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Metabolomic machine learning predictor for
diagnosis and prognosis of gastric cancer

Yangzi Chen1,12, Bohong Wang1,2,12, Yizi Zhao1,12, Xinxin Shao3,12,
Mingshuo Wang1,2,12, Fuhai Ma3,4,12, Laishou Yang5, Meng Nie 1, Peng Jin3,6,
Ke Yao 1, Haibin Song7, Shenghan Lou5, Hang Wang5, Tianshu Yang8,9,
Yantao Tian 3 , Peng Han 10,11 & Zeping Hu 1,2

Gastric cancer (GC) represents a significant burden of cancer-relatedmortality
worldwide, underscoring an urgent need for the development of early detec-
tion strategies and precise postoperative interventions. However, the identi-
fication of non-invasive biomarkers for early diagnosis and patient risk
stratification remains underexplored. Here, we conduct a targeted metabo-
lomics analysis of 702 plasma samples from multi-center participants to elu-
cidate the GC metabolic reprogramming. Our machine learning analysis
reveals a 10-metabolite GC diagnostic model, which is validated in an external
test set with a sensitivity of 0.905, outperforming conventional methods
leveraging cancer protein markers (sensitivity < 0.40). Additionally, our
machine learning-derived prognostic model demonstrates superior perfor-
mance to traditional models utilizing clinical parameters and effectively stra-
tifies patients into different risk groups to guide precision interventions.
Collectively, our findings reveal the metabolic landscape of GC and identify
two distinct biomarker panels that enable early detection and prognosis pre-
diction respectively, thus facilitating precision medicine in GC.

Gastric cancer (GC) is a highly lethal cancerworldwide1. Early diagnosis
is critical for improving clinical outcomes by facilitating timely
intervention2. However, the gold standard for diagnosing GC, which is
the endoscopic examination, is both invasive and costly3–5, limiting
its clinical application. Consequently, there is an urgent need for
non-invasive detection approaches with high sensitivity and specifi-
city. Additionally, prompt disease management through prognostic

surveillance contributes to better clinical outcomes6. Currently, clin-
ical prognosis prediction relies heavily on surgeons’ empirical judg-
ment based on various clinical indications, including tumor location,
TNM staging information, and histopathology, which exhibit limited
accuracy7–9. Therefore, developing a more precise method for pre-
dicting patients’ outcomes and stratifying them into different risk
groups for appropriate interventions is crucial.
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Both genetic and environmental risk factors of GC lead to meta-
bolic changes and further contribute to tumor initiation and
progression10,11. As a systematic analysis, metabolomics offers a com-
prehensive profile of metabolic status, reflecting the net result of
genetic-environmental interactions. Consequently, it has been widely
used to decipher metabolic differences, uncover biomarkers, and
identify potential therapeutic targets in various diseases12–18. Previous
studies have elucidated the application of metabolomics in GC to
uncovermolecularmechanisms, identify prediction biomarkers forGC
occurrence, prognosis, and peritoneal recurrence19–31. However, a
majority of these studies encountered limitations, including small
cohort sizes, the absence of an independent cohort for validation,
restricted reproducibility attributed to differences in sample types and
detection methods, and low detection sensitivity associated with the
analytical techniques employed. Consequently, the development and
refinement of metabolic biomarkers suitable for clinical applications
remain imperative. Therefore, global metabolomic profiling of multi-
ple large, well-characterized cohorts is crucial for identifying and
validating biomarkers with translational potential.

Althoughmetabolomics enables themeasurement of hundreds of
metabolites presenting in clinical samples, sophisticated data pro-
cessing and interpretation remain a challenge. Machine learning, a
widely used artificial intelligence (AI) approach, automatically ana-
lyzes complex data inmany fields of biomedical science32,33. It presents
unique advantages, especially in interpreting -omics data, developing
prediction models, identifying biomarkers, and stratifying patients
for precision medicine34–39. However, the utilization of machine
learning in analyzing GCmetabolomics data and developing potential
biomarkers is underexplored, highlighting substantial potential for
further research.

Here, liquid chromatography-mass spectrometry (LC–MS)-based
targetedmetabolomicswas employed to analyze plasma samples from
multi-center GC patients and non-GC controls (NGC), totaling 702
participants. A diagnostic model was developed by machine learning
using metabolomics data and was further validated in both test set 1
and test set 2. Notably, this diagnostic approach outperformed the
conventional method that utilized cancer protein markers including
Carbohydrate Antigen 19-9 (CA19-9), Cancer Antigen 72-4 (CA72-4),
andCarcinoembryonicAntigen (CEA) in identifying patients at stage IA
and other stages. In addition, the prognostic biomarker panel showed
a remarkably higher concordance index (C-index) than the traditional
method that employed clinical indications, suggesting better perfor-
mance in predicting clinical outcomes. Moreover, the model-based
risk stratification of patients could inform clinical decision making.
Collectively, our studypresented empiricalfindings demonstrating the
advantages of applying machine learning in analyzing metabolomics
data for enabling early detection and precision medicine in GC.

Results
Patients, data collection, and study design
The overall workflow of this study and the detailed participant
recruitment information for each analysis were illustrated in (Fig. 1).
Specifically, plasma samples were obtained from a total of 702 indi-
viduals consisting of 389 GC patients and 313 NGC. The clinical char-
acteristics of those participants were summarized in Supplementary
Fig. 1a–d. Next, the metabolomics profile of plasma samples was
obtained using a targeted liquid metabolomics approach based on
LC–MS15. In total, 147metabolites including amino acids, organic acids,
nucleotides, nucleosides, vitamins, acylcarnitines, amines, and carbo-
hydrates were detected (Supplementary Fig. 1e). Then the metabolic
landscape of GC and NGC in Cohort 1 were compared and the asso-
ciation between the metabolic signatures and clinical phenotypes was
investigated using machine learning algorithms. We developed a GC
diagnostic model named the 10-DM model and evaluated the model
performance in distinguishing GC patients from NGC. In addition, an

external test set 2 (Cohort 2) was applied to validate the model’s
robustness. Apart from the diagnosticmodel, we further constructed a
prognostic model (28-PM model) using machine learning analysis of
metabolomics data from 181 GC patients (Cohort 3). We also bench-
marked the model performance against traditional methods that
leverage clinical indications and assessed the risk-stratification ability
of the model.

