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Functional regulation of aquaporin
dynamics by lipid bilayer composition

Anh T. P. Nguyen 1, Austin T. Weigle 2 & Diwakar Shukla 1,3,4,5

With thediversity of lipid-protein interactions, any observedmembrane protein
dynamics or functions directly depend on the lipid bilayer selection. However,
the implications of lipid bilayer choice are seldom considered unless char-
acteristic lipid-protein interactions have been previously reported. Using
molecular dynamics simulation, we characterize the effects of membrane
embedding on plant aquaporin SoPIP2;1, which has no reported high-affinity
lipid interactions. The regulatory impacts of a realistic lipid bilayer, and nine
different homogeneous bilayers, on varying SoPIP2;1 dynamics are examined.
We demonstrate that SoPIP2;1’s structure, thermodynamics, kinetics, and water
transport are altered as a function of each membrane construct’s ensemble
properties. Notably, the realistic bilayer provides stabilization of non-functional
SoPIP2;1 metastable states. Hydrophobic mismatch and lipid order parameter
calculations further explain how lipid ensemble propertiesmanipulate SoPIP2;1
behavior. Our results illustrate the importance of careful bilayer selection when
studyingmembrane proteins. To this end, we advise cautionarymeasures when
performing membrane protein molecular dynamics simulations.

Transmembrane proteins are crucial vehicles for cellular transport and
communication, composing ~20–30% of all proteomes1 and ~60% of
drug targets2. Understanding mechanisms governing the functional
characteristics of these cellular machines can be leveraged for
pharmaceutical3 and agricultural applications4. Despite their sizable
representation in the proteome, membrane proteins account for only
~1–2% of the total available structures in the Protein Data Bank (PDB)5.
Even with advancements in cryo-EM and X-ray crystallography, mem-
brane protein crystallization remains a highly technical task, including
careful selection of efficient expression systems, suitable detergents
for solubilization, and buffer conditions for purification and crystal-
lization. These technicalities also hinder biophysical experiments for
studying protein-lipid interactions, like direct structure resolution and
FRET to characterize lipids bound to proteins, or NMR and FT-IR to
study binding affinities6. State-of-the-art experimental instruments
cannot resolve specific dynamics and atomistic interactions in spa-
tiotemporal constraints without the help of computational methods.

Molecular dynamics (MD) has been incorporated into the membrane
protein biophysics realm to provide a label-free, atomistic look at any
membrane protein system. In particular, recent advances in enhanced
sampling, high-performance computing, and methodological devel-
opments prove MD to be a highly applicable method for under-
standing membrane proteins7.

Confidence and accuracy are critical for translating modeling and
simulation results to experiments. Although biological membranes are
highly complex and asymmetric with diverse lipid species, model
bilayers are often assumed to be homogeneous and symmetric when
used for in vitro experiments or in silico membrane models. These
simple bilayers try to approximate ensemble averaged properties of
cellular membranes (i.e., acyl chain unsaturation, lipid headgroup
chemistry, sterol presence/absence).Whatever lipid species is deemed
the most abundant for a given cell, or most necessary for a given
protein, is selected and ultimately becomes a “default” choice for lipid
reconstitution in (computational) experiments. For example, POPC is a
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popular lipid choice for mammalian cell membranes, while POPE/
POPG is commonly used for bacterial membrane simulations7. For
simulation studies, simplistic bilayer selections canbe attributed to the
lack of high-quality lipidomic data and computational difficulty.

However, membrane proteins’ functions, cellular trafficking, and
conformational dynamics are sensitive to the encompassing plasma
membrane bilayer8,9. Recently,MD studies of lipid-protein interactions
focus on proteins co-crystalized with lipids or those with known lipid
binding sites (e.g., G-protein coupled receptors, solute carrier trans-
porters, ion channels)6. The lipid bilayer’s impact on membrane pro-
teins can be through direct lipid-protein interactions (i.e., strong
binding and specific molecular contacts) or non-direct modulation
effects (i.e., global membrane properties such as curvature, thickness,
and fluidity). For example, a suite of coarse-grained simulations on ten
different proteins in a 6000-lipid membrane of more than 60 lipid
species showed specific lipid enrichments local to the protein, gen-
erating a protein-specific lipid “fingerprint”10. As a result, choosing a
membrane composition for modeling a membrane protein is impor-
tant in interpreting simulation results because of the contributions of
specifically recruited, as well as non-specifically bound, lipids.

There is a chance that in vitro experiments andMDsimulations for
membrane proteins may be performed with suboptimal bilayer con-
ditions. Nevertheless, there has not been a systematic study on the
universal consequences of embedding a single protein in a potentially
non-native lipid bilayer. Gu and de Groot studied the effect of variable
lipid tail unsaturation on MthK potassium channel dynamics, but only
used PC headgroups11. Our recent work12 andwork from the Im group13

characterized realistic bilayers for their respective species, but—given
the complexity of realistic bilayers—even an “appropriate” lipid bilayer
selection has the potential to introduce variable lipid conformations.
When a greater amount of different lipid types is present in a bilayer,
there is a greater probability that a membrane protein could be
uniquely stabilized by different combinations and orientations of
diverse surrounding lipids. These numerous lipid conformations can
considerably impact reported membrane protein dynamics. Concern
for how membrane composition choice affects conformational sam-
pling and modeled functions of a protein without a priori known lipid
binding interactions is even greater. Herein, we design a study to
quantify the effects of selecting (non-native) lipid environments when
simulating membrane proteins. Using a model membrane protein,
aquaporin, we provide a systematic evaluation of different lipid
bilayers’ influence on one proteinwithout specific lipidbinding sites or
interactions.

Aquaporin (AQP), a highly conserved transmembrane protein
responsible for water transport and regulation, can be used as a model
system for a few reasons. First, aquaporins are found in all kingdoms of
life, from yeast and bacteria to eukaryotes14,15. Thus, regardless of sub-
cellular localization, AQPs must be functional no matter the lipid
environment. Due to this universality, AQPs do not depend on specific
lipid interactions like cholesterol binding to G-protein coupled recep-
tors (GPCRs)16–18 or PIP2 to ion channels19,20. Second, AQP water trans-
port function occurs on a shorter timescale than substrate transport
and ligand binding seen in transporters or receptors. Therefore, char-
acterizing water transport via unbiased MD is computationally tenable
across many systems with different lipid bilayers. Third, AQPs are gen-
erally static channels that do not engage in large conformational
changes for their function15. For example, transportersmust go through
the outward-facing, occluded, and inward-facing states for a full trans-
port cycle. Plant AQPs, or specifically the structurally resolved spinach
aquaporin (SoPIP2;1), have a notable conformational change in a cyto-
solic loop containing four to seven more residues than that of other
AQPs (Supplementary Fig. 1)21. This structural hallmark of plant AQPs
can open or close the water-transporting channel. Plants evolved this
functionality for water regulation responses adapted against extreme
drought or flooding conditions. Given its size, the conformational

change of the plant AQP loop is a process that can be reasonably
captured within atomistic MD timescales. Few mechanistic modeling
studies of non-photosynthetic plant membrane proteins have been
completed12,22–24. Recently, a realistic plant membrane bilayer for
molecular simulation has been characterized12.

Long time-scaleMD simulations of SoPIP2;1’s opening and closing
cycle can then be justified as a model system to understand the
intrinsic effects of membrane choice on the computational study of a
membrane protein. Herein, we report the influence of nine simplistic,
homogeneous bilayers compared to a complex, heterogeneous
membrane on the functions and opening/closing dynamics of model
system SoPIP2;1 (Fig. 1). Through this study, we (1) offer quantitative
and qualitative evaluations of SoPIP2;1 conformational dynamics and
functions; (2) give higher spatial resolution to explain experimental
observations of bilayer lipid composition on aquaporin; (3) provide
precautions for membrane composition selection in studying mem-
brane proteins; (4) demonstrate potential applications in leveraging
lipid local environment for engineering desired membrane protein
functions and conformational selections.

To summarize our key take-home points, we find that membrane
choice induces different slowest processes, which will inherently alter
thermodynamics, kinetics, and functional observations. However,
more than one model bilayer can appropriately model target mem-
brane protein function. We recommend that MD practitioners
research known lipid-protein interactions to make the best system
construction decisions. Ensemble average properties revealed from
literature search or lipidomic data from a related organism/cell type
should be represented in themodeledbilayer. The configuration of the
annular shell(s) used to seed simulations should be diversified. MD
practitioners should employ replicates with varied membrane pack-
ings to avoid artifacts caused by initialized configurations for both
simple and complex bilayers. Realistic bilayers with asymmetric sterol
distributions could cause tight bilayer packings that could drastically
affect results. Lastly, we encourage researchers to confirm that com-
putationally observed states are functional. Complementary analyses
should be used to build trust in observed structures. When applying
enhanced sampling techniques, caution must be exercised by
inspecting starting states or using a combination of lipid bilayer and
protein features to drive simulations.

Results
Aquaporin conformational dynamics
A protein sequence’s conformational free energy landscape portrays
the energy of every possible conformation projected onto the selected
reaction coordinates. As most ensemble conformations are not stable
enough to be structurally resolved under experimental conditions,
atomistic MD simulation can reveal metastable states throughout
global free energy landscapes to help understand the conformations
of interest for a given process. From the simulation data, the con-
structed MSMs provide the stationary distribution of the sampled
conformations for the free energy landscape. With mean first passage
time, the kinetics for transition between the resolved open and closed
crystal structures of SoPIP2;1 is elucidated given a membrane lipid
bilayer (Figs. 1–3).

Figure 2 illustrates the MSM-weighted (stationary distribution
probability applied onto each state) free energy landscape of the
SoPIP2;1 opening/closing projected on the first two respective tICs for
each SoPIP2:lipid system. Bootstrapped sampling errors of the free
energy landscapes can be found in Supplementary Fig. 15. The residue-
residue distance features most correlated to each respective tICs are
indicated on the axes labels and located on the structure to the right of
each landscape. As tIC dimensionality reduction combines features to
maximize the autocorrelation time of the principal components, the
distance features most correlated to the tICs are often the “slowest”
process found in the trajectories. These slowest processes dominate
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the timescale of the simulation and are important for understanding
protein conformational dynamics. With the usage of fully data-driven
protein distance feature selection, MSMs produced different slowest
processes for the same protein in eachmembrane bilayer system (gray
structures in Fig. 2), suggesting membrane composition changed
SoPIP2;1 dynamics. From Törnroth-Horsefield et al.21, key gating
mechanisms were hypothesized to involve loop D and hydrophobic
pore plug Leu197 from structure data and nanosecond simulations.
Here, microsecond timescale simulations inferred a diverse set of
processes involved in the opening and closing of the SoPIP2;1 channel.

