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Genetic architecture of the structural
connectome

A list of authors and their affiliations appears at the end of the paper

Myelinated axons form long-range connections that enable rapid communica-
tion between distant brain regions, but how genetics governs the strength and
organization of these connections remains unclear. We perform genome-wide
association studies of 206 structural connectivity measures derived from dif-
fusion magnetic resonance imaging tractography of 26,333 UK Biobank parti-
cipants, each representing the density of myelinated connections within or
between a pair of cortical networks, subcortical structures or cortical hemi-
spheres. We identify 30 independent genome-wide significant variants after
Bonferroni correction for the number of measures studied (126 variants at
nominal genome-wide significance) implicating genes involved in myelination
(SEMA3A), neurite elongation and guidance (NUAK1, STRN, DPYSL2, EPHA3,
SEMA3A, HGF, SHTN1), neural cell proliferation and differentiation (GMNC,
CELF4, HGF), neuronal migration (CCDC88C), cytoskeletal organization
(CTTNBP2, MAPT, DAAM1,MYO16, PLEC), and brain metal transport (SLC39A8).
These variants have four broad patterns of spatial association with structural
connectivity: some have disproportionately strong associations with corti-
cothalamic connectivity, interhemispheric connectivity, or both, while others
aremore spatially diffuse. Structural connectivitymeasures arehighlypolygenic,
with a median of 9.1 percent of common variants estimated to have non-zero
effects on each measure, and exhibited signatures of negative selection. Struc-
tural connectivitymeasureshave significantgenetic correlationswith avarietyof
neuropsychiatric and cognitive traits, indicating that connectivity-altering var-
iants tend to influence brain health and cognitive function. Heritability is enri-
ched in regionswith increased chromatin accessibility in adult oligodendrocytes
(as well as microglia, inhibitory neurons and astrocytes) and multiple fetal cell
types, suggesting that genetic control of structural connectivity is partially
mediated by effects on myelination and early brain development. Our results
indicate pervasive, pleiotropic, and spatially structured genetic control of white-
matter structural connectivity via diverse neurodevelopmental pathways, and
support the relevance of this genetic control to healthy brain function.

The human brain’s volume is about equal parts gray matter and white
matter. Unlike gray matter, which mainly contains densely packed cell
bodies of neurons and glia, whitematter is almost exclusivelymade up
of bundles of myelinated axons1. The primary purpose of myelin is to

considerably speed up action potential conduction along axons, from
0.5–10m/s to ~150m/s2, enabling axons (nerve fibers) traveling
through the white matter to efficiently transmit information between
distant brain regions. White matter fibers are key constituents of the
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brain’s structural connectome, the complete set of anatomical con-
nections between brain cells3. Structural connectivity is a fundamental
organizational property of the brain3,4.

Microstructural properties of the white matter can be quantified
non-invasively in vivo via diffusion magnetic resonance imaging
(dMRI). This is because the myelin around an axon, as well as the
axonal membranes themselves and the coherence or density (organi-
zation) of axons within fiber bundles, constitute physical barriers that
restrict the diffusion of water molecules, so that they diffuse more
readily along the axon thanperpendicular to it, resulting in a distortion
of the MRI signal when a directional magnetic field gradient is
applied5–7.

Efforts such as The Enhancing Neuroimaging Genetics through
Meta-analysis (ENIGMA) Consortium8 and the UK Biobank9 have
gathered large-scale cohorts with both brain MRI and genetic data.
Genome-wide association studies (GWAS) of MRI phenotypes10–26

based on these efforts have elucidated the genetic architecture of
brain structure and function with unprecedented detail. Most white-
matter GWAS to date13,14,18,19 have relied upon tract-based spatial sta-
tistics (TBSS) (13), averaging white matter microstructural properties
across entire tracts, such as the corpus callosum. TBSS effectively
indexes general white-matter health27, but does not explicitly consider
how brain regions connect to each other.

Structural connectivity can be evaluated using a technique known
as fiber tracking or tractography28–30, which constructs a model of the
paths of white matter fibers based on the directionality of water dif-
fusion through the white matter. By overlaying a brain atlas of one’s
choice, the connectivity between pairs of brain regions can be quan-
tified. Thus, unlike TBSS, tractography has the ability to quantify the
structural connectome, providing rich detail on the whole-brain
organizational properties relating to complex processes such as
cognition31 and functional connectivity32. Tractography has implicated
connectomic disturbances in diverse neuropsychiatric disorders33,
including schizophrenia34–46, bipolar disorder41,44,47,48, major depressive
disorder49, attention-deficit hyperactivity disorder50–52, autism53–55,
Alzheimer’s disease56–58, and multiple sclerosis59–66.

Here, we expand upon prior white matter GWAS to examine 206
tractography-based structural connectivity measures representing the
rich organizational structure of the brain. Eachmeasure quantifies the
density of white matter fibers within or between a pair of well-
established large-scale cortical brain networks67, subcortical struc-
tures, or hemispheres. Our primary analysis (summarized in Fig. 1)
encompasses 26,333 participants from the UK Biobank with diffusion
MRI scans – two orders of magnitude larger than the only prior GWAS
of structural connectivity68, which studied 366 participants.

Results
Tractography across 26,333 UK Biobank participants
Weestablished a tractography pipeline to infer white-matter structural
connectomes from 26,333 UK Biobank participants (2400 with repli-
cate scans, which were not used for the GWAS) with structural and
diffusion MRI scans passing quality control (see “Cohort selection and
MRI quality control”, Methods). Participants were 53% female and aged
40–70 (median 55) at the time of their first scan. dMRI data were
extensively pre processed according to the UKB pipelines prior to use
(biobank.ctsu.ox.ac.uk/crystal/ukb/docs/brain_mri.pdf). To obtain
connectomes for each participant, we used the MRtrix3 diffusion MRI
software package69 to: (1) estimate a fiber orientation distribution via
multi-shell multi-tissue constrained spherical deconvolution of the
diffusion MRI scan70; (2) perform anatomically constrained probabil-
istic tractography via second-order integration71, selecting 1 million
streamlines seeded from the gray/white matter interface; (3) weight
each streamline via the SIFT2 algorithm72 so that the density of
reconstructed connections better reflects the density of the under-
lying white matter fibers; and (4) generate a symmetric 214 × 214

connectome matrix (Fig. 2A) denoting the density of streamlines
connecting each pair of parcels in the 200-parcel Schaefer cortical
atlas73 plus 14 subcortical parcels from the Harvard-Oxford atlas
(Supplementary Data 4), scaled by the average length of the con-
necting streamlines and divided by the product of the two parcel
volumes.

Rather thanperforming 22,791GWAS, one for eachpair of parcels,
we opted to reduce the dimensionality of each participant’s con-
nectome matrix in a biologically interpretable way. We derived three
types of measures, for a total of 206 measures (Fig. 2B): (1)
hemisphere-level cortical-to-cortical connectivity (3 measures: left
intra-hemisphere, right intra-hemisphere and inter-hemisphere), (2)
network-level cortical-to-cortical connectivity within and between
each of the 14 hemisphere-specific “Yeo 7” networks67 (105 measures,
e.g. left-hemisphere visual, “LH Vis”, to right-hemisphere somato-
motor, “RH SomMot”), and (3) cortical-to-subcortical connectivity
between each of these 14 “Yeo 7” networks and 7 subcortical struc-
tures: thalamus, caudate, putamen, pallidum, hippocampus, amyg-
dala, and accumbens (98 measures). These 206 measures were
moderately replicable (median scan-rescan intraclass correlation
coefficient = 0.67) across the 2400 participants with replicate scans,
taken 1.0–5.3 years (median 2.2) after the original scan (Fig. 2C).

Variants associated with structural connectivity
We performed genome-wide association studies on these 206 con-
nectivity measures using the regenie genetic analysis toolkit74. We
analyzed 9,423,516 variants present in the UK Biobank’s imputed
genotypes (imputed to a combination of the Haplotype Reference
Consortium75, UK10K76 and 1000 Genomes Phase 377 cohorts) which
had at least 1% minor allele frequency and passed quality control (see
Methods). We covaried for age, sex, age × sex, age2, age2 × sex, geno-
typing array, scanner site (n = 22 sites), total intracranial volume, and
the top 10 genotype principal components. We identified 30 genome-
wide significant loci (Table 1, Fig. 1, Fig. 3) associated with at least one
of the 206 measures after Bonferroni correction for the number of
measures tested (i.e. atp < 5 × 10–8 / 206 ≈ 2.4 × 10–10).We identified 126
loci (Fig. 1, Fig. 3, Supplementary Data 1) at the less stringent threshold
of nominal genome-wide significance (p < 5 × 10–8). In a replication
analysis of these 126 loci in 665 participants of non-European genetic
ancestry, 75 of the 126 lead variants had at least 1% frequency and
passed quality control, and these variants were 2.7 timesmore likely to
have the same direction of effect than expected by chance (Fisher
p =0.038; Supplementary Data 2). The one association from the prior
structural connectivity GWAS mentioned in the introduction68, the
intronic variant rs2618516 in SPON1, failed to replicate in the European
cohort (uncorrected p >0.006 for all 206 measures).

Two broad patterns of spatial association with structural
connectivity
We next explored the spatial pattern of association of each of the 30
lead variants across the 206 measures (Fig. 4, Supplementary Fig. 1).
We annotated associations passing Bonferroni-corrected genome-
wide significance (p < 5 × 10–8 / 206 ≈ 2.4 × 10–10) with asterisks (*). We
characterized the pleiotropic effects of these 30 loci on the 206
measures, adopting a Bonferroni correction for just the 30 variants
times the number of measures (p <0.05 / 30 / 206 ≈ 8.1 × 10–6), indi-
cated with a dot (·) in Fig. 4. At this relaxed threshold, we observed
substantial pleiotropy of our 30 lead variants across the 206measures.
The median lead variant was associated with 7.5 of the 206 measures,
and the most pleiotropic variant, rs2796245 (near CD34), was asso-
ciated with 53.