Reprogrammed plasma metabolic landscape in GC patients
To characterize the plasma metabolic reprogramming of GC, meta-
bolomic analysis was performed in GC patients versus NGC. Specifi-
cally, a principal component analysis (PCA) distinguished GC from
NGC samples, indicating that GC metabolome undergoes remodeling
(Fig. 2a). In total, 45 metabolites were statistically different in GC
compared against NGC (Wilcoxon rank-sum test, false discovery rate
(FDR) < 0.05 and fold change > 1.25 or < 0.8) (Fig. 2b and Supplemen-
tary Fig. 2a–b). Interestingly, these dysregulated metabolites showed
3 remarkably distinct trends (Cluster 1–3) along with the disease pro-
gression (Fig. 2c and Supplementary Fig. 2c–e). Particularly, the
metabolites in Cluster 1 (e.g., neopterin and N(7)-methylguanosine)
exhibited a sustainable increasing pattern while those metabolites in
Cluster 2 (e.g., glutathione disulfide (GSSG), uridine, and lactate)
showed a continuously decreasing trend along with cancer initiation
and progression (Fig. 2c and Supplementary Fig. 2c, d).

Furthermore, KEGG pathway enrichment analysis of these differ-
ential metabolites revealed a range of disturbed metabolic pathways
(Fig. 2d). Glutathione metabolism, which has been well characterized
previously in several cancers with functions in the cellular antioxidant
system, reactive oxygen speciesmanagement and the potential in anti-
cancer therapeutics40,41, was the most significantly disturbed pathway
in GC. Two key metabolites in the glutathione metabolism, GSH, and
GSSG, were significantly decreased in the GC plasma (Supplementary
Fig. 2a, b). However, the GSH/GSSG ratio, which has been identified as
an indicator of disturbed oxidative stress42–44, was significantly upre-
gulated in GC patients and increased along with disease progression
(Supplementary Fig. 2a). Taken together, the data showed that oxi-
dative stress was greatly dysregulated in GC patients.

Additionally, cysteine and methionine metabolism was also vig-
orously perturbed metabolic pathway in GC patients, which was
reported to influence oxidative stress, mediate cellular signaling, and
facilitate epigenetic regulation in the tumorigenesis process45–48.
Moreover, the down-regulation of S-Adenosyl-L-homocysteine (SAH),
up-regulation of S-Adenosyl methionine (SAM), and an increasing
trajectory of SAM/SAH ratio along with disease progression in GC
patients in comparison with NGC controls were observed (Supple-
mentary Fig. 2a, b). As a universal methyl donor, SAM abundance
alteration leads to epigenetic changes and regulates gene expression,
supporting cell proliferation and growth49–52. Therefore, the dysregu-
lation of the SAM/SAH ratiomay reflect the perturbation of themethyl
pool in GC patients.

Together, our findings depicted the metabolic vulnerabilities and
underlay potential applications of plasmametabolites in the detection
and prediction of GC.

Biomarker panel derived from machine learning enables GC
patient diagnosis at early stages
We next leveraged the reprogrammed metabolic profiles we acquired
todevelop innovative cancer diagnostic approaches.Machine learning
was used to develop a model for predicting the clinical status in this
study. Using the Least Absolute Shrinkage and Selection Operator
(LASSO) regression algorithm, we selected 10 essential metabolites
for the discrimination of GC and NGC (Fig. 3a), including succinate,
uridine, lactate, SAM, pyroglutamate, 2-aminooctanoate, neopterin,
N-Acetyl-D-glucosamine 6-phosphate (GlcNAc6p), serotonin, and
nicotinamide mononucleotide (NMN). Next, we trained a random
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forest model with the 10 essential features, and then validated
the model in the test set 1, yielding an area under the receiver oper-
ating characteristic (AUROC) of 0.967 (95% confidence interval (CI):
0.944-0.987, sensitivity: 0.854, specificity: 0.926) (Fig. 3b). Moreover,

each metabolite contributed relatively evenly to this 10-metabolite
diagnostic model (10-DM model), with succinate, uridine, and lactate
being the three most significant contributing metabolites (Fig. 3c).
Previous studies on gastrointestinal tumors have consistently
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Fig. 1 | Schematic overview of the study. Overview of the study design. The
illustration was created with a full license on BioRender.com. A total of 702 indi-
viduals were included in the study, and their plasma samples underwent targeted
metabolomics analysis. The metabolic profiles of gastric cancer (GC) patients and
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tures were analyzed using a machine learning algorithm to develop a prognostic
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the figure represent various participant groups used for model construction, vali-
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identified differential metabolites, including succinate53,54, uridine55,
and lactate24. Succinate and lactate have been continuously upregu-
lated in the epithelium, serrated lesions, and tumor tissues of GC
patients, implying their involvement in tumor initiation and
progression56. Significant alterations in uridine levels have been
detected in GC tumor tissues55. Likewise, the relative abundance plots