For nine out of ten systems, at least one of the two slowest pro-
cesses involves residues of loop D and the hydrophobic pore, except
for PLPE. Both slowest processes in the PLPE system involve Cys69
and/or Val68, located on the extracellular loop A connecting TM1 and
TM2. Loop A is also involved in one of the slowest processes for
SoPIP2;1 in the POPE, POPG, LLPE, LLPG, and complex systems. This
could be due to loop A folding across the simulations, which is a
process occurring in a timescale slower than loop D movement,
depending on the lipid environment. However, even in the PLPE
bilayer, the two slowest processes still correlate to the opening and
closing of loop D, as the two crystal structures are separated across
two opposite basins of the landscape. In general, the data-driven
selection was still able to distinguish the open from the closed crystal
structure in two separate minima (red and blue dots on the landscape
of Fig. 2 for nine out of ten systems, except for the LLPE bilayer). While
other bilayers prompt SoPIP2;1 to have the slowest processes corre-
lated to the opening/closing transition, the LLPE bilayer selects a
process completely different from the expected loop Dmovement. As

a result, the twocrystal structures fall into the sameminimaof the LLPE
free energy landscape.

The impact of lipid bilayer compositions on the structural equili-
brium of SoPIP2;1 is evident from the varying placement of SoPIP2;1
crystal structures in or near the energetic minima. Protein structures
determined in experiments are often embedded in non-native lipo-
somes or detergents to be crystallized, and it has been shown that the
obtained crystals of the same transporter are dependent on their lipid
environment as well25. Thus, in different lipid bilayer membranes,
crystal structuresmight not be themost stable conformations. SoPIP2;1
was crystallized in detergents containing polyethylene glycol21. Devia-
tion in the relative stability of these crystal structureposes is apparent in
the free energy landscape of SoPIP2;1 in different bilayers (Fig. 2). Both
crystal structures are only stable (relative energy <1.0 ± 0.2 kcalmol−1)
in the POPG and PLPC bilayers, and slightly stable (relative energy
1.0–2.0 kcalmol−1) in the POPC, PLPG, LLPC, and LLPE bilayers.
Meanwhile, the complex bilayer, along with POPE, PLPE, and LLPG,
depict at least one crystal structure state with a relative energy between
2.5–3.6 ±0.2 kcalmol−1. Interestingly, the thermodynamics of SoPIP2;1
in the complex bilayer does not follow the same trend as our previous
work12. In particular, the complex bilayer was able to stabilize inter-
mediate conformational states for sugar transporter OsSWEET2b to
facilitate faster transitions among states12. In the free energy landscape
of SoPIP2;1 in the complex membrane, the barrier is high for transi-
tioning among minima (~2.6–2.8 ±0.2 kcalmol−1). A macrostate similar
to the closed crystal structure is hyper-stabilized with a relative free
energy smaller than 1.0 ±0.2 kcalmol−1 while all othermacrostates have
relative energy of 1.0–2.0 ±0.2 kcalmol−1. In contrast, combinations of
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Fig. 1 | System compositions of SoPIP2;1 molecular dynamics simulations.
a Crystal structures of the open (PDB ID: 2B5F, red) and closed (PDB ID: 1Z98, blue)
states of spinach aquaporin in the ribbon representation. Key differences between
the structures are indicated, including the “plug residue” Leu197 (shown in the stick
representation) and loop D. b Chemical structures of the lipids used and their
composition in the complex lipid bilayer (if present). Enclosed in the box are the
lipids used in the homogeneous bilayer systems, covering all three headgroups and
varying levels of acyl chain unsaturation. POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphocholine; 16:0/18:1), POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoetha-
nolamine; 16:0/18:1), POPG (-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol;

16:0/18:1), PLPC (1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine; 16:0/18:2),
PLPE (1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphoethanolamine; 16:0/18:2), PLPG
(1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphatidylglycerol; 16:0/18:2), LLPC (1-lino-
leoyl-2-linolenoyl-sn-glycero-3-phosphocholine; 18:2/18:3), LLPE (1-linoleoyl-2-lino-
lenoyl-sn-glycero-3-phosphoethanolamine; 18:2/18:3), LLPG (1-linoleoyl-2-
linolenoyl-sn-glycero-3-phosphatidylglycerol; 18:2/18:3), DLiPC (1,2-dilinoleoyl-sn-
glycero-3-phosphocholine; 18:2/18:2), DLiPE (1,2-dilinoleoyl-sn-glycero-3-phos-
phoethanolamine; 18:2/18:2), STIG (stigmasterol), and SITO (ß-sitosterol). Formore
information on lipid bilayer assembly and lipid names, please refer to our “Methods
—System assembly” section.
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anionic headgroup PG with lower unsaturated tails (PL and PO); zwit-
terionic bulky headgroup PC with any acyl tails; and zwitterionic amine
headgroup PE with high tail unsaturation (LL) can stabilize the SoPIP2;1
crystal structures as the near-lowest energy metastable states in MD
simulations.

Despite being well discretized, the crystal structure poses shown in
the tICA landscapes for POPE, PLPE, LLPG, and the complex bilayer are
not always the most stable conformations (Fig. 2). Each of these SoPI-
P2:lipid embeddings share having loop A dynamics as one of the
dominant tIC components. POPGandLLPEare alsodominatedby loopA
dynamics, although POPG crystal structures are indeed themost stable.
Conversely, LLPE tIC decomposition places both crystal structures
within the same minima. For plasma membrane intrinsic protein (PIP)
aquaporins, like SoPIP2;1, loop A participates in tetramer formation26.
Loop A, and its homologous sequences in non-PIP orthodox AQPs,
typically engage in direct hydrogen bonding contacts and/or disulfide
bridges tohelpwithmonomer association and tetramer assembly27. AQP
proteins are ubiquitously found as tetramers, but each monomer con-
stitutes a functionally independent pore28. We used SoPIP2;1 monomers
to complete this study due to the computational efficiency and
literature-based justification (see “Methods—System assembly”). Given
the dependence on loop A dynamics, it is likely that each of these sys-
tems would better stabilize the SoPIP2;1 crystal structures when mod-
eled as a tetramer.However, thedifference in tIC components reinforces
how some bilayers can better stabilize SoPIP2;1 than others.

Figure 3 contains the calculated MFPT between the two crystal
structure clusters on the free energy landscape. Error bars were

computed from the 200 bootstrapped samples. Even though the
zwitterionic bulky PC headgroup stabilized the crystal structures with
relative free energy less than 2 kcalmol−1, the conformational transi-
tion between the two structures in the POPC and LLPC bilayers proved
difficult (transitionof >200 µs). This could bedue to the high energy of
the transition regions, which are the highest among all SoPIP2:bilayer
constructs with the peak relative energy of 3.2–3.4 ± 0.2 kcalmol−1. In
other bilayers, SoPIP2;1 has transitions between the open and closed
conformations to occur within 100 µs, matching the timescale of loop
movement29. In planta, the open conformations are hypothesized to
be a more frequently adopted conformation, whereas the closed
conformation should only be present during extreme abiotic
conditions15. Although a closed-like state for SoPIP2;1 can be presumed
as less favored under basal or equilibrium conditions, this preference
cannot be differentiated as an intrinsic protein property or a con-
sequence of various biochemical pathways within a plant cell. However,
the MFPT calculations demonstrate a difference between the kinetics
and the thermodynamic implications on the model protein due to
membrane selection. Therefore, our main takeaway is that SoPIP2;1 in
most bilayers exhibits opening/closing transitionary kinetics within a
similar order of magnitude. Considering thermodynamics, nearly all
SoPIP2:bilayer conformational landscapes, except for that of the com-
plexbilayer, offer greater stabilization for the closed than theopen state
(Fig. 2). The transition rateof SoPIP2;1 inPOPC, POPG, PLPC, PLPE, LLPC,
and LLPE bilayers is slower for closing than opening. These same
bilayers can also, at least relatively, stabilize the crystal structures in
each of their respective free energy landscapes (Fig. 2). Meanwhile,

(kcal mol-1)

Fig. 2 | Free energy of the SoPIP2;1 opening/closing transition from simula-
tions.MSM-weighted (stationary distribution applied) energy landscapes of
SoPIP2;1 conformational changes in lipid bilayer systems (nine homogeneous and
one complex membrane) projected onto the first two components of the time-
lagged independent component analysis (tICA). The clusters most similar to the
open and closed crystal structures are located on the landscapes as a red and blue

dot, respectively. The distance feature most correlated to each component is
indicated on the axes labels and locatedon the crystal structure to the right of each
landscape. The residues involved in the first and second time-lagged independent
components (tIC1 and tIC2) are shown in the blue and pink stick representations,
respectively. Loop D is highlighted in orange as a reference. The colorbars repre-
sent free energy expressed as kcalmol−1.
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simulations of SoPIP2;1 embedded in the POPE, PLPG, LLPG, and com-
plex bilayers show a faster closingMFPT. Each of these bilayers shifts at
least one of the SoPIP2;1 closed and open crystal structures away from
the energy minima. As a result, membrane selection imposes varying
conformational samplings of SoPIP2;1, along with thermodynamic sta-
bility and transitionary kinetics for SoPIP2;1 crystal structures.

Differences in relative crystal structure stability among the
SoPIP2:bilayer embeddings prompted the question of whether the
conformational transition mechanism of SoPIP2;1 varies among
membrane systems. Specifically, characterization of the open- versus
closed-like character of SoPIP2;1 intermediate states can measure the
thermodynamic control in-between gating poses by each bilayer. To
do so, 1000 randomly selected frames in each lowest energyminimum
(relative energy <1.5 kcalmol−1) are extracted from the trajectories.
Structures acquired from each frame were quantitatively assessed by
measuring the dihedral angle of the pore plug Leu197 with respect to
TM4/TM5 (Fig. 4). Because Leu197 is buried inside the pore for the
closed conformation and extended outside into the membrane in the
open conformation, Leu197 serves as a good indication of the opening
or closing transition of the channel. The four atoms involved in the
dihedral angle calculation are represented as balls on the open and
closed crystal structures in Fig. 4a. A simplified visualization of the
angle is illustrated in Fig. 4b. The distributions of this angle for each of
the 1000-frame macrostates are presented as violin plots in Fig. 4c.

