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Non-Hermitian non-equipartition theory for
trapped particles

Xiao Li 1,2,4, Yongyin Cao3,4 & Jack Ng 1

The equipartition theorem is an elegant cornerstone theory of thermal and
statistical physics. However, it fails to address some contemporary problems,
such as those associated with optical and acoustic trapping, due to the non-
Hermitian nature of the external wave-induced force. We use stochastic cal-
culus to solve the Langevin equation and thereby analytically generalize the
equipartition theorem to a theory that we denote the non-Hermitian non-
equipartition theory. We use the non-Hermitian non-equipartition theory to
calculate the relevant statistics, which reveal that the averaged kinetic and
potential energies are no longer equal to kBT/2 and are not equipartitioned. As
examples, we apply non-Hermitian non-equipartition theory to derive the
connection between the non-Hermitian trapping force and particle statistics,
whereby measurement of the latter can determine the former. Furthermore,
we apply a non-Hermitian force to convert a saddle potential into a stable
potential, leading to a different type of stable state.

Brownian motion is a fundamental type of thermal motion that is of
paramount importance in various scientific and technological appli-
cations. The underlyingmechanismof Brownianmotionwas explained
by Einstein in 19051 and Smoluchowski in 19062, and its characteristic
jittery movement results from the irregular bombardment of fluid
molecules. Thismovement is random, complex, andunrepeatable, and
thus Brownian motion can only be described by statistical theoretical
treatments. Perhaps the most important and elegant result of studies
on Brownianmotion is the equipartition theorem (ET), which was first
devised in 1843 for an equipartition of kinetic energies3, and subse-
quently generalized4, such that it became a cornerstone of classical
statistical physics5. The ET states that at thermal equilibrium, every
quadratic degree of freedom has an average energy of kBT/2, where kB
is the Boltzmann constant and T is temperature. Furthermore, the ET
plays a significant role in describing a broad range of physical sce-
narios, including the ideal gas law5, the Dulong–Petit law for specific
heat capacities of solids6, Graham’s law of effusion7, the extreme
relativistic ideal gas in astrophysics5,8, and Johnson–Nyquist noise9.

However, the ET is inadequate for certain contemporary problems,
such as those associated with optical/acoustic trapping10–18 and
binding19–32. These involve a single particle or a system of particles

bound at mechanical equilibrium by an external optical or acoustic
wave, which causes the particle or system to be out of thermal equili-
brium. The wave exchanges energy with the particle(s), leading to the
generation of nonconservative forces that drive the particle or system
into a non-Hermitian state31. This drastically alters the physical char-
acteristics of a particle or system, and thus the ET fails to describe a
particle or systemwhenever non-Hermitianmanipulation is performed.
External nonconservative forces compete with ambient damping, with
the former pumping energy into particles and the latter removing
energy from particles. Regarding optical manipulation, non-Hermitian
forces are expected to play a vital role in optical trapping under vacuum
(low damping) and a direct and significant role in optical trapping in air
under atmospheric conditions (intermediate damping). Moreover,
during optical trapping inwater (heavy damping), non-Hermitian forces
are expected to drive particles’ characteristic vibrational modes into a
non-orthogonal state that deviates from Hermitian physics.

In recent years, interest in non-Hermitian physics33,34 has grown.
This interest was initially sparked by studies in quantum mechanics35–39

and then spread to a wide range of areas of physical science, including
classical mechanics40,41, optics42–44, acoustics45,46, metamaterials47,48,
electrical circuits49–52, nuclear magnetic resonance53, topological

Received: 15 August 2023

Accepted: 13 February 2024

Check for updates

1Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China. 2Department of Physics, The Hong Kong
University of Science and Technology, HongKong, China. 3Instituteof Advanced Photonics, School of Physics, Harbin Instituteof Technology,Harbin 150001,
China. 4These authors contributed equally: Xiao Li, Yongyin Cao. e-mail: wuzh3@sustech.edu.cn

Nature Communications |         (2024) 15:1963 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-6273-0621
http://orcid.org/0000-0001-6273-0621
http://orcid.org/0000-0001-6273-0621
http://orcid.org/0000-0001-6273-0621
http://orcid.org/0000-0001-6273-0621
http://orcid.org/0000-0001-9776-3714
http://orcid.org/0000-0001-9776-3714
http://orcid.org/0000-0001-9776-3714
http://orcid.org/0000-0001-9776-3714
http://orcid.org/0000-0001-9776-3714
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-46058-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-46058-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-46058-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-46058-5&domain=pdf
mailto:wuzh3@sustech.edu.cn


photonics54–56, and optical manipulation31,57–62. We note that many of
these topics are associated with classical physics. Here, we explore the
application of non-Hermitian physics in Brownian dynamics. Specifi-
cally, one of our main themes is the application of non-Hermitian phy-
sics to optical trapping and binding, which are non-Hermitian systems.
Non-Hermitian systems and optical trapping in vacuumor air (which are
underdamped) hold significant and growing importance29–31,58,59,61,62.