We observed four broad patterns of spatial association with
structural connectivity (Fig. 1). The most significant of the 30 lead
variants, near CCDC88C, was almost exclusively associated with corti-
cothalamic connectivity, i.e. connectivity between various cortical
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networks and the thalamus. Three others, near GMNC, NUAK1, and
INPP5D, were primarily associated with inter-hemisphere cortical
connections aswell as corticothalamic ones (even though in the caseof
INPP5D, no inter-hemisphere connections reached significance). This
inter-hemisphere pattern could exist in part because inter-hemisphere
connections are more reliably detected, as reflected by their higher
replicability (Fig. 2C). Eight others, near EEF1AKMT2, STRN, CTTNBP2,
MYO16, PLEC, SLC4A10, SLC45A4, and ENSG00000282278, showed the
inter-hemisphere pattern but not the corticothalamic one. The
remaining 18 variants tended to have spatially diffuse patterns of
association.

Other, more subtle patterns were also present. For instance, the
SLC39A8 variant rs13107325, uniquely among the 30 variants, was
markedly associated with cortico-hippocampal, and to a lesser extent
cortico-amygdalar, connectivity relative to all other measures.

SLC39A8’s unique pattern of association may reflect its unique
mechanism as a brain metal transporter (see below).

Associated variants implicate genes with
neurodevelopmental roles
17 of the 30 lead variants had nearest genes with direct biological
relevance to neurodevelopment. The most significant association
was with rs941760 (chr14:91,881,751), an intronic variant in
CCDC88C. CCDC88C loss-of-function variants disrupt Wnt signal-
ing, a core developmental signaling pathway78, and cause auto-
somal recessive hydrocephalus, sometimes accompanied by
periventricular neuronal heterotopias (brain malformations
resulting from abnormal neuronal migration), developmental
delay and seizures79–81. (Another of the 30 lead variants has
WNT16, a member of the Wnt family, as the nearest gene, but the

Associated genomic loci 
= Bonferroni = Nominal

Tractography 
across 26,333
UK Biobank 
participants

Genetic correlation
with neuropsychiatric

& cognitive traits

Enriched heritability in 
multiple brain cell types

Heritable (h2), polygenic 
(π), & under negative 

selection (S)

Four broad spatial patterns

Median | |

Fig. 1 | Study overview. Top left: Measurement of tractograms from participants
with brain imaging data in the UK Biobank. Top middle: genomic locations of
common genetic variants associated with structural connectivity, with chromo-
somes in ascendingorder (first row: chr1-8; second row: chr9-16; third row: chr17-22
and chrX). 30 independent variants were genome-wide significant after Bonferroni
correction for the 206 structural connectivitymeasures studied (dark blue), and 96
more reached nominal genome-wide significance (light blue). Top right: the 30
variants cluster into four broad patterns of spatial association: corticothalamic and
interhemispheric (3 variants), corticothalamic only (1 variant), interhemispheric
only (8 variants), and spatially diffuse (18 variants). Heatmaps denote the median

effect size magnitude (|β | ) of variants with each pattern on each of the 206 struc-
tural connectivity measures. Bottom left: heritability (h2), polygenicity (π), and
selection parameter (S) for each of the 206 measures. Bottom middle and right:
heritability enrichments for regions with increased chromatin accessibility in each
of 6 adult brain cell types, and genetic correlations with 15 brain-related traits. Bars
show maximums across the 206 measures; red/blue bars are significant after
Bonferroni correction. OPC oligodendrocyte progenitor cell, ADHD attention-def-
icit/hyperactivity disorder, ALS amyotrophic lateral sclerosis, disord. disorder.
Error bars represent 95% confidence intervals.
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relevance of WNT16 to neurodevelopment has not been con-
clusively shown.)

The second-most significant association was with an inter-
genic variant, rs905124 (chr3:190,657,360), with GMNC as the
nearest protein-coding gene. GMNC, also known as GEMC1, is a
master regulator of multiciliated cell differentiation82, and in par-
ticular of the multiciliated ependymal cells that line the brain’s
ventricles. GMNC is necessary for radial glial cells in the sub-
ventricular zone (one of the two main brain regions where adult
neurogenesis occurs) to differentiate into multiciliated ependymal
cells; when GMNC is downregulated, these radial glial cells tend to
instead differentiate into neural stem cells, promoting

neurogenesis83,84. GMNC is associated with congenital hydro-
cephalus (buildup of cerebrospinal fluid in the ventricles) in both
humans and mice84. rs905124 has been previously associated with
brain volume and cortical surface area according to the GWAS
Catalog85.

The third-most significant variant, rs13107325 (chr4:103,188,709),
is a missense variant in SLC39A8 (A391T). SLC39A8 encodes a trans-
membrane transporter of zinc, cadmium, iron and manganese ions
sometimes referred to as ZIP886. SLC38A8/ZIP8 deficiency impairs
manganese uptake and compromises the function of manganese-
dependent enzymes, including those required for glycosylation,
leading to severe neurodevelopmental defects and other
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Fig. 2 | Tractography across 26,333 UK Biobank participants. A Participant-
averaged connectivity between each pair of parcels in the 200-parcel Schaefer
cortical atlas + 14 subcortical parcels from the Harvard-Oxford atlas (in order: left
thalamus, left caudate, left putamen, left pallidum, left hippocampus, left amyg-
dala, left accumbens, right thalamus, right caudate, right putamen, right pallidum,
right hippocampus, right amygdala, right accumbens). Heatmap entries indicate
the weighted number of streamlines connecting each pair of parcels, averaged
across participants (see “Tractography pipeline”, “Methods”). Color bands along

the top and left indicate Yeo 7 networks. LH left-hemisphere, RH right-hemisphere,
Vis visual, SomMot somatomotor, DorsAttn dorsal attention, SalVentAttn salience/
ventral attention, Limbic limbic, Cont control, Default default mode. B Participant
averages of the 206 connectivitymeasures. The three large tiles above the diagonal
represent hemisphere-levelmeasures.C Inter-replicate type 3 intraclass correlation
coefficients (ICCs) across 2400 participants with replicate MRI scans, calculated
using the intraclass_corr function from the pingouin Python package200.
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phenotypes87. This variant was the eighth-most significant lead variant
in the largest schizophrenia GWAS to date88, and this variant has also
been shown to impair glycosylation in the mouse brain89. rs13107325’s
uniquely strong association with cortico-hippocampal connectivity
(see previous section) is consistent with the long literature relating
hippocampal size, morphology, function and connectivity to
schizophrenia90. rs13135092 has 477 reported associations in the
GWAS Catalog, including with a wide variety of brain imaging
measures.

The fifth-most significant variant, rs12146713 (chr12:106,476,805),
is an intronic variant in NUAK1. NUAK1 dose-dependently regulates
axon elongation and branching via effects on mitochondrial metabo-
lism and trafficking91–93. NUAK1 is a candidate gene for autism spec-
trum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD)
and intellectual disability. In mice, NUAK1 haploinsufficiency impairs
cortical development and has broad-spectrum effects on cognition92.
The GWAS Catalog reports 73 associations for rs12146713, all brain
structure-related.

The sixth-most significant variant, rs35050623 (chr2:37,063,240),
is an intergenic variant with STRN as the nearest protein-coding gene.
STRN (striatin) is a calmodulin-binding protein enriched in dendritic
spines94,95. In cultured striatal neurons, STRN knockdown led to
increased dendritic arborization and increased density of stubby
spines (a type of dendritic spine with no neck), indicating a role in
regulating striatal neurodevelopment96. rs35050623 has one GWAS
Catalog association, with brain shape.

The eighth-most significant variant, rs4799450
(chr18:35,028,901), is an intronic variant in CELF4. CELF4 is an RNA
binding protein and translational regulator of prenatal neocortical
subplate layer-based synaptic development97. CELF4 is involved in
differentiation and excitation of neurons, corticothalamic develop-
ment, synaptic transmission, and neuroplasticity and is an important
regulator of mRNA stability and translational availability98. Deficiency
can lead to dysfunctional neuronal excitation and impaired synaptic
transmission99. CELF4 dysfunction has been linked to a variety of
neuropsychiatric disorders including autism, bipolar disorder,

Table 1 | The 30 genome-wide significant loci after Bonferroni correction for the number of measures studied

Variant Location (hg19) A1 A2 A1 freq. #
mea-
sures

Most significantly asso-
ciated measure

Effect size p value Nearest gene(s) Candidate cau-
sal gene(s)

rs941760 chr14:91,881,751 T C 44% 8 RH Cont to thalamus –0.10 5.9 × 10–42 CCDC88C CCDC88C

rs905124 chr3:190,657,360 A T 38% 21 RH Cont to thalamus 0.10 3.5 × 10–39 GMNC GMNC

rs13107325 chr4:103,188,709 T C 7% 7 RH Limbic to
hippocampus

–0.20 2.5 × 10–35 SLC39A8 SLC39A8

rs11245366 chr10:126,482,849 T C 56% 2 LH Vis to RH Vis –0.08 1.3 × 10–23 EEF1AKMT2 --

rs12146713 chr12:106,476,805 C T 10% 12 LH Cont to thalamus –0.11 1.2 × 10–19 NUAK1 NUAK1

rs35050623 chr2:37,063,240 CT C 54% 5 LH Vis to RH Vis –0.06 5.7 × 10–17 STRN STRN

rs4843550 chr16:87,236,383 C G 57% 4 RH Limbic to putamen –0.06 2.0 × 10–16 C16orf95 --

rs4799450 chr18:35,028,901 C T 64% 2 RH Vis to pallidum 0.07 5.7 × 10–16 CELF4 CELF4

rs199790004 chr8:26,427,757 A AG 62% 1 LH Default to putamen 0.06 3.1 × 10–14 DPYSL2 DPYSL2

rs35124509 chr3:89,521,693 C T 39% 3 LH Vis to LH Cont –0.06 2.0 × 10–13 EPHA3 EPHA3

rs150346963 chr7:117,625,599 T C 41% 1 LH Default to RH Limbic 0.06 2.5 × 10–13 CTTNBP2 CTTNBP2

rs118087478 chr17:44,051,589 G T 22% 1 LH Limbic to caudate –0.07 3.9 × 10–13 MAPT MAPT

rs142005327 chr7:120,969,969 GCT G 26% 2 LH SalVentAttn to
LH Cont

0.06 6.9 × 10–13 WNT16 --

rs79814107 chr14:59,637,503 G A 12% 1 LH Cont to RH Vis 0.08 1.6 × 10–12 DAAM1 DAAM1