Impacts of the bilayer selection on the protein dynamics are
observed clearly in the varying open- or closed-like character of Leu197
across intermediate states. In systemswith one intermediate, this state
can be induced by the membrane to be closed-like (POPG, complex),
open-like (POPE), or somewhere in the middle (LLPE). Systems with
multiple intermediate states adapt to both the open and closed states.
Specifically, if the dihedral transition is described as a reaction coor-
dinate of the transition, there can be a skew toward the open or closed
state. In the PC and PG headgroups-containing bilayers, the reaction
coordinate is skewed to the closed-like states. For the PE membranes,
the intermediates favor having an open-like pore plug. Comparing the
acyl tails, a clear observation lies in the LL-tail bilayers having inter-
mediates sharing characteristics of both the open and closed Leu197
plug. The high unsaturation of the LL acyl tails provides themembrane
with more flexibility and fluidity (discussed in more detail in the
“Membrane properties” section), thus giving the protein a “smoother”
transition pathway. Overall, the transition path from closed to open
varies drastically for the same protein embedded in different mem-
brane bilayers.

Water transport function
With the structural and dynamical differences in SoPIP2;1 gating and
pore plug orientation resulting from membrane embeddings, the
water transport function was also examined. Three separate trajec-
tories occupying each minimum of the free energy landscape were
selected (see Supplementary Fig. 17 for the exact position along the
respective tICA landscapes). An exception applies for the SoPIP2:LLPE
landscape, where the open and closed crystal structures of SoPIP2;1 lie
in the same minima. Thus, two sets of trajectories in this SoPIP2:LLPE
minimumwere selected, each set corresponding to a crystal structure.
Adapted from Gelenter et al.30 we calculated the number and rate of
water transport events throughout each given 100-ns trajectory. Each
transport event includes a water molecule traveling from the extra-
cellular bulk, through the channel pore, then into the intracellularbulk.
We report the number of waters imported because it directly corre-
lates to the number of waters exported (Supplementary Fig. 19a), as
aquaporins are bi-directional water channels. The water import and
export rates reveal Poisson distributions, where increases in water
transport events are greatly skewed toward open structures (Supple-
mentary Fig. 19c, d). Thus, evaluating the number of transported
waters serves as the best quantitative measurement for differentiating
transport activity between SoPIP2:bilayer embeddings.

The number of waters imported by SoPIP2;1 for the open-like and
closed-like states are reported in Fig. 5a. Regardless of whether the
crystal structures are stabilized inside the lowest energy regions, water
transport, or possibly water leakage, can still occur for the closed-like
states in most of the bilayer systems. Overall, this suggests that
although lipid bilayers can stabilize a structurally closed SoPIP2;1
conformation, these resulting states may not necessarily be able to
function as closed aquaporins. To this end, only the POPG, LLPE, and
complex bilayers were able to stabilize a functionally closed, non-
transporting conformation of SoPIP2;1 within a structurally closed-like
intermediate or fully closed macrostate minima. Conversely, other
bilayers stabilize partially open or fully open conformations of
SoPIP2;1. A reasonable expectation would be for the water con-
ductivity to be higher in open-like states than in closed-like states,
which is observed for only the POPG, PLPE, PLPG, and LLPE bilayers.
The agreement makes sense for LLPE, as the selected trajectories
directly come from the location of the crystal structures on the free
energy landscape (Fig. 2). Additionally, the same trend where the
combination of anionic headgroup PG and low unsaturation acyl tails
match the expected crystal structure stabilization (Fig. 2, discussed in
the previous section) is seen in the expected water transport activity.
On the other hand, reversed from the free energy landscapes—where
the bulky zwitterionic PC headgroup in combination with acyl tails
of any unsaturation degree can stabilize the crystal structures as
expected—the PC-containing lipid bilayers failed to preserve the
expected relationship of water transport between open- and closed-
like structures.

Akin to protein-ligand interaction studies, aquaporins must not
only transport, but also have pore-lining residues bind to, water
molecules. To verify the water-conducting ability of the SoPIP2;1 pore
in response to lipid bilayer insertion, the number of waters occupying
the pore at each frame per trajectory was computed, then averaged
over the three trajectories of each respective macrostate (Fig. 5b).
Overall, all SoPIP2;1 channels are conducting water into the pore, with
15–40 water molecules inside the channel at all times. Additionally, for
lipid bilayer systems with SoPIP2;1 having expected transport activity
(i.e., more water transport in the open-like states than the closed-like
states), the number of waters occupying the pore of the open and
closed states are stable and similar (~20 for POPG, ~15 for PLPE, ~12 for
PLPG). Moreover, the intermediate states of these systems have a
higher number of waters occupying the pore compared to the closed/
open states (~25–30 for POPG, ~20–25 for PLPE, ~20–35 for PLPG).
These intermediates also produce high fluctuation in the number of

Fig. 3 |Meanfirst passage time (MFPT) of SoPIP2;1 opening/closing transitions.
MFPT of the transition between the crystal structure clusters in the landscapes of
Fig. 2. Data are presented as mean values ± SEM of 200 bootstrapped samples.
Individual data distributions for each MFPT calculation are provided in Supple-
mentary Fig. 16.
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waters inside the channel (±5 for POPG, ±10 for PLPE, ±15 for PLPG). All
PC-containing systemsproducehighfluctuation ineverymacrostateof
SoPIP2;1 (from ±5 for POPC and LLPC to ±15 for PLPC). Uniquely, in the
complex bilayer, all three states are stable and have around the same
number of waters occupying the pore through the trajectories (from
15–25molecules). This aligns with the stabilizing effect of the complex
bilayer for OsSWEET2b shown in our previous work12; however, for
SoPIP2;1, this bilayer is stabilizing a non-functioning state.

Overall, the computed number of water molecules transported is
within three orders of magnitude from the experimental literature
value of 104 waters per 100ns for SoPIP2;1 in the E. coli liposome31 or
100–200 waters per 100 ns for aquaporin in general32,33. Most strik-
ingly, the complex membrane hinders all water transport across all
SoPIP2;1 macrostates with virtually no water transported in both the
open-like and closed-like states. Our functional water transport ana-
lyses demonstrate that the conformation of loop D does not neces-
sarily determine the water conductivity of the channel or overall
transport activity. Because all SoPIP2;1 macrostates have 15–40 water
molecules occupying the pore at all times, we suspected strong
interactions inside the pore preventing water from entering the
cytosolic region. The interactions are possibly a response to some

protein-lipid interactions, thereby preventing water from passing into
the intracellular side to complete its transport cycle.

Across selected macrostate trajectories, the SoPIP2;1 channel is
conducting water, so a blockage must be preventing water from
going through the pore region and into the intracellular bulk. We
selected two trajectories in the open loop D conformation with the
two extreme transport activities (117 waters imported in LLPE,
orange, versus no water imported in complex, blue) to characterize
the channel structure in Fig. 6. In AQP, there are two conserved
regions inside the pore which govern the orientation of the water
molecules to prevent proton transfer: the ar/R (arginine/aromatic)
selectivity filter and the NPA (Asn, Pro, Ala) motif. The HOLE radius
calculations provide the approximate pore size at a given relative z
position, so we contextualize the z positions by finding the Cß posi-
tions of key pore-occluding residues (the ar/R selectivity filter,
NPA motif, and coil occluding the pore) along the z-axis (Fig. 6a).
As expected, in the extracellular side of the protein (positive z),
the HOLE radius of the pore is the same for both transport cases.
However, nearby Thr219 (of the ar/R selectivity filter) occupies
completely different z-positions in the channel for each transport
case (Fig. 6a, bottom panel).

Fig. 4 | Characterization of pore plug Leu197 in each of the respective
SoPIP2:bilayermacrostates. aAtoms used in the dihedral angle calculation shown
on the crystal structures of the open (PDB ID: 2B5F, pink) and closed (PDB ID: 1Z98,
blue) states. Residues are shown in the stick representation, and atoms involved in
the calculations are shown in the ball representation.b Simplified schematics of the

dihedral angle between the Cγ of Leu197 and Cß of Ala182. c Violin plots of the
dihedral angle in each macrostate of each lipid bilayer system. Distributions in (c)
are calculated using 1000 randomly selected samples (frames) from each respec-
tive metastable state energy minima. Data in (c) are presented as mean
values ± SEM.
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Fig. 5 | Water transport activity of SoPIP2;1. a Average number of waters trans-
ported per 100-ns trajectory for the open-like (yellow) and closed-like (purple)
SoPIP2;1 macrostates. Errors are calculated as standard deviations among the
closed-like or open-like trajectories. b Time evolution of the average number of
waters occupying the protein pore of each macrostate in each bilayer system.
Water transport data shown here was calculated using n = 3, where three

independent continuous 100-ns trajectories (10,000 frames) were selected from
each metastable free energy state per SoPIP2:lipid system. For reported water
transport values in (a), datawere groupedbasedoff the relative open-likeor closed-
like character of themetastable state trajectories. Data in (a) are presented asmean
values ± SEM.
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Moving down to the intracellular side, themost drastic difference
in the HOLE radius of the two transport cases appears in the −12–0 z
positions. In this region, the transport pore is ~1 Å larger in radius
compared to the non-transport pore. Moreover, the radius of this
region in the non-transport channel falls below 1 Å, which is smaller
than ~1.7 Å, the van der Waals radius of a water molecule34. Thus, this
region of the non-transporting pore is inaccessible to water. Structu-
rally aligning this region with the key residues, we observe the differ-
ence in Ile100, His99, and Gly98 between the transporting SoPIP2;1
and non-transporting SoPIP2;1.

Therefore, we visualized interactions formed by Thr219, Ile100,
and His99 (Fig. 6b). In the ar/R selectivity region, Thr219 is forming
hydrogen bonds with Arg225 and pointing upwards in the non-
transport pore, resulting in water entry as bulk solution. However,
Thr219 breaks this hydrogen bond in the transport pore and points
downwards, allowing water to proceed deeper into the channel in a
single, ordered line. Nonetheless, this is not a requirement for a
functioning SoPIP2;1. In Supplementary Fig. 20, the closed SoPIP2;1
structure in the POPC membrane has 62 water molecules transported
in 100ns, and the water molecules at the top of the pore are not
ordered. It can be concluded that if the water molecules enter in an
ordered manner, the pore is a functioning channel.

The key residue regulating transport is observed to be Ile100
(colored pink in Fig. 6b), belonging to a coil connecting TM2 and TMB,
which occludes the pore. Ile100 forms a network of hydrophobic
interactions that prevent the water from transporting through the
channel into the intracellular region. This observation matched with
other trajectories found to be non-transporting (Supplementary
Fig. 20; open SoPIP2;1 in POPC, open SoPIP2;1 in PLPC). When Ile100
extends into the transport pathway, the linear water column is broken.
As a result, the water attempts to find an alternative pathway for
conduction by avoiding the hydrophobic region and redirecting
toward the TM1/TM3/TMB vestibule. However, the hydrogen bonding
between His99 and Glu44 (and possibly other interactions) prevents
water from exiting the pore through that alternative pathway. It

appears that certain lipid environment embeddings cause loop D
opening and closure to no longer be a deciding factor for whether
SoPIP2;1 can transport water.