across the tumor initiation and progression indicated that all of these
tenmetabolites were significantly different betweenGC andNGC,with
five of them (SAM, neopterin, GlcNAc6p, serotonin, and NMN) being
significantly upregulated in GC and the other five (succinate, uridine,
lactate, pyroglutamate, and 2-aminooctanoate) significantly down-
regulated in GC (Supplementary Fig. 3a).
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To visually demonstrate the model’s performance, we generated
plots that compare eachparticipant’s prediction valuewith their actual
disease status (NGC/GC). Employing a cutoff value of 0.5 for classifi-
cation, the 10-DMmodel accurately identified85.4%of the test set 1 GC
patients and 90.3% of the test set 2 GC patients (Fig. 3d, e). In clinical
practice, the early detection of GC is crucial for timely clinical inter-
vention and curative resection, which can significantly improve the
survival rate of tumor patients37,57,58. To further assess the effectiveness
of our model in diagnosing early-stage GC, we applied the 10-DM
model to distinguish between stage IA/IB GC andNGC in test set 1. The
model achieved a prediction accuracyof 90.9% (AUROC: 0.957, 95%Cl:
0.917–0.990, sensitivity: 0.813, specificity: 0.926) for stage IA patients
and a prediction accuracy of 0.927 (AUROC: 0.984, 95% Cl:
0.947–1.000, sensitivity: 1, specificity: 0.926) for stage IB patients,
demonstrating its superior discrimination ability in screening early-
stage patients (Fig. 3f). Additionally, in the external test set 2 (Cohort
2), the model replicated its performance with an AUROC of 0.920
(sensitivity:0.905, specificity:0.75). Consistent with the previous
encouraging results, 83.6% of the early-stage (stage I and stage II)
patients in test set 2 were correctly identified by the 10-DM model
(sensitivity: 0.931, specificity: 0.75) (Fig. 3g and Supplementary
Fig. 3b), and the 10-DM model’s detection accuracy for stage IA
patients was 79.1% (AUROC: 0.909, 95% Cl: 0.838–0.975, sensitivi-
ty:0.909,specificity:0.75), indicating its high sensitivity and reliability.

Comparison of the diagnostic performance of the 10-DMmodel
with traditional methods using routine biomarkers and models
employing other algorithms
To assess whether the 10-DM model exhibits advance in the diag-
nosis, we benchmarked the 10-DM model’s prediction accuracy
against that of the 3 existing clinical tumor biomarkers CA19-9,
CA72-4, and CEA (collectively named 3-biomarker panel). The dis-
criminative sensitivities of the CA19-9, CA72-4, and CEA were 0.217,
0.317, and 0.165 respectively, compared to 0.925 of the 10-DMmodel
(Supplementary Fig. 4a, b). Considering that these three biomarkers
are frequently combined in clinical practice to enhance specificity,
we hypothesized that sensitivity could be improved if we classified an
individual as a GC patient if any single metabolite of the 3-biomarker
panel falls outside the normal range (i.e., CEA: 0–5 μg/L, CA19-9:
0–27 U/mL, CA72-4: 0–6.9U/mL). Strikingly, our 10-DM model
showed superior performance even over the 3-biomarker panel
(sensitivity 0.925 versus 0.428) (Supplementary Fig. 4b). It should be
noted that the better performance of the 10-DM model was not an
artifact from high false positive rate (Fig. 3b, d, e). The integration of
the three biomarkers improves the sensitivity of the 10-DM model
(from 0.925 to 0.957) (Supplementary Fig. 4b), suggesting the
potential to enhance the applicability of the 10-DMmodel in current
clinical practices.

Moreover, we also benchmarked the performance of the 10-DM
model with different machine learning algorithms in Metaboanalyst
including Support Vector Machine (SVM), Logistic Regression (LR),
Random Forest (RF), and PLS-DA. The 10-DM model consistently
demonstrated the best model performance (Supplementary Fig. 4c).

Together, our data demonstrated that the 10-DMmodel provided
significantly higher accuracy than the conventional 3-biomarker panel

routinely used in clinical practice and other algorithms in Metaboa-
nalyst for the detection of GC patients.

Themetabolic prognostic model accurately predicts GC patient
outcomes
As precise prognosis could enable precision intervention and benefit
the treatment outcome of the patients clinically, we also attempted to
develop amachine learning-derived prognosticmodel. To this end, we
collected the metabolomics profiles in plasma from 181 GC patients
(Cohort 3) and gathered their clinical information with a median
follow-up period of 40 months. Then we established a 28-metabolite
prognostic model (28-PM model) by using the random survival forest
method. Specifically, the training set patients were involved in the
model construction using 147 metabolites initially. Then, to avoid
model overfitting, 28 metabolites were selected as key features for re-
training anoptimalmodel (28-PMmodel) with a concordance index (c-
index) of 0.90 (Fig. 4a and Supplementary Fig. 5a). Afterwards, the 28-
PM model was evaluated on the test set, showing effective predictive
power, achieved an AUROC of 0.832 (95% CI: 0.697–0.951, sensitivity:
0.900, specificity: 0.700) and a c-index of 0.83 (Fig. 4b). Interestingly,
We observed that only 11 of the 28 metabolites’ relative abundance
could significantly distinguish the overall survival of test set patients,
including symmetric dimethylarginine/asymmetric dimethylarginine
(SDMA/ADMA), neopterin, thymine, glucuronate, hydroxyproline, 14:0
Carnitine, indoleacrylate, 8:0 Carnitine, acetylalanine, 2-aminoadipate,
andGlcNAc6p (SupplementaryFig. 5b). ADMApromotes themigration
and invasion of gastric cancer cells through enhancing epithelial-
mesenchymal transition (EMT) and regulating β-catenin expression in
GC59. Elevated levels of 14:0 carnitine and8:0 carnitinewere associated
with a worse outcome. Previous studies on GC have identified
increased expression of CPT1, the rate-limiting enzyme regulating
long-chain fatty acid oxidation, accelerating GC progression. The
expression levels of CPT1C could also affect the outcome of GC
patients. Moreover, the role of CPT1 in other cancers has also been
reported, suggesting that fatty acidmetabolismmight play a vital role
in cancer metabolic adaptation60–63. In addition, elevated levels of
neopterin were indicative of a poor prognosis. Neopterin is produced
by macrophages or DC cells stimulated by IFNγ, commonly regarded
as one of the biomarkers for immune activation64. In a single-cell
transcriptomic study of GC, it was found that macrophages in tumor
microenvironment play multiple roles in modulating tumor
immunity65. Furthermore, neopterin has been demonstrated in various
studies to possess the potential capability for prognosis monitoring
including endometrial cancer, prostate cancer, colorectal cancer, and
gastric cancer66–69, which might explain the elevated plasma levels of
neopterin. Together, our machine learning-derived prognostic model
showed good performance in predicting the clinical prognosis of GC
patients.