rs34844662 chr13:109,687,510 AT A 34% 1 LH Vis to RH Vis –0.06 2.1 × 10–12 MYO16 MYO16

rs6558407 chr8:144,995,494 T C 43% 5 LH SalVentAttn to RH
SomMot

0.05 4.9 × 10–12 PLEC PLEC

rs59154421 chr2:162,813,034 C CTG 29% 1 LH Limbic to RH Default –0.06 6.0 × 10–12 SLC4A10 SLC4A10

rs75650221 chr1:174,421,994 T C 4% 1 LH Default to caudate 0.13 6.3 × 10–12 RABGAP1L --

rs13228652 chr7:83,761,158 C G 18% 1 LH Vis to RH Vis 0.07 2.8 × 10–11 SEMA3A SEMA3A

rs141628902 chr7:43,818,855 T C 3% 1 LH SalVentAttn to
amygdala

0.16 2.9 × 10–11 BLVRA --

rs1158069 chr7:19,643,101 A G 37% 1 RH Vis to caudate –0.05 4.0 × 10–11 POLR1F --

rs975360 chr7:81,411,028 C T 40% 1 RH Cont to amygdala –0.05 7.2 × 10–11 HGF HGF

rs2796245 chr1:208,030,852 A G 86% 1 Cross-hemisphere 0.06 7.4 × 10–11 CD34 --

rs1865249 chr8:142,215,982 C A 61% 1 LH Cont to RH Cont 0.05 1.1 × 10–10 SLC45A4 --

rs415978 chr9:118,985,910 A G 40% 1 RH SomMot to caudate 0.05 1.4 × 10–10 PAPPA --

rs1391762 chr4:54,755,157 G A 82% 1 LH SomMot to RH
SomMot

–0.06 1.6 × 10–10 ENSG00000282278 --

rs6062264 chr20:61,154,871 T C 28% 1 RH Vis to RH Vis –0.05 1.8 × 10–10 GATA5 --

rs5788199 chr10:118,649,704 TA T 75% 1 LH DorsAttn to amygdala 0.06 1.8 × 10–10 ENO4, SHTN1 SHTN1

rs551746431 chr2:234,112,457 C * 2% 1 LH Cont to thalamus –0.20 1.8 × 10–10 INPP5D --

rs115136616 chr5:93,021,116 T C 5% 1 RH Vis to RH SomMot 0.12 2.0 × 10–10 FAM172A --

Freq. = frequency; #measures refers to the number ofmeasures (out of 206) the variant is genome-wide significant for. Effect sizes are orientedwith respect to theminor allele (A1). Candidate causal
genes were chosen based on a literature review of the nearest genes to each lead variant. rs59154421 (SLC4A10) is referred to by its UK Biobank variant identifier 2:162813034_CTG_C in the
Supplementary Data and summary statistics, while rs551746431 (INPP5D) is referred to by its UK Biobank ID 2:234112457_CCAGCTACTCCCAAGTAGTCT_C (the reference allele, CCAGCTACTCC-
CAAGTAGTCT, is indicated with an asterisk in Table 1 for brevity).
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schizophrenia, and epilepsy98. rs4799450 has one GWAS Catalog
association, with white matter microstructure.

The ninth-most significant variant, rs199790004
(chr8:26,427,757), is an intronic variant in DPYSL2. DPYSL2 is a
microtubule-stabilizing protein that plays a role in the regulation of
axonal outgrowth, dendritic development, synapse elongation and
vesicle trafficking during neurodevelopment100 and is a key regulator
of neural stem cell differentiation101. DPYSL2 is a known schizophrenia
(SCZ) risk gene and its expression is altered in schizophrenia patient
brains102–104, possibly as a downstream consequence of disrupted
mTOR signaling103,104.

The tenth-most significant variant, rs35124509 (chr3:89,521,693),
is a missense variant in EPHA3, the sole protein-coding gene for over 1
megabase in either direction. Knockdown of EPHA3 disrupts path-
finding of axons through the corpus callosum105. EPHA3 activation
reduces neurite outgrowth and, more specifically, induces growth
cone collapse106. EPHA3 also affects higher-level structural con-
nectivity patterns, regulating excitation-inhibition balance and
GABAergic interneuron synaptic density107,108. rs35124509has 16GWAS
Catalog associations, all with brain imaging measurements.

The eleventh-most significant variant, rs150346963
(chr7:117,625,599), is an intergenic variant located ~100 kilobases
upstream of CTTNBP2. CTTNBP2 (cortactin binding protein 2) is a
cytoskeletal protein predominantly expressed in neurons and controls
synapse anddendritic spine formation andmaintenance by interacting
with cortactin, which binds to and stabilizes actin filaments109–111.
CTTNBP2 is a candidate gene for autism spectrum disorder109–113 and
mice with autism spectrum disorder-linked mutations in CTTNBP2
knocked in have impaired synaptic function110. Meanwhile, CTTNBP2
knockoutmice have reduced brain zinc levels – a risk factor for autism
– and altered synaptic protein targeting, while zinc supplementation
rescues synaptic retention of CTTNBP2 and improves social behaviors
in these mice112,113. rs150346963 has one GWAS Catalog association,
with major depressive disorder.

The twelfth-most significant variant, rs118087478
(chr17:44,051,589), is an intronic and 5’ UTR variant in MAPT. MAPT
(tau) is best known for its central role in neurodegenerative disorders,
but it is also involved in neurodevelopment, where it is highly
expressed114 and regulates the assembly and stability of microtubules
and their linkage to the plasma membrane115. Microdeletions in the
MAPT genetic region (at chromosome 17q21.3) have been linked to
intellectual disabilities116, which is proposed to be the result of altered
tau dosage114, and Mapt knockout leads to a reduction in autistic

behaviors in mouse models of autism117. rs118087478 has one GWAS
Catalog association, with brain volume.

The 14th-most significant variant, rs79814107 (chr14:59,637,503), is
an intronic variant in DAAM1. DAAM1 (disheveled associated activator
of morphogenesis 1) is a scaffolding protein that acts downstream of
Wnt signaling and controls cell polarity and movement by regulating
actin cytoskeleton organization118,119. In mice, deletion of a neural-
specific microexon in Daam1 led to memory defects, reduced long-
term potentiation and a decrease in the number of dendritic spines120.
rs79814107 has been previously associated with brain volume and
white matter integrity according to the GWAS Catalog.

The 15th-most significant variant, rs34844662 (chr13:109,687,510)
is an intronic variant in MYO16. MYO16 is an unconventional myosin
that is involved with cytoskeleton remodeling and is predominantly
expressed in the central nervous system121. Within neurons, MYO16
interacts with the WAVE regulatory complex which modulates den-
dritic spine morphology by regulating actin polymerization, particu-
larly in Purkinje cells, and synaptic organization121,122. MYO16 is a
candidate gene for bipolar II disorder123, schizophrenia124, and
autism125.

The 16th-most significant variant, rs6558407 (chr8:144,995,494), is
a missense variant in PLEC. PLEC (plectin) is a ‘cytolinker’ protein that
cross-links cytoskeletal elements with each other, including inter-
mediate filaments, actin filaments, microtubules, and components of
the cell and nuclear membranes126. Plectin is highly expressed in the
central nervous system, especially at the interfaces between glia and
pial cells and between glia and endothelial cells, and is thought to be
important to blood-brain barrier and pial surface integrity127. Plectin
has been linked to epilepsy and Alexander disease, a rare demyeli-
nating disease128. Mice genetically deficient in the plectin isoform P1c
had poorer learning capabilities and long-termmemory thanwild-type
littermates129.

The 17th-most significant variant, rs59154421 (chr2:162,813,034), is
an intronic variant in SLC4A10. SLC4A10 is a transporter in the plasma
membrane that is predominantly expressed in neurons. It helps reg-
ulate neuronal pH by taking in bicarbonate, driven by a sodium gra-
dient across the membrane, which helps remove hydrogen ions130,131.
Case studies have shown that autosomal recessive loss of function of
SLC4A10 leads to intellectual disability, microcephaly and lateral ven-
tricle abnormalities130. Slc4a10 knockout mice have smaller
brain ventricles and behavioral abnormalities, and SLC4A10
modulates GABA (but not glutamate) release in mouse brain130.
SLC4A10 is a candidate gene for autism spectrum disorder132 and
epilepsy133.

The 19th-most significant variant, rs13228652 (chr7:83,761,158), is
an intronic variant in SEMA3A. Semaphorins are a family of membrane
proteins that orchestrate axon guidance and induce growth cone
collapse (leading to their alternate name, collapsins)134,135. SEMA3A
(semaphorin 3A, also known as collapsin-1 or collapsin) was the first-
discovered semaphorin134 and acts as an axonal chemorepellent (i.e., it
repels growth cones) as well as inducing growth cone collapse. In
addition to this primary role, SEMA3Aalso has an important secondary
role in inhibiting myelin regeneration in multiple sclerosis, at least in
part by inhibiting oligodendrocyte precursor cell differentiation and
recruitment to demyelinated lesions136–139.

The 22nd-most significant variant, rs975360 (chr7:81,411,028) is ~10
kilobases upstream of the transcription start site of HGF. HGF (hepa-
tocyte growth factor) is a pleiotropic cytokine that provides trophic
(growth, differentiation and survival) support to neurons and is
involved in promoting cell movement, axon growth and dendritic
morphology140,141. HGF is expressed in the cortex and hippocampus
during neurodevelopment where it regulates thalamocortical axon
growth142. HGF’s cognate receptor, the tyrosine kinase MET, is a high-
confidence autism risk gene, and MET protein levels are lower in the
brains of people with autism compared to healthy controls143. Amouse

Fig. 3 | Manhattan plot of each variant’s minimum p value across the 206
structural connectivity measures. Gold variants indicate linkage disequilibrium
(LD) clumps passing nominal genome-wide significance (dashed black line); black
diamonds highlight the lead variant in each clump. Nearest genes are labeled for
each clump passing Bonferroni-corrected genome-wide significance (solid
black line).
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model of decreased HGF and MET expression showed deficiencies in
interneuronal migration during neurodevelopment144.