We use stochastic calculus to solve the Langevin stochastic dif-
ferential equation with nonconservative trapping forces and thereby
generalize the ET to the non-Hermitian non-equipartition (NHNE) the-
ory (may be equivalently termed non-Hermitian non-equipartition
theorem). We also use the Verlet algorithm63 to validate the analytical
stochastic calculations through numerical simulations. Our results sig-
nificantly deviate from the kBT/2 predicted by the ET, and the energies
are no longer equipartitioned among the different degrees of freedom.
Moreover, we observe qualitative discrepancies. For instance, a suffi-
ciently large nonconservative force can destabilize an otherwise stable
trap14,31, whereas a particle in an originally unstable saddle potential can
be stabilized by an appropriate nonconservative force. The NHNE the-
ory is also capableofmeasuring forcesother thanconservative trapping
forces64, as it can measure non-Hermitian forces and the repulsive for-
ces of a particle in a saddle potential. Additionally, we discuss the NHNE
theory for N > 1 Brownian particles, which qualitatively captures accu-
rate numerical results by applying an approximate analytical theory.

Results
Statement of the NHNE theory
Consider a spherical particle of massm that is immersed in a fluid and
is confined within the vicinity of an equilibrium r0 = ðx0,y0,z0Þ by a force
field FðrÞ= ðFx ,Fy,Fz Þ. The dynamics of the particle are governed by the
Langevin stochastic differential equation65:

m
d2r
dt2

=FðrÞ � γ
dr
dt

+AðtÞ, ð1Þ

where r= ðx,y,zÞ represents the position of the particle; γ =6πηa is the
friction coefficient; a is the particle radius; η is viscosity; and
AðtÞ= ðAxðtÞ,AyðtÞ,Az ðtÞÞ, which obeys the fluctuation–dissipation the-
orem, is the Gaussian-distributed random force due to Brownian
fluctuations. AðtÞ has correlations of hAiðtÞAjðt0Þi=2γkBTδi,jδðt � t0Þ,
where AiðtÞ represents the ith component of AðtÞ, δi,j is the Kronecker
delta function, and δðtÞ is the Dirac delta function.

Near the equilibriumposition r’, where Fðr0Þ=0, FðrÞ in Eq. (1)may
be sufficiently approximated by its linear term (as the zeroth-order
term vanishes), as follows:

FðrÞ ≈ $
K � ðr� r0Þ, ð2Þ

where
$
Kij = kij =

∂Fi
∂rj

calculated at r= r0 is the force matrix22,31, where Fi

and ri are the ith components of FðrÞ and r, respectively.
$
Kij and Fi can

be calculated numerically. For optical trapping, which we consider
later, the force calculation is performed using Mie scattering theory
and theMaxwell stress tensor22,31,66. It is equally valid todefine the force
matrixwith an extraminus sign as FðrÞ ≈� $

K � ðr� r0Þ, where a positive
eigenvalue of

$
K indicates a stable mode. However, including an extra

minus sign is a matter of preference and has no physical significance.
Without loss of generality, one could take the equilibrium to be the
origin, i.e., r0 =0. By solving Eqs. (1) and (2) using stochastic calculus
(Supplementary Notes 1, 2), we obtain

hrirji=
2γkBT
m2

X3
n= 1

X3
l = 1

X3
m= 1

½$Λilð
$
Λ
�1Þmn�½

$
Λjmð

$
Λ
�1Þln�

$
M

φ

ml ,

hvivji=
2γkBT
m2

X3
n= 1

X3
l = 1

X3
m= 1

½$Λilð
$
Λ
�1Þmn�½

$
Λjmð

$
Λ
�1Þln�

$
M

ϕ

ml ,

ð3Þ

where ri (vi) denotes the ith component of the displacement (velocity),
the columns of

$
Λ are the right eigenvectors for �$

K=m, and
$
M

φ

ml and$
M

ϕ

ml are given in theMethods. Equation (3) is one of themain results of
this paper and generalizes the ET to non-Hermitian systems. A detailed
derivation is presented in Supplementary Notes 1, 2. In general, unlike
in the ET, the average energies in a non-Hermitian system associated
with different degrees of freedom are not equipartitioned by Eq. (3).
Hence, the generalization of the ET theory that it represents is referred
to as the NHNE theory. We note that the NHNE theory, denoted by
Eq. (3), can be applied to any forcematrix

$
K, including both Hermitian

and non-Hermitian matrices, for a trapped Brownian particle.