The addition of clinical parameters barely strengthened the
prognostic capability of the 28-PM model
To assess the predictive prowess of our model in comparison to clin-
ical factors employed by clinicians for empirical prognostic assess-
ment,we initially conducted a screening of clinical variables associated
with prognosis using univariate Cox regression analysis. We identified

Fig. 3 | Machine learning-derived prediction model based on plasma metabo-
lome for GC diagnosis. a Design of the modeling workflow. LASSO regression and
random forest algorithm were adopted for feature selection and model training.
The 10-DMmodelwas validated in a test set and an external test set. The illustration
was created with a full license on BioRender.com. b The Receiver operating char-
acteristic (ROC) curve for the diagnosis of GC patients in the test set 1. A 95%
confidence interval was calculated based on the mean and covariance of one
thousand random sampling tests. c Contribution of the ten metabolites to the 10-

DMmodel.d–g, Thepredictionperformanceof the 10-DMmodel for distinguishing
GC (colored in purple) fromNGC (colored in green) in the test set 1 (d) and the test
set 2 (e) and for distinguishing stage I GC patients (stage IA colored in yellow and
stage IB colored in brown) from NGC in the test set 1 (f) and the test set 2 (g). The
dotted line represented the cutoff value of0.50used to separate thepredictedNGC
(on the left side) from GC (on the right side). Source data are provided as a Source
Data file.

Article https://doi.org/10.1038/s41467-024-46043-y

Nature Communications |         (2024) 15:1657 6



TNM staging, macroscopic appearance, and vascular tumor embolus
as three clinically relevant factors significantly correlated with prog-
nosis (P < 0.05) (Fig. 4c and Supplementary Table 1). Subsequently,
through a comparative analysis utilizingC-index values as indicators of
model performance, we determined that the predictive efficacy of
each of these three clinical factors, whether considered individually or
in combination,was inferior to that exhibited by the 28-PMmodel. This

observation underscores the superior predictive capability of our
model relative to traditional clinical factors. Considering the influence
of clinical indicators on prognostic prediction, we further attempted
to incorporate a combination of clinical characteristics into the 28-PM
model to assesswhether thiswould enhance the predictive capabilities
of the 28-PMmodel. As illustrated in Fig. 4d and Supplementary Fig. 5c,
the metabolic model 28-PM exhibits greater robustness in predicting
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GC patients’ prognosis among different stages. The metabolic model
that integrates clinical features achieves a higher prognostic predic-
tion accuracy for early-stage patients compared to late-stage patients
(C-index value 0.868 vs. 0.778). In summary, the incorporation of
clinical characteristics into the metabolic model does not yield a
substantial improvement inmodel performance (resulting in only a 1%
benefit compared to the 28-PM model).

Afterward, we evaluated the prediction performance of the 28-
PMmodel for each patient in the test set. According to the algorithm-
determined cutoff value (see “Methods” section), we stratified theGC
patients into a high-risk group and a low-risk group and noted that
almost all the deceased belonged to the high-risk group except one
patient (Fig. 4e, an arrow pointed) who died of a heart attack,
underlying the prognostic capability of the 28-PM model. With the
observation that the high-risk patients showed poorer disease-free
survival (DFS) and overall survival (OS) compared with the low-risk
individuals (Fig. 4f), we further characterized the twogroupswith the
distribution of living status and the recurrence/metastasis circum-
stances. As expected, the high-risk group exhibited a higher pro-
portion of deceased individuals and the non-metastasis/non-
recurrence patients were more prominent in the low-risk group
(Fig. 4g), indicating that the 28-PMmodel successfully identified the
patients who need refined therapy regimen. A multivariate Cox
regressionwas performed to demonstrate that the 28-PMmodel is an
independent prognostic factor (Table 1). This outcome signifies our
success in developing an accurate method for independently pre-
dicting patient prognosis.

Together, our study provided a more accurate model-driven
approach for prognostic prediction and clinical decisionmakingwhich
could be easily implemented in routine patient care.

Discussion
In this study, we employed multi-center clinical cohorts to investigate
the metabolic alterations in plasma between GC patients and NGC
controls and to identify circulating metabolites with potential diag-
nostic and prognostic value. Specifically, machine learning algorithms
were utilized to analyze the metabolomics data, further developing
two biomarker panels termed the 10-DMmodel and 28-PMmodel with
superior accuracy in comparison with existing clinical methods for
GCdetection andprognostic prediction, respectively. Collectively, our
study demonstrated the unique advantages of applying machine
learning-based metabolomics in facilitating the early detection and
precision medicine of GC, thereby providing the clinical translation
potential in the future.

