies amongmanufacturers, we
adjusted the eight sample concentrations based on each kit’s specified
LOD. Our analysis involved categorizing the test line’s colorimetric
readings into four classes (High, Middle, Mid-low, Low). Negative data
were derived solely using the running buffer from each kit. Both
positive and negative data sets were methodically captured as time-
series at 10-s intervals. This diverse dataset allowed us to evaluate the
adaptability and efficacy of our deep learning model across various
COVID-19 Ag kits.

Infectious disease: Influenza A/B
For the influenza A/B tests, we employed commercialized kits: the
influenza A/B test kit (Daewoong Pharmaceutical Co., Republic of
Korea) as LFA kits. We utilized the influenza virus nucleocapsid
protein (RDR-187, Medix Biochemica) as the standard sample. We
prepared eight different concentrations by diluting the sample in the
kit’s running buffer at 1/2-fold increments, ranging from 10 ng/mL to
0.3 ng/mL. Positive data for the lateral flow assay was obtained using
serially diluted samples with varying concentrations prepared in
the running buffer. Negative control data was exclusively acquired
using the running buffer from the kit. The influenza LFA kits were
employed to extract both positive and negative data from the stan-
dard samples.
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Non-infectious biomarkers: Troponin I
For the Troponin I tests, we utilized commercialized kits (Humasis,
Republic of Korea). CNTI recombinant antigen (GRNCTNIN101, Fap-
pon) was employed as a control material and serially diluted using
human serum (H3667, Sigma Aldrich). We prepared samples covering
a broad concentration range, ranging from 0.5 ng/ml to 20ng/ml
(clinically relevant range: >0.4 ng/ml). Negative data were exclusively
derived using the running buffer from each kit. Both positive and
negative datasets were systematically captured as time-series at 10-s
intervals.

Non-infectious biomarkers: hCG
For the hCG tests, we utilized commercially available AllCheck hCG
card kits (Calth Inc., Republic of Korea) as LFA kits. Early detection of
hCG, particularly in the first trimester of pregnancy, is crucial, espe-
cially in emergency situations where pregnancy might not be imme-
diately evident. Therefore, our aimwas to determine the effectiveness
of the hCG test in identifying early-stage pregnancy.

In our hCG experiments, we used hCG standard control material
(Calth Inc., Republic of Korea), available in three different concentra-
tions: high (250mIU/mL), low (25mIU/mL), and negative (0mIU/mL).
To cover a broad concentration spectrum, we prepared eight distinct
hCG levels through serial dilution. This included three concentrations
representing early pregnancy (within ~3 weeks) ranging from
0.375mIU/mL to 15mIU/mL, and three additional concentrations for
the subsequent early stages of pregnancy (6-8 weeks) from 50mIU/mL
to 200mIU/mL. Overall, we obtained data for eight different con-
centrations from the positive hCG samples. Both positive and negative
data were gathered using the AllCheck hCG kit. For hCG tests, positive
and negative data sets were collected as time series at 10-s intervals
over 15min.

For the 1-min hCG experiments, we utilized hCG standard control
material (international standard 5th, NIBSC 07-364). To obtain com-
prehensive data covering various concentrations, we prepared 1-min
hCG samples at four different levels using 1X tris-buffered saline (TBS)
(1% bovine serum albumin) running buffer. The positive range of 1-min
hCG samples prepared at four different concentrations is 100mIU,
50mIU, 25mIU, and 15mIU, while negative data were generated by
introducing only running buffer. All positive and negative 1-min hCG
data were obtained using the Signal Q Pregnancy Test Kit (Daewoong
Pharmaceutical Co., Republic of Korea). This diagnostic LFA device
provides results in 5min, allowing for a relatively fast assay speed.
Therefore, we collected time-series data at 2-s intervals for 1 min.

Clinical data of COVID-19 blind test
For additional training data,we formed a dataset using clinical data. To
acquire COVID-19 clinical data, SARS-CoV-2 virus clinical samples were
collected from two different specimens: NP/OP (Nasopharyngeal and
Oropharyngeal) swabs and saliva, using COVID-19 Ag LFA kits (Calth
Inc., Republic of Korea). Positive clinical samples were obtained from
NP/OP swabs of 40patients and saliva samples of 12 patients, eachwith
varying titers. Conversely, negative clinical samples were gathered
from 20 individuals using NP/OP swabs and from 12 individuals using
saliva samples as part of the healthy control group. All positive clinical
samples were classified into four classes (High/Middle/Mid-low/Low)
based on the colorimetric chart criteria of the LFA test line. Both
positive and negative data were collected as time-series data at 10-s
intervals over a 15-min duration. This clinical dataset was then incor-
porated into the training process to enhance the performance and
accuracy of the TIMESAVER algorithm.

Blind test of TIMESAVER AI and humans
In the COVID-19 Ag blind test, we aimed to compare the predictive
performance of the TIMESAVER AI model with that of both 10
untrained individuals and 10 experts skilled in interpreting LFA results,

utilizing clinical data. Based on the aforementioned clinical data, we
conducted a blind test involving 40 NP/OP (Nasopharyngeal and
Oropharyngeal) swab samples, which were subsequently categorized
into four classes: High titer (n = 8), Middle titer (n = 12), Mid-low titer
(n = 11), and Low titer (n = 9). Additionally, 12 saliva samples were
classified as follows: High titer (n = 2), Middle titer (n = 4),Mid-low titer
(n = 2), and Low titer (n = 4). Using COVID-19 Ag LFA kits from Calth
Inc., Republic of Korea, we conducted (n = 3) assays for each clinical
sample, resulting in positive samples being classified into four classes,
while negative samples provided time-series data from the test lines.
Subsequently, the test line images at the 15-min mark were compiled
into a series of blind test questions and presented to both the 10
untrained individuals and the 10 human experts. In total, the 20 par-
ticipants underwent 180 blind tests each for the NP/OP samples and an
additional 72 blind tests for the saliva samples.