The NHNE theory for optical trapping
We provide a concrete example by considering optical trapping as a
non-Hermitian system. In the case of a particle trapped by a wave, the
non-Hermiticity of the force matrix results from light scattering31,57,58.
We utilize Eq. (3) to investigate the specific scenario of a single particle
trapped by light; the NHNE theory is also applicable to other
mechanical systems, including acoustic trapping and binding systems.
Themotionof the trappedparticle along the z-axis of a typical trapping
beam is independent of the transverse motions whenever31

kxz =
∂Fx

∂z
= kyz =

∂Fy

∂z
= kzx =

∂Fz

∂x
= kzy =

∂Fz

∂y
=0 ð4Þ

The conditions sufficient for Eq. (4) to hold include but are not
limited to (i) the equilibrium state of the system exhibits mirror sym-
metry about the z = z0 plane (e.g., in the case of identical counter-
propagating beams), (ii) the system exhibits mirror symmetries about
the x = x0 and y = y0 planes at the equilibrium position (e.g., in the case
of a linearly polarized Gaussian beam), or (iii) the system exhibits
rotational symmetry (e.g., with a circularly polarized Gaussian beam).
Here, ðx0,y0,z0Þ is the equilibrium position of the particle. Equation (4)
enables us to resolve the transverse motion by using the reduced two-

dimensional (2D) non-Hermitian forcematrix
$
K

0
2D =

k0
xx k0

xy

k0
yx k0

yy

" #
, where

$
K

0
2D

y
≠

$
K

0
2D as k0

xy ≠ k0
yx in general. By implementing a coordinate

transformation that diagonalizes the symmetric part of
$
K

0
2D, we obtain,

without loss of generality,
$
K2D =

$
R

$
K

0
2D

$
R

�1
=

kxx g
�g kyy

� �
, where

$
R is a

rotationmatrix.Here, the existenceof the anti-symmetric componentg
in the force matrix is a consequence of non-Hermiticity. One can infer
from the force field produced by g that this nonconservative force
revolves the particle around the mechanical equilibrium.

Then, Eq. (3) is simplified to

1
2
mhv2xi=

1
2
+
2g2

χ

� �
kBT ,

1
2
mhv2yi=

1
2
+
2g2

χ

� �
kBT ,

1
2
mhvxvyi=

�gðkxx � kyyÞ
χ

kBT ,

� 1
2
kxxhx2i=

kxx
�k

1
2
� kyyψ+

2g2

χ

� �
kBT ,

� 1
2
kyyh y2i=

kyy
�k

1
2
+ kxxψ+

2g2

χ

� �
kBT ,

� 1
2
ghxyi= � g2

�k
ψ+

ðkxx � kyyÞ
χ

� �
kBT ,

ð5Þ

where χ = � 4g2 + ðkxx � kyyÞ2 � 2ðkxx + kyyÞγ2=m, ψ= ðkxx � kyyÞ=
4ðg2 + kxxkyyÞ, and �k = ðkxx + kyyÞ=2. Equation (5) represents the 2D

Article https://doi.org/10.1038/s41467-024-46058-5

Nature Communications |         (2024) 15:1963 2



NHNE theory, which is fundamentally distinct from the ET. Here, we
note that the temperature T refers to the ambient temperature. It is
unchanged for transparent particles since the work done by the non-
Hermitian force is on the order of kBT (comparablewith the energy of a
single molecule in the ambient), thus completely negligible for the

entire ambient.When g = 0,
$
K2D is Hermitian, and Eq. (5) reduces to the

ET, where 1
2mhv2xi = 1

2mhv2yi= � 1
2 kxxhx2i = � 1

2 kyyh y2i= 1
2 kBT . How-

ever, when g ≠0, Eq. (5) can significantly deviate from the ET. The
equality of kinetic energy in Eq. (5) results from our aiming to simplify
the equation by selecting a specific coordinate system (where
$
K2D =

kxx g
�g kyy

� �
). The general form for arbitrary

$
K2D is available in

Supplementary Note 1. Generally, the kinetic energies along two
orthogonal transverse directions are not equal, as explained in
Supplementary Note 3. If the non-Hermitian force matrix is scaled as

P
$
K2D, the averaged quantities in Eq. (5) are nonlinear with respect to

the scalar P, as altering P changes the ratio between the trapping forces
and the random forces. This also applies to Eq. (3). In optical and
acoustic trapping, P is proportional to the incident power, as detailed
in Supplementary Note 6.

