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QTL mapping of human retina DNA
methylation identifies 87 gene-epigenome
interactions in age-related macular
degeneration

Jayshree Advani1, Puja A. Mehta 2,3,4, Andrew R. Hamel 2,3,4,
Sudeep Mehrotra2,3,4, Christina Kiel 5, Tobias Strunz5, Ximena Corso-Díaz1,
Madeline Kwicklis1, Freekje van Asten1, Rinki Ratnapriya1, Emily Y. Chew 6,
Dena G. Hernandez7, Sandra R. Montezuma8, Deborah A. Ferrington8,10,
Bernhard H. F. Weber 5,9, Ayellet V. Segrè2,3,4 & Anand Swaroop 1

DNAmethylation provides a crucial epigenetic mark linking genetic variations
to environmental influence. We have analyzed array-based DNA methylation
profiles of 160 human retinas with co-measured RNA-seq and >8 million
genetic variants, uncovering sites of genetic regulation in cis (37,453 methy-
lation quantitative trait loci and 12,505 expression quantitative trait loci) and
13,747 DNA methylation loci affecting gene expression, with over one-third
specific to the retina. Methylation and expression quantitative trait loci show
non-random distribution and enrichment of biological processes related to
synapse, mitochondria, and catabolism. Summary data-based Mendelian ran-
domization and colocalization analyses identify 87 target genes where
methylation and gene-expression changes likely mediate the genotype effect
on age-related macular degeneration. Integrated pathway analysis reveals
epigenetic regulation of immune response and metabolism including the
glutathione pathway and glycolysis. Our study thus defines key roles of genetic
variations driving methylation changes, prioritizes epigenetic control of gene
expression, and suggests frameworks for regulation of macular degeneration
pathology by genotype–environment interaction in retina.

Common healthy and disease traits in humans exhibit extensive
variability, are largely multifactorial, and dictated by a complex inter-
play between genetic architecture and widely varying environments1.
Genomic variations can impact phenotypes through genetic and epi-
genetic control of gene expression programs. Large genome-wide
association studies (GWAS) have been effective in identifying thou-
sands of genetic variants that are linked to common traits (https://
www.ebi.ac.uk/gwas/); however, a vast majority of the associated var-
iations are present in non-coding regions of the genome, likely

impacting gene regulation and consequently disease pathogenesis2–4.
The GTEx project has provided extensive descriptions of expression
quantitative trait loci (eQTLs) for many human tissues5,6. Nonetheless,
an array of dynamic environmental factors, including diet and socio-
economic status, can complicate the interpretationof GWASdatasets7.
Furthermore, many common traits are also influenced by advanced
age, andgenetic inheritance andenvironment are critical determinants
of the aging process itself8,9. GWAS success has so far been limited in
unraveling the complexities of gene-environment relationships and
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the contribution of individual genetic variations to multifactorial
phenotypes.

DNAmethylation (DNAm) is a key dynamic epigeneticmark that is
established during development and largely preserved in differ-
entiated cell types to maintain chromatin organization and genetic
controls10–12. DNAm is an active contributor to gene regulation, and
tissue-specific aberrations in DNAm landscape are associated with
environmental factors (such as diet and exercise), aging as well as age-
related diseases11–14. Non-coding variants, both in cis and trans, can
exert strong influence on DNAm, alter chromatin topology, and
modulate the expression of target genes15–18. Integrated analyses of
genetic variants affecting DNAm (mQTLs), association between DNAm
sites and gene expression (eQTMs), and GWAS of complex traits have
only recently begun to elucidate the complex relationships among
multiple disease-causing factors19–21. However, no such information
currently exists for eye or retinal tissues and traits.

Age-related macular degeneration (AMD) is a multifactorial pro-
gressive neurodegenerative disease, which is characterized by loss of
central vision and is the leading cause of irreversible vision impairment
and blindness in older individuals worldwide22. Patients with AMD
exhibit lipid-rich extracellular deposits (drusen), atrophy of the retinal
pigment epithelium (RPE), and loss of photoreceptors primarily in the
central macular region of the retina. AMD pathology begins in the
macula; however, it is a pan-retinal disease with early lesions detected
in the peripheral retina as well23–25. Advanced age is arguably a major
critical component in addition to genetic susceptibility and environ-
mental factors (such as smoking and diet), which together determine
etiology and varying phenotypes of AMD22. A large AMD GWAS had
previously identified association of 52 independent genetic variants at
34 loci26, which have been expanded to 46 loci in a larger GWASmeta-
analysis27 and 63 loci by a cross-ancestry GWAS28. Causal genes and
functionally relevant variants at most AMD-associated loci are still
unrecognized, though a few key biological pathways have begun to
emerge29. Ultra-rare variants in case-control or family-based genetic
studies can potentially point to causal genes26,30, as exemplified by the
identification of complement 8A and C8B31. Furthermore, like other
complex traits, a majority of AMD-associated variants are present in
non-coding regions that could regulate expression and epigenetic
landscape of distal genes. Integrated statistical analyses of GWAS with
gene expression quantitative trait loci (eQTLs) in retina and GTEx tis-
sues have helped in prioritizing potential target genes for AMD32–35.
High-resolution mapping of human retinal genome topology further
helps elucidate chromatin looping patterns of variants in distal cis-
regulatory elements, such as enhancers, and refines candidate disease-
causing genes36. Despite innovative advances, we have limited under-
standing of underlying mechanisms that associate genetic regulation
with epigenomic shifts linked to aging and environmental factors in
AMD pathogenesis.

QTLmappingofDNAmand its integrationwithGWAS and eQTLs
in the human retina can potentially uncover epigenomic regulation
of disease pathogenesis, as demonstrated for multiple other
tissues20,21,37. We note that alterations in DNAm are also associated
with aging in the retina38,39. Here, we generated genome-wide DNAm
profiles of 160 human retina samples to identify associations
between genetic, epigenetic, and transcriptional variation relevant to
retinal homeostasis and complex disease traits, such as AMD. We
report mapping of mQTLs and eQTMs and an integrative analysis of
mQTLs, eQTLs, and AMD-GWAS variants. Using Summary data-based
Mendelian Randomization (SMR), multiple colocalization methods,
and Hi-C data, we demonstrate complex associations among genetic
variants, DNAm, and gene expression and identify 87 unique genes
affected by DNAm that may contribute to AMD risk. Our studies
provide insights into molecular mechanisms underlying epigenomic
regulation of AMD and suggest aging and environment-responsive
pathways.

Results
Overview of the analysis workflow
Wedesigned an integrative analysis workflowofmultiple human retina
omics datasets, incorporating DNAm, gene expression, imputed gen-
otypes, AMD-GWAS, and Hi-C data (Fig. 1a). We carried out DNAm
profiling of postmortem retinas (n = 160), with an equal distribution of
males and females and mean age of 73 years, using the Human
MethylationEPIC BeadChip (Supplementary Data 1). After quality
control (QC) and covariate analysis, including adjusting for AMDgrade
(see Methods) (Supplementary Fig. 1a–d), DNAm data from 152 retina
samples was integrated with the previously published corresponding
genotype and RNA-seq data32,34 for cis-mQTLmapping, and association
of DNAm of CpG sites with gene expression (cis-eQTMs). We also
performed concurrent cis-eQTL analysis from 403 retinas with geno-
type and RNA-seq data from the same study32 correcting for covariates
(seeMethods). To provide a comprehensive set of causal relationships
between cis-mQTLs and cis-eQTLs, and between m/eQTLs and AMD
GWAS signals, we pursued two complementary approaches: (i) SMR to
distinguish pleiotropic or causal association from linkage of genetic
associations with DNAm, gene expression and AMD19,40,41, and (ii)
colocalization analyses that test whether co-occurring association
signals are tagging the same causal variant/haplotype, including
eCAVIAR42 (assuming two causal variants), coloc43 (assuming a single
causal variant), and multiple-trait-coloc (moloc; assuming up to four
causal variants)44. We also integrated adult retina Hi-C data including
chromatin loops, and cis-regulatory elements (CREs) and super-
enhancers (SEs)36 inferred from chromatin histone marks with
mQTLs, eQTLs, eQTMs, and SMR or moloc associations, to identify
high confidence candidate AMD and QTL target genes through phy-
sical linking between variants, CpG sites and genes.

The landscape of retina mQTLs and eQTLs
To characterize genetic regulation of DNAm in human retina, we per-
formed cis-mQTL (n = 152) analysis on all genotyped and imputed
variants in cis (±1Mb) of 749,158 CpG sites that passed stringent QC
criteria (see Methods) using QTLtools45,46. We controlled for genetic
population structure with top 10 genotype principal components
(PCs), sex, age, collection site and other hidden confounding effects
with inferred surrogate variables (SVs), and AMD grade even though
no significant differential CpG methylation was observed between
AMD grades (see Methods). We identified 2,817,314 significant variant-
CpG cis-mQTLs (False discovery rate (FDR) ≤0.05) for 36,906 CpG
sites that map to 10,000 mGenes (Methods, and Supplementary
Data 2). We detected 37,453 independent mQTL signals using condi-
tional analysis (Supplementary Fig. 2a), with 98.5% having a single
independent signal per CpG site (Supplementary Data 2, Supplemen-
tary Fig. 2c). Only 564 (1.5%) CpG sites had two independent mQTL
signals. Concurrent analysis of all variants within ±1Mbof 17,382 genes
expressed in the retina (n = 403, Methods) revealed 2,023,293 sig-
nificant variant-gene cis-eQTLs (FDR ≤0.05) for 9395 eGenes (eQTL
target genes); of these, 12,505 are independent eQTLs (Supplementary
Fig. 2b). A large fraction of eGenes (26.8%) showed more than one
independent genetic effect in contrast to the CpG sites, though more
independent signals for CpG methylation might be detected with a
larger sample size (Supplementary Data 3, Supplementary Fig. 2c).
Almost 95% of the mQTL variants are clustered near CpGs (median
distance of 11.4 kb) (Supplementary Fig. 2d), as recently identified for
other tissues21, whereas 95% of eQTL variants clustered near the tran-
scriptional start site (TSS) of the corresponding eGene (median dis-
tance of 5.5 kb) (Supplementary Fig. 2e). Amajority of CpGs (including
all tested and those with significant mQTLs) are present within 200 bp
or 1500 bp of TSSs, 5’ UTR, gene body and intergenic regions. In
addition, CpGs with significant mQTLs were relatively depleted from
exon boundary and 3’ UTR regions when compared to all
CpGs (Fig. 1b).
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Genomic features and biological processes enriched in retina
mQTLs compared to eQTLs
We examined the enrichment of mQTL variants (FDR ≤0.05) in func-
tional genomic elements and compared the results to eQTL variants
using TORUS47,48 (see Methods). Retina mQTLs were significantly
enriched in both coding regions and transcriptional regulatory

elements, with the strongest enrichment detected in frameshift var-
iants, followed by open chromatin regions, transcription factor (TF)
binding sites, enhancers, synonymous variants, and 3’ and 5’ UTR
(Fig. 1c). Though highly enriched among frameshift variants, this class
ofmQTLs accounted for only 214 genetic variants associated with CpG
methylation (mVariants) (Supplementary Fig. 2f, right panel).
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Synonymous variants, enhancers, and open chromatin regions
accounted for the largest number of enriched mQTLs (thousands of
mVariants; Supplementary Fig. 2f, right panel). In contrast, eQTLswere
strongly enriched among variants that affect splicing, followed by
frameshift variants, 5’ UTR, TF binding sites, 3’ UTR, and regulatory
regions (Supplementary Fig. 2f, left panel). Though not significantly
enriched in open chromatin regions and enhancers (lower bound 95%
confidence interval <0), the fold-enrichment of eQTLs in these func-
tional categories was higher than that of mQTLs.