The 28th-most significant variant, rs5788199 (chr10:118,649,704),
is an intronic variant in two overlapping genes, SHTN1 and ENO4.
SHTN1 is necessary for neuronal polarization, the process by which
one of the neurites from a developing neuron ultimately becomes the
axon and the rest become dendrites. SHTN1 builds up asymmetrically
in the neurite that ultimately becomes the axon, and disrupting this
asymmetrical accumulation either by overexpression or knockdown
disrupts neuronal polarization145. Shtn1 knockout mice exhibited
thinning ofmultiplewhitematter tracts—the corpus callosum, anterior
commissure and hippocampal commissure—as well as absence of the
septum146.

Structural connectivity is highly polygenic and exhibits sig-
natures of negative selection
We next inferred global properties of the genetic architecture of each
structural connectivity measure by applying the recently developed
SBayesS method147 (Fig. 1, Fig. 5).

The proportion of heritability (h2) collectively explained by the
9,423,516 common variants included in the GWAS was relatively
modest, ranging from 3.3 to 27.7% (median 13.9%) across the 206
GWAS. As expected, the most heritable measures were also the most
replicable between the initial and the follow-up scans (Pearson corre-
lation between heritability and replicability across measures = 0.77),
indicating greater stability of thesemeasures over time. Estimates ofh2

from LD score regression148 were lower, ranging from 1.0 to 18.0%
(median 9.1%), but displayed a similar pattern across the 206measures
(Supplementary Fig. 2). The discrepancy in h2 between the two meth-
ods may be attributable to the different assumptions about genetic
architecture: in particular, SBayesS assumes a sparse genetic archi-
tecture, while LD score regression does notmake such an assumption.
Heritability was higher for inter-hemisphere connectivity (h2 = 27.7%)
than either left intra-hemisphere (h2 = 18.0%) or right intra-hemisphere
(h2 = 16.3%) connectivity.

Polygenicity (π) was quite high, with between 0.8% and 9.6%
(median 7.5%) of common variants surveyed estimated to have non-
zero effects on each of the 206 measures. Strikingly, corticothalamic

Fig. 4 | Spatial patterns of associationwith structural connectivity. For brevity,
only the 12 most significant lead variants are shown; the remaining 18 are shown in
Supplementary Fig. 1. Asterisks (*) indicate associations passing Bonferroni-
corrected genome-wide significance (p < 5 × 10–8 / 206 ≈ 2.4 × 10−10), while dots (·)
indicate associations significant after Bonferroni correction for just the 30 variants
times the number of measures (p <0.05 / 30 / 206 ≈ 8.1 × 10–6). Effect sizes (β) are

oriented with respect to the minor allele, so positive effect sizes (red) indicate that
theminor allele is associated with increased structural connectivity, while negative
effect sizes (blue) indicate that the minor allele is associated with decreased con-
nectivity. LH left-hemisphere, RH right-hemisphere, Vis visual, SomMot somato-
motor, DorsAttn dorsal attention, SalVentAttn salience/ventral attention, Limbic
limbic, Cont control, Default default mode.
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connectivity measures involving the default-mode and control net-
works were among the least polygenic (π = 0.8–1.2%, median 1.0%)
despite being among the most heritable (h2 = 24.2–27.5%, median
25.7%). The combination of low polygenicity and high heritability
suggests that these corticothalamic connections are controlled by
more specific gene sets than other types of connections. This obser-
vation is consistent with our identification of variants with dis-
proportionate associations with corticothalamic connectivity overall,
near CCDC88C, GMNC, NUAK1, and INPP5D (Fig. 4).

SBayes also estimates a selection parameter (S), where -1 indicates
strong negative selection, 0 indicates no selection, and +1 indicates
strong positive selection. The degree towhich a trait is under selection
can be inferred from the relationship between minor allele frequency
and GWAS effect size. For instance, if a trait is under strong negative
selection, variants with large effects on the trait will tend to be rare,
since individuals who carry these variants will have lower evolutionary
fitness and be less likely to pass on their genes. 194 of the 206 mea-
sures were estimated to be under negative selection (95% confidence
intervalofS entirely below0), indicating significantly larger effect sizes
among lower-frequencyvariants. All 206measures hadpoint estimates
of S below 0, ranging from –1.13 to –0.03 (median –0.70).

Overall, the high polygenicity of these measures indicates that a
substantial fraction of the genome is involved in genetically deter-
mining structural connectivity, and remains to be discovered by future
GWAS. Meanwhile, the fact that these measures appear to be under
negative selection suggests that variants affecting structural con-
nectivity tend to have negative consequences on evolutionary fitness.

Structural connectivity is genetically correlated with a range of
psychiatric and cognitive traits
We computed genetic correlations (rg) between our 206 GWAS and
15 well-powered GWAS for neurological, psychiatric, neurodeve-
lopmental, and cognitive traits, using the genetic covariance ana-
lyzer (GNOVA) method149. We chose GNOVA due to its improved
correction for sample overlap relative to cross-trait LD score
regression150, another commonly used genetic correlation method.
After Bonferroni correction across the 206 × 15 genetic correlations
tested, we observed 18 significant genetic correlations (Supple-
mentary Fig. 3). 6 traits had at least one significant genetic corre-
lation (Fig. 1): bipolar disorder, ADHD, insomnia, Alzheimer’s
disease, educational attainment, and reaction time. These sig-
nificant genetic correlations were positive for ADHD (rg =

0.19–0.24), insomnia (rg = 0.16), and Alzheimer’s disease (rg = 0.23),
indicating that the genetic variants associated with increased con-
nectivity tended to be the same genetic variants associated with
increased risk for these conditions, when looking across the whole
genome rather than only at genome-wide significant variants.
Conversely, the significant genetic correlations were negative for
bipolar disorder (rg = –0.17), educational attainment (rg = –0.22 to
–0.11), and reaction time (rg = –0.18 to –0.13), indicating that the
genetic variants associated with increased connectivity tended to
be the same genetic variants associated with reduced risk for
bipolar disorder, lower educational attainment, and – somewhat
paradoxically given the educational attainment result – better
reaction time. On the whole, these genetic correlations support the
relevance of genetic factors influencing structural connectivity to a
range of neuropsychiatric and cognitive outcomes.

We also computed phenotypic and genetic correlations
between the three hemisphere-level measures and 432 diffusion
MRI measures based on TBSS and neurite orientation dispersion
and density imaging (NODDI) in the UK Biobank (Supplementary
Data 3), leveraging prior GWAS of these measures18. Cross-
hemisphere connectivity had Bonferroni-significant phenotypic
and genetic correlations with 401 and 197 of the 432 measures,
respectively; left-hemisphere connectivity with 381 and 155; and
right-hemisphere connectivity with 375 and 100. Phenotypic cor-
relations ranged from -0.60 (between cross-hemisphere con-
nectivity and “Mean OD [orientation dispersion] in cerebral
peduncle on FA [fractional anisotropy] skeleton (left)”) to 0.53
(between cross-hemisphere connectivity and “Mean FA in cerebral
peduncle on FA skeleton (left)”). Genetic correlations ranged from
-0.59 (between cross-hemisphere connectivity and “Mean MO
[mean orientation] in body of corpus callosum on FA skeleton”) to
0.53 (between cross-hemisphere connectivity and “Mean ISOVF
[isotropic volume fraction] in body of corpus callosum on FA ske-
leton”). On the whole, this analysis indicates that structural con-
nectivity is phenotypically and genetically related, but nonetheless
substantially distinct, from more widely used diffusion MRI
measures.

Structural connectivity heritability is enriched in regions with
increased chromatin accessibility in oligodendrocytes
We applied partitioned linkage disequilibrium score regression151 to
investigate whether heritability for each structural connectivity

Fig. 5 | Global properties of the genetic architecture of structural connectivity. LH left-hemisphere, RH right-hemisphere, Vis visual, SomMot somatomotor, DorsAttn
dorsal attention, SalVentAttn salience/ventral attention, Limbic limbic, Cont control, Default default mode.
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measure was enriched in regions with increased chromatin accessi-
bility in each of 6 major brain cell types—astrocytes, excitatory neu-
rons, inhibitory neurons, microglia, oligodendrocytes, and
oligodendrocyte precursor cells (OPCs)—measured by single-nucleus
chromatin accessibility and messenger RNA expression sequencing
(SNARE-seq2) of postmortem adult human motor cortex152. After
Bonferroni correction across the 206 × 6 cell-type enrichments tested,
we found significant enrichments for 7 structural connectivity mea-
sures across four cell types (Fig. 1, Supplementary Fig. 4): oligoden-
drocytes with connectivity within the right-hemisphere default-mode
network (67-fold enrichment, 95% confidence interval 32–101,
p = 3 × 10–5), microglia with 3 measures, most significantly left-
hemisphere dorsal attention to salience/ventral attention con-
nectivity (52-fold [29-76], p = 4 × 10–7), inhibitory neurons with right-
hemisphere dorsal attention to right-hemisphere limbic connectivity
(49-fold [28-69], p = 5 × 10–6), and astrocytes with 2 measures, most
significantly left- to right-hemisphere visual network connectivity (48-
fold [27–69], p = 5 × 10–6). There were many sub-significant enrich-
ments as well, particularly for astrocytes and oligodendrocytes. Given
that oligodendrocytes are the cell type responsible formyelination and
one of the primary functions of oligodendrocytes is tomyelinate white
matter fibers153, the observed oligodendrocyte heritability enrichment
suggests that genetic control of structural connectivity may be par-
tially mediated by effects on myelination.

We performed the same cell-type enrichment analysis across 12
cell types from the developing human cortex, using published single-
cell assay for transposase-accessible chromatin with high-throughput
sequencing (ATAC-seq) data154. After Bonferroni correction across the
206 × 12 cell-type enrichments tested, we found significantly enriched
heritability in four cell types, all non-neuronal (Supplementary Fig. 5).
These cell types were: astrocytes and oligodendrocyte progenitor cells
(for right-hemisphere visual network to pallidum connectivity: 70-fold
enrichment, 95% confidence interval 34-106, p = 2 × 10–5), endothelial/
mural cells (for 6 structural connectivity measures, with enrichments
between98- and 125-fold),microglia (19measures, 65- to 126-fold), and
radial glial cells (18 measures, 35- to 82-fold), stem cells that are pro-
genitors of both neurons and specific glia, namely astrocytes and oli-
godendrocytes. (We also found significantly disenriched heritability in
insular neurons.) These heritability enrichments for multiple fetal cell
types suggest that structural connectivity is partially mediated by
effects on early brain development, particularly in non-neurons.