GC is one of the most common lethal tumors in the world since
patients are frequently detected at an advanced stage1,4. Therefore,
more efforts in developing non-invasive early screening methods and
refining precision medicine guidance to prolong patients’ survival are
urgently needed. To date, several omics studies exploring GC char-
acteristics have been reported19,70–73, the majority of which, however,
have focused on the potential of DNA, RNA, and protein as GC
biomarkers70,74–76. Considering the tight association between GC and
metabolism, our work emphasized the predictive value of metabolites
in GC.Metabolomic profiling enables themeasurement of hundreds of
metabolites, thus could uncover as many potential biomarkers as
possible11–13. Moreover, we leveraged LC–MS-based metabolomics,
which has achieved competitive analytical reproducibility and relia-
bility, to depict the global metabolic remodeling in GC and produced
two predictive models (10-DMmodel and 28-PMmodel). In the future,
optimized targeted metabolomic assays could be established to mea-
sure the specific subsets of metabolites in the two models to increase
efficiency and reduce costs. In addition, commercialized kits, easy-
access devices, and simplified instruments could be developed based
on the two prediction models to assist GC early detection and to
inform clinical decision making based on the risk stratification of
patients and consequently, facilitating precision medicine and clinical
translation.

Although metabolomics presents unique advantages in deter-
mining GC global metabolic signatures and can identify promising
biomarkers for GC diagnosis and prognosis, the interpretation of the
sophisticated -omics data has always been a challenge. In the past few
years, machine learning algorithms have been employed in discover-
ing the underlying association between the -omics data and disease
status and creating predicting models6,32,33. Accordingly, we leveraged
machine learning algorithms in our study and proved its capability
from three aspects. First, for purposes of avoiding overfitting, the
LASSO regression algorithm was implemented in the selection of
essential features among the total 147 metabolites before modeling
the 10-DM model. Second, compared with previous biomarker-
discovery studies which employed logistic regression algorithms to

Fig. 4 | The prognostic model outperformed clinical parameters in predicting
outcomes of GC patients. a Schematic outline of the prognostic model design. S
survived, D deceased. b ROC curve analysis of the test set. 95% CI was calculated
based on the mean and covariance of one thousand random sampling tests.
c Forest plot of clinical parameters with significant prognostic relevance identified
by univariate Cox regression analysis. Parameters with a P <0.05 were considered
statistically significant and represented by green lines. The center dots and lines
representHRand95%Cl scaledby log 10. EGC, early gastric cancer.P-values of TNM
staging, macroscopic appearance, and vascular tumor embolus were calculated
based on data from n = 181, 180, and 180 independent samples respectively.
d C-index values comparison of the macroscopic appearance, TNM staging,

vascular tumor embolus, and the 28-PMmodel in the test set (n = 60). C-index and
the 95% Cl were presented under the relative colored bars. e Prognostic prediction
of the test set patients (n = 60) using the 28-PMmodel. The dotted line drawn at the
cutoff value of 2.1 divided the patients into high- and low-risk groups. Green circles
and gray circles represent survived and deceased in the test set. The arrow pointed
out thedeceasedpatient dyingof a heart attack. fKaplan–Meier curves showing the
overall survival (OS) and disease-free survival (DFS) of test set GC patients (n = 60)
stratified by prognostic risk scores (cutoff = 2.1). P-values were calculated with a
two-sided log-rank test. g The high-risk group presented a higher proportion of
deceased and relapse/metastasis. A two-sided Fisher’s exact test was used to cal-
culate the P-value. Source data are provided as a Source Data file.

Table 1 |MultivariateCox regressionofGCpatients’prognosis
in Cohort 3

Characteristics Classification P-value Hazard ratio 95% Cl

TNM staging I 0.010 Reference

II 1.19 0.07–20.88

III 4.02 0.24–66.59

IV 12.86 0.70–237.08

Macroscopic
appearance

Borrmann I 0.789 Reference

Borrmann II 3.69 0.47–28.78

Borrmann III 3.35 0.43–25.97

Borrmann IV 3.45 0.41–29.25

EGC 1.96 0.06–60.26

Vascular tumor
embolus

No 0.463 Reference

Yes 1.38 0.59–3.24

Metabolic risk
factor*

Low 5.276 × 10−5 Reference

High 7.53 2.83–20.04

Multivariate Cox regression was applied to the 28-PMmodel and clinical parameters to identify
independent prognostic factors. Parameters with P < 0.05 are recognized as statistically sig-
nificant, signifying their role as independent prognostic factors for GC. P-values were calculated
based on data from n = 179 independent patient samples and Wald test.
CI confidence interval, EGC early gastric cancer.
*The classifier was derived from the 28-PM model cutoff value, represents as a high-risk group
and a low-risk group for the GC patients.
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train the model, we chose the random forest and the random survival
forest algorithm to obtain higher robustness and less overfitting to
train the diagnostic model and the prognostic model respectively32,33.
Third, the algorithms successfully revealed the prediction potential of
some metabolites which tend to be ignored or missed by the tradi-
tional analytical ways. For instance, the metabolites of the 10-DM
model exhibitedmoderate alteration between GC andNGC. A possible
explanation was that machine learning algorithms unveiled the latent
rules in the complex correlations among metabolites and picked the
most representative metabolites in distinguishing GC and NGC.
Another example demonstrating machine learning’s advantage in
uncovering potential biomarkers was the 28-PMmodel. As mentioned
before, only 11 metabolites in the 28-PM model were independently
relative to the patient’s outcomes (Supplementary Fig. 5b). However,
these 11 metabolites failed to train a prognostic model, indicating
the prognostic prediction ability of the other 17 metabolites and
emphasizing the necessity of hiring machine learning algorithms to
uncover the comprehensive association between metabolism and
prognostic status.