Additionally, aquaporin and SoPIP2;1 literature described the
water-conducting pathway as a single-file line, straight column during
nanosecond simulations21. Here, we uncover another, although largely
unsuccessful, transport pathway adapted by water molecules in a
stabilized conformation of the SoPIP2;1 that is functionally depleting
through long-timescale microsecond simulations. This hypothesis
matches the water residence time analysis presented in Supplemen-
tary Fig. 21, which captures the average natural log of the residence
time that eachwatermolecule continuously spends in a given regionof
thepore. Thepore regionswere definedby laterally splitting thewater-
conducting channel into eight slices, each corresponding to a cylinder
of width 8 Å, height 4 Å, and center defined by the center of geometry
of 3–4 residues on the transmembrane helices. The residues and
respective slices can be found in the representative structure in Sup-
plementary Fig. 21. Specifically, in theopen and closed state of SoPIP2;1
in the complex bilayer, the time that water molecules spend at Slices
4–6, which is the region of hydrophobic blockage, is similar to other
bilayers (~e4.2 or ~67 ps). There is a spike in residence time at Slice 6 of
the intermediate state, possibly due to a water molecule stuck in the
opening of the alternative pathway. Though in general, the remaining
trends in water residence time are similar across each SoPIP2:bilayer
system. But whether in a transporting or non-transporting
SoPIP2;1 state, the waters present at each Slice are experiencing con-
stant positional flux. This high fluctuation and constant movement in
pore-residing water molecules showcase attempts at finding an opti-
mal pathway of transport regardless of current channel conformation.

Lipid binding interactions
Whether intracellular rearrangements seen in non-functional
SoPIP2;1 states were caused by direct protein-lipid interactions was
examined. With the pioneering advances in membrane protein simu-
lation of the 1990s and the beginning of AQP structure determination

Fig. 6 | Structural comparison of two extreme transport cases for the SoPIP2;1
open state embedded in two different lipid bilayers system (LLPE and com-
plex). a Pore HOLE radius along the z-position of the SoPIP2;1 protein pore aligned
with the distribution of the Cß z-positions in key residues inside the protein pore
(the ar/R selectivity filter, NPAmotif, and coil occluding the pore). The error bar for
the radius at each z position is calculated as the standard deviation of the 10,000
frames of the trajectory. b Hydrogen bonding and hydrophobic interaction of key

residues most different between the non-transport (top) and transport (bottom)
cases. Highlighted residues are shown in stick representations. Leu197 and loop D
are also shown as a reference point. c Cross section of the SoPIP2;1 pore surface
indicating water blockage of the non-transporting open SoPIP2;1 (top, blue) and
transporting open SoPIP2;1 (bottom, orange). Data in (a) are presented as mean
values across the trajectory for each given point in the pore ± SD.
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in the early 2000s, there is a rich computational history on AQP-lipid
interactions35. Foundational simulation studies examining the AQP-
lipid interface have found protein-lipid interactions to be consistent
with crystal and electron densities, showing conservation of specific
protein-lipid interaction sites without high-specificity binding36–39.
Lateral exchange of annular shell lipids with the bulk has therefore
been suggested as a regulatory mechanism for AQP function39. Con-
served channel residue rearrangements have also been posited as a
regulatory means to affect AQP water transport28,39. Perhaps lipid
binding itself could be the fundamental driver of either proposed
regulatory mechanism.

Comparing lipid binding interactions from our 100-ns metastable
state trajectories, SoPIP2;1 was found to have an identical lipid binding
interface compared to 52 previously simulated AQP proteins (Sup-
plementary Figs. 22–24)40. Likewise, high-specificity lipid binding sites
are also presumed to be absent in SoPIP2;1. Average lipid residence
times between SoPIP2;1 open, closed, and intermediate states across
the lipid bilayers are nearly identical as well (Supplementary
Figs. 25–27). Out of the residues involved in the inhibitory channel
rearrangements, only Leu197 and Ile202 have consistent interactions
with lipids. Meanwhile, Leu175 has moderate lipid interactions except
for POPC, POPG and LLPC simulations.

Given that Leu197 demonstrated strong interactions with each
lipid bilayer, we generated state-specific loop D-lipid interaction fin-
gerprints (Supplementary Fig. 28). Nearly all bilayers maintain strong
interactions with loop D residues Leu197 and Ala198, showing average
residence times greater than 70ns. Loop D maintains the most lipid
interactions when surrounded by POPE, followed by PLPE. Otherwise,
most bilayer compositions only strongly interact with ~5 out of the 16
loop D residues. While SoPIP2;1 is in the closed state, loop D lipid
interactions areminimal, as the loop is occluding the pore. Overall, our
resulting fingerprints demonstrate diverse binding signatures arise
when using different bilayers.

Membrane properties
Despite using the same protein throughout all simulations, each lipid
bilayer exhibits altered protein conformational changes, structural
dynamics of transition, and stabilization of functional/non-functional
states. What biophysical properties of the membrane bilayer may be
responsible for inducing the changes seen in the SoPIP2;1 channel and
water transport activity? Hydrophobic mismatch is defined as the
difference between the membrane bilayer thickness and the hydro-
phobic thickness of the transmembrane protein. Naturally, membrane
lipids’ acyl chains have to adapt to the given hydrophobic length of the
protein, the protein adapts to the bilayer, or both, to reduce the mis-
match and minimize solvent exposure for the hydrophobic region of
the protein41–43. Additionally, increasing interest in synthetic proteins
alludes to the choice of liposomes or lipid bilayers in which to embed
the proteins44. Understanding whether a membrane bilayer may adapt
to a membrane protein can be leveraged to deplete or induce wanted
behaviors or dynamics of the target membrane protein45. Moreover,
the ability of a membrane bilayer to adapt to the hydrophobic thick-
ness of the protein is often observed in the lipids directly surrounding
the protein, which is known as the annular shell. Here, we quantify the
ability of the annular shell lipids to change from the bulk membrane
with respect to the protein by comparing the protein-bulk thickness
difference and the annular shell-bulk thickness difference (Fig. 7). The
thickness values calculated for each frame are illustrated in Fig. 7a,
where the center rectangle represents the hydrophobic region of the
protein and the beads with two tails represent the lipids. The lipids in
the bulk section are colored orange, and the lipids in the annular shell
are colored brown. The thickness calculation procedure is discussed in
“Methods”.

We compared thedistributions of the thickness differencebetween
the protein-bulk lipids (light green violin plots) and the difference

between the annular shell-bulk lipids (dark brown box plots) for the
1000 frames randomly sampled in each SoPIP2:bilayer macrostate. The
open-like and closed-like hydrophobic mismatch distributions are
shown in Fig. 7b. Three scenarios can be observed. (1) If the distribution
in the violin plots matches the distribution in the box plots, the annular
shell lipids are able to adapt their conformation to cover the hydro-
phobic surface of SoPIP2;1. This perfect matching is the ideal condition
for the membrane insertion of proteins. (2) If the violin distribution is
lower than the box distribution, the annular shell lipids are less amen-
able to the protein. Still, the whole membrane can compensate for the
protein’s hydrophobic length through ensemble-induced curvature or
deformation. (3) If the violin distribution is above the box distribution,
neither lipids in the annular shell nor thebulkmembrane are suitable for
the protein due to their inability to accommodate the hydrophobic
length of the protein. As a result, the hydrophobic surface of the protein
is exposed to the solvent, which can be detrimental to its function and
dynamics.

Fig. 7 | Mismatch in thickness of SoPIP2;1 and the bilayer. a Schematics of
protein thickness, annular shell thickness, andbulkmembrane thickness.Mismatch
is calculated as the difference between the protein thickness and the bulk mem-
brane thickness, along with the difference between the annular shell thickness and
the bulk membrane thickness. b Violin plots of the protein-bulk mismatch (light
green) and box plots of the shell-bulk mismatch (dark brown) for the open- and
closed-like macrostates of each bilayer system. Distributions in (b) are calculated
using 1000 randomly selected samples (frames) from each respective metastable
state energy minima. Data in (b) are presented as mean values ± SEM.
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Overall, Fig. 7b demonstrates that the protein-bulk difference
matches or is lower than the shell-bulk difference (scenarios (1) and
(2)), suggesting that the lipids used in this study can adapt to SoPIP2;1.
This observation validates that our previous characterization of the
plant complex membrane12 should be able to accommodate plant
membrane proteins. The most striking difference among the systems
can be seen in the complex bilayer of the open-like states, where the
protein-bulk mismatch is much lower than the shell-bulk mismatch.
The misalignment infers that the lipids occupying the annular shell
cannot change their conformation from the bulk to match the protein
in its open-like states. However, this complexmembrane can still cover
the protein’s hydrophobic region. This mismatch could explain the
limited water transport abilities of the open SoPIP2;1 in Fig. 5. Speci-
fically, the packing of the complex membrane’s annular shell in the
open macrostate could have stabilized the hydrophobic blockage
observed in Fig. 6, preventing the sampling of a functional channel.
The addition of sterols (SITO and STIG) in large quantities (over 48% in
composition) stiffens the membrane46 due to aggregation into
domains47,48 and prevents the acyl tails of the phospholipids from
changing its conformation or mixing in the membrane bulk. As such,
the sampled conformation of the membrane traps its preferred con-
formation of the protein, leading to the highly stabilized non-
functional open SoPIP2;1 state occupying the lowest energy basin.
These results present a double-edged sword scenario where complex
bilayer composition can essentially trap a protein within an unpro-
ductive conformation because of stabilization effects.

For the homogeneous bilayers, the violin and box distributions
are either matching well or the violin distribution is slightly lower (in
POPE, PLPE, and LLPE). When comparing the bilayers of the same acyl
tails, the system containing the PE headgroups will always produce the
most negative mismatch in shell-bulk and protein-bulk thickness. This
observation correlates to PE-containing lipids’ higher acyl tail order
parameters (especially POPE) compared to lipids with PG or PC
headgroups (Supplementary Fig. 29a). The PE headgroup is zwitter-
ionic like the PC headgroup but contains an exposed quaternary
amine, which can repel one another when packed tightly in a mem-
brane, limiting the conformational changes that the tail can adapt to.
Combining this effect with the least unsaturated tail, PO, the mem-
brane becomes even less fluid. Thus, packing aquaporin in POPE can
decrease itsfluidity and stabilize anon-functionalopen state,matching
its low water transport of open-like states in Fig. 5a. As the closed
conformation can be adopted only during abiotic stress in planta, this
intermediate state can be induced to allow the plants to conserve
water even in the open conformation. Comparing the effect of the acyl
tails for eachheadgroup, the highest unsaturation tail LL almost always
has the least mismatch (except for PLPC and LLPC in the open-like
states, where PLPC has less negative mismatch than LLPC). This
observation also matches the comparison of lipid order parameters
among unsaturation degrees in Supplementary Fig. 29b. As the higher
unsaturation tail allows for spaces in the membrane packing, the
bilayer becomes more flexible, and in general, enables the protein to
move more freely. This additional fluidity induces more total water
transport.