We next examined the pathways that are enriched for genes
potentially regulated by mQTLs (mGenes) in the retina using gene
ontology (GO) enrichment analysis (see Methods). The mGenes are
enriched (FDR ≤0.05) in a range of biological processes, including
those related to cell adhesion, actin filament organization, synaptic
signaling, and peptide hormone secretion (Supplementary Fig. 3a, and
Supplementary Data 4). Examples of genes driving these GO enrich-
ments include PARK7, a mitochondrial gene involved in synaptic sig-
naling and a potential target of 5 mQTLs (Fig. 1d), andMTOR involved
in the actin filament-based process, regulation of GTPase activity,
control of cell growth and proliferation and a potential target of 2
mQTLs (Supplementary Fig. 3b and Supplementary Data 4). In con-
trast, target genes of retina eQTLs (eGenes) are enriched in cellular
components (FDR ≤0.05), such as extracellular matrix and endo-
plasmic reticulum lumen (Supplementary Fig. 3c, and Supplementary
Data 5). Thus, genetic effects on CpGmethylation in the retina appear
to be driven by distinct molecular mechanisms and biological pro-
cesses compared to the genetic effects on gene expression.

Tissue-specificity of retina mQTLs
To evaluate the tissue-specificity of DNAm and mQTLs, we compared
36,906 methylated CpGs with significant mQTLs and 37,453 indepen-
dent mQTLs in the retina to those identified in five different tissues
with available mQTLs: adipose (n = 119)49, blood (n = 614)50, endome-
trium (n = 66)51, brain frontal cortex (n = 526)52, and skeletal muscle
(n = 282)20. We detected the highest representation of retina methy-
lated CpGs in the frontal cortex (43%), followed by skeletal muscle
(30%), blood (24%), endometrium (24%), and adipose (10%) (Fig. 1e).
Our results reflect the shared neuronal nature of frontal cortex and
retina. The retina mQTLs also show the highest overlap (22–30%) with
mQTLs in skeletal muscle and frontal cortex (Fig. 1f). Interestingly,
13,458mQTLs and 5895 CpGs are unique to the retina (Supplementary
Data 2, 6). Retina-specific methylated CpGs are similarly distributed
within and around the gene body, and least represented in exon
boundaries and 3’ UTR, as with all the methylated CpGs identified in
the retina (Supplementary Fig. 3d). Retina-specific mQTLs are also
enriched in similar functional genomic elements as all retina mQTLs,
aside for showing significantly stronger enrichment in splice donor
variants compared to all retina mQTLs, as in case of retina eQTLs
(Fig. 1c). Thus, retina-specific mQTLs may be enriched for genetic
effects on alternative isoform expression compared to all
retina mQTLs. Gene ontology analysis of the retina-specific mGenes
reveals an enrichment (FDR ≤0.05) in unique biological processes that

include synaptogenesis and photoreceptor cell maintenance (Supple-
mentary Fig. 3e, and Supplementary Data 7).

Identification of eQTMs in the human retina
We evaluated the association between DNAm of CpG sites in cis
(±1Mb) and genes expressed in the retina, considering 732,506 CpG
sites and 18,263 genes. Top 10 genotype PCs, known covariates (e.g.,
AMD grade), and SVs capturing hidden covariates of expression, were
included in the linear regressionmodel (see Methods). We identified a
total of 13,747 significant cis-eQTMs (FDR ≤0.05) in the retina, com-
prised of 10,585 unique CpGs (1.4% of tested CpGs) regulating 13,747
unique genes (75.2% of total genes); of which, 11,248 (82%) are protein-
coding genes (Supplementary Data 8). Of the 13,747 eQTMs, 770 CpGs
and 7292 genes showed a significant mQTL and eQTL, respectively. All
eQTMs were independent signals, and none had a secondary signal
with our current sample size. Most CpGs with significant eQTMs resi-
dedproximal to the target gene’s TSSwith amediandistanceof 1.07 kb
(Fig. 2a) and are most enriched (81%) within 1500bp and 200bp of
TSSs,first exon, 5’UTR, and the genebody (Fig. 2b), similar to theCpGs
with significant mQTLs. The eQTM target genes are enriched (FDR <
0.05) in mitochondrial and translation-related processes (Supple-
mentary Fig. 4a, and Supplementary Data 9).

We further examined the direction of effect of CpG methylation
on gene expression. A higher fraction of CpGs showed a canonical
negative correlation with their target gene expression (54.5%) com-
pared to a positive correlation (45.5%), as observed in other
tissues20,21,37 (Supplementary Data 8). For example, the CpG
cg24846343 located in a gene body is negatively correlated with
expression levels of Glutathione S-transferase, GSTT2B (Fig. 2c), and
CpGs cg21653793 and cg10832655 located in a 5’ UTR region are
negatively correlated with the expression of cholesterol transporter
ABCA1 and the neuron derived neurotrophic factorNDNF, respectively
(Fig. 2d, and Supplementary Fig. 4b). On the contrary, CpG
cg24307499 located in a gene body is positively correlated with the
expression of NLRP2, an immune response regulator, and CpG
cg04718426 located within 200 bp of the TSS of the zinc finger pro-
tein, ZNF232 is positively correlated with the expression of ZNF232
(Fig. 2e and Supplementary Fig. 4c). We took chromatin accessibility
(ATAC-Seq) data from our previously published study on adult human
retina36 that recorded open chromatin regions observed in at least 3
out of the 5 samples. We examined chromatin accessibility footprints
for 13,747 significant eQTMs of which 6267 target genes (45%) are
positively correlated with CpG methylation, and 7480 genes (55%) are
negatively correlated with CpG methylation. Of these, we identified
5057 genes (80.6% of the target genes) of positively correlated eQTMs
and 5974 genes (79.8% of the target genes) of negatively correlated
eQTMs overlapping an open chromatin region in the retina.

Next, we inspected the distribution of number (fraction) of
eQTMs with their target and all known genes across different chro-
mosomes and uncovered a greater relative number of eQTMs on a
few smaller chromosomes, e.g., chromosome 16, 17, and 19 (Fig. 2f).
While on average eQTMs regulate a single gene, we noticed that 0.2%

Fig. 1 | Graphic summary of datasets generated, integrated and analyses per-
formed in the present study and robust identification of retina mQTLs.
a Schematic representation of our genetic, epigenetic, and transcriptomic datasets
andmethods used in the identification and integration of methylation quantitative
trait loci (cis-mQTL), expression quantitative trait loci (cis-eQTL) and expression
quantitative trait methylation (cis-eQTM) with AMD GWAS and retina Hi-C chro-
matin map. b Number of CpG sites tested (blue) and significant (grey) in various
genomic regions inmQTL analysis. cQTL enrichment in functional annotations for
all retina (red) or retina-specific (orange) cis-mQTLs identified from n= 152 biolo-
gically independent samples and all retina cis-eQTLs identified from n = 403 bio-
logically independent samples (blue). Points (centre) refer to m/eQTL fold-
enrichment estimates on log2 scale with 95% confidence intervals (lines), shown in

descending order based on the retina mQTL fold-enrichment across annotations
with >550 variants per QTL type. d LocusZoom plot showing the retina mQTL
association, −log10(P value) for the topmQTL signal with CpG (cg08027640) with P
value = 4.39 × 10−19 for PARK7 gene. The diamond indicates the top mVariant
(chr1:7965215:C:T; rs7517357) for the independent cg08027640 mQTL signal. The
color of the points is determined by their linkage disequilibrium (LD) with respect
to the lead mVariant in purple. The bottom plot shows −log10(P values) of the
variant association with five different CpGs in PARK7 gene region from mQTL
results. The grey and blue diamond’s represent −log10(P values) of the lead mVar-
iants for four CpGs and cg08027640, respectively. e Proportion of retina CpGswith
significant mQTLs that are also significant mQTLs across different tissues. f Pro-
portion of retina mQTLs that are also significant mQTLs across different tissues.
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of CpGs regulated more than 10 genes in the retina and that a
majority of these are on chromosomes 16 and 19 (Fig. 2g). Gene
ontology analysis of these genes revealed an enrichment (FDR ≤
0.05) of catabolic processes, including autophagic mechanisms and
proteasomal protein degradation (Supplementary Fig. 4d and Sup-
plementary Data 10). The CpGs that regulate more than 10 genes and

thereby have greater pleiotropic effects are clustered on p and q
arms of both chromosomes 16 and 19 (Fig. 2g). Genes on chromo-
some 16 are enriched in regulation of telomere maintenance (Sup-
plementary Fig. 4e and Supplementary Data 11) and on chromosome
19 in negative regulation of transcription by RNA polymerase II, RNA
splicing via transesterification reactions, and positive regulation of
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cellular protein catabolic process (Supplementary Fig. 4f and Sup-
plementary Data 12).

Causal or pleiotropic relationships between genetic regulation
of DNAm and gene expression
Variants that regulate CpG methylation (mQTLs) may in turn affect
gene expression, and variants that regulate gene expression (eQTLs)

may influence CpG methylation; however, the extent to which these
molecular mechanisms occur in the retina is not clear. We thus used
Summary-data-based Mendelian Randomization (SMR)40 to examine
whether mQTLs underlie the causal mechanism or share the same
causal variant (pleiotropy) with eQTLs in the retina and vice versa
(Fig. 3a). We performed SMR analysis with retina eQTL and mQTL
summary statistics considering DNAm as the exposure and gene

Fig. 2 | Characterization and distribution of retina eQTMs. a Distribution of the
distance between the CpG and the transcription start site (TSS) of the respective
gene is plotted against the number of eQTMs. b Combination chart representing
the number of CpG sites tested (pink) and significant (yellow) in various genomic
regions in eQTM analysis. c, d, e DNAm levels are presented on the X-axis and the
normalized gene expression levels are shown on the Y-axis. Pearson’s correlation
coefficient (R) was calculated between methylation and gene expression. c eQTM
for CpG cg24846343 located in gene body and GSTT2B on chromosome 22 with