We now apply Eq. (5) to investigate a Brownian particle (with
refractive index n = 1.57 and radius a =0.5μm) that is illuminated and

trapped by two counter-propagating Gaussian beams that each have
an input power of 1.0mW. Such a system exhibits a non-Hermitian
force matrix that is tunable by varying the incident polarization
p̂= x̂ cosðζ Þ+ iŷ sinðζ Þ. A similar system was examined in ref. 31, but
without considering Brownian motion. The values of the components
of

$
K2D versus the incident polarizations are illustrated in Fig. 1a, while

the corresponding eigenvalues,

K ± = �k ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkxx � kyyÞ2=4� g2

q
, ð6Þ

are shown in Fig. 1b, where kxx and kyy represent the restoring force
constants in the x and y directions, respectively. The parameter g
represents the torque driven by the orbital angular momentum of the
elliptically or circularly polarized Gaussian beam, which is created by
the spin–orbit angular momentum conversion during focusing by the
objective lens67. As ζ is continuously tuned from 0° to 45°, the polar-
ization gradually varies from linear (Fig. 1c) to elliptical and then to
circular (Fig. 1d). With linear polarization (ζ =0°), g =0 due to reflec-
tion symmetries on the xz and yz planes, and thus the system is
effectively Hermitian. In addition, kxx ≠ kyy due to polarization
aberrations68. As ζ increases to (for example) 10°, the left circular
polarization becomes stronger than the right circular polarization,
which breaks the balance of the orbital angular momentum originally

Fig. 1 | Non-Hermitian non-equipartitioning in optical trapping. a Components

of the force matrix
$
K2D =

kxx g
�g kyy

� �
and b its eigenvalues for an optically trapped

dielectric Brownian particle with refractive index n = 1.57 and radius a =0.5 μm in a

low vacuum or in air, as the polarization (p̂= x̂ cos ζ + iŷ sin ζ ) of the incident
beams (with wavelength λ = 1.064μm) varies from linear (ζ =0°, panel c) to circular

(ζ = 45°, panel d). The red dashed line in panel b marks the exceptional point (EP).
The focused beamhas a numerical aperture of 0.9 and a filling factor of 1.0, and the
beam power for each beam is normalized to 1.0mW. For different viscosities,

η = 3.0μPa·s (e–g) and η = 18.4 μPa·s (h–j), average energies 1
2mhv2xi and 1

2mhv2y i,
� 1

2 kxxhx2i and � 1
2 kyyhy2i, and � 1

2 ghxyi are presented as lines (Anal.: analytical

values) and circles (Num.: numerical values).
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presented in the linear polarization and generates a finite g. Moreover,
the focused spot approaches cylindrically symmetric, and thus the
difference between kxx and kyy decreases. At ζ = 21.6°, which is indi-
cated by the red dashed line in Fig. 1b, an exceptional point (EP)
emerges, where the real parts of the eigenvalues merge and their
imaginary parts split. The EP arises due to a switch in the sign of the
quantity under the square root in Eq. (6), which causes the originally
real eigenvalues to become complex. This is expected, as ðkxx � kyyÞ2
ultimately reaches zero (at ζ = 45°) due to rotational symmetry, while g
increases monotonically from zero. As a result, the existence of an EP
at g2 = ðkxx � kyyÞ2 is inevitable, regardless of the specifics of a system.

The values of K ± in Eq. (6) are real and negative (indicating sta-
bility) to the left of the EP, whereas they become complex (indicating
instability if ambient damping is insufficient)31 to the right of the EP.
Figure 1e shows the kinetic energies of 1

2mhv2xi and 1
2mhv2yi plotted for a

viscosity of η = 3.0μPa·s, whereas Fig. 1f shows the quantities
� 1

2 kxxhx2i and� 1
2 kyyh y2i. Crucially, the last twoquantities, referred to

as potential energies, only represent the conservative interaction, but
not the entire non-Hermitian interactions. The latter cannot be
expressed as the gradient of a potential. According to the ET, all four
quantities should equal kBT/2. However, they deviate from kBT/2,
except when the system is effectively Hermitian under linear polar-
ization (ζ = 0°). Figure 1g also displays � 1

2 ghxyi, which has non-zero
values, indicating the presence of non-Hermitian couplings between
the x and y motions. Due to the axial symmetry, � 1

2 ghxyi=0 under
circular polarization (ζ = 45°), despite non-Hermitian coupling still
being present. We compare the results obtained using the NHNE the-
ory (Eq. (5)) with those generated by a numerical Verlet simulation
(marked by circles in Fig. 1e–g). The Verlet simulation utilizes the
“exact” optical force field computed from Mie scattering theory66,
instead of the linearized force based on the force matrix. In the Mie
scattering theory, the expansion series are truncated at
Lmax = ka+4ðkaÞ1=3 + 269,70, with k = 2π