As the stabilization of non-functional open SoPIP2;1 in the com-
plex bilayer was examined through hydrophobic mismatch, the
occurrence of this state in some homogeneous bilayers requires fur-
ther explanation. We analyzed the order parameter of each phospho-
lipid spanning the membrane through each of the three continuous
trajectories sampled within each SoPIP2;1 macrostate in its respective
homogeneous bilayer (the selected trajectories are visualized in Sup-
plementary Fig. 17). Earlier AQP simulation literature proposed bilayer
thickness and ordering within the annular shell as a mechanism for
regulating water transport49. In experiments, lipid order parameters
can be calculated with quadrupolar splitting in 1H-NMR50,51 or dipolar
splitting 13C-NMR52,53. Lipid order parameters shed light on the general

order of the whole lipid membrane or the conformations adopted by
each lipid molecule in the bilayer54. Here, we report the average order
parameter of both tails in each lipid through each 100-ns macrostate
trajectory with the coarse-grain order parameter Scc method in
LiPyphillic55. The order parameter is calculated with Eq. (1), where θ is
the angle between themembrane normal and the bonds connecting all
two consecutive carbon atom pairs along the acyl tail. The brackets
indicate an average over all carbon atoms in a given acyl chain:

Scc =
3cos2θ� 1
� �

2
ð1Þ

Per Eq. (1), the order parameter of the phospholipid acyl chains
ranges from −0.5 to 1, with −0.5 being themost disordered and 1 being
the most ordered (completely linear tail, where θ = 180°). Lower order
parameter values reflect a fluid and flexible membrane; conversely,
higher order parameter values suggest a stiff and rigidmembrane. The
average order parameter of all lipids in each trajectory was compared
to the number of waters transported (Supplementary Fig. 30). How-
ever, the relationship between the average lipid order parameter and
the number of waters transported is complicated. Instead, we seek to
implement order parameter analyses to understand why some of the
open states are non-functional. We omitted the closed states in this
analysis because differences in transport activity amongst the closed
states have otherwise been previously explained, as the membranes
are unable to stabilize the fully closed crystal structures in the lowest
energy minima. For each selected trajectory from the homogeneous
bilayers, the position of each lipid molecule is projected onto the xy
plane as a scatter plot colored by the average order parameter of the
two acyl chains throughout the trajectory. In the background of the
scatter plot is the heatmap of the protein’s positions through the tra-
jectory, colored by each of the transmembrane helices. Views of the
helices on the structure can be found in Supplementary Fig. 1.

Figure 8 portrays twelve representative trajectories that vary in
annular shell lipid order parameters and water transport activity. The
selection of the trajectories is from scatter dots shown in Supple-
mentary Fig. 31. At low transport activity (<30 waters imported), the
shell lipids can adopt any order parameters from 0.14–0.25, which
indicates a wide range of membrane rigidity. On the other hand, when
the channel can transportmore than 30watermolecules in 100ns, the
average order parameter of the shell negatively correlates to the
number of waters transported (i.e., stiffer membranes transport less
water). Most importantly, we note that no highly functional open
SoPIP2;1 channel (>20 waters imported) can be found in bilayers of
average order parameters higher than 0.19, corresponding to more
rigid membrane constructs (Supplementary Fig. 31). Moreover, the
highest and second highest shell lipid order parameters (most rigid
bilayers) trajectories belong to SoPIP2;1 in the POPE andPOPCbilayers.
This observation is reasonable, as the PO acyl tail is monounsaturated,
limiting the lipid’s conformational flexibility. This does not apply to
POPG, as one outlier SoPIP2:POPG trajectory transports over 130water
molecules (Supplementary Fig. 31). Thus, the zwitterionic phospholi-
pid headgroups (PC, PE) combined with monounsaturated tails cause
the stabilization of non-functional open states. If the anionic head-
group PG is combined with the PO tails, we observed a semi-
stabilization of non-functional open states (SoPIP2;1 in one of the
open state trajectories was able to reverse the hydrophobic block).

Despite having the same type of lipid species between the annular
shell and bulk, the specific conformations of individual lipidmolecules
canhave a significant effecton regulatingprotein function. Variation in
relative lipid fluidity within a homogeneous bilayer can functionally
mimic the introduction of a different lipid species altogether. This
means that overall lipid bilayer configuration is critical to enabling, or
even disabling, protein function. For all selected trajectories in the
open states of Fig. 8, the lipids surrounding the protein have a
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relatively lower order parameter than that of the lipids in the bulk,
indicating all the selected lipids’ abilities to adapt to SoPIP2;1. Com-
paring the position of the protein helices, the no-transport trajectories
(top row) showhowhelical repositioning in response to themembrane
environment results in pore contraction, which could be the reason
that the hydrophobic block of Ile100 can become stabilized.

We also observed a positive linear correlation between the lipid
order parameter and the average thickness for the homogeneous
bilayer (Supplementary Fig. 32) across all selected macrostate trajec-
tories. The LL-tail-containing bilayers’ order parameter and thickness
formone linear correlation, and the remainingbilayer formsanother. As
the lipid order parameter cannot be calculated for the complex mem-
brane with sterols, we visualized the thickness as a function of the
number of waters imported (Supplementary Fig. 33). Specifically, all
SoPIP2;1 macrostates in the complex membrane have under ten waters
transported. The thickness of the complexmembrane lies between40.5
and 41.5 Å, among the low-order POs and high-order PLs membranes.
However, the correlation of the order parameter to thickness cannot be
transferred from the homogeneous bilayers to a complex one. The
hydrophobic mismatch demonstrated the packing near the open state
to be detrimental to its function, and literature has shown an enrich-
ment of sterols in the annular shell near aquaporin compared to the
bulk membrane10. Additionally, experimental studies have shown that
the additionof sterols reduceswater transport inAQP056 andAQP457. As
a result, our observation for SoPIP2;1 functional depletion in the com-
plex membrane matches experiments, opening potential implications

for the careful selection of model membrane bilayers in molecular
dynamics simulations and benchtop experiments.

Moreover, we also observe that all SoPIP2;1 macrostates in the
LLPC and PLPCbilayers transport under 30watermolecules per 100ns
(Supplementary Fig. 30), despite being able to stabilize both crystal
structures in their conformational energy landscape (Fig. 2). Supple-
mentary Fig. 29 separates the impacts of headgroups and acyl tails on
water transport, membrane order, and membrane thickness. Overall,
given the same acyl tail, the PE headgroup increases the tail order
parameter and the membrane thickness, while the PO- and PC-
containing lipids have similar order parameters. As expected, the LL
tail always has the lowest order parameters, as it contains the greatest
degrees of unsaturation. Except for PLPC, LLPC, and POPE, SoPIP2;1
macrostates in any other homogeneous bilayers can have varying
levels of water transport, depending on the stabilization of the
hydrophobic blockage inside the pore.

Lipid order parameter analysis illustrates that tuning of some
membrane properties and lipid selection can control the activity of a
given membrane protein. Specifically, for SoPIP2;1, embedding in
membrane bilayers containing PCwill induce low transport in the open
macrostate despite adequately stabilizing the crystal structure con-
formations. Especially for PLPC and PLPC, all macrostates will experi-
ence lower transport activity (<30 molecules per 100ns) than on
average (~50 molecules per 100ns). The PE headgroup increases
the membrane’s stiffness, thickness, and hydrophobic mismatch.
When combined with a monounsaturated tail PO, the PE headgroup

Fig. 8 |Water transport activity and lipid order parameter in the open states of
the homogeneous bilayer systems. Each square shows the projection on the xy
plane of the lipids (scatter dots colored by average lipid order parameter, Scc,
bottom legend) and protein (heatmap colored by transmembrane helices, right

legend) for one 100-ns representative trajectory of a given water conductivity and
average annular shell order parameter. Empty squares indicate no trajectory found
for high water transport activity and high lipid order parameters. The red-to-blue
colorbar represents the Scc order parameter.
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significantly reduces water transport to under 20molecules per 100ns
(one outlier at 60 molecules per 100ns). Our calculations of reduced
water transport agree with our loop D fingerprint analysis, as the stif-
fened POPE bilayer sustains many long-lasting loop D interactions
(Supplementary Fig. 28). A charged PG headgroup combined with
monounsaturated tail PO also leads to mostly low transport in the
open macrostate (under 10 molecules per 100ns, with one outlier at
139 molecules per 100ns). The complex bilayer, with a high sterol
composition of 48%, completely impedes water transport in all
SoPIP2;1 macrostates. A sterol composition ≥40mol% is required to
maintain bilayer integrity in realistic cell membranes58. Therefore, for
SoPIP2;1, to achieve a stable, expected behavior of transport and
conformational dynamics, one should disrupt sterol crystallization by
diversifying the initial bilayer configuration or use homogeneous
bilayers containing lipids with polyunsaturated tails (PL or LL) and
charged headgroup (PG) or zwitterionic, non-bulky headgroup (PE).

Discussion
We demonstrated the various regulatory impacts of lipid bilayer
selections on the structural dynamics, kinetics transitions, thermo-
dynamics stabilization, and functional water conduction of spinach
aquaporin, SoPIP2;1. By analyzing SoPIP2;1 dynamics and functions
when embedded in nine homogeneous lipid bilayer membranes
compared to one complex, heterogeneous plant membrane, we can
uncover certain precautions for researchers when selecting an
appropriate membrane lipid composition for computationally mod-
eling or experimentally evaluating a membrane protein of interest. A
summary of these points was provided at the end of the Introduction.
We now go into further detail below.