R = −0.65, p < 2.2 × 10−16. d eQTM for CpG cg21653793 located in 5’UTR and ABCA1
on chromosome 9 with R = −0.48, p = 3.9 × 10−10. e eQTM for CpG cg24307499
located in gene body and NLRP2 on chromosome 19 with R =0.7, p < 2.2 × 10−16.
f Distribution of number of eQTMs on different chromosomes and eQTM fraction
(red points) relative to the total number of genes per chromosome. g Top panel:
Number of CpGs that regulate more than 10 eQTMs and are distributed on various
chromosomes. Bottom panel: Cluster of CpGs on chromosomes 16 and 19 on arm
p and q.
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Fig. 3 | Associations between retina DNA methylation and gene expression
through genotypes. a Schematic of bidirectional integrative analysis that inte-
grates summary-level data from independent GWAS with data from retina mQTL
and eQTL. bHeterogeneity in dependent instruments (HEIDI)model to distinguish
pleiotropy from linkage for an observed association between DNAm and gene
expression through genotypes. c Manhattan plot of SMR tests for association
between gene expression and DNAm (E2M_SMR). Shown on the y axis are the
−log10(P value) from SMR tests. The red horizontal lines represent the genome-
wide significance level (SMR P value = 9.29 × 10−7). d Manhattan plot of SMR tests
for association between DNAm and gene expression (M2E_SMR). Shown on the y
axis is the −log10(P value) from SMR tests. The red horizontal lines represent the
genome-wide significance level (SMR P value = 9.38 × 10−7). e Venn-diagram
representing common and unique genes identified in E2M_SMR and M2E_SMR
associations and bar graph representing the enriched pathways identified in the

pathway analysis of common genes at FDR < 0.05. The y axis shows the
−log10(Empirical P value) from GeneEnrich. f Results of variants and SMR associa-
tions across DNAm and gene expression (M2E_SMR) in the GSTM1 locus on chro-
mosome 1. The top plot shows −log10(SMR P values) of SNPs from the SMR analysis
of DNAm and gene expression (M2E_SMR). The blue diamonds represent
−log10(SMR P value) from SMR tests for associations of DNAm and GSTM1
expressionwith SMRP value = 4.6 × 10−11. The secondplot shows−log10(P values) of
the SNP association for DNAm probe cg24506221 from the mQTL data. The third
plot shows −log10(P values) of the SNP associations for gene expression of GSTM1
from the eQTL data. g eQTM for CpG cg24506221 located in TSS200 region and
GSTM1 on chromosome 1. DNAm levels of cg24506221 are presented on the X-axis
and the normalized gene expression levels are shown on the Y-axis. Pearson’s
correlation coefficient was calculated between methylation and gene expression
with R = −0.74, p < 2.2 × 10−16.
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expression as the outcome (represented as M2E_SMR) or gene
expression as the exposure andDNAmas the outcome (represented as
E2M_SMR). We further applied a heterogeneity in dependent instru-
ments (HEIDI) test to differentiate a causal or pleiotropicmodel from a
linkage model (Fig. 3b). In the E2M_SMR analysis, we identified 7869
associations (SMR P value < 9.30 × 10−7 after Bonferroni correction)
(Supplementary Data 13); of these, 5805 associations passed the link-
age test (HEIDI P value > 0.05), corresponding to 2256 eQTLs, 5612
mQTLs and 1983 genes (Fig. 3c). In the M2E_SMR analysis, 9307 asso-
ciations (SMR P value < 9.38 × 10−7 after Bonferroni correction) (Sup-
plementary Data 14) were evident, of which 6592 associations passed
the linkage test (HEIDI P value > 0.05) corresponding to 5175 mQTLs,
5012 eQTLs and 2101 genes (Fig. 3d; 51% of the M2E_SMR QTL effect
sizes were negatively correlated and 49% positively correlated). Of the
6592 M2E_SMR associations, 232 associations (3.5%) corresponding to
232 genes were also identified as significant eQTMs, of which 176
(75.8%) eQTMs showed negative correlation and 56 (24.1%) eQTMs
revealed positive correlation. We detected 554 common associations
between E2M_SMRandM2E_SMR (Supplementary Fig. 5a), proposing a
feedback mechanism between DNAm and gene expression regulation
for a minority of the 513 mQTLs (1.3%) and 292 eQTLs (2.3%). A larger
number of significant M2E_SMR associations compared to E2M_SMR
suggests that the genetic effect of DNAmon gene expression is amore
predominant mechanism than the genetic effect of gene expression
on DNAm.

We further compared the genes identified in both E2M_SMR and
M2E_SMR analysis and discerned 1447 common genes that were
common out of 1983 E2M_SMR and 2101 M2E_SMR genes. Notably, ten
common genes were enriched (FDR < 0.05) in the glutathione meta-
bolismpathway (Fig. 3e and Supplementary Fig. 5b). The E2M_SMRand
M2E_SMR shared genes were also enriched in immune related pro-
cesses (such as antigen processing and presentation and autoimmune
diseases) andmetabolicprocesses (suchasglycolysis-gluconeogenesis
and metabolism of xenobiotics by cytochrome p450) (Fig. 3e and
SupplementaryData 15). For example, for glutathione S-transferasemu
1, GSTM1, we detected an association in E2M_SMR with CpG
cg24506221 and SNP rs36209093 (SMR P value < 8.53 × 10−13 and HEIDI
P value > 0.05) and another association in M2E_SMR with SNP
rs148490733 and CpG cg24506221 (SMR P value < 4.60 × 10−11 and
HEIDI P value > 0.05) (Fig. 3f). This causal relationship was further
supported by the eQTM analysis, where the CpG cg24506221 located
within 200bp of the TSS of GSTM1 was negatively correlated with
GSTM1 expression levels (Fig. 3g).

To provide additional support for a shared causal variant between
retina mQTLs and eQTLs that co-occur along the genome, we applied
Bayesian colocalization, using coloc43, to all significant eQTL and/or
mQTL (EM) variants (Supplementary Fig. 5c). Using a stringent pos-
terior probability of association (PPA) ≥ 0.8, we determined a sig-
nificant colocalization for 9417 variants and 2423 genes
(Supplementary Data 16). Target genes of the colocalizing EM signals
were enriched in purine and pyrimidine metabolism pathways (FDR <
0.05) (Supplementary Data 17 and Supplementary Fig. 5d). We further
compared EM results from coloc with E2M_SMR and recognized 343
associations in common corresponding to 177 genes (Supplemen-
tary Fig. 5e).

SMR and colocalization of retina mQTLs and eQTLs prioritize
causal genes for AMD loci
To test for causal or pleiotropic (hereafter referred to as pleiotropic)
relationships between DNAm and AMD risk, we applied SMR to all
significant independent retina mQTLs and AMD GWAS summary
statistics26 (Fig. 4a). We identified 28 significant associations between
mQTLs and AMD at 7 GWAS loci (SMR P value < 5.68 × 10−7 after Bon-
ferroni correction) (Supplementary Data 18); of which, 5 associations
at 3 loci (KMT2E/SRPK2, PILRB/PILRA and ARMS2/HTRA1) passed the

linkage test (HEIDI P value > 0.05) and are thus likely to be pleiotropic
(Fig. 4b). Similarly, we used our retina eQTLs to test for pleiotropic
associations between gene expression and AMD GWAS and identified
14 associations at 7 loci (SMR P value < 6.41 × 10−6 after Bonferroni
correction) (Supplementary Data 19); of which, 8 associations at 5 loci
(CFI, C2/CFB/SKIV2L, PILRB/PILRA, RDH5/CD63 and TMEM97/VTN) pas-
sed the linkage test (HEIDI P value > 0.05) (Fig. 4c). In our previously
published eQTL study, we identified the same target genes for 4 of the
loci, including CFI, PILRB/PILRA, RDH5/CD63 and TMEM97/VTN, based
on colocalization analysis32 (Supplementary Data 19). The retina
mQTLs and eQTLs proposed the same target genes for one locus
PILRB/PILRA, and new causal mechanisms and genes for AMD at 3
(KMT2E/SRPK2, PILRB/PILRA and ARMS2/HTRA1) and 2 (C2/CFB/SKIV2L
and PILRB/PILRA) loci, respectively (see below). For example, at the
PILRB/PILRA locus, we identified SNP rs11766752 and CpG cg07160278
influencing both DNAm and AMD (SMR P value = 2.88 × 10−7 and HEIDI
P value = 0.09). cg07160278 is localized in the TSS region of MEPCE
and ZCWPW1 genes, and for this CpG we identified eQTM with PILRA
gene (Fig. 4d). With eQTL and AMD GWAS SMR analysis, we identified
SNP rs45451301 at the C2-CFB-SKIV2L locus influencing both DXO
expression and AMD risk (SMR P value = 2.02 × 10−7 and HEIDI P
value = 0.38) (Fig. 4e). At the CFI locus, SMR detected SNP rs7439493
influencing PLA2G12A expression and AMD risk (SMR P
value = 2.6 × 10−8 and HEIDI P value = 0.22) (Supplementary Fig. 6a), as
identified in our previous eQTL study32.

We next used the Bayesian colocalization method eCAVIAR42 to
test whether retina mQTLs and eQTLs share one or more causal var-
iants with known AMD GWAS loci. Significant colocalization would
prioritize potential causal mQTLs/eQTLs and target CpGs or genes for
AMD. Of 52 independent AMD GWAS variants at 34 loci, we identified
significant colocalization (Colocalization posterior probability,
CLPP >0.01) of one or more mQTLs and/or eQTLs with 17 AMD GWAS
variants in 10 loci (29.4% of loci) (Supplementary Fig. 6b). An average
of 1.87 ± 0.52 causal genes per locus were proposed based on mQTLs,
1.4 ± 0.24basedon eQTLs, and 2.1 ± 0.50 causal genes basedonmQTLs
and/or eQTLs (Supplementary Data 20). A single causal gene was
proposed for 5 (14.7%) of the loci (Supplementary Data 20). Fifteen
AMDGWASvariants in8 (23.5%) loci colocalizedwith at least one retina
mQTLs, and 6 AMD GWAS variants in 5 loci (14.7% of loci) colocalized
with at least one retina eQTL (Supplementary Data 20). Only mQTLs
colocalized with an AMD signal at 5 loci, with CFH as a target gene at
the CFH locus (Supplementary Fig. 6c, 6d), a lincRNA LINC01004 at
the KMT2E/SRPK2 locus (Fig. 4f, 4g), ARHGAP21 and RNA5SP305 at the
ARHGAP2 locus, RAD51B at the RAD51B locus, and MARK4 at the
APOE(EXOC3L2/MARK4) locus. Two loci had only eQTLs colocalizing
with the AMD signal, with SARM1 and TMEM199 target genes at the
TMEM97/VTN locus and TMEM259 at the CNN2 locus. At the AMD locus
rs147859257/rs2230199 on chromosome 19, both an mQTL
(cg12024887 and cg07567260 that mapped to GRP108, MIR6791 and
TRIP10) and an eQTL (acting on GRP108) colocalized with the AMD
association signal, suggesting that the causal effect of the colocalizing
mQTL in this AMD locus may be acting via altered GRP108 expression
levels (Supplementary Fig. 6e, f, g). Eighteen of the colocalizing genes
have not yet been identified as targets at corresponding AMD loci. The
mQTL of CpG cg11712338 mapped to LINC01004 and colocalized with
AMD at the KMT2E/SRPK2 locus (Fig. 4f, 4g). SMR analysis further
validated this mQTL as a high confidence causal effect on AMD in this
locus (LD r2 = 0.98 between significant mVariant based on SMR and
eCAVIAR, rs3214376 and rs6950894, respectively).