λ being the wavenumber. In some
cases, we verified the convergence of our calculations by comparing
the calculation truncated at Lmax with those truncated at Lmax + 5.
Further details on the Verlet simulation can be found in the Methods.
The results show remarkable agreement, with small deviations found
only near areas of circular polarization. This is because circular
polarization has the largest g, which leads to the fastest rate of energy
pumping, allowing a particle tomove further away fromtheorigin than
under other types of polarization, such that the linear approximation
in Eq. (2) becomes less accurate. The agreement with the “exact” force
calculation demonstrates the sufficiency of the linear approximation
used to derive Eq. (5).

Figure 1h–j show the same settings as Fig. 1e–g, except that the
former has a viscosity η = 18.6μPa·s (air), whereas the latter has
η = 3.0μPa·s. As the damping increases, themaximumdeviations from
the ET decrease from ~200% to ~20%. This indicates that although the
non-Hermiticity is significantly suppressed, it cannot be ignored, even
for optical trapping in air. A large dissipation implies that the energy
the particle receives from light is dissipated quickly, preventing its
accumulation. Regardlessof the level of damping, the presence of non-
Hermitian forces ensures that the vibrational eigenmodes are always
non-orthogonal, indicating that the non-Hermiticity of the force
matrix cannot be ignored in any case. In all cases, the results from the
NHNE theory remain accurate. The non-Hermiticity of optical trapping
also depends strongly on the particle radius (a), as detailed in Sup-
plementary Note 8.

Interestingly, � 1
2 kxxhx2i and � 1

2 kyyh y2i in Fig. 1f, i are not the
same. In fact, in Fig. 1i, � 1

2 kyyh y2i can even be less than kBT/2. This
observation can be explained by the virial theorem71,
1
2mhv2i i=

P
j
� 1

2

$
Kijhrirji, which remains applicable even in the non-

Hermitian case (Supplementary Note 3). In addition, according to the
virial theorem, one can obtain 1

2mhv2xi= � 1
2 kxxhx2i � 1

2 ghxyi
and 1

2mhv2yi= � 1
2 kyyh y2i+ 1

2 ghxyi.

Figure 2 shows the average rate at which work is done on the
particle by the dissipative force �hγv � vi, random force hAðtÞ � vi, and
optical force hFðrÞ � vi, calculated analytically (lines) and numerically
(circles), as a function of polarizations (Fig. 2a) and viscosities (Fig. 2b).
As required by energy conservation, we have �hγv � vi+ hAðtÞ � vi+
hFðrÞ � vi=0, as detailed in Supplementary Note 4. As AðtÞ is a random
force that does not depend on v, its power is expected to be the same
for a particle moving freely and a particle moving under a force field,
resulting in a constant hAðtÞ � vi= 2γkBT

m in Fig. 2a. Moreover, in Fig. 2a,
hFðrÞ � vi increases with the non-Hermiticity of the force matrix as ζ
increases, which accounts for the increased energies in the NHNE
theory results shown in Fig. 1e–j. As η increases, the role of the optical
force initially increases and then decreases to zero, because at a large
η, work is done at a high rate by the Brownian fluctuation hAðtÞ � vi and
the corresponding motion is heavily damped. Surprisingly, the optical
force does no work in a perfect vacuum, but it does work when fluc-
tuation and damping are present; this highlights an unexpected role of
Brownian motion in light-driven machines.

The NHNE theory for a saddle potential with a nonconservative
force field
A non-Hermitian force matrix consists of a potential energy term (the
symmetric part of

$
K2D) and a nonconservative term (the anti-

symmetric part of
$
K2D). A saddle potential traps a particle in one

direction (when kxx <0) and repels the particle in the other direction
(when kyy >0),making it unstable. Counter-intuitively, a non-Hermitian
force can stabilize a particle in a saddle potential if the trace of

$
K2D is

negative. As the polarization (p̂= x̂ cosðζ Þ+ iŷ sinðζ Þ) varies from linear
(ζ =0°, Fig. 3c) to circular (ζ = 45°, Fig. 3d), the matrix elements of