In particular, each bilayer induces different slowest processes for
SoPIP2;1 across simulation trajectories, indicating that the surrounding
lipid environment does indeed affect conformational sampling of
SoPIP2;1 to variable extents. To this end, effective SoPIP2;1 crystal
structure stabilization similarly relies onmembrane choice. Particularly,
combinations of anionic headgroup PG with lower unsaturated tails;
zwitterionic bulky headgroup PC with any acyl tails; and zwitterionic
amine headgroup PE with high tail unsaturation can stabilize the
SoPIP2;1 crystal structure as the near-lowest energy metastable states
(relative energy <2.0 ±0.2 kcalmol−1). All of these bilayers prompt
SoPIP2;1 to have a slower closing transition kinetics than for opening.
For the complex bilayer, a macrostate similar to the closed crystal
structure has the lowest relative energy of less than 1.0 ±0.2 kcalmol−1,
while other macrostates are from 1.0–2.0 ±0.2 kcalmol−1. In the com-
plex bilayer, along with POPE, PLPG, and LLPG, SoPIP2;1 presents a
faster closing transition. Structurally, membrane selection influences
the transitionarypathwaysof SoPIP2;1 in theopening/closingprocesses.
The open- or closed-like character of “pore plug” Leu197 among inter-
mediate macrostates varies based on the lipid bilayer, suggesting that
the lipid environment can alter reaction coordinate progress through
selective structural stabilization. In the PC and PG headgroups-
containing bilayers, the SoPIP2;1 intermediate states are skewed to
have more closed-like states. Conversely, in the PE-containing bilayers,
SoPIP2;1 intermediates favor amore open-like plug. Bilayers with the LL
acyl tail are able to sample both the open- and closed-like characters
equally, likely due to LL acyl tail flexibility caused by a high degree of
unsaturation.

While SoPIP2;1 conducts water inside the pore and those water
molecules are constantly traversing across pore regions in all bilayer
embeddings, certain bilayers impede water transport of all macro-
states (complex membrane), limit transport in the open-like states
(POPE, PLPC), or produce leaky closed-like states (all except for POPG
and LLPE). We uncovered how the loop D conformation does not
directly alter the water conductivity of the SoPIP2;1 channel or overall
transport activity due to the stabilization of a hydrophobic blockage
inside the non-transporting SoPIP2;1 conformation. Literature focused

on membrane protein biotechnology applications that also used
SoPIP2;1 as a model system support the existence of hydrophobic
blockages for non-transporting cases. Circular dichroism experiments
have shown SoPIP2;1 to lose alpha-helical content and partially unfold
when reconstituted into vesicle or liposome bilayers stiffened by
cholesterol59,60. In fact, SoPIP2;1 structurally responds to these stiffer
environments with hydrophobic movements within and between
alpha-helices60. Stopped flow experiments wheremercury was used to
alter membrane fluidity have shown that SoPIP2;1 transport is affected
by bilayer properties61. Mechanosensitive bias against cholesterol by
SoPIP2;1 has been further validated using fluorescence experiments,
where SoPIP2;1 preferably localizes in cholesterol-poor domains62.

A general belief exists within literature that certain bilayer com-
positions can push equilibrium toward favorable conditions for
membrane proteins. While cells can rapidly replace their lipid bilayer
compositions, molecular models and simulations experience fixed
stoichiometry. However, in silico simulated lipid molecules sample
biophysical properties for direct modulation of membrane protein
activity. Hindered transport of the open SoPIP2;1 in the complex
bilayer is explained by the high negative mismatch in the height
between the protein thickness and bilayer, as well as the complex
bilayer composition’s oversaturating level of sterolswhich leads to raft
or crystal formation47,48. Specifically, sterols addition restricts phos-
pholipid acyl tail conformational dynamics, increasing their order
parameter and stiffness63. Indeed, reduction in water transport as a
consequence of sterol addition was also reported in experiments
involving AQP056 andAQP457. For homogeneous bilayers, a decrease in
the transport activity of the open state was associated with higher
membrane stiffness (higher lipid order parameter) with channels
transporting more than 30 waters per 100 ns. Additionally, rigid
membranes ofmore than 0.19 in average order parameter cannot have
high transport activity (more than20waters per 100ns). Therefore, we
can conclude that flexible membranes allow for the protein to sample
more structurally and functionally diverse conformations.

Overall, we showed how a lipid bilayer can influence a membrane
protein, leading to varying effects in structure, dynamics, and functions.
Therefore, the selection of a membrane bilayer for MD simulation of a
protein should be treated with care to prevent misinterpretation of
results. SoPIP2;1, an AQP protein without specific lipid interactions, was
modified in various ways by insertion into homogeneous and complex
membrane bilayers. That is, lipid ensemble effects can lead to strikingly
different observations as a result of bilayer embeddings. This phe-
nomenonmanifests in SoPIP2;1 by the stabilization, or trapping, of non-
functional states, which leads to nearly no water transport across
macrostates. It is possible that this phenomenon could occur in planta
as a form of functional regulation. The concept of an “adaptive mem-
brane” that selectively modulates membrane protein function and free
energy landscapes has been discussed8,41,64, although the lifetime of the
ensuing protein regulation depends on the type of lipid-protein
interaction8. Even so, the diversity and large quantity of lipids (along
with the presence of other proteins) encompassing the membrane
bilayer of a natural cell would induce diffusion and constant modifica-
tion of the local lipid environment surrounding the protein as a coun-
termeasure. Thus, the highly dynamic nature of the cell could prevent
above-average samplingof anynon-functional states observed fromour
SoPIP2;1 simulations. This, however, is a fundamental shortcoming of
most classicalMDensembles employing a constant number of particles.
This realization can also apply to in vitro experiments where lipid
reconstitution, liposome, or nanodisc preparation occur with pre-
defined lipid stoichiometries.

The field of protein-lipid modeling and simulation is shifting
toward the usage of complex bilayers. As such, care is crucial
when constructing a membrane bilayer model. As the relationship
between lipid ensemble effects and protein conformational sampling
or function remains a difficult research question to tease apart, MD

Article https://doi.org/10.1038/s41467-024-46027-y

Nature Communications |         (2024) 15:1848 12



practitioners should thoroughly investigate known lipid-protein
interaction for the system of interest to make the best system con-
struction decisions65,66. Proteins requiring specific interactions with
lipids depend on those high-affinity binding events (e.g., sterols with
GPCRs). Unlike more common transient/non-specific or somewhat
specific interactions, high-affinity and specific binding interactions are
long-lived events occurring on the microsecond timescale8. Under
equilibrium conditions, these specific interactions should energeti-
cally dominate over lipid ensemble effects that would otherwise lead
to compensatory deformations along themodeledmembrane surface,
such as changes in curvature, thickness, or rigidity/fluidity. Given that
the recruitment of specific lipids is a knownphenomenon10, criteria for
including lipid species with a high affinity and/or specific interaction
with the protein should be satisfied during system construction.
Knowledge on functionally relevant lipids should be retained and used
for the design of in vitro or model membrane reconstitution systems.

However, preferences for specific lipid species are not known for
all membrane proteins. If specific protein-lipid interactions are known
for a homologous protein, these interactions could potentially be
adapted to the targetmodeledprotein for simulation.Otherwise, it can
be assumed that a bilayer composition that approximates the native
cellular environment should provide lipid chemistry that can directly
offer, ormimic, the unknown specific interactions. To this end, greater
care must be applied when performing simulations with a realistic
bilayer, as the annular shell configuration used to seed the simulation
could inhibit phase space exploration. At a minimum, a composition
that represents some average of the ensemble properties of a more
complex or realistic bilayer should be used.

One should also consider employing replicates with varied
membrane packings to overcome the possibility of skewed samplings.
Even when starting with different initial membrane packings for the
open and closed states, non-productive SoPIP2;1 states were still
observed in this study. Asymmetric sterol distribution is necessary for
biological bilayer integrity, and realistic bilayers possess tightly packed
aggregates of sterols58. The objective of the MD practitioner now
becomes equipping membrane protein simulations with a realistic, or
appropriate, bilayer choice that enables functionally-relevant dis-
coverywhile respecting real-life biological constraints. Our conclusion
is especially important for researchers running short membrane pro-
tein simulations, as initial membrane packings are not likely to sig-
nificantly deviate along the nanosecond timescale. Thismeans that our
lipid-induced SoPIP2;1 inhibition does indeed happen in cells, and that
efforts must be made to also observe functional dynamics during
simulation. Membrane mixing offers a solution and computational
analogy to lipid imbalance regulation performed by flippases and
scramblases67. Membrane mixing will also redistribute chemically
identical, but biophysically distinct, lipid molecules, which may alle-
viate rigidity within annular shell arrangements (Fig. 8). Tools for
altering membrane configuration have since become widely available
to further diversify membrane packings13,68,69.

For guiding enhanced sampling protocols and kinetic features, we
recommendMDpractitioners apply a combination of lipid and protein
features. For path sampling techniques, lipid acyl chain order para-
meters could be used as an additional reaction coordinate to ensure
that structurally desired protein seed structures or windows are
operating within a membrane configuration that promotes functional
states. Other examples of non-protein variables that confound protein
conformational dynamics, like buried water molecules or cavity
dewetting, have been previously identified in potassium channels70,71.

Extensive molecular dynamics simulations have been performed
on plant membrane transporters22–24 and hormone receptors72,73. How-
ever, simulation or experimental investigations of howplantmembrane
bilayers impact proteins conformational dynamics are limited. The
observations from this study contribute to a better understanding of
plant aquaporin dynamics and functions under lipid influences. Tuning

of the local lipid environment near aquaporin can enhance the sampling
of desired conformations or functional states. As aquaporins are found
to be crucial in human disease proliferation or in planta water regula-
tion, aquaporin regulation can contribute to drug intervention or water
conservation, respectively. For instance, an increased sterol level near
the protein can lead to the non-functional open state being more fre-
quently sampled, preventing water transport without incurring ener-
getic costs related to changing loop D conformation.

These insights on how selective lipid environments can exert
spatiotemporal control on membrane proteins could be coopted for
engineering efforts involving membrane proteins. As aquaporin has
recently been employed in proprietary biocompatible water filtration
system (NASDAQ: AQP), any synthetic membrane encompassing an
aquaporin protein could theoretically be adjusted to have a local lipid
environment that induces high water transport, leading to increased
filtration efficiency. The inverse case is also possible, wheremembrane
properties could be selectively tuned to create non-functional aqua-
porinswithout incurring energetic costs associatedwith cytosolic loop
closure. At the very least, insights from our work can be directly
applied to the studyofwater stress responses throughplant aquaporin
function, an area for which a demand exists for dedicated molecular
simulation studies74. Aquaporin was chosen as a model system to
uncover unspecific findings around lipid-protein interactions that
could be generalized to other membrane protein classes. However,
more studies and experimental validations are required to employ
thesepossible applications of lipid-protein interactions on aquaporins,
and to extend these findings to the dynamical characterization of all
membrane proteins.