Colocalization analysis of retina mQTLs, eQTLs and GWAS
identifies additional AMD genes
Todetermine sharedcausal variants between retinamQTLs andeQTLs,
and betweenm/eQTLs andAMD loci and identify novel AMDgenes, we
applied the colocalization method coloc43 to the following pairwise
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comparisons: AMDGWASandmQTL (GM), AMDGWASandeQTL (GE),
and mQTL and eQTL (EM) (described above), considering all sig-
nificant mQTLs/eQTLs genome-wide (Fig. 5a and Methods). We dis-
covered significant GM colocalization results for 69 mVariants and 81
CpG sites corresponding to 58 genes (PPA ≥ 0.8) at 11 AMD loci
(Supplementary Fig. 7a and Supplementary Data 21) and significant GE

colocalization for 44 eVariants (Methods) and 32 genes at 3 AMD loci
(Supplementary Fig. 7a and Supplementary Data 22). Three colocaliz-
ing variants at 3 AMD loci were significant with both GM and GE
(Supplementary Data 23). The genes identified in GM and GE were
enriched (FDR ≤0.05) in immune-related processes, such as antigen
processing and presentation (Supplementary Fig. 7b). The GM and GE
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Fig. 4 | Associations between retina DNA methylation, gene expression and
AMD GWAS through genotypes. a Heterogeneity in dependent instruments
(HEIDI) model to distinguish pleiotropy from linkage for an observed association
between AMD, DNAm and/or gene expression through genotypes. b Manhattan
plot of SMR tests for association between retina mQTL and AMDGWAS. Shown on
each y axis are the −log10(SMR P values) from SMR tests. The red horizontal lines
represent the genome-wide significance level (SMR P values = 5.67 × 10−7).
cManhattanplot of SMR tests for associationbetween retina eQTLandAMDGWAS.
The red horizontal lines represent the genome-wide significance level (SMR P
values = 5.4 × 10−6). d Results of variants and SMR associations across retina mQTL
and AMD GWAS. The top plot shows −log10(SMR P values) of SNPs compar-
ingmQTL and AMDGWAS. The blue diamonds represent −log10(SMR P value) from
SMR tests for associations of mQTL and AMDGWAS with SMR P value = 5.67 × 10−7.

The second plot shows −log10(SMR P value) of the SNP associations for DNAm
probe cg07160278 from themQTL data. eResults of variants and SMR associations
across retina eQTL and AMD GWAS. The top plot shows −log10(SMR P value) of
SNPs from eQTL and AMD GWAS. The blue diamonds represent −log10(SMR P
value) from SMR tests for associations of eQTL and AMD GWAS with SMR P
value = 6.41 × 10−6. The second plot shows −log10(SMR P value) of the SNP asso-
ciations for DXO gene from the eQTL data. f LocusZoom plot of the retina mQTL
associations for cg11712338 (LINC01004). −log10(P value) of retina mQTL with
points color coded based on LD (r2) relative to the lead AMD GWAS variant
(chr7:105115879:C:T; rs1142) in the locus KMT2E/SRPK2. g LocusCompare plot
comparing −log10(P value) of AMD GWAS to −log10(P value) of retina mQTLs acting
on cg11712338 (LINC01004).
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significant colocalizations detected 42 and 47 new AMD associations,
respectively. Considering these new AMD associations, we identified
36 mVariants and 43 CpG sites corresponding to 30 genes in GM and
29 eVariants and 24 genes in GE (Supplementary Data 21 and 22).

To further identify variants associated with DNAm, gene expres-
sion and AMD, we applied the multi-trait colocalization method,
moloc44, across AMD GWAS, retina eQTL and mQTL (GEM) signals
(Fig. 5b) (seeMethods). We obtained strong evidence (PPA ≥ 0.8) at 18
CpG sites and 10 genes (Fig. 5c) where variations in DNAm, gene
expression and AMD GWAS were attributed to the same variant
(Table 1, Supplementary Data 24). Seven of the significant colocalizing
variants were present at 3 known AMD loci (C2/CFB/SKIV2L, PILRB/
PILRA and CNN2) corresponding to 3 genes (Fig. 5c), and 11 of the
colocalizing variants proposed 7 new AMD associations (Table 2). SNP
rs67538026 associated with methylation of CpG cg05475770,
TMEM259 expression and AMD risk was identified at the CNN2 locus
(Fig. 5d), and rs114820183 associated with cg22670819 methylation,
DXO expression, and AMD risk at the C2-CFB-SKIV2L locus. DXO was
also proposed as a potential AMDgene at this locus by SMR analysis of
retina eQTL and AMD GWAS statistics.

Additionally, the moloc analysis identified 7 colocalizing variants
that affect DNAm and gene expression of 7 genes at 7 loci that are not
reported AMD loci and are therefore suggested as new AMD associa-
tions (Supplementary Data 24). These include the SNP rs11072507
associated with methylation of CpG cg21565421, MPI expression and
AMD (Fig. 5e), and the SNP rs6493454 associatedwith CpG cg19881011
methylation, MTMR10 expression and AMD (Supplementary Fig. 7c).
We compared CpGs and genes identified in the GM or EM coloc and
GEM moloc analyses, and only detected an overlap of 6 CpGs in GM
and GME, 4 genes (KASH5, EHD4, CPLX4 and SNX21) common in GEM
and EM, and 5 genes (C8orf58, PDZD7, FN3KRP, SLC16A3, SCAF1) com-
mon in GE and EM (Supplementary Fig. 7d, e). We further overlapped
CpGs and genes identified in the SMR analysis (E2M_SMR, M2E_SMR)
and EM coloc analysis, and noted 770 CpGs and 544 genes in common
in all 3 analyses (Fig. 5f, g) (Supplementary Data 25). The CpGs were
mapped to potential target genes (mGenes; see Methods), which

showed enrichment (FDR < 0.05) in pyruvate metabolism and olfac-
tory signaling pathway (Supplementary Fig. 7f). The results from all
colocalization and SMR analyses are summarized in Table 2.

Integrative analysis with Hi-C retina map improves target gene
prioritization
Finally, to prioritize a high confidence list of variants that contribute to
DNAm and gene expression variation in retina, we integrated loops,
CREs and SEs from our recently published retina Hi-C data36 with
mQTLs, eQTLs, and eQTMs, and their target genes, and variant asso-
ciations identified in the SMR, eCAVIAR, coloc andmoloc analyses.We
observed that 73% of mQTLs, 78% of eQTLs and 82% of eQTMs are
localized to the A compartment (representing active transcription
chromatin regions) compared to 23% ofmQTLs, 18% of eQTLs and 16%
of eQTMs in the B compartment (representing closed chromatin
regions with inactive genes); 4% of e/mQTLs or eQTMs fell in uncate-
gorized chromatin regions (Fig. 6a and Supplementary Data 26). Most
of the retinal mQTLs and eQTLs are present within the A compartment
providing a directmechanism to explain the impact of a variant on the
mGene or eGene. We next examined the overlap of Hi-C loop foot
locations with mQTL and eQTL variants and their target genes, dis-
tinguishing promoter mQTLs/eQTLs (±2.5 kb from TSS of target gene)
from distal mQTLs/eQTLs (>2.5 kb from TSS) (see Methods), as pre-
viously described53. We identified 5479 mQTLs overlapping a loop
foot; of these, 104 (1.8%) interacted with their mGene promoter (pro-
moter mQTLs), 705 (12.8%) were distal mGene mQTLs, 56 (1%) were
promoter non-mGene mQTLs, and 4614 (84.2%) were distal non-
mGenemQTLs (Fig. 6b left panel and Supplementary Data 27). Among
the 705 distal mGene mQTLs, 2 mQTLs are associated with known
AMD loci (SYN3/TIMP3 and TRPM3). For eQTLs, 1721 overlapped a loop
foot; of these, 17 (0.9%) interacted with their eGene promoter (pro-
moter eQTLs), 186 (10.8%) were distal eGene eQTLs, 15 (0.8%) were
promoter non-eGene eQTLs, and 1503 (87.3%) were distal non-eGene
eQTLs (Fig. 6bmiddle panel and Supplementary Data 28).We similarly
tested for overlap of promoter eQTMs (CpGs within ±2.5 kb from tar-
get gene TSS) and distal eQTMs (>2.5 kb from TSS) with retina Hi-C

Table 1 | Significant moloc colocalization results for AMD GWAS, retina eQTL and mQTL

CpG CpG genic
location

Distance between CpG and its corresponding
target gene TSS (bp)

Target genea chr SNP Variant posi-
tion (hg38)

GWAS locusb

cg22670819 1stExon −18964 DXO chr6 rs114820183 31933131 C2/CFB/
SKIV2L

cg00854166 Body 619452 AP4M1 chr7 rs34130487 100161582 PILRB/PILRA

cg14736458 - −103608 AP4M1 chr7 rs34130487 100161582 PILRB/PILRA

cg04039547 TSS200 47175 AP4M1 chr7 rs34130487 100161582 PILRB/PILRA

cg00472528 - 932958 KMT5A chr12 rs34477554 123405486 -

cg19881011 TSS1500 −40151 MTMR10 chr15 rs6493454 31101742 -

cg21565421 Body −589718 MPI chr15 rs11072507 74762525 -

cg11955166 - −1029954 EHD4 chr15 rs72735670 40922983 -

cg13906792 TSS1500 17427 MPI chr15 rs11072507 74762525 -

cg16646645 TSS1500 −39953 MTMR10 chr15 rs6493454 31101742 -

cg14323928 5’UTR −41329 MTMR10 chr15 rs6493454 31101742 -

cg21851553 TSS200 −41153 MTMR10 chr15 rs6493454 31101742 -

cg23999607 Body 299453 CPLX4 chr18 rs4940875 59463337 -

cg03536881 TSS200 −394519 KASH5 chr19 rs2098709 48684412 -

cg05475770 Body −441931 TMEM259 chr19 rs67538026 1031439 CNN2

cg00752531 Body −442683 TMEM259 chr19 rs67538026 1031439 CNN2

cg09935308 Body −679262 TMEM259 chr19 rs113772652 1031551 CNN2

cg03641251 Body −363452 SNX21 chr20 rs4810499 46340784 -
aTarget gene inferred from colocalizing eQTL.
bNearest gene/s to lead GWAS variant. TSS, transcription start site.
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loop foot locations.We identified3395 eQTMsoverlapping a loop foot;
of these, 24 (0.7%) interacted with their target gene promoter (pro-
moter-eQTMs), 282 (8.3%) were promoter non-target gene eQTMs, 195
(5.7%) were distal target gene eQTMs, and 2894 (85.2%) were distal
non-target gene eQTMs (Fig. 6b right panel and Supplementary
Data 29).