Both the diagnostic and prognosticmodels we created employing
machine learning algorithms were validated of generalization and
present superior performance than traditional methods leveraging
clinical existing factors. Specifically, our data demonstrated that the
diagnostic model (10-DM model) was of particular importance as it
accurately identified GC patients even at stage IA, dramatically out-
performing the existing clinical markers. Notably, the accuracy and
reproducibility of the 10-DM model were confirmed in multi-center
cohorts covering 521 individuals, indicating the high robustness and
clinical application potential of the model. Apart from the diagnostic
model, we further defined and validated the prognostic panel termed
the 28-PM model. This model outperformed the clinical parameter
combination, demonstrated by a much higher C-index value. Ulti-
mately, high-risk patients distinguished by the 28-PM model showed
poorer outcomes compared with low-risk patients, suggesting the
forceful prognostic capability of the model. After the model-guided
patients’ stratification, precise clinical decisions could bemade for the
individuals. Patients who are stratified to the high-risk group aremore
likely to benefit from intensive monitoring, prompt intervention, and
trials of therapeutic agents. In the future, the enlarged participants’
scale and updated machine learning algorithms could be leveraged to
verify and optimize the two models further for clinical translational
research.

In summary, the strengths of our study include a large-scale,
multi-center clinical cohorts-based highly sensitive targeted metabo-
lomics analysis of GC patients and NGC controls, which depicts the
metabolic reprogramming landscape of GC patients and provides a
valuable resource that expands our knowledge of the GC. Moreover,
the application of machine learning and metabolomics presenting
remarkable advantages is complementary to a range of studies sur-
rounding GC characterization and precisionmedicine. In addition, the
two models determined in our study were constructed based on a
simple set of metabolites, facilitating replication, optimization, and
clinical application. In the future, the two models, by assessing of
relative range of metabolites, could be used in various situations
without being constrained by tools and detection techniques.

The limitations of our study should also be noted. The Cohort 3
patients’median follow-up timeof 40monthswas insufficient (ideally, it
should have been more than 5 years), which could have resulted in
inadequate observation. A longer follow-up duration may aid in a more
thorough evaluation and optimization of the 28-PM model. At the
conclusion of the follow-up period, a significant number of patients had
right-censored data. Despite our use of Random Survival Forest to
address this limitation, a larger patient cohort would offer the oppor-
tunity to collect more complete data (where the survival time of each
patient is unambiguously observed), thereby improving the predictive

model. Moreover, we were not able to provide clinical intervention
regimens for the prognosis model. Since there was no statistically sig-
nificant difference in the proportions of cMET amplification, dMMR,
and Laurén types between the two groups (Supplementary Data 6), it is
likely that treatments that target these characteristics are not yet
appropriate for model-stratified patients. Further characterization of
the high- and low-risk patients categorized by the model is needed in
the future to inform treatment regimens. It will also be fascinating to
investigate whether the responses to chemotherapy and immunother-
apy in high-risk and low-risk patients are different, which could help
guide appropriate therapeutic strategies.

It’s essential to understand that current models are not yet
appropriate for direct application in clinical settings due to the fol-
lowing limitation. Given that the model is constructed based on rela-
tively quantitative metabolomics data, understanding the GC
prognosis or risk regarding to new patients using these machine
learning (ML) models necessitates the concurrent presence of quality
control (QC) samples employed during the ML model construction
process. However, our study identified crucial metabolites capable of
distinguishing between GC and NGC, representing a significant step
towards constructing a model with potential clinical applications. In
the future, to further advance the translation of our research into
clinical practice, we intend to conduct absolute quantitative metabo-
lomics with large-scale multi-center patient samples using isotopic
internal standards of these key metabolites. This will help to elucidate
the normal range and problematic range of the importantmetabolites,
thereby determining detection thresholds for GC. Additionally, we will
explore alternative detection methods for differential metabolites,
including simplified mass spectrometry detection methods and novel
detection strategies such as assay kits, aiming to streamline detection
time and costs and facilitate clinical applications.

Collectively, our discoveries delineated metabolic reprogram-
ming in GC and incorporated machine learning algorithms to con-
struct two models that identify GC patients and predict their
prognosis, respectively. Our work enhanced the understanding of GC
pathology, facilitated the development ofGCearly detection, and shed
light on the precision treatment of GC. More generally, the framework
highlights the unique advantages of machine learning-based -omics
data interpretation for tumor detection and decision guidance and
could be generalized to explore other diseases.

Methods
Patient characteristics
A total of 389 patients with pathologically confirmed GC and 313 non-
GC controls were recruited from September 2017 to December 2022.

Cohort 1 was obtained from the HarbinMedical University Cancer
Hospital and the National Cancer Center/National Clinical Research
Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sci-
ences, and Peking Union Medical College from June 2022 to October
2022. Characteristics of Cohort 1 participants (ī = 426): 145 GCpatients
(median age 60 years, 71%male, Stage I/II/III/IV, 52/30/53/10); 281 NGC
(median age 50 years, 52% male).

Cohort 2 was collected from Harbin Medical University Cancer
Hospital (October 2022 to December 2022). Characteristics of Cohort
2 participants (n = 95): 63 GC patients (median age 64 years, 76%male,
Stage I/II/III/IV, 16/14/24/9); 32 NGC (median age 51 years, 88% male).

Cohort 3 was recruited from the National Cancer Center/National
Clinical Research Center for Cancer/Cancer Hospital, Chinese Acad-
emy of Medical Sciences, and Peking Union Medical College from
September 2017 to October 2022. Characteristics of Cohort 3 partici-
pants (n = 181): median age 60 years, 63% male, Stage I/II/III/IV, 40/44/
89/8.