Discussion
In this study, we describe the genetic architecture of white-matter
structural connectivity via genome-wide association studies of
206 tractography-derived measures across 26,333 UK Biobank
participants. We discover 30 loci associated with structural con-
nectivity after rigorous correction for multiple statistical tests
performed (with 126 loci at nominal genome-wide significance).
These loci pinpoint neurodevelopmental genes with influences on
myelination (SEMA3A), neurite elongation and guidance (NUAK1,
STRN, DPYSL2, EPHA3, SEMA3A, HGF, SHTN1), neural cell pro-
liferation and differentiation (GMNC, CELF4, HGF), neuronal
migration (CCDC88C), cytoskeletal organization (CTTNBP2, MAPT,
DAAM1, MYO16, PLEC), and brain metal transport (SLC39A8). In
addition to these biological processes, we observe enriched her-
itability for structural connectivity in regions with increased
chromatin accessibility in oligodendrocytes, microglia, inhibitory
neurons, astrocytes, and multiple fetal cell types, supporting a
role for myelination and early brain development in the genetics
of structural connectivity. Our results extend the rich literature of
MRI GWAS measuring other aspects of brain structure and
function.

We show, for the first time, that structural connectivity is highly
polygenic: we estimate that for the participants in our cohort, the

average connectivitymeasure is influenced by 9.1% of all common (>1%
frequency) variants in the genome. This suggests that our 30 loci
represent only a small fraction of genetic influences on the structural
connectome;much larger sample sizes, possibly in the tens ofmillions,
may be needed to discover the rest155. This high polygenicity is
accompanied by evidence of negative selection: higher-frequency
variants tend to have smaller effects on structural connectivity.
Together, these results imply a genetic architecture whereby large
numbers of disproportionately common variants each exert small
effects on structural connectivity, while larger-effect variants tend to
be flushed out of the population due to their deleteriousness. Both
high polygenicity22,155 and strong negative selection22 appear to be
characteristic of brain MRI measures in general, rather than being
unique properties of structural connectivity in particular. On the other
hand, the 18 UK Biobank traits analyzed in the SBayesS paper147 tend to
be less polygenic than our structural connectivity measures, despite
having similar evidence of negative selection.

Far from providing a one-to-one map between specific genetic
variants and specific regional connectivities, our results indicate
widespread pleiotropy of structural connectivity-associated var-
iants. Our 30 lead variants are each associated with a median of 7.5
of the 206 measures, and many are also associated with other
aspects of brain structure. The spatial associations of these variants
fall into four broad patterns: three variants are disproportionately
associated with interhemispheric and corticothalamic connectivity,
one with corticothalamic connectivity alone, and eight with inter-
hemispheric alone, while the remaining 18 have spatially diffuse
associations. Corticothalamic connectivity measures involving the
default-mode and control networks are among the least polygenic
despite being among themost heritable, providing further evidence
in support of corticothalamic connections being controlled by
more specific gene sets than other types of connections. Corti-
cothalamic structural connectivity may have outsized importance
relative to other types of structural connections, as it underpins
cortico-thalamo-cortical loops, modular units of brain organization
involved in consciousness and perception156.

Genetic correlation analyses indicate shared genetic influences
between structural connectivity and a range of neuropsychiatric and
cognitive traits. The directionality of these associations is somewhat
counterintuitive: variants associated with increased structural con-
nectivity tended to be associatedwith increased risk of ADHD, insomnia,
and Alzheimer’s disease, decreased risk of bipolar disorder, lower edu-
cational attainment, and better reaction time. While cognitive decline
has been associated with reduced structural connectivity56,157, and cog-
nitive resilience with increased connectivity158, in mild cognitive
impairment, Alzheimer’s disease and/or aging, the relationship between
structural connectivity and cognition in healthy individuals after
accounting for age has been less well-studied. Note that the Alzheimer’s
disease GWASwe used included proxy cases for Alzheimer’s disease and
related dementias, which increases power but can also lead to bias in
genetic epidemiological analysis159.

In parallel to ours, another study also examined the genetic
architecture of white-matter structural connectivity in the UK
Biobank160. Unlike our study, the authors used a multivariate GWAS
technique, MOSTest161, to boost power by leveraging the fact that
GWAS variants associated with structural connectivity tend to be
associated with connectivity changes in multiple parts of the brain.
While focused less on the mechanisms underlying individual causal
gene candidates, the authors nonetheless show a global enrichment of
their GWAS associations for many of the same neurodevelopmental
processes as we report for our individual causal gene candidates,
including neurogenesis, neural differentiation, neural migration,
neural projection guidance, and axon development. As in our study,
the authors report pervasive shared genetics between structural con-
nectivity and neuropsychiatric disease.

Article https://doi.org/10.1038/s41467-024-46023-2

Nature Communications |         (2024) 15:1962 9



This study has several important limitations. First, the core
limitation of our study is the use of tractography to infer structural
connectivity. The term “structural connectivity” and the assump-
tion that we can infer connectivity at all from diffusion MRI-based
methods is inherently limited; this is true of all cases of using MRI
derived metrics to infer neurobiological details. Unlike ex vivo
methods like histological tract-tracing, tractography is not a direct
measure of structural connectivity. The measurements it is based
on relate to the diffusion of water molecules in tissue, with tissue
structure or organization influencing the diffusivity. This is far
removed from true structural connectivity (at the level of axons),
and thus we are building at best an estimated model of large-scale
trends of connectivity. Tractography has trouble resolving small or
intermingled axon bundles, and it is vulnerable to false positive
connections162,163. Moreover, tractography is ill-suited to measuring
the short-range and unmyelinated connections typical of gray
matter. Different tractography algorithms can also have differ-
ences based on tractography models and parameters164, which can
vary by tract165. Our approach attempted to use current best prac-
tices to minimize the generation of spurious tracts and assess
reliability. As diffusion algorithms and imaging techniques
improve, more reliable and interpretable metrics will likely be
derived. This could lead to the identification of metrics that relate
more specifically to different types of biological variation (e.g.
myelination versus packing density) and thereby allow the identi-
fication of genetic variation specifically related to different aspects
of structural variation. As such, while we were able to identify
relationships between these large scale models of structural con-
nectivity and genetics, these results should be interpreted within
the limitations of current diffusion imaging approaches. These
limitations should be weighed against the unique opportunity and
scalability afforded by diffusion MRI-based tractography to
uncover genetic influences on the physical wiring of the
human brain.

Second, our results were derived from MRI scans of participants
aged 40–70 (median 55), and may not generalize to participants of
other age groups. In particular, age-related structural connectivity
changes are associated with cognitive decline166, whichmay be related
to our unexpected observation of negative genetic correlations
between structural connectivity and cognitive measures.

Third, the 206 structural connectivity measures we defined are
inherently somewhat arbitrary, and other measures might uncover
complementary biological insights. For instance, we chose to define
cortical measures at the level of Yeo 7 networks, which are defined
based on functional, rather than structural, connectivity. While we feel
this choice has substantial advantages in terms of interpretability,
defining cortical networks in a data-driven way, based on the tracto-
graphy data itself, is an alternative possibility. Other possibilities
include considering subcortical structures in a hemisphere-specific
manner (e.g. considering left default mode to left amygdala connec-
tions separately from left default mode to right amygdala connec-
tions), including subcortical-to-subcortical connections, and
incorporating measures of overall network topology like network
efficiency56,59 and rich-cluborganization167,168. Exemplifying the kinds of
insights that can be gained from genetic analyses of these more
complex measures, a recent twin study found that heritability of
structural connectivity was concentrated in rich-club connections, i.e.
those interlinking network hubs169.

In sum, our results indicate pervasive genetic influences on
structural connectivity within the human brain and support their
relevance to brain function in health and disease. Future studies using
more sophisticated imaging techniques will be necessary to extend
these results to gray-matter structural connectivity and develop a truly
comprehensive map of genetic influences on the human structural
connectome.

Methods
Cohort selection and MRI quality control
In total, 41,489 participants from the UK Biobank were listed as having
both T1 (Data-Field 20263, “T1 surface model files and additional
structural segmentations”) and diffusion-weighted (Data-Field 20250,
“Multiband diffusion brain images - NIFTI”) MRI scans available at
baseline. However, of these baseline scans, 1456 lacked diffusion-
weighted MRI scans corrected for eddy currents170, head motion,
outlier slices, and gradient distortion (data_ud.nii.gz from Data-Field
20250); a further 8725 lacked eddy-corrected bvec files (data.eddy_r-
otated_bvecs fromData-Field 20250); and a further 3 lacked FreeSurfer
parcellation images (aseg.mgz fromData-Field 20263). This left 31,309
participants.

We next considered four quality control metrics provided by the
UK Biobank: T1 inverse signal-to-noise ratio (“Inverted signal-to-noise
ratio in T1”, Data-Field 25734), T1 inverse contrast-to-noise-ratio
(“Inverted contrast-to-noise ratio in T1”, Data-Field 25735), number of
diffusion MRI outlier slices (“Number of dMRI outlier slices detected
and corrected”, Data-Field 25746), and left-to-right head motion as
measured by eddy in the diffusion MRI (“Standard deviation of
apparent translation in the Y axis as measured by eddy”, Data-Field
25922). All four quality control metrics were defined so that higher
values are worse. Noting that the distributions of all four metrics were
right-skewed to varying degrees, with a tail of poor-quality scans, we
excluded scans where any of the four metrics were more than 3 stan-
dard deviations above the mean (Supplementary Fig. 6). 1113 partici-
pants had baseline scans excluded, leaving 30,196 participants
remaining.

In total, 26,445 of these participants were of European genetic
ancestry (according to Pan-UK Biobank, Return 2442) and also had
genotyping data deemed suitable for genetic analyses: genotypes
available, no mismatch between genetic sex (“Genetic sex”, Data-Field
22001) and self-reported sex (“Sex”, Data-Field 31), no sex chromo-
some aneuploidy (“Sex chromosome aneuploidy”, Data-Field 22019),
and not flagged as “Outliers for heterozygosity or missing rate” (Data-
Field 22027). An additional 668 participants were of non-European
genetic ancestry (Central/South Asian, African, East Asian, Middle
Eastern or Admixed American) and had genotyping data deemed sui-
table for genetic analyses.