Wenext evaluated theoverlapof retinamQTLs, eQTLs andeQTMs
with retinal CREs and SEs that were identified based on epigenetic
marks36 (see Methods). We discovered 6834 CRE-mQTLs and 2610 SE-
mQTLs; of which, 2048 (29.9%) and 271 (10.3%) were promoter-mGene
mQTLs, respectively (Supplementary Fig. 8a left panel and Supple-
mentary Data 30). For the retina eQTLs, we ascertained 1953 CRE-
eQTLs and 773 SE-eQTLs overlaps; of which, 609 (31.1%) CRE-eQTLs
and84 (10.8%) SE-eQTLswerepromoter-eGene eQTLs (Supplementary
Fig. 8a middle panel and Supplementary Data 31). For eQTMs, we
uncovered 8996 CRE-eQTMs and 1392 SE-eQTMs; of which, 668 (7.4%)
CRE-eQTMs and 88 (6.3%) SE-eQTMs were promoter-eQTMs (Supple-
mentary Fig. 8a right panel, and Supplementary Data 32).

We further integrated Hi-C loops, CREs and SEs with target genes,
and variant associations identified in our SMR, eCAVIAR, coloc and
moloc analyses. In SMR analysis ofmQTL and AMDGWASwith CRE, SE
and loops, we identified target genes for 3 associations (MEPCE;
ZCWPW1 and HTRA1) at 2 AMD loci (PILRB/PILRA, ARMS2/HTRA1)
(Supplementary Data 33). For SMR analysis of eQTL and AMD GWAS
with CRE, we detected target genes for 2 associations (STAG3L5P and
BLOC1S1) at 2 AMD loci (PILRB/PILRA and RDH5/CD63) (Supplementary
Data 34). In eCAVIAR analysis of mQTL and AMD GWAS with CRE and
loops,we found target genes (ARHGAP21,KMT2E and LINC01004) for 2
colocalizations at 2 loci (ARHGAP21 and KMT2E/SRPK2) (Supplemen-
tary Data 35). For E2M_SMR associations, we identified targets genes
for 1058 associations with CRE, 538 associations with SE, and 186
associations with loops (Supplementary Data 36). These analyses also
identified high confidence causal links with Hi-C loops between retina
eQTLs and mQTLs, and 1 eQTL/mQTL association with ALDH2 identi-
fied in E2M_SMR (Fig. 6c). Similarly, for M2E_SMR associations, we
identified targets genes for 609 associationswithCRE, 516 associations
with SE, and 187 associations with loops (Supplementary Data 37). We
determined 3 mQTL/eQTL associations with GSTP1 identified in
M2E_SMR (Figs. 6d), and 4 eQTL/mQTL and mQTL/eQTL associations
with EML1 noted in E2M_SMR and M2E_SMR (Supplementary Fig. 8b).
For coloc EM colocalizations, we identified target genes for 790
colocalizations with CRE, 450 colocalizations with SE and 216 coloca-
lizations with loops (Supplementary Data 38). We also discovered a
target gene for coloc EM colocalization in LPIN1 gene with Hi-C loops
(Supplementary Fig. 8c).

Genes and pathways influenced by DNA methylation and asso-
ciated with AMD
To obtain a non-redundant set of genes, we merged the target genes
identified in mQTL and AMD GWAS analyses using SMR, eCAVIAR,
coloc and moloc (Table 2). We identified 4 target genes at 3 loci by
SMR, 15 target genes at 8 loci using eCAVIAR, 58 target genes at 11 loci
using coloc, and 10 target genes at 3 loci using moloc. By combining
the target genes from the fourmethods,we identified a total of 87 non-
redundant genes that are influenced by DNAm (Supplementary
Data 39). Fifty of these genes fall in the reported AMD GWAS loci and
37 are target genes in potentially new AMD associations. These genes
belong to a range of biological processes including mTOR signaling
and RHOF GTPase cycle (Reactome, gProfiler adj. P < 0.05), and reg-
ulation of actin cytoskeleton reorganization and glycosylation (Gene
Ontology, GeneEnrich adj. P <0.05).

Discussion
DNA methylation (DNAm) has regulatory roles during development,
aging and disease11. The relationship between DNAm and geneTa
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expression is complex and influences diverse biological pathways.
DNAm can be mitotically inherited and can act as an intermediary
molecular link between genetic variation and tissue-specific tran-
scriptional regulation, thereby providing a mechanism for long-term
maintenance of cellular identity10. Asmost of the GWAS signalsmap to
non-coding regions, their functional significance may be best
explained by regulatory effects on commonhuman traits and diseases.
Non-coding genetic variation also contributes to the establishment of
DNAm patterns, independently or together with environmental
exposures54. In the present study, we have performed an integrative
genetic, transcriptomic, and epigenetic analysis identifying genes and
pathways that are regulated in human retina under normal conditions
and/ormaybe influencedby advancing age andenvironmental factors.

We support this proposal by identifying mQTLs that may be causal to
eQTLs and vice versa using Mendelian randomization and colocaliza-
tion analyses. The strengthof our study is thatwe applied twodifferent
complementary approaches55 to testingwhethermQTLs, eQTLs and/or
AMD associations share a common causal variant and whether their
association is causal or pleiotropic as opposed tobeing confoundedby
linkage of distinct causal variants. The 87 genes and corresponding
pathways, we identified here, are modulated by DNAm and may be
suggestive of disease progression and pathology.

DNAm can have a dual interplay by being a cause and a con-
sequence of gene expression changes56. We discovered genetic asso-
ciations with DNAm for over 36,000 CpG sites that mapped to about
72.6% of retina-expressed genes. Notably, approximately two-third of
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Fig. 6 | Hi-C retina data enables target gene and variant prioritization. a Pro-
portion of unique retina mQTLs, eQTLs and eQTMs overlapping each chromatin
compartment. b Number of unique retina mQTLs, eQTLs and eQTMs overlapping
with a loop that are in contact with variants located within ±2.5 kb of the mGene/
eGene/Gene TSS were identified as promoter mQTLs/eQTLs/eQTMs, while those
located >2.5 kb from the mGene/eGene/Gene were identified as distal mQTLs/
eQTLs/eQTMs. c Upper panel: LocusZoom plots of ALDH2 eQTLs (genotype and
ALDH2 expression associations) and CpG cg13422253 mQTLs (genotype and
cg13422253 methylation associations). The y axis shows −log10(P value) of eQTL
and mQTL association tests. Points are color coded based on LD (r2) relative to
the highlighted variant rs3858706, the most significant variant in E2M_SMR ana-
lysis of eQTLs and mQTLs. The lower panel includes associations identified in

E2M_SMR for ALDH2 gene. Tracks represent the retina chromatin loops, E2M_SMR
significant variant, SEs, CREs, H3K27Ac coverage, genes, and Hi-C physical contact
maps identifying TADs. d Upper panel: LocusZoom plots of CpG cg17020635
mQTLs (genotype and cg17020635 methylation associations) and GSTP1 eQTLs
(genotype and GSTP1 expression associations). The y axis shows −log10(P value) of
association tests from mQTLs and eQTLs. Points are color coded based on LD (r2)
relative to the highlighted variant rs7108149, the most significant variant in
M2E_SMR analysis of eQTLs and mQTLs. The lower panel includes associations
identified in M2E_SMR for GSTP1 gene. Tracks represent the retina chromatin
loops, M2E_SMR variant, SEs, CREs, H3K27Ac coverage, genes, and Hi-C physical
contact maps. CRE Cis-regulatory element, SE Super-enhancer, TAD Topologically
associating domain.
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these associations are likely unique to the retina and not observed in
brain, muscle, blood, or adipose tissue. We also identified genetic
associations with gene expression for 9395 (54%) of retina genes.
Retina mQTLs were primarily detected in open chromatin regions,
transcription factor (TF) binding sites, enhancers, and synonymous
variants. In contrast, the retina eQTLs showed the highest enrichment
in splicing regions, 5’ and 3’UTR, TF binding sites, and other regulatory
regions. Interestingly, the retina mQTLs and eQTLs tended to affect
genes in divergent biological processes.

Using multiple algorithms, our maps of mQTLs and eQTLs inte-
grated with AMD GWAS have provided detailed information about
genotype changes that mediate DNAm and gene expression in the
retina under non-disease conditions and in relation to AMD. Even
thoughmQTLs identified here are limited by sample size compared to
the published eQTL studies32–34, we have reportedmore targetmGenes
than eGenes associated or colocalized with AMD loci, indicating a
larger impact of epigenetic changes due to environmental factors and
advanced age. Our work suggests that mQTLs uncover novel AMD-
associated molecular mechanisms that have been missed by eQTLs. In
addition, integration with retina Hi-C data has yielded supportive evi-
dence of regulatory mechanisms and helped in determining high
confidence target genes for mQTLs and eQTLs. For example, we
ascertained 5 mQTLs and 1 eQTL affecting PARK7, which is involved in
synaptic signaling and protecting neurons against oxidative stress and
cell death57. We also recognized a CRE overlapping these 5 mQTLs
using retina epigenetic marks. A previous study of retina from
PARK7/DJ-1 deficient 3- and 6-month-old mice showed that knock-out
of PARK7 leads to changes in electroretinogram (ERGs), which mea-
sures the electrical activity of retina in response to light stimulus and
increased oxidative stress, suggesting a possible connection to aging
and AMD58.

We characterized eQTMs for over 10,000 CpG sites, which
account for 1.4% of all methylated CpGs, yet map to 75% of genes
expressed in the retina. Our eQTM analysis revealed that the majority
of CpGs affecting gene expression are localized in the TSS region, as
observed in other tissues20,21,37. Though themethylated CpGs in eQTMs
are enriched inTSS regions, 10-foldmore eQTMs targeted a distal gene
rather than a proximal gene supported by Hi-C chromatin loops; these
results suggest that many CpGs act as enhancers regulating the asso-
ciated gene. Interestingly, CpG methylation has been commonly
associated with downregulation of gene expression; nonetheless,
almost 45% of eQTMswe identified are positively associated with gene
expression, consistent with previous eQTM studies20,21,37. We also note
that some TFs prefer to bind to methylated CpGs, and methylation
does not always equal repression59. Previous studies had not con-
sidered the effect of chromosome size on eQTMs. Notably chromo-
somes 16, 17, 19 and, 22, though relatively smaller in size, are gene
rich60. We thus inspected the eQTM distribution by chromosome and
observed that few of these chromosomes possessed a greater number
of eQTMs. For example, CpGs that regulate more than 10 genes clus-
tered on the p armof chromosome 16. A few of these genes contribute
to telomere maintenance. A larger region on chromosome 16p has
been associated with autism and decreased expression of genes enri-
ched in the telomeric region61. Examination of retina Hi-C data showed
that 82% of the eQTMs are localized to the A compartment, i.e., the
active compartment. Retinal eQTMs exhibited enrichment in energy
metabolism, transcription, andprotein localization to the endoplasmic
reticulum, highlighting both the susceptibility of these pathways to
environmental influence throughmethylation as well as their adaptive
nature. Thus, eQTM studies complement findings from mQTLs and
eQTLs and provide novel insights into retina homeostasis and disease.