Methods
System assembly
Starting coordinates for the simulationwere acquired from the Protein
Data Bank (PDB), including the SoPIP2;1 open (PDB ID: 2B5F) and
closed (PDB ID: 1Z98) crystal structures21. SoPIP2;1, and aquaporins in
general, have a conserved topology of 6 transmembrane domain (TM)
and 2 half-helices spanning the upper (TME) and lower leaflet (TMB) of
the membrane (Supplementary Fig. 1). Monomer chain A of the open
and closed tetrameric crystal structures were each obtained and
aligned to contain residues 28 to 263 as to have the same length. The
Cd2+ ion located near theN-terminus of the closed crystal structurewas
replaced with Ca2+ to be representative of living systems21. The open
and closed monomers were aligned, and the Ca2+ in the closed con-
formation was copied to the open conformation. The crystal structure
starting states contain theCa2+ ion near theN-terminus. Charged states
of titratable residues were predicted with the PDB2PQR web server75

with the PROPKA76 option. Missing hydrogen atoms were filled during
system-building through CHARMM-GUI77.

The computational efficiency associatedwith the useofmonomer
SoPIP2;1 is further justified by experimental findings and related lit-
erature reviews. AQP monomers are known to constitute functionally
independent pores28. Each AQP monomer can be functionally recon-
stituted in vitro78,79, and even functionalAQPmonomer structures have
been resolved by solid state NMR spectroscopy (PDB IDs: 8H1D and
6POJ)80,81.

Previous experiments determined the phosphorylation of Ser115
and Ser274 in SoPIP2;1 to play a role in maintaining an open channel,
and the dephosphorylation process induces the closed
conformation82,83. Specifically, in the presence of a dephosphorylation
inhibitor, the channel’s water transport activity increased significantly
compared to the positive control82. Thus, if Ser115 and Ser274 are
phosphorylated in classical MD (no bond breaking/forming allowed),
the cytosolic loop could remain constitutively open, and the closing of
the open channelmight not be observed in themicrosecond timescale
of MD simulations. This observation suggested that the phosphoryla-
tion/dephosphorylation process provides thermodynamic stability for
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one conformation over the other. When phosphorylation is inhibited,
SoPIP2;1 can still sample both the open and closed states, as water
transport activity is only reduced rather than altogether abolished82. In
this case, the barrier of loop conformational change for SoPIP2;1 is
assumed to be mostly kinetic. Therefore, Ser115 and Ser274 were not
phosphorylated in this study to ensure sampling of both the opening
and closing of the channel.

The systemswereprepared inCHARMM-GUI for simulations77,84,85.
Nine homogeneous bilayer systems containing POPC (1-palmitoyl-2-
oleoyl-sn-glycero-3-phosphocholine; 16:0/18:1), POPE (1-palmitoyl-2-
oleoyl-sn-glycero-3-phosphoethanolamine; 16:0/18:1), POPG (1-palmi-
toyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol; 16:0/18:1), PLPC
(1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine; 16:0/18:2), PLPE
(1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphoethanolamine; 16:0/
18:2), PLPG (1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphatidylglycerol;
16:0/18:2), LLPC (1-linoleoyl-2-linolenoyl-sn-glycero-3-phosphocholine;
18:2/18:3), LLPE (1-linoleoyl-2-linolenoyl-sn-glycero-3-phosphoethano-
lamine; 18:2/18:3), LLPG (1-linoleoyl-2-linolenoyl-sn-glycero-3-phos-
phatidylglycerol; 18:2/18:3) and one heterogenous complex system12

were built to contain 128 lipids. The lipid species composing
the realistic bilayer were POPC, PLPC, PLPE, PLPG, LLPC, LLPE,
DLiPC (1,2-dilinoleoyl-sn-glycero-3-phosphocholine; 18:2/18:2), DLiPE
(1,2-dilinoleoyl-sn-glycero-3-phosphoethanolamine; 18:2/18:2), STIG
(stigmasterol), and SITO (ß-sitosterol). Specific compositions of each
lipid species in the complex system can be found in Fig. 1b. The
homogeneous bilayers were constructed to be symmetric, with 64
lipids per leaflet.Meanwhile, the complex bilayerwas asymmetric, with
66 lipids in the upper leaflet and 62 lipids in the lower leaflet. ACE/CT3
terminal patchings were used for SoPIP2;1. The systems were solvated
with TIP3P waters86 and neutralized with 0.2MCaCl2. Upper and lower
water layers were 15 Å in height. Force field parameters were
CHARMM3687 with existing pair-specific NBFIX (nonbonded fix)
Lennard-Jones parameters for Ca2+ and Cl- ion pairing, as well as Ca2+

and phosphate group-oxygen atom pairings88–90. Hydrogen Mass
Repartitioning (HMR, discussed in Simulation Details) was used to
increase the timestep from 2 fs to 4 fs91. Using HMR to maximize the
timestep contributes to longer trajectories under fewer computing
resources, thereby improving conformational sampling and kinetic
calculations for protein conformational changes.

Simulation details
Classical molecular dynamics were performed using AMBER1892. Each
system underwent energyminimization, NPT heating, NPT “hold”with
constraints, and equilibration93. Specifically, during energy minimiza-
tion, the steepest descent and conjugate gradient algorithmwere used
with a maximum of 50,000 iterations, in which the first 5000 steps
utilized the steepest descent algorithm. Then, each energy-minimized
systemwas heated from0K to 300K in an NPT ensemble for 2 ns with
sander. A 5 ns NPT hold was done at 300K and 1.13 bar under pmemd,
in which the protein backbone Cα atoms were constrained by a spring
force with constant 10 kcalmol−1 Å−2. Afterward, an equilibration run
with no protein constraints was performed for 10 ns on cuda. Pro-
duction runs were subjected to Langevin thermostat94 and Monte
Carlo barostat to maintain a constant temperature of 300K and a
constant pressure of 1.13 bar. The Verlet integrator was used with a
timestep of 4 fs. Hydrogens are the lightest atoms in the systems,
having vibrational frequency much lower than the femtosecond
timestep ofMD simulations, which can lead to large fluctuations in the
integration step. To minimize this drawback, the SHAKE algorithm95

was implemented to constrain the non-water hydrogen atoms along
with HMR to distribute neighboring non-water heavy atoms’ mass to
hydrogen atoms.

For nonbonded interactions, the Lennard-Jones cutoff was set at
12 Å. For long-range electrostatic interactions, Particle Mesh Ewald
was used96. Periodic boundary conditions were maintained during

simulations. To evaluate water transport in the SoPIP2;1 cavity, the
frame save rate was chosen at 10 ps, as simulations of water transport
in AQP132 showed the fastest significant water motion inside the pore
to occur in 10 ps. Additionally, we tested the frame save rates of 5 ps,
10 ps, and 30ps in a SoPIP2:POPG equilibration run of the same 10 ns
trajectory and visualized the water movements for each frame save
rate. We found that the Cartesian coordinates of waters in the 10 ps
frame save rate were captured with a similar resolution to those from
the 5 ps frame save rate run, and the 30ps rate run produced too large
a fluctuation in water movement. Thus, a 10 ps frame save rate offers
the best compromise of accurately recording water dynamics without
creating unreasonably sized trajectory files.

Adaptive sampling
After an initial 1 µs of classical MD from the open and closed systems,
an enhanced sampling method known as adaptive sampling97–102 was
implemented. Adaptive sampling consists of running multiple short
unbiased trajectories in parallel to reduce computing time and
enhance sampling of the free energy landscape, compared to running
one long trajectory. This method incorporates the selection of “seed-
ing frames” for the subsequent round of trajectories based on the free
energy landscape from the previous round, improving the sampling of
rare states in high-energy conformations that are difficult to capture in
long continuous simulations. Twelve pairs of distances identified as
the most different between the closed and open crystal structures
were used as an initial basis for adaptive sampling. The twelve dis-
tances underwent dimensionality reduction with time-lagged inde-
pendent component analysis (tICA)103. MDTraj 1.9.4 was used for the
calculations of the distances104. The energy landscape projected onto
the first two principal components identified by tICA was constructed
using PyEMMA 2.5.6 to visualize the transition between the open and
closedmacrostates105. Frameswith the highest free energy that were in
the transitionary region between the open and closed macrostates
were selected from the tIC space. Then, the k-means clustering algo-
rithm (scikit-learn 0.21.2) was implemented to select 10–20 seeds
belonging to the least populated cluster for the next round of simu-
lations. Each selected seeding frame thenunderwent 100 ns of classical
MD. Thisworkflowwas repeateduntil the tIC energy landscape showed
connectivity between the open and closed macrostates, thereby indi-
cating the reversible opening-closing transition of SoPIP2;1. The total
simulation time for each system ranged from 19–55 µs, and the specific
time was listed in Supplementary Tables 1–11. In total, we performed
315.69 µs of classical MD for this study.

Data-driven feature selection and Markov state models
The Markov state model (MSM) is a theoretical framework developed
for understanding the thermodynamics and kinetics of a biomolecular
system given numerous trajectories generated from enhanced sam-
pling workflows103,106–109. Markovianity applies to data from MD simu-
lations because the computation of an atom’s position and velocity
depends only on its immediate previous position and velocity. MSM
construction generates a transition count matrix containing the raw
counts of the transitions among microstates. The microstates are
approximated from k-means clustering on the selected geometric
distance features of all sampled protein conformations (all frames in
the simulations). The transition between these microstates is counted
after a specific lag time, which corresponds to the time after which the
Markovian detailed balance is satisfied. Then, the probability of tran-
sition can be obtained from the counts. From the Markov transition
probability matrix, the stationary distribution of each microstate can
be calculated as the first eigenvector of the matrix. Then, the micro-
states closest to the crystal structures are identified by minimizing the
Euclidean norm of the difference between the microstate and the
crystal structuredistance features. Themeanfirst passage time (MFPT)
for the system to transition from the open microstate to the closed
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microstate (and vice versa) can be calculated as the inverse transition
rate. MSM generation includes featurization, dimensionality reduc-
tion, clustering, and hyperparameter optimization. We performed a
data-driven approach for the first step, featurization, where a metric
must be selected to characterize the protein.

