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Metabolomic profiles of sleep-disordered
breathing are associated with hypertension
and diabetes mellitus development

Ying Zhang 1, Bing Yu 2, Qibin Qi 3, Ali Azarbarzin4, Han Chen5,
Neomi A. Shah6, Alberto R. Ramos7, Phyllis C. Zee8, Jianwen Cai9,
Martha L. Daviglus10, Eric Boerwinkle2, Robert Kaplan3,11, Peter Y. Liu 12,
Susan Redline 4 & Tamar Sofer 4,13,14

Sleep-disordered breathing (SDB) is a prevalent disorder characterized by
recurrent episodic upper airway obstruction. Using data from the Hispanic
Community Health Study/Study of Latinos (HCHS/SOL), we apply principal
component analysis (PCA) to seven SDB-related measures. We estimate the
associations of the top two SDB PCs with serum levels of 617 metabolites, in
both single-metabolite analysis, and a joint penalized regression analysis. The
discovery analysis includes 3299 individuals, with validation in a separate
dataset of 1522 individuals. Five metabolite associations with SDB PCs are
discovered and replicated. SDB PC1, characterized by frequent respiratory
events common in older andmale adults, is associated with pregnanolone and
progesterone-related sulfated metabolites. SDB PC2, characterized by short
respiratory event length and self-reported restless sleep, enriched in young
adults, is associated with sphingomyelins. Metabolite risk scores (MRSs),
representing metabolite signatures associated with the two SDB PCs, are
associated with 6-year incident hypertension and diabetes. These MRSs have
the potential to serve as biomarkers for SDB, guiding risk stratification and
treatment decisions.

Sleep-disordered breathing (SDB) is a common yet underdiagnosed
disorder. It is estimated to affect approximately 17% and 34% of
middle-aged female and middle-aged male individuals, respectively1,
but diagnosed in less than 15% of individuals with clinically significant
disease2,3. SDB is characterized by recurring episodes of complete
(apneas) or partial (hypopneas) upper airway obstruction, often
accompanied by oxyhemoglobin desaturation and/or sleep fragmen-
tation. Symptoms include snoring andexcessive daytime sleepiness4. A
growing body of epidemiological studies has found that SDB is asso-
ciated with increased risks for vascular and metabolic diseases,
including stroke, coronary heart disease, hypertension, and diabetes
mellitus5–9.

Underlying mechanisms proposed to associate SDB with the car-
diometabolic conditions include: chronic hypoxemia, particularly
nightly exposures to intermittent hypoxemia and re-oxygenation10;
dysregulated proinflammatory responses11; increased oxidative
stress12, imbalanced gut microbiome13, hormonal imbalance14, among
others. Emerging evidence has shown that intermittent hypoxemia,
especially high frequency desaturations, modulates the inflammatory
response differently fromchronic sustained hypoxemia15.While recent
work has examined specific aspects of SDB that best predict incident
outcomes16–18, only a few studies have tried to model more complex
exposures by combining multiple SDB measures together19,20. Various
SDB measures, such as the frequency of obstructive events (e.g.,
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Respiratory Event Index (REI)), sleep-apnea specific hypoxic burden21,
minimum oxyhemoglobin saturation during sleep, apnea and hypop-
nea event duration22, and others, while capturing different character-
istics of SDB-related physiological stressors, tend to be correlated.
Given the increasing recognition of the heterogeneity and complexity
of SDB23, indices that combine multiple measures of SDB by account-
ing for the correlation among themmay provide powerful approaches
for studying both SDB biology and risk stratification of incident car-
diometabolic outcomes.

Metabolites, reflective of the products and intermediates of
metabolism, can provide biomarkers useful for disease prediction and
subtyping24. Studying SDB-associated metabolites may yield insights
into the metabolic environment of the disorder, elucidate sex differ-
ences, and suggest SDB subtypes and related molecular mechanisms
involved in the progressionof cardiometabolic conditions. Untargeted
metabolomic profiling is the comprehensive identification and quan-
tification of small metabolite molecules within the biological system,
and has begun to be used in sleep research to understand the cellular
process such as sleep/wake regulation25,26, as a window to the timing of
peripheral molecular clocks and oscillators during circadian
misalignment27, and to detect biomarkers of sleep restriction28 and
neurological degeneration among patients with obstructive sleep
apnea (OSA)29. In a recent study30, we identifiedmetabolites associated
with moderate to severe OSA (defined as a REI > = 15) and constructed
an index composed of 14 metabolites, associated with OSA cross-sec-
tionally, in two independent datasets. Another recent study31 identified
metabolites associated with SDB and metabolites that changed levels
following SDB treatment using continuous positive airway pressure,
thoughwithoutmultiple testing correction. Further demonstrating the
potential clinical utility of untargeted metabolite profiling, prediction
models incorporating metabolites outperformed clinical predictors
for some conditions32. Thus, untargeted metabolomics may provide a
unique opportunity both for the development of biomarkers for SDB,
and for utilizing such biomarkers for SDB-related risk stratification:
identifying patients with increased risks for other chronic diseases.

We hypothesize that by combining SDB measures, and next,
identifying and combining changes in their associated metabolomic
environment, we can construct new SDB biomarkers that may offer
additional utility compared to standard measures for identifying
individuals at high risks for progression of cardiometabolic disease
(Fig. 1). We use a data-driven, unsupervised principal component (PC)
analysis to first construct two SDB summary measures based on sev-
eral physiological phenotypes. We then study the association of the
SDB PCs and the metabolic environment in a large population-based
study with a high-dimensional set of measured metabolites using two
methods: (1) association analysis of individual metabolites with each
SDB PC, and (2) least absolute shrinkage and selection operator
(LASSO) regression to identify a subset of metabolites that together
best associatewith SDBPCs. Based on LASSO-selectedmetabolites and
their effect estimates, we develop SDB PC-specific metabolite risk
scores (SDB-MRS). To validate our results, we use a discovery-
replication approach where we separate datasets of individuals sam-
pled from the same target population. We then study the SDB PC-
specific MRS associations with incident hypertension and diabetes
mellitus.