Genetic variations in Glutathione-S-Transferases (GSTM) have
been associated with cancer62, atherosclerosis63, and early onset of
Parkinson’s disease64. DNAm-mediated regulation of GSTM genes is
observed indivergent pathologies including cancer65, endometriosis66,

and aging of the lens67. The retina has a well-established glutathione
antioxidant system, and the enzymes involved in glutathione meta-
bolism protect retina from continuous exposure to reactive oxygen
species, detoxification of many endogenous compounds and xeno-
biotics, and reversible modification of proteins protect them during
oxidative stress68. Previous studies have reported upregulation of
glutathione proteins in AMD retinas69 and significantly greater glu-
tathione depletion in retinal pigment epithelium (RPE) cells from AMD
donors70. Notably, aging rod photoreceptors also display hyper-
methylation of GSTM2, GSTM5 and GSTM6 promoters38. Based on
Mendelian randomization, ten putative target genes of mQTLs are
causal to or share an association with eQTLs and vice versa and are
enriched in the glutathione metabolism pathway. Thus, genetic and
environmental control of DNAm levels at GSTM genes could impact
retinal physiology during aging and disease.

Previous studies have assessed the sharing of a causal variant
between expression and methylation QTLs in various tissues using
colocalization analysis that assumes a single causal variant (coloc) and/
or summary statistic-based Mendelian randomization (SMR)20,21,37.
Given the widespread allelic heterogeneity observed in e/mQTLs5,21,42,
in addition to using coloc, we applied colocalization methods that
account for multiple causal variants (allelic heterogeneity) in m/eQTL
andGWAS loci (eCAVIAR andmoloc), as well as SMR that tests whether
co-occurring mQTL, eQTL and AMD associations are causal or pleio-
tropic vs. induced by linkage. Given the differences in the underlying
assumptions of the different colocalization and MR methods55,
applying a range of methods has enabled us to cast a wide net and
prioritize a comprehensive list of candidate mQTL/eQTL and AMD
genes for follow-up functional studies, and to detect new AMD asso-
ciations thatmay bemediated by eQTLs ormQTLs. As everymethod is
unique and has somewhat different underlying assumptions, we could
demonstrate commonality only for a few results, which we present as
higher confidence causal relationships. For example, we detected one
commonmQTL of CpG cg11712338 at the KMT2E/SRPK2 locus between
SMR associations and eCAVIAR colocalization results for mQTL and
AMD GWAS. For pairs that are not common between colocalization
and SMR analyses, hidden confounders may not be well captured
by the covariates we adjusted for, or this could be due to the
limited power of each method. Clearly, since each of these methods
have their limitations, experimental testing will be needed to confirm
causality.

Newer chromatin interaction methods, developed in the last
decade, have implicated long-range looping interactions between
regulatory elements and promoters71. Integration of gene expression
and AMDGWASwith a retina chromatinmapwas recently reported by
our group36. Incorporation of retina Hi-C data into the current study
allowed us to identify a high confidence set of target genes that are
linked to mQTLs, eQTLs, and eQTMs based on the SMR, eCAVIAR,
coloc, and moloc methods. For example, we show a remarkable long-
range interaction between the variant rs3858706 and the target gene
ALDH2, whose associationwasevident in the E2M_SMRanalysis.ALDH2
is upregulated in AMDretinas, indicating that it responds to changes in
cellular redox status72. We also identified the target gene EML1 for the
variant rs11625037 with retina loops, SE and CREs, whose associations
were found in E2M_SMR andM2E_SMR analysis. EML1 is a microtubule-
associated protein-like gene in which rare mutations are linked to
Usher syndrome (USH), a group of genetic disorders manifesting
congenital deafness, retinitis pigmentosa, and vestibular
dysfunction73. We thus establish how integration of mQTLs/eQTLs and
eQTMs with Hi-C data can further facilitate the prioritization of can-
didate genes for disease.

Our study represents the first to integrate epigenome and tran-
scriptome dysregulation in the retina with genetic risk of disease, such
as AMD. We have discovered multiple genes and CpG sites that show
association and colocalization at a shared genetic variant with known
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AMD GWAS loci. Several of the associated target genes we identified
have not yet reached genome-wide significance in the largest pub-
lished AMD GWAS26, demonstrating the ability of the current m/eQTL
study to propose novel genes related to this disease. The addition of a
retina chromatin map has provided further insights into genes and
biological mechanisms driving the genetic associations. It is important
to note that different omics datasets and methods we applied provide
both complementary and confirmatory information for target prior-
itization. We are especially interested in gene expression and DNAm
levels measured in the retina since epigenome is a reversible system
that can be influenced by diverse environmental factors, such as
smoking and diet13. We hypothesize that future studies of DNAm
changes with age and AMDusing a larger sample size could potentially
uncover joint contributions of genetic variability, aging, and environ-
ment on AMD risk. Finally, incorporating additional QTL types of
molecular traits, such as splicing QTL (sQTL), protein QTL (pQTL),
chromatin accessibility QTL (caQTL), and histone modification QTL
(hQTL) are expected to yield greater understanding of retinal function
and disease pathology.

In conclusion, our multi-stage analyses incorporating GWAS,
mQTL and eQTL data with multiple colocalization and MR methods
provide a statistically comprehensive analytical approach that inte-
grates genomic, transcriptomic and epigenomic information to eluci-
date regulatory mechanisms for AMD. Using this integrative analysis,
we have identified genes in pathways associated with AMD, including
glutathione metabolism pathway, mitochondria, immune-related
processes, metabolic processes, and mTOR signaling. Our results
contribute to a better understanding of the retinal DNA methylome
and its relationship with both the transcriptome and AMD. The ana-
lyses we perform here can be applied to any other tissue, phenotype,
or disease, using the suite of tools that we have used. Altogether, our
study provides the research community with a valuable resource of
integrative genetic, transcriptome and epigenomedataset in the retina
to investigate causal mechanisms of complex traits such as AMD from
a multiomic standpoint and can be expanded as more data becomes
available in the future.

Methods
Datasets
TwoDNAmdatasets wereproduced in this study, the Bethesda dataset
that consists of 96 retina samples and the Cologne andMunich dataset
that consists of 64 retina samples.

Postmortem retina samples and DNA methylation
For the Bethesda dataset, postmortem peripheral retina samples from
96 deidentified donors were procured by the Minnesota Lions Eye
Bank in accordance with the tenets of the Declaration of Helsinki and
following informed consent from the donors or their family. Given that
deidentified post-mortem sampleswere used, the studywas exempted
by the institutional review boards of the University of Minnesota and
National Eye Institute, National Institutes of Health. Eyes were enu-
cleated within 4 h of death and stored in a moist chamber at 4 °C until
retinal dissection was performed. The post-mortem interval (PMI) for
tissue dissection ranged between 5 and 24 h32 and was corrected for in
the eQTL and eQTMmapping through surrogate variable analysis (see
below). Retina samples were graded on theMinnesota Grading System
(MGS) as previously described74,75 ranging from 1: no AMD, (n = 40) 3:
intermediate AMD (n= 28), and 4: late AMD (either CNV and/or GA)
(n = 28) (Supplementary Data 1). Retinal samples were flash frozen in
liquid nitrogen and stored at –80 °C until further processing. DNA
were isolated from homogenized retina tissue in TRIzol® (Invitrogen,
Carlsbad, CA) as per the previously published protocol76. DNA was
quantified using the QuantiFluor® dsDNA System (Promega, Madison,
WI). DNA from each retina sample (500 ng) was used for the Methy-
lationEPIC BeadChip.

For the Cologne andMunich dataset, 64 peripheral retina samples
(MGS1 (Controls = 63) and MGS4 (Advanced AMD= 1)) were collected
at the Ludwig-Maximilians-University (LMU) Munich and the Uni-
versity of Cologne Eye Bank after informed consent from the donor or
next of kin was obtained. This was done in full accordance with the
tenets of the Declaration of Helsinki. The tissue and data collections
and the subsequent study was approved by the local Ethics Boards at
the LMU (Application nr. MUC73416) and the University of Cologne
(application nr. 14-247), respectively.

At the LMU, whole globes were prepared as described before77.
After cleaning of the whole eye in 0.9% NaCl solution, immersing in 5%
polyvinylpyrrolidone-iodine, and rinsing again with NaCl solution, the
globe was prepared and vitreous was removed. Subsequently, the
retina was harvestedwith two sterile forceps and dissected at the optic
nervehead. Thereafter, the retinawas transferred to a 1.5ml Eppendorf
cup and stored at −80 °C. Donor eyes from the eye bank of the Uni-
versity of Cologne were processed within 6 h of death and retinal
dissection was performed. Retinal samples were then flash frozen in
liquid nitrogen and stored at –80 °C until further processing. Genomic
DNA was extracted using the salting-out method described
elsewhere78. Methylation analysis was conducted with the Methyla-
tionEPIC BeadChip on 64 retina samples. Processing of the Methyla-
tionEPIC BeadChip was performed at Life & Brain GmbH (Venusberg-
Campus 1, Bonn; Germany). Details of the 64 retina samples including
donor sex, age and MGS grade are described in the Supplemen-
tary Data 1.

Genotyping data processing and quality control for mQTL
analysis
Genotyping data for the methylation quantitative trait locus (mQTL)
analysis was taken from our two previously published studies, which
include the Illumina Infinium CoreExome-24 bead array (Illumina,
San Diego, CA) array for the Bethesda dataset (n = 96) and the
Axiom™ Precision Medicine Research Array for the Cologne and
Munich dataset (n = 64)32,34. The independently imputed genotype
calls of each dataset to 1000 Genomes Project Phase 3 were merged
into a single VCF file, followed by standard quality control
(QC) steps, including removing variants with low imputation quality
(INFO < 0.3) or that failed Hardy-Weinberg Equilibrium (P < 1 ×10−6)
as described34. This resulted in 8,899,938 common (minor allele
frequency (MAF) > 5%) genetic variants used for mQTL analysis.
Principal component analysis (PCA) was applied to the imputed
genotype variants after performing linkage disequilibrium (LD)
pruning with variants MAF > 5% and high call rate of >98%, using
Eigenstrat (v6.1.4) (https://github.com/DReichLab/EIG) to identify
outlier samples and principal components (PCs) that captured most
of the genotype variation between the samples79,80 (Supplementary
Fig. 1a). Furthermore, kinship analysis was performed with the kin-
ship option of qctool v2 (https://www.well.ox.ac.uk/~gav/qctool_v2/)
and related samples (kinship coefficient > 0.8) as well as samples
with contradictions in inferred and reported sex according to the
Axiom™ analysis suite version 3.1 were excluded. Overall, 4 samples
were removed from the Cologne and Munich dataset. After sample
QC, a total of 156 samples from both the datasets were considered
for mQTL analysis and the top 10 genotype PCs were used in the
mQTL model described below (Supplementary Fig. 1b).