Patients receiving anti-cancer treatments before sampling were
excluded. The study complies with all relevant ethical regulations and
was approved by the Research Ethics Committee of the National
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Cancer Center/National Clinical Research Center for Cancer/Cancer
Hospital, Chinese Academy of Medical Sciences and Peking Union
Medical College (Institutional Review Board: 20/086-2282) and Harbin
Medical University Cancer Hospital (Institutional Review Board:
KY2018-03, 2019-164-R). Written informed consent was obtained from
each individual.

Clinical information including sex, age, BMI, tumor pathological
variables, and prognostic status was collected and presented in Sup-
plementary Fig. 1.

Plasma sample collection
Peripheral venous blood-derived plasma samples were collected from
preoperative GC patients and non-GC controls in Cohort 1 and Cohort
2. For Cohort 3 patients, preoperative superior vena cava blood-
derived plasma samples were gathered. After an overnight fast, blood
was drawn using BD Vacutainer EDTA tubes and processed for plasma
isolation following the procedures as described below: The blood was
centrifuged at 1000 × g for 10min at 4 °C. The supernatant was col-
lected and centrifuged at 2000× g for 5min at 4 °C. Plasmawas frozen
at −80 °C until metabolite extraction.

Metabolite extraction
For metabolite extraction of plasma samples, 40μL plasma of each
person was mixed with 160μL ice-cold methanol. The mixture was
then vortexed for 1min and centrifuged at 4 °C for 15minwith a speed
of 15000 rpm. The supernatant was collected and divided into 2
replicates for evaporating in a speed vacuum concentrator. The dried
metabolomic samples were kept at −80 °C until LC–MS analysis. For
quality control (QC) samples, 10μL plasma of each person was mixed
and then processed the same as that of the study plasma samples.

Targeted metabolomics analysis
The targeted metabolomics analysis was performed similarly to our
previous work. In brief, the dried metabolites were reconstituted in
50μL water with 0.03% formic acid. After being vortex-mixed vigor-
ously, the sampleswere centrifuged to removedebris at 4 °C for 15min
with a speed of 15,000 rpm. Before LC–MS/MS, samples were rando-
mized and blinded to avoid the impact of instrument fluctuations on
the results. Chromatographic separation was performed on an RP-
UPLC column (HSS T3, 2.1mm× 150mm, 1.8μm, Waters) with the
following gradient: 0–3min 99% A; 3–15min 99–1% A; 15–17min 1% A;
17–17.1min 1–99% A; 17.1–20min 99% A. Mobile phase A was 0.03%
formic acid in water. Mobile phase B was 0.03% formic acid in acet-
onitrile. The flow ratewas set as 0.25mL/min, and the injection volume
was 10 µL. The column temperature and autosampler temperature
were set to 35 °C and 4 °C, respectively. Mass data acquisition was
performed using an AB QTRAP 6500+ triple quadrupole mass spec-
trometer (SCIEX, Framingham, MA) in multiple reaction monitoring
(MRM) mode to monitor 258 unique endogenous water-soluble
metabolites15. Chromatogram review and peak area integration were
performed using MultiQuant 3.0.2 (SCIEX, Framingham, MA).
The processed data were exported for further analysis. The missing
value was removed according to the 80% rule77, wherein, a metabolite
was considered as detectable when it was detected across at least
4/5 samples in one group. Following this rule, 147 metabolites were
robustly detected across all the 702 sampleswith a small proportion of
undetected metabolites (<1/5 samples) were filled with a detection
baseline value, 1000, to allow the following statistical analysis.

Data analysis and preprocessing
QC samples were inserted in an interval of ten test samples tomonitor
the stability of the instrument and normalize the variations during the
run. Therefore, it can serve as an additional QC measure of analytical
performance and a reference for normalizing raw metabolomics data
across samples.

The detailed process was performed following the procedures as
described below15. Briefly, themean peak area of eachmetabolite from
all QC samples in all given batches (QCall), as well as the mean peak
area of each metabolite from the QC samples that were the most
adjacent to a given group of test samples (QCadj) were first calculated.
The ratio between these twomean peak areas for eachmetabolite was
computed by dividing the same QCall by each QCadj and used as the
normalization factor for each given group of test samples. The peak
area of each metabolite from each test sample was normalized by
multiplying their corresponding normalization ratio to obtain the
normalized peak areas to remove potential batch variations. In addi-
tion, to effectively correct the sample-to-sample variation in biomass
that may contribute to systematic differences in metabolites abun-
dance detected by LC–MS,we generated the scaled data by comparing
the normalized peak area of each metabolite to the sum of the nor-
malized peak area from all the detected metabolites in that given
sample.

Metabolic differential analysis
All Cohort 1 participants, 426 cases in total, including 145 GC patients
and 281 NGC, were used for differential metabolic analysis. Differ-
ential metabolites were analyzed by a two-sided Wilcoxon rank-sum
test (FDR < 0.05 and fold change > 1.25 or <0.8). Clustering of dif-
ferential metabolites was conducted by R package ‘Mfuzz’ (v2.56.0).
KEGGpathway enrichment analysis based on significantly differential
metabolites was assessed by the R package ‘clusterProfiler’ (v3.14.3).
KEGGmetabolic pathways and relatedmetabolites were downloaded
through KEGG API (https://www.kegg.jp/kegg/rest/keggapi.html).
Significantly enriched KEGG pathways were determined with Fisher’s
exact test followed by Benjamini–Hochberg (BH) correction andwith
FDR < 0.05.