Data preparation for deep learningmodels: training, validation,
and testing
We organized three distinct datasets: training, validation, and testing,
crucial for optimizing and assessing the deep learning model’s per-
formance. The training dataset was employed to refine the model, the
validation dataset served to prevent overfitting, and the test dataset
was instrumental in the final evaluation. Before training began, a ran-
dom 10% of the training dataset was allocated as the validation dataset
to ensure an unbiased assessment.

In order to effectively show TIMESAVER’s capacity to expedite
the assay process, it was imperative to capture the temporal evolu-
tion of images. Consequently, we prepared a training set of 694 data
and a test set of 252 data, each encompassing 12 image frames for
COVID-19 test. For the testing phase, we utilized a set of clinical
samples, consisting of 52 positive and 32 negative samples. For the
universality test of different LFA models, we collected additional
time-series datasets from the COVID-19 Ag LFA tests of the five
manufacturers, resulting in 894 training data and 600 test data for
each manufacturer. In the Influenza A/B test, we employed 642
datasets for training and allocated 192 datasets for testing. The
Troponin I test utilized 618 datasets for training and 96 for testing.
For the hCG test (expert), 624 training datasets were used, accom-
panied by 60 datasets for the test.

We developed a 1-min assay, as illustrated in Fig. 4g–i, capturing
images every 2 s for 1min, and then selecting 12 representative images
from the 36- to 60-s timeframe. All-time series data sets were collected
under consistent lighting conditions. This controlled setting was cru-
cial for accurately capturing essential information regarding fluid
dynamics, distribution characteristics, and the temporal color varia-
tions in both test and control lines. The trivalent LFA assays were
performed using a custom-designed reader, with data acquisition
extending over a 5-min span at 2-s intervals. Following this, our spe-
cially devised algorithm was applied to isolate and analyze the
test lines.

As discussed in our previous work39, we have extensively addres-
sed the challenges related to invalid test results and their decision-
making processes. For this study, we used single images of the control
line captured at either 1 or 2 min. The control line region was cropped
to assist in determining the validity of the test strip.

Deep learning models
The architecture of our model is structured into two stages: image
feature extraction and time-series analysis. This bifurcation is neces-
sary due to the use of different foundational models: Convolutional
NeuralNetworks (CNN) for extracting salient features from images and
Recurrent Neural Networks (RNN) for analyzing time-series data.
Specifically, for image feature extraction, we utilize the renowned
ResNet-50 architecture. This allows for the encoding of high-
dimensional images into lower-dimensional features while retaining

Article https://doi.org/10.1038/s41467-024-46069-2

Nature Communications |         (2024) 15:1695 10



their spatial attributes, which are crucial for the subsequent
analytical stage.

To effectively train ResNet-50, we employed pretrained weights
available in PyTorch, which were then fine-tuned to fit our unique
dataset. These weights were originally trained on the large-scale IMA-
GENET1k dataset, designed for classifying images into 1000 different
categories. Leveraging a pre-trained model and fine-tuning it for our
specific needs enables us to develop a robust feature extractor, even
with a relatively smaller dataset at our disposal.

For the time-series analysis component, we crafted a Recurrent
Neural Network (RNN) specifically for LFA kit diagnostics, based on the
Long Short-Term Memory (LSTM) architecture. This model outputs
real-number predictions for concentration estimation. In our model,
positive and negative samples are numerically ranked in descending
order according to their concentration, with higher concentrations
assigned larger numbers.

To predict concentrations accurately, we implemented the Mean
Absolute Error (MAE) loss function (Eq. 1). While both Mean Squared
Error (MSE) and MAE are common choices for regression loss func-
tions, weopted forMAE due to its robustness, particularly inmanaging
outliers. This approach ensures that our model is not only effective in
making accurate predictions but also resilient in handling diverse data
variations.

For the task of classifying samples as positive or negative, our
method employs a threshold to differentiate between the two cate-
gories. Samples surpassing the set threshold are identified as positive,
and those below it are classified as negative. For instances where the
data is missing concentration information or the target differs from
existing datasets, necessitating additional learning, we employ extra
methodologies. Initially, we train the model using existing data. Then,
we load the pretrained weights and modify the final fully connected
(FC) layer’s output dimension from1 to 2, initializing theweights of this
last layer. After this modification, we fine-tune the model using the
Cross Entropy (CE) loss function (Eq. 2). This strategy significantly
reduces learning time for non-standarddata formats and enhances the
model’s versatility to handle a broader range of scenarios.

MAE =
1
N

XN

i

yi � ŷi
�� �� ð1Þ

CE = �
X2

i = 1

yi � log yi ð2Þ

Statistics and reproducibility
The error bars presented in the figures represent the mean± SD. We
repeated all the experiments at least thrice per point and analyzed the
data using Microsoft Exel, Prism v 8.0. Biorender, Adobe Photoshop v
2020, and Adobe Illustrator v 2020 software were used for graphical
analyses. No statistical method was used to predetermine sample size.
No data were intentionally excluded from the analysis.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. Example images used in this
study are available at https://zenodo.org/records/1058223246. Source
data are provided with this paper.

Code availability
The overall source codes used in this study is available at: https://
github.com/Artinto/Rapid_Deep_Learning-Assisted_Predictive_

Diagnostics_for_Point-of-Care_Testing which is archived in https://
zenodo.org/records/1058233947.
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