Thus, we ran our tractography pipeline (see next section) on
27,113 baseline scans, of which 26,998 ran successfully: 26,333 of
European genetic ancestry and 665 of non-European genetic ancestry.
We used the 26,333 European baseline scans for the main GWAS, and
the 665 non-European baseline scans for the replication GWAS. To
evaluate replicability of the tractography measures themselves, we
used a subset of 2400 participants of European genetic ancestry who
also had replicate scans thatpassed all the above-mentionedfilters and
ran successfully.

Tractography pipeline
Our tractography pipeline, tractify (https://github.com/TIGRLab/
tractify), performs probabilistic tractography using version 3.0.3 of
the MRtrix3 diffusion MRI software package69. Certain steps also use
version 6.0.5 of the Functional Magnetic Resonance Imaging of the
Brain Software Library (FSL)171 and version 7.1.1 of the FreeSurfer
software package172.

The pipeline takes the following subject-specific inputs:
1. A brain-extracted, bias-field-corrected T1 scan (brain.mgz from

Data-Field 20263), the processing ofwhich is described indetail in
the UK Biobank Brain Imaging Documentation.

2. A diffusion-weighted MRI scan corrected for eddy currents, head
motion, outlier slices, and gradient distortion (data_ud.nii.gz from
Data-Field 20250), the processing of which is also described in the
UK Biobank Brain Imaging Documentation.

3. A bval file (bvals from Data-Field 20250).
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4. An eddy-corrected bvec file (data.eddy_rotated_bvecs from Data-
Field 20250).

5. A FreeSurfer parcellation of the T1 image (aseg.mgz from Data-
Field 20263). and the following subject-independent inputs:

6. The 2-mm MNI152 standard-space structural template image,
MNI152_T1_2mm_brain.nii.gz.

7. The atlas:we concatenated the 200-parcel Schaefer cortical atlas73

mapped to the “Yeo 7” networks67, available from https://github.
com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_
parcellation/Schaefer2018_LocalGlobal/Parcellations/MNI/
Schaefer2018_200Parcels_7Networks_order_FSLMNI152_2mm.nii.
gz, with 14 subcortical parcels from the Harvard-Oxford atlas (left
thalamus, left caudate, left putamen, left pallidum, left hippo-
campus, left amygdala, left accumbens, right thalamus, right
caudate, right putamen, right pallidum, right hippocampus, right
amygdala, right accumbens), for a total of 214 parcels. Voxels
present in both a Schaefer parcel and a subcortical Harvard-
Oxford parcel were assigned to their Schaefer rather than their
Harvard-Oxford parcel. This atlas is available as Supplemen-
tary Data 4.

The pipeline consists of the following steps for each subject:

Part 1: Extract the mean b =0 image.
1. Perform bias field correction on the diffusion MRI scan (input #2)

via the N4 algorithm173, using MRtrix3’s dwibiascorrect ants
command.

2. Extract the mean b = 0 image from the bias-field-corrected scan
(output at step 1). First, use MRtrix3’s dwiextract -bzero
command, supplying the bvals and eddy-corrected bvecs (inputs
#3 and #4) via the -fslgrad flag. Then, average across volumes
using MRtrix3’s mrmath -axis 3 mean command.

3. Skullstrip the mean b = 0 image (output at step 2) using FSL’s bet
commandwith thedefault fractional intensity threshold (-f) of 0.5.
Enable robust brain center estimation via the -R flag. Specify the
-m flag to generate a binary brain mask in addition to the skull-
stripped mean b = 0 image.

Part 2: Nonlinearly register the atlas to diffusion space (via
T1 space, to improve registration quality).
4. Convert the T1 scan (input #1) from MGZ to NIfTI format using

MRtrix3’s mrconvert command.
5. Linearly register the T1 scan from native space to diffusion space

using FSL’s flirt command174,175. Provide the T1 scan in NIfTI-format
(output at step 4) via the -in flag and the skullstrippedmean b = 0
image (output at step 3) via the -ref flag. Use 6 degrees of freedom
(-dof 6) for the registration. This yields two outputs: the diffusion-
space T1 scan (-out), and the T1-to-diffusion transformation
matrix (-omat).

6. Linearly register the T1-weighted image from native space to the
MNI152 template using FSL’s flirt command. Provide the T1 scan in
NIfTI format (output at step 4) via the -inflag, theMNI152 template
(input #6) via the -ref flag, and the location to save the T1-to-
MNI152 transformation matrix via the -omat flag. Use the default
12 degrees of freedom.

7. Nonlinearly register the T1-weighted image from native space to
the MNI152 template by leveraging the linear registration from
step 6, using FSL’s fnirt command. Provide the T1 scan in NIfTI
format (output at step 4) via the --in flag, the T1-to-MNI152
transformation matrix (output at step 6) via the --aff flag, the
MNI152 template (input #6) via the --ref flag, and the location to
save the warping transformation via the --cout flag. Specify
--config=T1_2_MNI152_2mm.cnf to use FSL’s internal configuration
file T1_2_MNI152_2mm.cnf, as recommended by the creators of
FSL when registering T1-weighted images to theMNI152 template.

8. Compute the MNI152-to-T1 warping transformation by inverting
the T1-to-MNI152 warping transformation, using FSL’s invwarp
command. Provide the T1-to-MNI152 warping transformation
(output at step 7) via the -w flag, the T1 scan in NIfTI format
(output at step 4) via the -r flag, and the location to save the
MNI152-to-T1 warping transformation via the -o flag.

9. Register the atlas from MNI152 space to diffusion space using
FSL’s applywarp command, by applying the non-linearMNI152-to-
T1 warping transformation from step 8, followed by the linear T1-
to-diffusion transformation from step 5. Provide the atlas (input
#7) via the -i flag, the the skullstripped mean b =0 image (output
at step 3) via the -r flag, the MNI152-to-T1 warping transformation
(output at step 8) via the -w flag, the T1-to-diffusion transforma-
tion matrix (output at step 5) via the --postmat flag, and the
location to save the diffusion-space atlas via the -o flag. Specify
nearest-neighbors interpolation via the --interp = nn flag, and
specify the --ref flag to treat the warp field as relative.

Part 3: Generate a five-tissue-type image and extract the gray-
white matter interface.
10. Convert the Freesurfer parcellation image (input #5) fromMGZ to

NIfTI format using MRtrix3’s mrconvert command.
11. Register the Freesurfer parcellation image from T1 space to dif-

fusion space using FSL’s flirt command. Provide the parcellation
image in NIfTI format (output at step 10) via the -in flag, the T1-to-
diffusion transformation matrix (output at step 5) via the
-applyxfm -init flags, and the location to save the diffusion-space
parcellation image via the -outflag. (We alsoprovide thediffusion-
space T1 scan, output at step 5, via the -ref flag, but only so that
flirt knows which voxel and image dimensions to use for the
output.) Use nearest-neighbor interpolation (-interp nearest-
neighbour). Use the default 12 degrees of freedom.

12. Generate a five-tissue-type image from the diffusion-space Free-
surfer parcellation image (output at step 11) using MRtrix3’s
5ttgen freesurfer command. Specify the -nocrop flag to keep the
same dimensions as the input image.

13. Extract the gray-white matter interface from the five-tissue-type
image (output at step 12) using MRtrix3’s 5tt2gmwmi command.

Part 4: Perform probabilistic tractography.
14. Generate multi-shell multi-tissue response functions using

MRtrix3’s dwi2response msmt_5tt command. Provide the diffu-
sionMRI scan (input#2), thefive-tissue-type image (output at step
12), the bvals and eddy-corrected bvecs (inputs #3 and #4) via the
-fslgrad flag, and the binary brain mask (output at step 3) via the
-mask flag. This yields three outputs: response functions for
the white matter, gray matter and cerebrospinal fluid.

15. Estimate a fiber orientation distribution (FOD) via multi-shell
multi-tissue constrained spherical deconvolution (MSMT-CSD)70

using MRtrix3’s dwi2fod msmt_csd command. Provide all of the
same inputs as step 14 as well as all of the outputs of step 14. This
yields three outputs: orientation distribution function (ODF)
images for the white matter, gray matter and cerebrospinal fluid.
We will only use the white-matter ODF.

16. Perform probabilistic tractography using MRtrix3’s tckgen com-
mand. Provide the white-matter ODF (output at step 15). Use
anatomically-constrained tractography (ACT)176 by providing the
five-tissue-type image (output at step 12) via the -act flag. Seed
streamlines from the gray-white matter interface (output at step
13) by providing it via the -seed_gmwmiflag. Use the Second-order
Integration over Fiber Orientation Distributions (iFOD2)
algorithm71 by specifying -algorithm iFOD2. Select 1 million
streamlines (-select 1000000).

17. Weight each streamline so that the density of reconstructed
connections better reflects the density of the underlying white
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matter fibers via the SIFT2 algorithm72, as implemented in
MRtrix3’s tcksift2 command. Provide the streamlines (output at
step 16) and the white-matter ODF (output at step 15).

18. Generate a connectome matrix using MRtrix3’s tck2connectome
command, denoting the weighted number of streamlines con-
necting eachpair of parcels in the atlas (in our case, thismatrix has
dimension 214 × 214). Provide the streamlines (output at step 16)
and the diffusion-space atlas (output at step 9). Also provide the
weight for each streamline (output at step 17) via the -tck_weight-
s_in flag. Perform a radial search fromeach streamline endpoint to
locate the nearest parcel by specifying the -assignment_radial_-
search flag177. Require the matrix to be symmetric and have a
diagonal of 0 via the -symmetric and -zero_diagonal flags.
Weighted the entries in the connectome matrix by both the
length of the streamline (-scale_length), to account for the bias of
probabilistic tractography towards shorter connections, and the
inverse of the product of the two parcel volumes
(-scale_invnodevol)178, to correct for the variability in the size of
parcels thatwould otherwise result in higher connectivity to/from
larger parcels solely due to their size.