Diagnostic prediction model
A prediction model for GC diagnosis was built using a random forest
algorithm with LASSO feature selection. The participants (Cohort 1,
n = 426) were randomly stratified sampling into a discovery dataset
(n = 284) and a test set (n = 142). Next, we performed the LASSO
regression78 on the discovery dataset to select a reduced number of
features thatwere able to identifyGCpatients.We set the coefficient of
the L1 constraint as 0.01 and selected ten features with nonzero
coefficients based on themisclassification error averaged from 10,000
times of random cross-validation. A random forest model was trained
with the ten selected metabolites in the discovery dataset using a
bootstrap aggregating approach. The final model included a hundred
classifier trees which were built using the split criterion of Gini
impurity79. For each bootstrap sample, the learning algorithm draws
random subsets of features for training the individual decision tree.
Decision tree learning employs a divide-and-conquer strategy by
conducting a greedy search to identify the optimal split points within a
tree. This process of splitting was then repeated in a top-down,
recursive manner until all, or the majority of records had been classi-
fiedunder specific class labels. An ensemblemethod termedBootstrap
Aggregation combined prediction from all individual decision trees to
make more accurate predictions than an individual model. Afterward,
the diagnostic model was applied to the test set. The predicted value
for GC diagnosis was computed as themean predicted probabilities of
the trees in the forest. The class probability of a single tree was the
fraction of samples of the same class in a leaf. The final prediction was
determined through a voting mechanism, where the model yielded a
predicted value (between 0 and 1) for each individual, quantifying the
model’s uncertainty in prediction. Individuals with predicted values
greater than 0.5 would be identified as GC patients by the model, or
would be considered as NGC on the contrary.

To compare ourmodel with those readily available and commonly
used models, we input the training and testing dataset into the
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Metaboanalyst biomarker analysis module to build diagnostic models.
In the variable selection step, we selected the top tenmetabolites based
on Lasso frequency and AUC rank. These metabolites include GSSG,
succinate, uridine, 2-PG-3-PG, lactate, uracil, pyroglutamate, SAH, SAM,
andR5P. Subsequently,we constructeddiagnosticmodelsusing various
algorithms, including linear SVM, PLS-DA, RandomForests, and Logistic
Regression, and compared them with the 10-DM model.

LASSO regression and random forest modeling were performed
via the scikit-learn package (v.0.24.1) in Python (v.3.7.4).

Prognostic model
To establish a GC prognostic model, 181 patients from Cohort 3 with
right-censored outcome data (147 participants survived at the end of
follow-up and 34 participants died during the follow-up period) were
randomly stratified sampling into a training dataset (n = 121) and a test
dataset (n = 60). A random survival forest (RSF)80 model comprising
1000 trees was trained to select prominent features according to their
permutation-based feature importance. The optimal model was
established by training the random survival model again with the
picked 28 metabolites, showing great predictive power (AUROC=
0.832, 95%Cl: 0.697–0.951) for predicting the survival outcomesofGC
patients in the test dataset.

In addition, the clinical features that were significantly related to
patients’ outcomes in the univariate Cox regression analysis including
TNM staging, macroscopic appearance, and vascular tumor embolus
were utilized separately or as a combination to train RSF models. The
integrated RSF model (28 metabolite features along with clinical
parameters) was also fitted to predict patients’ outcome. Model per-
formance was evaluated on the test dataset by C-index.

For individual outcome prediction, a sample was dropped down
each tree in the forest using the split criterion of the log-rank test until
it reached a terminal node. Data in each terminal was used to non-
parametrically estimate the survival and cumulative hazard function
using the Kaplan–Meier and Nelson–Aalen estimators, respectively.

The risk score represented the expected number of events for a
particular terminal node, which was estimated by the sum of the
estimated ensemble cumulative hazard function. Then, the risk scores
were used as evaluation criteria to assess the survival outcomes of GC
by ROC curve analysis. The best cutoff was 2.1, determined by the
highest true positive rate (0.9) together with the lowest false positive
rate (0.3). Patients with a risk score greater than 2.1 would be stratified
into a high-risk group, which meant they had a higher risk of poorer
survival outcomes. RSF was performed via the scikit-survival package
(v.0.17.1) in Python (v.3.7.4).

Statistical analyses
Statistical analysis methods for metabolomic analysis and modeling
evaluation were described in the Results, figure legends, and corre-
sponding “Methods” subsections. Specifically, a two-sided Wilcoxon
rank-sum test was used when comparing two groups for unpaired
samples. A two-sided Kruskal–Wallis test was used when comparing
three ormore groups.P-valueswere corrected using the BHmethod to
produce FDR. A P-value or DFR of less than 0.05 was considered sta-
tistically significant. GraphPad Prism (v.9.0), R (v.3.6.0) software
(https://www.r-project.org/), SPSS Statistics 27.0 (IBM), and Python
(v.3.7.4) were used to conduct tests.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Clinical information is provided in Supplementary. Fig 1 and Source
data_Supplementary Figs._NCOMMS-23-20271B. The metabolomics
data is included in Supplementary Data 1. The statistical analysis of

Supplementary Fig.3 is included in Supplementary Data 2. The preci-
sion data for relative quantification analysis utilizing the targeted
metabolomics analysis method on various sample types (standards,
plasma, and 293T) and the assessment data of the targeted metabo-
lomic methodology using isotope-labeled metabolites for methodo-
logical evaluation, encompassing matrix effect, recovery rate, and
quantitative accuracy, are provided in Supplementary Data 3. The
utilizationof thismethod for absolute quantification analysis in a small
cohort is presented in Supplementary Data 4. Details on the model’s
predicted values for all samples is available in Supplementary Data 5.
The statistical analysis of the proportions of cMET amplification,
dMMR, and Laurén types between the high and low-risk groups is
included in Supplementary Data 6. Source data are provided with
this paper.

Code availability
Code in this study is available at https://github.com/Yangzi-Chen2023/
GC_NC-Res and https://codeocean.com/capsule/5496369/tree.
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