$
K2D,

namely kxx , kyy, g, and -g, are illustrated with lines in Fig. 3a for optical
trapping of a hollow sphere (with refractive index n = 1.57, inner radius
0.49μm, and outer radius a =0.70μm), where the saddle potential
(defined by kxx � kyy <0) occurs on the left-hand side of the black
dashed line. Figure 3b plots ReðK ± Þ and ImðK ± Þ versus ζ, wherein the
EP is marked with a red dashed line, and the neutral point (NP) with
K + =0 and K�<0 ismarkedwith a blue dashed line. Coincidentally, the
black dashed line (Fig. 3a) and the EP are very close. On the left-hand
side of the NP, the positive K + mode repels the particle, regardless of
the ambient damping level, whereas on the right-hand side of the EP,
the complex modes K ± destabilize the particle when the background
damping is not sufficiently large. Unexpectedly, between the NP and
the EP, the particle is always stable. Similar to Fig. 1, wedepict theNHNE
in Fig. 3e–j) with viscosity η = 3.0μPa·s (η = 18.4μPa·s) versus polar-
izations. At the NP, � 1

2 kxxhx2i, � 1
2 kyyh y2i, and � 1

2 ghxyi diverge
because there is no confinement by optical force along the neutral

Fig. 2 | Power delivered by different force components. Power delivered by the
damping force hγv � vi (black), thefluctuational force hAðtÞ � vi (red), and theoptical
force hFðrÞ � vi (blue) versus a the polarizations (ζ) andb viscosities (η) in the optical
trapping of a Brownian particle (identical to that described in Fig. 1e–g) is pre-
sented. The analytical (Anal.) and numerical (Num.) values are denoted by lines and
circles, respectively.
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direction. However, the kinetic energies remain finite. For η = 3.0μPa·s,
hv2xi, hv2yi, hx2i, h y2i, and hxyi diverge beyond the polarization char-
acterized by ζ = 41.7°, i.e., after the EP, becauseK ± are complex and the
background damping is insufficient, making the trapping unstable.
Figure 3e–j present the analytical (lines) and numerical (circles) cal-
culations. Inconsistencies are only observed when the particle is far
away from the equilibrium position. As kyy varies from positive to
negativedue to the increase in ζ,� 1

2 kyyh y2i also varies fromnegative to
positive (Fig. 3f, i), i.e., from repulsion to trapping. This is a unique
phenomenon for a saddle potentialwith a non-Hermitian forcefield. As
an additional example of saddle potential, we also consider a uniform
layer of dielectric coated on a gold sphere for the purpose of optical
trapping, as illustrated in Supplementary Note 9.

Trajectories for optical trapping
The trajectories of particles trapped by non-Hermitian forces and
subject to Brownian motion are depicted in Fig. 4a, b (trapping
potential) and Fig. 4c, d (saddle potential), with their initial positions
marked by black dots. For the trapping potential at η = 1.0μPa·s
(Fig. 4a), the viscosity is too low to confine the particle after the EP.
However, when the viscosity is increased to η = 3.0μPa·s, as shown in

Fig. 4b, theBrownianparticle is stable at all of thepolarizations.We can
still observe the expansionof the trajectories as ζ increases58, which is a
result of the increasing hx2i and h y2i shown in Fig. 1f. In addition, the
trapped particle exhibits Brownian fluctuations near the equilibrium,
and its orientation varies with ζ (see Supplementary Note 5).

For the saddle potential, the particle escapes before the NP
(ζ <26.9°), due to the repulsive force (Fig. 4c, d), and after ζ=32.6°
(ζ =41.7°), when the viscosity is as low as η = 1.0μPa·s (η =3.0μPa·s), as
shown in Fig. 4c (Fig. 4d). On the NP, the Brownian particle is trapped in
only one direction, whereas the fluctuation force repels the particle far
away in another direction. Between the NP and the EP (26.9° < ζ< 32.0°),
the Brownian particle is trapped stably, even though the optical force
repels the particle in one direction. The videos for the three-dimensional
trajectories for each case depicted in Fig. 4a–d are available in Supple-
mentaryMovies 1–4, and detailed phase diagrams for both trapping and
saddle potentials can be found in Supplementary Note 6.

The NHNE theory for multiple particles
Comparedwith the NHNE theory for a single particle, the NHNE theory
for multiple particles is significantly more complex due to hydro-
dynamic interactions between particles72. Currently, there is no exact

Fig. 3 | Non-Hermitian non-equipartitioning in optical trapping of a saddle
potential. Components (a) and eigenvalues (b) of the force matrix
$
K2D =

kxx g
�g kyy

� �
for an optically trapped dielectric hollow particle with refractive

index n = 1.57, inner radius 0.49μm, and outer radius a =0.70 μm, in a low vacuum

or in air, as the polarization (p̂= x̂ cos ζ + iŷ sin ζ ) of the incident beams (with
wavelength λ = 1.064μm) varies from linear (ζ =0°, c) to circular (ζ = 45°, d). The
left-hand side of the black dashed line in a corresponds to the saddle potential,

where kxx � kyy <0. The blue and red dashed lines in b indicate the neutral point