The twelve distances used for dimensionality reduction in the
adaptive sampling workflow did not result in reasonable MSM con-
struction based on validation tests. An alternative feature selection
protocol was performed to enable proper phase space discretization.
A residue-residue contact scoring (RRCS)110 method was implemented
in combination with spectral oASIS111. The residue-residue distances of
the protein (excluding the first five residues in the N-terminus, due to
their extensive movement as a random coil) in each frame were sub-
tracted from the closed and open crystal structure residue-residue
distances and normalized across each frame. The distribution of dis-
tances was analyzed to extract distances outside the ±1.5 z-score
region, resulting in distances that varied the most from the crystal
structures during simulations. The obtained 1500–3000 features then
underwent spectral oASIS111, implemented as part of PyEMMA 2.5.6105,
in which a Nyströmmatrix operation performs an automatic selection
of feature subsets that can approximate the leading eigenvalues and
corresponding eigenvectors of the time-lagged covariance matrix of
the original feature set. Spectral oASIS requires a pre-specification of
the number of final features. Thus, a grid-searching protocol was
implemented to search for 20–50 final features, with increments of 5,
to maximize the VAMP-2 score (variational approach to Markov
processes)112. If the transition probability of themicrostates follows the
Markovian detailed balance, the VAMP-2 score equals the sum of the
matrix’s highest eigenvalues squared. Therefore, to achieve this goal as
closely as possible, heuristic variables for MSM construction should
allow for the maximization of the VAMP-2 score. The protocol was
repeated for each system to ensure unbiased, completely data-driven
identification of system-dependent thermodynamics and kinetics
information extracted from MSMs. The number of final features is
presented in Supplementary Table 1, and the residues in each feature
are listed in Supplementary Fig. 2. Because SoPIP2;1 dynamics deviated
between simulations performed with different bilayer constructs,
resulting hyperparameters and discretization feature set were inde-
pendently optimized for each SoPIP2:bilayer system. In this way,
acquired transitionprobabilitymatriceswill be calculatedbasedon the
most accurate representation of SoPIP2;1 phase space when simulated
with a specific bilayer.

Utilizing the respectively selected feature sets, MSMs were built
for each system using PyEMMA 2.5.6105. To optimize hyperparameters
forMSMconstruction, a grid searchwas done tomaximize the VAMP-2
score (explained in the preceding paragraph) of the resulting MSMs.
tIC dimensionswere varied from4–12 for every system. The number of
clusters varied from 300–1000, with 100 increments. For the grid
search, tICA lag time was maintained at 100ps, and MSM lag time was
2 ns. Hyperparameters that produced the highest five VAMP-2 scores
were further investigated. With the implied timescale plot, the MSM
lag time was selected to be the fastest time at which the implied
timescale converges. ThefinalMSMwasbuilt with the selected lag time
to produce the equilibrium distribution of the microstates. The para-
meter sets with the most converged implied timescale plot (Supple-
mentary Fig. 3) and an equilibrium distribution that did not deviate
above 1.5 orders of magnitude from the original distribution (Supple-
mentary Fig. 4) were selected. The final parameters are listed in Sup-
plementary Table 1. The Chapman-Kolmogorov tests were performed
to validate built MSMs and ensure stochastic processes’ detailed bal-
ance requirement (Supplementary Figs. 5–14). The mean first passage
time between the open and closed crystal structure on the free energy
landscape was also calculated with PyEMMA 2.5.6105.

Sampling errors were quantified by bootstrapping with 200 data
subsets, each containing 80% of the total data. Each bootstrapping

sample was randomly selected as ~80% of the original MSM clusters. A
newMSMwas then built for each sample. TheMFPT between the open
and closed crystal structures was computed for each sample, and the
MFPT error of the full MSM was reported as the standard error of the
meanof the 200MFPT sample values. A binning protocolwas followed
to calculate and project the free energy errors from these sample
MSMs onto the original principal tICs22,23. Specifically, data was
grouped into a 2D histogram with edges defined by the lower and
upper bound of the original tICs. The free energy error was computed
for each histogram bin as the normalized standard deviation of the
relative energy across the 200 samples (Supplementary Fig. 15). Links
for the scripts used for the calculations and validations related toMSM
can be found in the Supplementary Information.

Trajectory selection and analysis
Frames in the minima of the free energy landscape projected onto the
first two tICs were randomly sampled for 1000 discrete frames. The
representative frames for each bilayer-SoPIP2;1 system were used for
the structural analyses of the protein and lipid bilayer, including
hydrophobic mismatch and Leu197 dihedral. These observables were
reported as distributions. Because the water transport function of
SoPIP2;1 requires a continuous trajectory for analysis, three indepen-
dent trajectories with the most frames that lie in each minimum of the
free energy landscape were selected. The trajectories were visualized
on the free energy landscapes in Supplementary Fig. 17. Errors were
calculated as standard errors of the mean among these three trajec-
tories or among the trajectories of the samemacrostate. To shed light
on structural information of the protein pore that influences water
transport, HOLE analysis113 was also performed on continuous trajec-
tories for each macrostate of each bilayer-protein system.

Structural analysis
The discrete frames from each minimum underwent analysis of “pore
plug” Leu197’s (connecting loop D and TM4) dihedral angle with the
first residue of the opposing helix (TM5), Ala182. MDTraj 1.9.4104 was
used for the calculations of the dihedral angle. Output values were
represented as nπ. The four atoms involved in the calculation are
visualized in Fig. 4b.

Functional analysis
To understand the water transport activity of SoPIP2;1 in each system,
we computed the number of waters imported/exported and the rate at
which each water molecule was transported by adapting scripts from
Gelenter et al.30 using MDAnalysis 2.0.0114. HOLE radius113 of repre-
sentative non-transport/transport trajectories and the z-position dis-
tributions of the Cß of important residues inside the channel were also
extracted from the trajectories with MDAnalysis 2.0.0114.

Lipid binding site analysis
Generally, AQPproteins are known tohave conserved lipidbinding sites.
To compare how lipid binding occurred throughout SoPIP2;1 loop D
opening/closing transitions, PyLipID software was used to calculate
lipid-protein residue interactions115. The default lipid contact distance
cutoff parameters of 4 to 8Å were used as suggested by PyLipID
tutorials. Calculated results were averaged with residence times repor-
ted in nanoseconds and presented as heatmaps. For SoPIP2:bilayer
embeddings where more than one metastable intermediate state exis-
ted, the intermediate state residence times were averaged to determine
the resulting heatmap. For reporting state-specific loop D interaction
results, radial bar graphs were used to generate “fingerprints” with the
resulting PyLipID residence time data. Because the SoPIP2:complex
simulations involve different lipid species, the maximum SoPIP2:lipid
interaction residence time was reported for each residue.

After the binding site calculations were performed on continuous
trajectories representing each of the metastable states, the results
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were compared to generally observed trends in previously reported
AQP lipid binding site analyses. Specifically, we compared against
results from multiscale simulations performed by Stansfeld, Jefferys
and Sansom39, aswell as theMemProtMDdatabase40.Wefirst retrieved
each AQP tetrameric structure from the MemProtMD database except
for PDB IDs 2B5F and 1Z98, totaling 52 unique AQP PDB IDs. Under
visual inspection, eachof the 52 tetramerswasdivided intomonomeric
units. Because our SoPIP2;1 simulations were performed in the
monomeric form, we focused our analysis by only focusing on
potential lipid binding sites that would be seen under the SoPIP2;1
tetramer assembly. Using the MemProtMD 2B5F and 1Z98 models, we
identified four potential lipid binding sites based off lipid-facing
orientation. These four lipid-exposed stretches on SoPIP2;1 included
(1) Asp28 to Tyr53, (2) Phe86 to Gln147, (3) Gly158 to Phe204, and (4)
Pro223 to Val263.

With the putative SoPIP2;1 tetramer binding sites identified, each
monomeric protomer separated from the 52 MemProtMD tetramers
was structurally aligned to a SoPIP2;1 monomer. After structural
alignment, multiple sequence alignments were generated using only
structurally aligned MemProtMD monomer PDB files as input for
Promals3D116. Resulting multiple sequence alignments were analyzed
to determine where SoPIP2;1-homologous lipid-exposed stretches
existed on each MemProtMD monomer. These sequence mappings
were visually confirmed for each of the 208monomer structures. Once
the sequencemappings were structurally confirmed, the maximum of
theMemProtMD lipid head and tail contact probabilities were retained
for each monomer residue. The resulting lipid contact probability for
each structurally equivalent residue was averaged, yielding a singular
per-residue value for each of the 52 MemProtMD structures.

To compare our simulations results against the MemProtMD
structures, SoPIP2;1 per-residue lipid PyLipID residence times were
averaged across all representative open, intermediate, and closed state
trajectories and then reported as a contact probability.

Lipid bilayer analysis
For thehydrophobicmismatch calculationof the selected 1000 frames
in each minimum, Membrainy 2021.2117. was used. Membrainy pro-
vided the coordinates of the annular shell, the thickness of the annular
shell, and the thickness of the whole membrane117. We used the sub-
traction of the average height of phosphate groups in each leaflet for
the membrane thickness calculation. The maximum absolute z values
across six transmembrane helices were subtracted to obtain the pro-
tein thickness. Then, the difference between the protein and bulk
membrane thickness was compared with the difference between the
annular shell and the bulk membrane thickness. Bilayer lipids encap-
sulating the membrane protein are crucial in influencing the functions
of someAQPs, as seen for the transport ofwater byAQP056 andAQP457,
despite AQPs having no specific binding site with lipids. Therefore, we
analyzed the lipid order parameters of each lipid molecule in the
membrane for the continuous trajectories. LiPyphilic 0.10.055 was used
to calculate the order parameter of each lipid at each frame. The
thickness of the membrane through the continuous trajectories was
calculated with Membrainy 2021.2117. Area-per-lipid (APL) calculations
for the initial 1 µs production trajectories were also calculated using
Membrainy to test for convergence (Supplementary Fig. 18).

Trajectory file processing
Trajectory files were analyzed and processed by AmberTools CPPTRAJ
6.4.4118, including conversion from.nc to.xtc, stripping of lipid and/or
water molecules for faster analysis calculations, and selecting frames
for analysis.

Figure generation
Numerical figures were plotted with the Matplotlib 3.2.2, Seaborn
0.11.2, and Plotly 5.13.0 packages on Python 3.6. Panel figures and

graphicswere generatedwith Adobe Illustrator 2023. Snapshots of the
simulations, including the proteins, waters, and lipids, were generated
with UCSF Chimera119.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support this study are available from the corresponding
authors upon request. Trajectory files, MSM objects, and analysis
pickle files are available on Box, which can be found inGitHub [https://
github.com/ShuklaGroup/Lipid_composition_on_AQP]. Individual tra-
jectory files upon request. Otherwise, representative trajectories and
frames used for discrete or continuous trajectory analyses, along with
the relevant Source Data generated by analysis calculations can be
accessed using links made available through our Github [https://
github.com/ShuklaGroup/Lipid_composition_on_AQP] and Dryad
[10.5061/dryad.jsxksn0hc. 2024] repositories. Source Data needed to
reproduce the figures in this manuscript has been uploaded to our
Dryad repository. The following previously published PDB accession
codes were referenced in the Main Text of this document: 2B5F; 1Z98;
8H1D; 6POJ.

Code availability
All code and related environments used for analyses are detailed
within our GitHub repository: https://github.com/ShuklaGroup/Lipid_
composition_on_AQP.
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