Quality control and normalization of EPIC BeadChip
Raw idat files from both studies were similarly processed using minfi
(v1.42.0) pipeline81 (https://bioconductor.org/packages/release/bioc/
html/minfi.html). Clustering of the median methylated and unmethy-
lated signal showed 4 outliers, which were subsequently removed,
leaving 152 samples for further analysis. Inspection of the bisulfite
conversion plots indicated poor bisulfite conversion to have caused
these outliers. We used the following stringent QC criteria for the CpG
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sites: i) Probes with a detection p-value below <0.01 in 10% of samples
and with a bead count of <3 in 10% of samples were removed, ii)
Potentially cross-hybridizing probes82; Probes that include SNPs and
probes on the sex chromosomes were removed. The data underwent
subsequent quantile normalization using the preprocessQuantile
functions from the minfi R package. Normalized M-values (defined as
log2(M/U),whereM refers to theDNAmprobe intensity andU refers to
the unmethylated probe intensity) were further used for statistical
testing andPCAanalysis.WeperformedPCAof theM-values across the
152 samples and found a batch effect between the samples collected at
three different sites (Supplementary Fig. 1c). To correct for DNAm
variation due to batch effects and avoid confounding with AMDgrade,
we applied the unsupervised surrogate variable analysis (SVA)method
(v3.38.0)83 (https://bioconductor.org/packages/release/bioc/html/sva.
html) to identify surrogate variables (SVs). The SVs are known and
hidden artifacts (confounding factors) impacting analysis.We used the
following model:

DNA methylation ~ Sample collection site +MGS+ sex + age
We identified 38 surrogate variables (SVs), and these were

applied to theM-values using the removeBatchEffect function using
limma (v3.46.0) (https://bioconductor.org/packages/release/bioc/
html/limma.html) in R accounting for known batch effects. We
repeated PCA with batch corrected M-values and observed that the
samples were clustering together and found no outliers (Supple-
mentary Fig. 1d). Batch corrected M-values were used in mQTL
analysis.

Differential DNA methylation between AMD grades
We tested for differential DNA methylation of 749,159 CpG sites
between control (MGS1) and intermediate (MGS3) or advanced
(MGS4) AMD retina samples, using limma (v3.46.0) (https://
bioconductor.org/packages/release/bioc/html/limma.html), adjusting
for covariates: MGS grade, sample collection site, age, sex and 38
DNAm SVs. Only one CpG (cg10546045) passed Benjamini-Hochberg
FDR <0.05 for MGS3 vs. MGS1.

Methylation quantitative trait loci (mQTL) mapping
The analysis included 152 samples with their corresponding genotype
and M-value. QTLtools45 (v1.3.1) software suite was used for discovery
of methylation quantitative trait loci (mQTL) with 8,899,938 geno-
typed and imputed common variants and normalized M-values for
749,158 CpG sites. Surrogate variable analysis was applied to the
M-values across all 152 samples using the sva package83 (https://
bioconductor.org/packages/release/bioc/html/sva.html). To deter-
mine the number of SVs to include in the mQTL regression model, we
applied an optimization approach used in GTEx5, identifying the
minimumnumber of SVs thatmaximize the number ofmQTLs. Testing
up to 38SVs in increments of three SVs inmQTLmapping,weobserved
that 15 SVsmaximized the number of CpG siteswith a significantmQTL
and the number of mQTLs at False Discovery Rate (FDR) ≤0.05 (Sup-
plementary Fig. 2a). The top 15 SVs were sufficient to adjust for batch
effect of M-values between studies (Supplementary Fig. 1e). Sample
collection site, disease status (MGS level), age, sex, population strati-
fication (top 10 genotype PCs), and 15 SVs were used as covariates in
the mQTL mapping. Empirical p values were calculated for each CpG
by using permutation analysis and fitting a beta distribution on the
genotype regression coefficient p values of all variants tested per CpG,
as described in QTLtools45,46 (https://qtltools.github.io/qtltools/).
Storey & Tibshirani FDR procedure, which is a part of the QTLtools
software suite, was applied to the empirical mQTL p values to correct
for the total number of CpGs tested. Significance was determined at
FDR ≤0.05. Potential target genes of the mQTLs (mGenes) were
defined using Illumina’s annotation84 that is based on the UCSC
RefGenemappingofCpGs to genes.All thefindings are reportedbased
on singleton CpGs.

Genomic annotation of mQTLs
Mapping and annotation of CpGs on the MethylationEPIC BeadChip
has been described previously84. Genomic features of all CpGs tested
for mQTLs and CpGs with significant mQTLs (FDR ≤0.05) were anno-
tated in gene body, first exon, intergenic, 3 prime untranslated regions
(3’UTR), 5 primeuntranslated regions (5’UTR), 0–200 bases upstream
of transcription start sites (TSS200), and 201–1500 bases upstream of
transcription start sites (TSS1500). Enrichment of CpGs in these
genomic features was assessed by calculating the ratio of the number
of CpGs with a significant mQTL in a specific feature divided by the
total number of CpGs tested for mQTLs in the same feature.

mQTL tissue specificity
To gain insight into the tissue specificity of the discovered mQTLs for
peripheral retina, we examined mQTLs from adipose (n = 119)49, blood
(n = 614)50, endometrium (n= 66)51, frontal cortex (n = 526)52 and ske-
letal muscle (n = 282)20. For comparative analysis, we obtained the
significant mQTLs (variant-CpG pairs) for adipose, blood, endome-
trium, skeletal muscle and frontal cortex tissues from the corre-
sponding studies. Since for skeletal muscle only the nominal results
were provided without significance information, we consideredmQTL
(variant-CpG pairs) with P value < 0.05 as significant in our analysis.

RNA-seq data
Gene expression data was taken from our previously described pub-
lished studies for 406 RNA-seq retina samples from the Bethesda
study32 and 56 RNA-seq retina samples from the Cologne and Munich
study34.

Genotyping data processing and quality control for eQTL
analysis
Genotyping and 1000 Genomes Project-imputed data for the expres-
sion quantitative trait locus (eQTL) analysis was taken from our pre-
viously published studies of 406 samples32. Three samples were
further removeddue tohighper-chromosomemissingness rate (>10%)
and an average missingness rate above 3% across all chromosomes.
Genotype PCA was performed on LD-pruned SNPs using Eigenstrat
(v6.1.4). A total of 403 samples and 8,924,684 imputed variants post-
QC were considered for eQTL analysis and the top 10 genotype PCs
were used in the eQTL regression model described below.

Batch correction for gene expression data
To correct for hidden factors and batch effects and avoid confounding
with AMD grade, we applied the supervised SVA method85 (v3.38.0)
(https://bioconductor.org/packages/release/bioc/html/sva.html) to
the gene expression values, including known batch effects in the
model as follows:

Gene expression ~ Sample collection site +MGS + sex + age
The set of negative-control genes for supervised SVA were taken

from our previously published RNA-seq study32. We identified 21 sig-
nificant SVs, and thesewere further used ascovariates in eQTL analysis.

Expression quantitative trait locus (eQTL) mapping
The analysis included 403 samples with their corresponding genotype
(MAF>1%) and retina gene expression data for 17,382 genes expressed
at ≥1 CPM in at least 10% of the retina samples. The gene expression
values were normalized using Trimmed Mean of M-values (TMM) in
Counts per Million (CPM) using edgeR86,87 (version 3.32.1). QTLtools45

(https://qtltools.github.io/qtltools/) software suite was used for dis-
covery of expression quantitative trait loci (eQTL). Surrogate variables
determined by the sva package (https://bioconductor.org/packages/
release/bioc/html/sva.html), disease status (MGS level), age, sex,
population stratification (top 10 genotype PCs), were used as covari-
ates. We took the optimization approach to identify the minimum
number of SVs thatmaximize the number of eQTLs and eGenes (target
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gene of eQTL). We tested 21 SVs as covariates during the eQTL map-
ping and 21 SVs maximized the number of eGenes and eQTLs at
FDR ≤0.05 (Supplementary Fig. 2b). eVariants were defined as variants
significantly associated with gene expression changes correcting for
multiple testing of variants per gene at FDR ≤0.05, as implemented in
QTLtools45,46. Empirical P values were calculated per eGene using beta
distribution fit with permutations on the genotype regression coeffi-
cientp valuesof all variants testedper gene, asdescribed inQTLtools45.
Storey & Tibshirani FDR procedure, which is part of the QTLtools
software suite, was applied to the empirical p-values of all eGenes to
correct for the number of genes tested. Significancewasdetermined at
FDR ≤0.05.

Functional enrichment of mQTLs and eQTLs
Enrichment of mQTL and eQTL variants in functional genomic anno-
tations was assessed using TORUS47,48 (https://github.com/xqwen/
torus) and the following command: torus -d $qtl_statistics -annot
$annotation_file -est --no_dtss --fastqtl. TORUSwas runon all significant
variant-CpG and variant-gene pair summary statistics of all significant
CpGs and eGenes, respectively, at FDR <0.05. All mQTLs found in
retina, and mQTLs that are specific to retina compared to adipose,
blood, endometrium, frontal cortex, and skeletal muscle were tested.
The functional annotations analyzed where based on Ensembl’s Var-
iant Effect Predictor (VEP) (https://github.com/Ensembl/ensembl-vep)
and Loss-Of-Function Transcript Effect Estimator (LOFTEE) (VEP v100,
GENCODE v34) annotations of all variants in the imputed genotype
array VCF. Distinct consequences from the annotated VCF file were
extracted using BCFtools (v1.11) (http://www.htslib.org/download/)
and a presence/absence matrix (PAM) was created. Any annotations
with less than 100 variantswere removed (lower bound requirementof
TORUS). The PAM matrix together with reformatted FastQTL46

(https://github.com/francois-a/fastqtl) files were used as input to
TORUS for the QTL functional enrichment analysis. TORUS computed
a point estimate of fold-enrichment and 95% confidence intervals (CIs)
per annotation and QTL type. Annotations with a lower bound 95% CI
value above zero were considered significant. ggforestplot (v0.1.0)
(https://github.com/NightingaleHealth/ggforestplot) in R 3.5.0 was
used to plot the enrichment results. Due to large CI variations, anno-
tations (consequences) with less than 550 variants were removed from
the forest plot for mQTLs and eQTLs. The proportion and number of
mQTLs and eQTLs that fell within each functional annotation were
computed.

Expression quantitative trait methylation (eQTM) analysis
We tested for associations between methylation of CpG sites and
expression levels of genes whose TSS was within a ± 1Mb window of
each CpG site. eQTM analysis was performed using a linear regression
model implemented in R. We analyzed 152 retina samples used in the
mQTL analysis with their available gene expression data from RNA-
seq32,34 (96 RNA-seq samples from the Bethesda study and 56 RNA-seq
samples theCologne andMunich study). Tocorrect for batcheffects in
the RNA-seq data for 152 samples and avoid confounding by AMD
grade, surrogate variables (SVs) were identified and estimated for
known batch effects and latent factors using supervised SVAmethod85

(v3.38.0) (https://bioconductor.org/packages/release/bioc/html/sva.
html) and the following model:

Gene expression ~ Sample collection site +MGS + sex + age
A list of negative control genes for the supervised SVA were taken

from our previously published RNA-seq study32. We identified SVs that
were used as covariates in eQTM analysis.