(NP), where one of the eigenvalues K ± is 0, and the exceptional point (EP),
respectively. The focused beam has a numerical aperture of 0.9 and a filling factor
of 1.0, and the power of each beam is normalized to 1.0mW. For different viscos-

ities, η = 3.0μPa·s (e–g) and η = 18.4μPa·s (h–j), average energies 1
2mhv2xi and

1
2mhv2y i, � 1

2 kxxhx2i and � 1
2 kyyhy2i, and � 1

2 ghxyi are presented as lines (Anal.:

analytical values) and circles (Num.: numerical values).
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analytical solution available, but one can use the Verlet algorithm to
solve the problem numerically, as discussed in Supplementary Note 7.
Furthermore, an approximate solution can be derived if the hydro-
dynamic interactions are neglected (see Supplementary Note 7):

hrirji=
2γkBT
m2

X3N
n= 1

X3N
l = 1

X3N
m= 1

½$Λilð
$
Λ
�1Þmn�½

$
Λjmð

$
Λ
�1Þln�

$
M

φ

ml ,

hvivji=
2γkBT
m2

X3N
n= 1

X3N
l = 1

X3N
m= 1

½$Λilð
$
Λ
�1Þmn�½

$
Λjmð

$
Λ
�1Þln�

$
M

ϕ

ml :

ð7Þ

The approximate analytical solutions semi-qualitatively agree
with the numerical results.

We consider a linear chain of spheres with N = 2 (Fig. 5a) that are
optically trapped and bounded in a low vacuum by two coherent lin-
early polarized plane waves (η = 1.0μPa·s) propagating along the chain
axis. The two plane waves have different intensities I1 and I2 (I1 = 9I2),
respectively, creating an unbalanced propagation that favors the non-
Hermitian force fields73,74. Each sphere has a radius of a =0.2μm and a
refractive indexofn.We search for an equilibriumconfiguration for the
pair of spheres and consider theirmotion along the z-axis. The red lines
in Fig. 5b (with separation D≈ λ and refractive index n = 1.1) and Fig. 5c
(with D≈4λ and n = 1.2) plot the averaged kinetic energies 1

2mhv2z,ii,
which are calculated using Eq. (7) for each sphere i versus the averaged
intensity �I0 =

1
2 ðI1 + I2Þ. Here,

$
K=�I0

$
K0, where

$
K0 is the force matrix at

�I0 = 1:0W=m2. As the componnets of the non-Hermitian force matrix
increase with �I0, the kinetic energies increasingly deviate from kBT/2
and are no longer equipartitioned. We also conduct numerical simu-
lations usingVerlet algorithms that take thehydrodynamic interactions
into account. The results are depicted as blue dots in Fig. 5b (for a small
D) and Fig. 5c (for a large D). The hydrodynamic interactions have a
significant impact on the partitioned energies when D is small, i.e., the
blue dots deviate from the red line, as shown in Fig. 5b. However, the
deviation diminishes when D is large, as the hydrodynamic interaction
is weakened, as shown in Fig. 5c. In sum, the approximate multiple
particle NHNE theory (Eq. (7)), from which hydrodynamic interactions
are excluded, can semi-qualitatively predict the averaged energies for
each degree of freedom, especially when D is large.

Discussion
In this article, stochastic calculus is applied to generalize the ET
to deal with non-Hermitian trapping and binding forces. This

Fig. 5 | Non-Hermitian non-equipartitioning in the optical binding of two
spheres. a The two spheres (colored green), each with a radius of a =0.2μm and a
refractive index of n, are optically bounded by two linearly polarized counter-
propagating plane waves (with wavelength λ = 1.064μm) in a low vacuum
(η = 1.0μPa·s). The two plane waves have different intensities, with I1 = 9I2, and
�I0 =

1
2 ðI1 + I2Þ. The average kinetic energies 1

2mhv2z,ii for the particles (indexed by i,
ranging from 1 to 2) versus �I0 are presented as red lines (analytical (Anal.) results
excluding hydrodynamic interactions) and blue dots (numerical (Num.) results
including hydrodynamic interactions) for different separations (D) and different
values of n, namely b D≈λ and n = 1.1, and c D≈4λ and n = 1.2. This analysis focuses
on motion along the z-axis.