Phenotype definitions
We defined a total of 3 hemisphere-level connectivity measures (left
intra-hemisphere, right intra-hemisphere, inter-hemisphere). Specifi-
cally, we averaged the entries of the connectomematrix across all pairs
of parcels in the left hemisphere to obtain the overall connectivity
within the left hemisphere, and similarly for the right hemisphere. We
quantified overall inter-hemispheric connectivity by averaging the
entries connecting any parcel in the left hemisphere to any parcel in
the right hemisphere.

We defined a total of 105 network-level connectivity measures.
Each parcel in the Schaefer atlas has previously beenmapped to one of
7 large-scale brain networks, commonly known as the “Yeo 7” net-
works, which were derived in a data-driven manner based on func-
tional connectivity67: visual (“Vis”), somatomotor (“SomMot”), dorsal
attention (“DorsAttn”), salience/ventral attention (“SalVentAttn”), lim-
bic, control (“Cont”), and default mode (“Default”). Because each
network is present in both hemispheres, there are 14 hemisphere-
specific networks, denoted e.g. “LH Vis” for the left-hemisphere visual
network and “RH Cont” for the right-hemisphere control network. For
each network, we averaged the entries of the connectome matrix
across all pairs of parcels in that network to define 14 within-network
connectivity measures. Also, for each pair of networks, we averaged
the entries of the connectomematrix connecting any parcel in the first
network to any parcel in the second network, to define 91 between-
network connectivity measures.

Finally, we defined a total of 98 cortical-to-subcortical con-
nectivity measures, between each of the 14 hemisphere-specific Yeo 7
networks and each of the 7 subcortical structures (thalamus, caudate,
putamen, pallidum, hippocampus, amygdala, and accumbens).

Genome-wide association studies
We performed genome-wide association studies for the 206 con-
nectivity measures by linearly regressing each measure on each of
9,423,516 single-nucleotide genetic variants (see below) using version
3.2.9 of the regenie genetic analysis toolkit (https://rgcgithub.github.
io/regenie)74. regenie accounts for sample relatedness and population
structure by computing a polygenic risk score (PRS) for the phenotype
being associated (step 1), then including this PRS as a covariate when
performing the actual association testing (step 2). regenie uses a leave-
one-chromosome-out scheme to construct the PRS (e.g. when per-
forming association tests on chromosome 19, a PRS derived from all
chromosomes except chromosome 19 is used as a covariate).

For step 1, we used a quality-controlled subset of theUKBiobank’s
unimputed genotype data, namely the 596,935 variants on the

autosomes and the non-pseudoautosomal regions of the X chromo-
some with minor allele frequency >1%, <10% missingness and Hardy-
Weinberg equilibrium p > 1 × 10–15 (with mid-P correction) across all
425,630 UK Biobank participants of European genetic ancestry
(according to Pan-UK Biobank, Return 2442) deemed suitable for
genetic analyses (according to the criteria stated in the “Cohort
selection and MRI quality control” section, above). Our missingness
andHardy-Weinberg equilibrium cutoffs are the same as those used by
the flagship UK Biobank exome sequencing study179. We performed
this quality control using version 2.0.0 of the plink GWAS software
package180. For computational efficiency, regenie constructs the PRS
using stacked ridge regression, by partitioning the genome into non-
overlapping blocks of 200 markers (where 200 is specified using the
“--bsize” option), running ridge regression within each block, and then
running a second level of ridge regression to aggregate across blocks.

We ran step 2 on a larger set of 9,423,516 genotyped or imputed
autosomal and non-pseudoautosomal X-chromosome variants with
INFO score >0.8, using the same quality control filters as in step 1:
minor allele frequency >1%, <10% missingness and Hardy-Weinberg
equilibrium p > 1 × 10–15 (with mid-P correction). As described in the
flagship UK Biobank study9, variants were imputed to two reference
panels, the Haplotype Reference Consortium75 and a combined
UK10K76 and 1000 Genomes Phase 377 panel; the imputed genotypes
for the two panels were then combined, using the HRC imputation for
variants present in both panels.

We covaried for age (“Age when attended assessment center”,
Data-Field 21003, standardized to mean 0 and variance 1), sex, age ×
sex, age2, age2 × sex, genotyping array (Axiom versus BiLEVE), scanner
site (n = 22, “UK Biobank assessment center”, Data-Field 54), total
intracranial volume (“Volume of EstimatedTotalIntraCranial (whole
brain)”, Data-Field 26521; median-imputed for 9 people for whom it
wasmissing), and the top 10 genotypeprincipal components (“Genetic
principal components”, Data-Field 22009) to control for population
structure. Prior to running regenie, we applied a rank-based inverse
normal transformation to the residuals using the Blom transformation
(c = 3/8)181. This ensures that the GWAS phenotype is normally dis-
tributed even though the connectivity measures are highly non-
normally distributed, nor are they particularly well approximated by a
log-normal distribution (Supplementary Fig. 7).

Regenie assumes full dosage compensation for variants on the X
chromosome (except for variants in the pseudoautosomal region,
which were analyzed the same way as autosomal variants), coding
alleles as 0/1/2 for females and 0/2 for males182; we excluded the Y
chromosome.

Identification of independent genome-wide significant variants
To identify independent genome-wide significant variants, we
clumped together variants within 5 megabases and with linkage dis-
equilibrium (LD) R2 > 0.01, using the --clump command from plink
version 2.0.0 (https://www.cog-genomics.org/plink/2.0/postproc#
clump), with options --clump-p1 5e-8 --clump-p2 0.001 --clump-r2
0.01 --clump-kb 5000. For Fig. 3, we performed this clumping on the
minimum p value for each variant across the 206 measures (i.e. the
p-values shown in the Manhattan plots). For Supplementary Data 1, we
instead performed this clumping separately for each of the 206GWAS.

Ideogram of associated genomic loci
We plotted the ideogram of associated genomic loci in Fig. 1 with
PhenoGram (http://visualization.ritchielab.org/phenograms/plot)183.

p value inflation and linkage disequilibrium score regression
intercepts and heritabilities
We observed acceptably mild p value inflation, with genomic inflation
factors (λGC) of 1.014 to 1.093 (median 1.044) across the 206 GWAS.
Most of this inflationwas due to polygenicity rather than confounding,
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with linkage disequilibrium (LD) score regression intercepts148 of only
0.996 to 1.016 (median 1.006).

We used the --h2 command from the ldsc software package
(https://github.com/bulik/ldsc) to compute these LD score regression
intercepts, as well as the heritabilities in Supplementary Fig. 2. Before
running --h2, we used ldsc’s munge_sumstats.py script to reformat
each GWAS’s summary statistics into the format recognized by ldsc.
Rather than using predefined LD scores, we elected to compute our
own LD scores for the 9,423,516 variants in our GWAS from the UK
Biobank’s imputed genotypes themselves. We did so by (1) randomly
subsampling 1000 of the 26,333 participants (for computational
tractability), (2) converting imputed variants to hardcalls (since ldsc
does not support fractional genotypes), and (3) running ldsc’s --l2
command with the UK Biobank’s hardcall genotypes provided via the
--bfile flag.When running --l2,we used a 1-megabasewindow (--ld-wind-
kb 1000) instead of the usual 1-centimorgan window (--ld-wind-cm 1),
since the UK Biobank’s imputed genotype files do not report cen-
timorgan distances.

Heritability, polygenicity and selection analysis with SBayesS
We used the SBayesS method147 to estimate heritability (h2), poly-
genicity (π) and selection (S) parameters for eachof our 206GWAS.We
ran the --sbayes S command from the Genome-wide Complex Trait
Bayesiananalysis (GCTB) softwarepackage (https://cnsgenomics.com/
software/gctb) on each GWAS’s summary statistics, with the “Sparse
matrix (including MHC regions)” from https://cnsgenomics.com/
software/gctb/#LDmatrices (ukbEURu_imp_v3_HM3_n50k.chisq10.ldm
.sparse) as the LD matrix and a fixed random seed of 0. SBayesS uses
Markov Chain Monte Carlo (MCMC) sampling to infer h2, π and S; we
used the default settings of running 10,000 iterations of the Markov
chain (--chain-length 10000) and sampling the parameters from every
10th iteration (--thin 10), starting at iteration 2000 (--burn-in 2000),
thus generating 800 estimates of each parameter (i.e. from iterations
2000, 2010, 2020, … 9990). We obtained a single estimate per para-
meter by taking the mean across the 800 estimates, and confidence
intervals by taking the 2.5th and 97.5th percentiles of these 800
estimates.

Genetic correlation analysis
We used the genetic covariance analyzer (GNOVA) method149 (github.
com/qlu-lab/GNOVA-2.0) to compute genetic correlations between
the 206 structural connectivity measures and 15 brain-related traits:
1. Major depression184, with summary statistics from the PGC

(“mdd2019edinburgh” at https://www.med.unc.edu/pgc/
download-results, under “Genome-wide summary statistics from
a meta-analysis of PGC and UK Biobank”, filename
PGC_UKB_depression_genome-wide.txt)

2. Bipolar disorder185, with summary statistics from the PGC
(“bip2021” at https://www.med.unc.edu/pgc/download-results,
filename pgc-bip2021-all.vcf.tsv.gz)

3. Schizophrenia88, with summary statistics from the PGC (“scz2022”
at https://www.med.unc.edu/pgc/download-results, filenames
PGC3_SCZ_wave3.primary.autosome.public.v3.vcf.tsv.gz and
PGC3_SCZ_wave3.primary.chrX.public.v3.vcf.tsv.gz)

4. Autism spectrum disorder (ASD)186, with summary statistics from
the PGC (“asd2019” at https://www.med.unc.edu/pgc/download-
results, filename iPSYCHPGC_ASD_Nov2017.gz)

5. Attention-deficit hyperactivity disorder (ADHD)187, with summary
statistics from the PGC and iPSYCH (“Summary statistics ADHD
meta-analysis, Jan2022 Release” at https://ipsych.dk/en/research/
downloads, filename ADHD_meta_Jan2022_iPSYCH1_iPSYCH2_de
CODE_PGC.meta_2.zip)

6. Problematic alcohol use188, with summary statistics from the Mil-
lion Veteran Program (available through the Database of Geno-
types andPhenotypes (dbGaP)by application at https://www.ncbi.

nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001672.
v6.p1, filename PAU_MVP1_MVP2_PGC_UKB_Dec11.txt.gz)

7. Insomnia189, with summary statistics from https://ctg.cncr.nl/
software/summary_statistics (filename insomnia_ukb2b_EUR_
sumstats_20190311_with_chrX_mac_100.txt.gz)

8. Alzheimer’s disease190, with summary statistics from the GWAS
Catalog (accession GCST90027158, filename
GCST90027158_buildGRCh38.tsv.gz)

9. Parkinson’s disease191, with summary statistics from https://drive.
google.com/file/d/1FZ9UL99LAqyWnyNBxxlx6qOUlfAnublN (file-
name nallsEtAl2019_excluding23andMe_allVariants.tab.gz)

10. Amyotrophic lateral sclerosis (ALS)192, with summary statistics
from the GWAS Catalog (accession GCST90027164, filename
GCST90027164_buildGRCh37.tsv.gz)

11. Epilepsy193, with summary statistics from http://www.epigad.org/
download/final_sumstats.zip, filename ILAE3_Caucasian_GGE_fi-
nal.tbl. We used summary statistics for genetic generalized epi-
lepsy (GGE), which had substantially greater GWAS signal than
non-subtype-specific epilepsy.