For eQTM analysis, we considered a linear regression model with
known covariates, including MGS grade, sex, age and sample collec-
tion site, and inferred covariates, where gene expression values were
rank-based inverse normalized, and the DNAm values were inverse
normalized CpG M-values. The following covariates were included:

Gene expression ~ DNA methylation + Sample collection site +
MGS+ sex + age + 10 PCs + 15 SVs from theDNAmdata and 13 SVs from
the gene expression data

Multiple testing of CpGs per gene was corrected as described in
QTLTools45,46. P values were calculated for the CpG regression coeffi-
cient, and empiricalp values for the eQTMtarget geneswere estimated
using permutation analysis and beta distribution fit on the p values of
all CpGs tested per gene42,46. Benjamini-Hochberg FDR procedure was
applied to the eQTM empirical p values to account for the number of
genes tested. Significant eQTMs, determined at FDR ≤0.05, were fur-
ther considered for downstream analyses. Pearson’s correlation coef-
ficient was calculated for M-values and gene expression values for all
significant eQTMs.

Gene ontology and pathway enrichment of mQTL, eQTM and
eQTL target genes
We used GeneEnrich2 (https://github.com/segrelabgenomics/
GeneEnrich) to identify gene ontology (GO) terms enriched for tar-
get genes of significant mQTL, eQTM and eQTL (FDR <0.05). Gen-
eEnrich estimates an empirical gene set enrichment p value for a list of
significant genes in predefined gene sets, based on permutation ana-
lysis of a background set of genes expressed in a given tissue to adjust
for potential biases that may arise from the genes expressed in the
given tissue. Specifically, the gene set enrichment P value for a given
gene set or pathway is computed as the fraction of 1000–100,000
randomly sampled sets of genes fromabackground (null) list of genes,
of equal size to that of the significant set of genes, whichhave the same
or more significant hypergeometric probability than the observed
probability of the significant genes. The null set of geneswas defined in
this study as all genes expressed in peripheral retina that were tested
for mQTLs, eQTMs and eQTLs, excluding the significant set of genes.
Given the large number of significant m/eQTLs and eQTMs, we tested
for gene set enrichment among the top 10% ofmQTL, eQTL and eQTM
target genes, ranked based on their gene level FDR values. Gene
Ontology (GO) (http://geneontology.org/), Reactome, and Kyoto
Encyclopedia of Genes and Genomes (KEGG) gene sets were down-
loaded from the Molecular Signature Database (MSigDB) (https://
www.gsea-msigdb.org/gsea/msigdb/) on March 2021, which consisted
of over 11,000 gene sets. Only the subset of genes in each gene set
found in the given database and expressed in retina and tested for
mQTLs, eQTMs and eQTLs, respectively, were considered in the ana-
lysis. We restricted the analysis to gene sets with a minimum of 10
genes to amaximumof 1000 genes after intersecting themwith retina
expressed genes. GO-Figure (v1.0.1)88 (https://gitlab.com/evogenlab/
GO-Figure) was used to identify and plot an non-redundant set of gene
ontology terms that were significantly enriched for mQTL, eQTM and
eQTL target genes based on gene membership overlap and p value
ranking. Gene set enrichment significance was determined based on
Benjamini-Hochberg FDR below 0.1 per database.

Summary data-based mendelian randomization (SMR) analysis
of eQTL, mQTL and AMD GWAS
We performed summary data-based mendelian randomization (SMR)
analysis to test for causal or pleiotropic associations between eQTL
and mQTL using eQTL summary statistics as the exposure and mQTL
as the outcome (represented as E2M_SMR analysis), or between
mQTL and eQTL using mQTL summary statistics as the exposure and
eQTL summary statistics as the outcome (represented as M2E_SMR
analysis), using package GSMR40,41 (v1.1.1) (https://yanglab.westlake.
edu.cn/software/gsmr/#Sourcecode). Three SNPs were used as the
minimum number of instruments required for the analysis. For
M2E_SMR analysis, we selected an LD-independent set of significant
mQTL variants (P < 5E-05), irrespective of whether they are significant
eQTLs, and vice versa for the E2M_SMRanalysis, thereby abiding by the
MR assumptions.We used the heterogeneity independent instruments
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(HEIDI) test and P value threshold of greater than 0.05 to differentiate
pleiotropy from linkage25,40. We also performed SMR and HEIDI ana-
lysis to test causal or pleiotropic associations between mQTL or eQTL
and AMD GWAS. All analyses were applied to all significant indepen-
dent variant-by-gene or variant-by-CpG site QTLs. Bonferroni correc-
tion was used to determine significance at α < 0.05.

Colocalization analysis between retina mQTL or eQTL and
known AMD GWAS loci
To identify retina mQTL and/or eQTL that might underlie the causal
mechanismsof genetic associationswith AMD in knownGWAS loci, we
applied a Bayesian-based colocalization method, eCAVIAR42 (https://
github.com/fhormoz/caviar) to each of the 52 independent AMD
GWAS variants in 34 loci and overlapping peripheral retinamQTLs and
eQTLs. Up to two independent causal variants per locus were assumed
with eCAVIAR. OnlymQTLs or eQTLs with at least 5 significant variants
in the LD interval per GWAS locus (r2 > 0.1 plus 50 kb on either side of
the lead GWAS variant) were tested. All variants that fell within the
GWAS locus LD interval were analyzed. A colocalization posterior
probability (CLPP) above 0.01 was considered significant based on
prior simulations42. To minimize false positive results, we excluded
significant colocalizing GWAS-QTL signals if the m/eQTL and GWAS
variants with CLPP >0.01 did not pass the following significance cut-
offs: m/eQTL FDR <0.05 or P < 10−4 and/or GWAS P < 10−5. Supple-
mentary Data 5 presents a summary of the colocalization results for 52
AMDGWAS loci.We added the direction of effect of themQTLor eQTL
on AMD risk if significant colocalization was found. LocusZoom
(http://locuszoom.sph.umich.edu) and LocusCompare (https://github.
com/boxiangliu/locuscomparer) plots were generated for the coloca-
lization results.

Colocalization analysis between eQTL, mQTL and AMD GWAS
loci using Moloc
We performed Bayesian colocalization analysis to identify shared
causal variants or haplotypes between co-occurring eQTL, mQTL, and
AMD GWAS signals. To estimate the posterior probability that a lead
variant is associatedwith two traits (GWAS andmQTL (GM), GWAS and
eQTL (GE), mQTL and eQTL (EM)), coloc43 (v5.1.1) (https://github.com/
chr1swallace/coloc) was implemented using the R package. Next, to
estimate posterior probability that a given variant is associated with
three traits (GWAS, eQTL and mQTL (GEM)), moloc44 (v0.10) (https://
github.com/clagiamba/moloc) was implemented using the R package
and the following priors: p1 = 10−4, p2 = 10−4, p12 = 5 × 10−6, allowing for
up to 4 independent (r2 < 0.01) causal variants per locus. Posterior
probability above 0.8 was considered as evidence that two or three
trait associations share the same causal variant based on coloc and
moloc, respectively. The colocalization posterior probabilities output
given by moloc account for the multiple pairwise comparisons
performed44. LocusZoom (http://locuszoom.sph.umich.edu) and
LocusCompare (https://github.com/boxiangliu/locuscomparer) plots
were generated for colocalization results.

Retina Hi-C and epigenetic data analyzed
Hi-C data, loops, cis-regulatory elements (CREs) and super-enhancers
(SE) were taken from our previously published study of chromatin
contact map of the adult human retina36. CREs in that study were
identified by chromatin states enriched for active histone marks
identified by ChromHMM v1.19 that were merged to generate a set of
regions called CREs.

Integration of Hi-C data for identification of target genes for
mQTLs, eQTLs, eQTMs, variants and genes identified in SMR,
eCAVIAR, coloc and moloc analyses
The mQTLs were classified based on the location of the variants rela-
tive to the canonical TSS of the associated mGene based on Illumina

annotation84. eQTLs were classified based on the location of the var-
iants relative to the canonical TSS of the associated eGene based on
Ensembl 85 version. eQTMswere classifiedbasedon the locationof the
CpGs relative to the canonical TSS of the associated target genes based
on Ensembl 85 version. mQTL and eQTL variants located within ± 2.5
kb of the mGene/eGene TSS were identified as promoter mQTLs/
eQTLs and those located >2.5 kb from the mGene/eGene were identi-
fied as distal mQTLs/eQTLs. The mQTLs/eQTLs variants overlapping a
chromatin loop footwere classifiedbasedon the location contactedby
the opposite loop foot; variants in contact with their mGene/eGene
promoter were identified as mGene/eGene promoter mQTLs/eQTLs,
and variants in contact with a promoter other than the mGene/eGene
were identified as non-eGene promoter mQTLs/eQTLs. The mQTLs/
eQTLs were checked for overlap with CREs and SEs and subsequently
for overlap with the associated mGene/eGene. eQTMs located
within ± 2.5 kb of the TSS of their target gene were identified as pro-
moter eQTMs, while those located >2.5 kb from the target gene were
identified as distal eQTMs. eQTMs’ target CpG which overlap a chro-
matin loop foot were classified based on the location contacted by
the opposite loop foot; CpG in contactwith their target gene promoter
were identified as Gene promoter eQTMs, CpGs in contact with
a promoter other than the gene were identified as non-Gene promoter
eQTMs. eQTMs were checked for overlap with retina CREs and SEs
and subsequently checked if those regions overlapped
the associated target gene. All overlaps were performed using
GenomicRanges (v1.42) (https://bioconductor.org/packages/release/
bioc/html/GenomicRanges.html) in R. To confirm target genes for
associations identified in SMR, colocalizations identified with eCA-
VIAR, coloc and moloc, and variants identified in these associations
and colocalization analysis were overlapped with loops, CREs, and SEs.
For a loop target gene, one foot of the loop overlaps the variant, and
the second foot of the loop overlaps the gene body or TSS of a gene.
CRE and SE target genes were defined by the variant and gene body (or
TSS of a gene) overlapping the same CRE or SE. The closest target
genes overlapping with loops, CREs, SE, mQTLs, eQTLs, eQTMs, SMR
associations and colocalizations identified with eCAVIAR, coloc and
moloc were obtained using the closestBed command from bedtools89

(v2.27.1) (https://github.com/arq5x/bedtools2). The Hi-C data was
visualized using Washington University Epigenome browser (http://
epigenomegateway.wustl.edu/browser/).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support this study are available from the corresponding
author upon reasonable request. Dataset produced in this study are
accessible in GEO under the accession number: GSE231536 (Methyla-
tion array). Gene expression data are from our previous study, under
the accession GSE11582830. The summary statistics (nominal p values,
beta and standard error) for all significant variant-CpG pair mQTLs, all
significant variant-gene pair eQTLs, and all significant CpG-gene pair
eQTMs are provided on Zenodo at the following URL: https://doi.org/
10.5281/zenodo.10569726. Gene Ontology (GO) (http://geneontology.
org/), Reactome, and Kyoto Encyclopedia of Genes and Genomes
(KEGG) gene sets were downloaded from the Molecular Signature
Database (MSigDB) (https://www.gsea-msigdb.org/gsea/msigdb/). The
GWAS summary statistics for AMD are accessible under accession
GCST00321926 [https://www.ebi.ac.uk/gwas/studies/GCST003219].

Code availability
Publicly available software and packages were used throughout this
study according to each developer’s instructions. Custom scripts
generated for the study will be available upon request.
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