Fig. 4 | Trajectories for anopticallymanipulatedBrownianparticle.Numerically
calculated trajectories for viscosities η = 1.0μPa·s (a, c) and η = 3.0μPa·s (b, d) with
respect to various polarizations (ζ) for a Brownian particle being optically
manipulated in a trapping potential (a, b, corresponding to Fig. 1) or a saddle

potential (c, d, corresponding to Fig. 3) are presented. The black dots indicate the
coordinate origins and the starting positions of the trajectories, and the initial
velocity of the particle is 0.
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generalized theory, denoted by the NHNE theory, enables the calcu-
lationof the average energies of a single particle or a group of trapped
or bounded particles, even when the force matrix of a system is non-
Hermitian. By “generalize”, we meant to extend the original ET to
address non-Hermitian problems. We note that the NHNE theory
reveals the breaking of universality in the original ET by non-Hermi-
ticity, in the sense that the average energies associated with each
degree of freedom are no longer equal and depends on the details of
the system. This is a development in the study of Brownian motion
and has far-reaching implications for a variety of problems associated
with modern technology, including those associated with optical/
acoustic trapping and binding, and with other open mechanical
systems.

To provide a concrete illustration of the NHNE theory, we focus
on optical trapping, which is one example of a non-Hermitian trap-
ping system. The NHNE theory is applied to analyze both the trap-
ping potential (Fig. 1a) and the saddle potential (Fig. 3a).We propose
that by experimentally measuring hx2i, h y2i, hxyi, hv2xi, hv2yi, and
hvxvyi, Eq. (5) can be used to determine both the Hermitian (kxx and
kyy) and non-Hermitian (g) force constants. To our knowledge, such
an approach is previously limited by the availability of pertinent
theories, as a result, they can only be used to perform such indirect
measurement of force constants in a heavily damped
environment57,75. Thus, the NHNE theory provides a method to
directly measure force constants under arbitrary levels of damping,
including in vacuum trapping applications. When there is a large
damping, some predictions by our theory (such as the average
energies) can be very similar to what conventional ET predicts. It
might seem like damping is getting rid of non-Hermiticity, but that is
not the complete physical picture. For example, the vibrational
eigenmodes remain non-orthogonal, irrespective of the damping.
Moreover, wemake the surprising finding that non-Hermitian forces
can stabilize a particle in a saddle potential. Repulsive forces at the
microscopic scale can be difficult to measure, due to the absence of
a stable equilibrium. We propose that a microparticle located near a
saddle potential can be stabilized by non-Hermitian forces. Fur-
thermore, the repulsive force constant in a saddle potential can be
determined using the NHNE theory.

We note that the NHNE theory is of relevance to the study of non-
reciprocal interaction and active matters76–80. These systems are typi-
cally complex, involving intricate geometries, and a variety of non-
reciprocal and non-Hermitian interactions. Our theorymay offer some
insights and approximate predictions into these problems.

Methods
Expressions of

$
M

φ

ml and
$
M

ϕ

ml
In Eq. (3),
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where
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and ωi =
ffiffiffiffiffi
Ki

p
with Ki being the ith eigenvalue of �$

K=m.

Verlet algorithm for Langevin dynamics simulations
We use the Verlet algorithm63 to solve the stochastic Langevin
differential equation in Eq. (1) numerically. By definition, the fluctuat-
ing force AðtÞ= ðAxðtÞ,AyðtÞ,Az ðtÞÞ, which satisfies hAiðtÞAjðt0Þi =
2γkBTδi,jδðt � t0Þ, is independent of the particle velocity vðtÞ, and one
can assume that AðtÞ is a constant force during each time step h. We

denote the fluctuating force during the time interval [t, t + h] ([t, t – h])
asA+ (A�). Theparticlepositions at time t, t–h, and t + h are relatedby

rðt +hÞðm+ γh=2Þ + rðt � hÞðm� γh=2Þ=2rðtÞm+h2ðFðrðtÞÞ+A+ =2 +A�=2Þ,
ð10Þ

while for the particle velocities,

vðt +h=2Þðm+ γh=2Þ=vðt � h=2Þðm� γh=2Þ+hðFðrðtÞÞ+A+ =2+A�=2Þ:
ð11Þ

Here, FðrðtÞÞ denotes the external force (e.g., optical force) exer-
ted on the particles located at rðtÞ. The Verlet results presented in the
main text and Supplementary Information are obtained using a time
step h = 10�8s. The average quantities are based on the average of 1010

positions or velocities.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available at https://
figshare.com/articles/dataset/Data_Availability_for_Nature_
Communications_Non-Hermitian_Non-Equipartition_Theory_for_
Trapped_Particles/25196924.

Code availability
The codes used for the Brownian motion of an optically trapped par-
ticle are available at https://figshare.com/articles/dataset/Code_
Availability_for_Nature_Communications_Non-Hermitian_Non-
Equipartition_Theory_for_Trapped_Particles/25197044.
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