12. Stroke194, with summary statistics from the GWAS Catalog
(accession GCST90104539, filename GCST90104539_buildGRCh
37.tsv.gz)

13. Educational attainment195, with summary statistics from https://
www.thessgac.com under “Summary Statistics for Okbay et al.
(2022)” (login required, filename EA4_additive_excl_23and
Me.txt.gz)

14. Intelligence196, with summary statistics from https://ctg.cncr.nl/
software/summary_statistics (filename SavageJansen_2018_intelli
gence_metaanalysis.txt.gz)

15. Reaction time197, with summary statistics from the GWAS Catalog
(accession GCST006268, filename Davies2018_UKB_RT_summar-
y_results_29052018.txt). The sign of the GWAS beta coefficients
are flipped in this GWAS, so that a positive beta indicates that a
variant is associated with lower (i.e. better) reaction time, and a
negative beta indicates that a variant is associatedwith higher (i.e.
worse) reaction time.

To account for case-control imbalance in analyses of case-control
GWAS, the effective sample sizeNeff = 4 / (1 /Ncas + 1 /Ncon) can be used
as a measure of sample size, where Ncas and Ncon are either total
number of cases and controls in the GWAS, or (more accurately) the
number of cases and controls with non-missing genotypes for each
variant. For meta-analyses of multiple GWAS cohorts, it has been
argued that Neff should be computed per cohort and then summed
across cohorts198, since each cohort has a different case-control ratio.
Unfortunately, most publicly available case-control summary statistics
either do not provide Neff or compute it using the total Ncas and Ncon

instead of the per-cohort Ncas and Ncon, which can lead to substantial
bias in estimates of heritability (though not necessarily genetic
correlation)198. In these cases, we inferredNeff for each variant using the
formula Neff = ((4 / (2 × MAF × (1 - MAF) × INFO)) - BETA2) / SE2, where
MAF is the variant’s minor allele frequency in the GWAS sample, INFO
its imputation information score, BETA its effect size, and SE the
standard error of this effect size199. If INFO was not provided, we
excluded the INFO term. If SE was not provided, we back-calculated it
using the variant’s effect size and p value. IfMAF was not provided (or
was only provided for a different sample, such as 1000 Genomes), we
fell back to using each variant’s total Ncas and Ncon across all cohorts
(or, if per-variant Ncas and Ncon were not available, the total Ncas and
Ncon across all cohorts) and calculated Neff as 4 / (1 / Ncas + 1 / Ncon). For
our own structural connectivity GWASs and other quantitative-trait
GWASs (e.g. reaction time), we did not compute an effective sample
size and simply used the total sample size.

We harmonized the alleles of the 15 summary statistics, as well as
our own GWAS summary statistics, to the European subset of 1000
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Genomes Phase 377 (storage.googleapis.com/broad-alkesgroup-
public/LDSCORE/1000G_Phase3_plinkfiles.tgz) using ldsc’s munge_-
sumstats.py script.We then removed variantswithmissing data so that
the munged summary statistics would be compatible with GNOVA.
Finally, we ran GNOVA to compute genetic correlations, specifying the
European subset of 1000 Genomes Phase 3 as a reference panel for
computing LD scores.

We also used GNOVA to perform genetic correlations between our
three hemisphere-level measures and 432 GWAS of diffusion MRI
measures based on tract-based spatial statistics (TBSS) and neurite
orientation dispersion and density imaging (NODDI)18. We obtained
summary statistics for these GWAS from the table at open.win.ox.ac.uk/
ukbiobank/big40/BIG40-IDPs_v4/IDPs.html, subsetting to the 432 dif-
fusion MRI measures in the UK Biobank’s “dMRI skeleton” phenotype
category (Category 134; biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=134).
We followed the same procedure as for the 15 summary statistics above,
using theN(all) column in each summary statisticsfile as the sample size.

Cell-type enrichment analysis
We used partitioned LD score regression151 from the ldsc software
package to perform cell-type enrichment analyses across human cor-
tical cell types.Weused two chromatin accessibility datasets, one adult
and one developmental.

First, we included regions for 6 cell types from postmortem adult
human motor cortex, derived from single-nucleus chromatin accessi-
bility and messenger RNA expression sequencing (SNARE-seq2). We
obtained these regions from Table S14c of 152: “SNARE-Seq2 Differen-
tially Accessible Regions (DARs, q value <0.001 and log(fold change) >
1) identified by subclass for human M1”. Since these regions were only
available for neuronal subclasses, but a subclass-specific analysis would
likely be underpowered, we merged regions across subclasses. We
obtained excitatory neuron-specific regions bymerging regions specific
to layer 2–3 intratelencephalic (L2-3 IT), layer 5 extratelencephalic (L5
ET), layer 5 intratelencephalic (L5 IT), layer 5-6non-projectingpyramidal
(L5-6 NP), layer 6 corticothalamic (L6 CT), layer 6 intratelencephalic (L6
IT),CAR3-expressing layer 6 intratelencephalic (L6 ITCar3), and layer 6b
(L6b) excitatory neurons. We obtained inhibitory neuron-specific
regions by merging regions specific to LAMP5, PVALB, SNCG, SST,
SST CHODL, and VIP inhibitory neurons. We note that this choice does
not capture excitatory neuron-specific regions that are present in
multiple excitatory neuron subclasses, or inhibitory neuron-specific
regions that are present in multiple inhibitory neuron subclasses.
Besides excitatory and inhibitory, we included the following non-
neuronal cell types in our analysis: astrocytes; microglia and perivas-
cular macrophages (Micro-PVM), which we refer to as ‘microglia’ for
simplicity; oligodendrocytes (Oligo); and oligodendrocyte progenitor
cells (OPC). We did not include regions specific to vascular leptome-
ningeal cells (VLMCs) and endothelial cells due to their rarity. Thus, we
included a total of 6 cell types in the analysis.

Second, we included regions for 12 cell types from the developing
human cortex, derived from single-cell assay for transposase-
accessible chromatin with high-throughput sequencing (ATAC-seq).
We obtained these regions from Table S2 of 154.

We created a binary annotation file for each of these 18 cell types,
with a 1 or 0 for each variant depending on whether or not it was
situated in a region with increased chromatin accessibility in that cell
type. For instance, for the SNARE-Seq2 dataset, 29,398 of the 9,423,516
variants in our GWAS (0.35%) were situated in astrocyte-specific open
chromatin regions, 112,321 (1.33%) in excitatory-specific regions, 87,192
(1.03%) in inhibitory-specific regions, 35,754 (0.42%) in microglia-
specific regions, 30,394 (0.36%) in oligodendrocyte-specific regions,
and 36,246 (0.43%) in OPC-specific regions. We also created an
“intercept” annotation file in which all of the 9,423,516 variants were
assigned a 1.

We computed LD scores for each of these binary annotation
files by applying ldsc’s --l2 command with a 1-megabase window
(--ld-wind-kb 1000), providing the UK Biobank’s hardcall genotypes
with the --bfile flag, and providing the annotation file with the
--annot and --thin-annot flags. Aside from providing an annotation
file, this is the same way we computed LD scores for all variants (see
the “p value inflation and linkage disequilibrium score regression
intercepts” subsection, above). Note that the LD scores for
the intercept annotation are the same as the LD scores for all
variants.

Finally, for eachof the 206 structural connectivity GWAS and each
of the 18 cell types, we ran stratified LD score regression using ldsc’s
--h2 command. We provided the GWAS’s summary statistics under the
--h2 flag, the LD scores for both the intercept and the cell type under
the --ref-ld flag, the LD scores for the intercept under the --w-ld flag,
and the allele frequencies for each variant across our 26,333 partici-
pants (computed with plink 1.9’s --freq command) under the --frqfile
flag. We also specified the --overlap-annot flag to indicate that the two
annotations (for the intercept and the cell type) overlap with each
other, and the --print-coefficients flag to print the regression coeffi-
cients for each annotation.

This analysis yields anenrichment (anda standarderror andp value
for this enrichment) for each GWAS and cell type. This enrichment
represents how many times greater heritability is explained by the
average variant overlapping a region with increased chromatin acces-
sibility in that cell type, relative to the average variant not overlapping
such a region. The use of LD score regressionmakes this analysis robust
to the confounding effects of LD: without it, an annotation could erro-
neously be considered enriched for heritability even if the entirety of
the GWAS signal underlying this enrichmentwere coming from variants
in LD not overlapping the annotation.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Researchers can apply for access to the UK Biobank at ukbiobank.ac.
uk/enable-your-research/apply-for-access. Genome-wide summary
statistics havebeendeposited to the EuropeanBioinformatics Institute
GWASCatalog (https://www.ebi.ac.uk/gwas) under accession numbers
GCST90302648 through GCST90302853. The 206 structural con-
nectivity measures for each participant will bemade available through
the UK Biobank Returns Catalog (biobank.ndph.ox.ac.uk/ukb/docs.
cgi?id=1) to all researchers with UK Biobank access.

Code availability
The tractography pipeline used in this study, tractify, is available at
https://github.com/TIGRLab/tractify.
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