Results
Metabolomics sample characteristics
The main, batch 1, discovery dataset (used for SDB SMA analysis and
LASSO regression) included 1874 female participants (mean age =
42.8), and 1425 male participants (mean age = 41.6), and the replica-
tion dataset included 960 female participants (mean age = 51.9) and
562 male participants (mean age = 51.2) from batch 2 (Table 1 and
Supplementary Data 1). Consistent with their older age, the prevalence
of moderate to severe SDB was higher in batch 2 compared to batch 1

participants (REI3≥ 15, 13.8% compared to 11.5% in batch 1 partici-
pants); similarly, comorbidities were higher in batch 2 participants
(30.1% prevalent diabetes mellitus and 45.7% prevalent hypertension,
compared to 20.4% and 32.2%, respectively, in batch 1).

SDB PC1 and SDB PC2 characterize study population on differ-
ent dimensions
In total, 11,653 HCHS/SOL study participants with complete SDB
measures were included in the principal component analysis of SDB
phenotypes. Supplementary Data 2 shows the sample characteristics
stratified by sex while accounting for sampling weights, so that means
and proportions are representative of the HCHS/SOL target popula-
tion. The first two principal components of the SDB measures
accounted for 79.8% of the total variance (SDB PC1: 65%, SDB PC2:
14.5%; Supplementary Fig. S1). For both PCs, higher values indicate
more severe hypoxemia. However, PC1 is also characterized by more
frequent respiratory events while PC2 is characterized by shorter
respiratory events. Specifically, high SDB PC1 is correlated with
increased REI3 (Spearman correlation coefficient ρ =0.67) and REI0
(ρ =0.77), increased hypoxic burden (ρ =0.67), high percentage of
sleep time with SpO2 < 90% (ρ = 0.45), decreased average oxygen
saturation (ρ = −0.64) and lower minimum oxygen saturation
(ρ = −0.79). High SDB PC2 is mostly correlated with reduced average
event length (ρ = −0.53), lower average (ρ = −0.38) and minimum
oxygen saturation (ρ = −0.32), and increased percentage of sleep time
with SpO2 < 90% (ρ = 0.2) (Fig. 2).

To better understand the phenotypic characteristics that SDB
PC1 and PC2 represent, we also compared the populations defined by
the top and bottom 10% of SDB PC1 and PC2 (Table 2 and Supple-
mentary Data 3). The top 10% compared with the bottom 10% SDB
PC1 was comprised of individuals who were on average older and
have a higher BMI; more likely to be male and have prevalent and
incident hypertension and diabetes mellitus (diabetes henceforth);
and more likely to have history of smoking. The top 10% SDB PC2
compared to the bottom PC2 included participants whowere slightly
younger, less likely to be males, and more likely to be current smo-
kers but did not differ in rates of baseline and incident hypertension
and diabetes (Table 2 and Supplementary Data 3). As for sleep dis-
turbance traits, the top and bottom 10% SDB PC1 participants
reported similar insomnia symptoms according to the Women’s
Health Initiative Insomnia Rating Scale and similar sleep quality
(typical night’s sleep in the past 4 weeks being restless or very rest-
less), but reported more severe excessive sleepiness, more frequent
snoring and shorter sleep duration, whereas the top 10% SDB PC2
participants reported worse insomnia symptoms and sleep quality
compared to the bottom 10% SDB PC2.

Single metabolite associations (SMA) with SDB PCs
Figure 3 shows 15 metabolites associated with SDB PC1 and 4 meta-
bolites associatedwith SDBPC2 (FDR-correctedp <0.05) inHCHS/SOL
batch 1 in Model 1 (the corresponding effect estimates, and bio-
chemical information are provided in Supplementary Data 4 and 5).
Among the 15 SDB PC1 metabolites, two metabolites, pregnanolone/
allopregnanolone sulfate and glucuronide of C10H18O2 (8), had
replicated associations (FDR-corrected one-sided p <0.05) in batch 2
in Model 1 analysis (Fig. 4), and remained associated (pregnanolone/
allopregnanolone sulfate: FDR-corrected one-sided p =0.036 inmodel
2, FDR-corrected one-sided p =0.039 in model 3; glucuronide of
C10H18O2 (8): FDR-corrected one-sided p =0.030 in model 2, FDR-
corrected one-sided p =0.032 in model 3) with PC1 when adjusted for
additional lifestyle and comorbidity covariates in batch 2. Three of the
four metabolite associations with SDB PC2 in batch 1 replicated in
batch 2 (FDR-corrected one-sided p <0.05) in Model 1 and 2, all of
which were sphingomyelin lipids - sphingomyelin(d18:2/24:2), sphin-
gomyelin(d18:2/24:1,d18:1/24:2), and sphingomyelin(d18:2/23:0,d18:1/
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23:1, d17:1/24:1). Full results from the SMA sex-combined analysis are
provided in Supplementary Data 6.

In the sex-specific SMA, tauro-beta-muricholate, a lipid from the
bile acid metabolism pathway, was associated with SDB PC1 (FDR-
corrected p < 0.05) among males, while no metabolite was identified
for SDBPC2 inmale-only analysis after FDR correction. The association
of tauro-beta-muricholate with SDB-PC1 in males did not replicate in

batch 2 (Supplementary Data 7). In female-specific discovery analysis,
ten metabolites were associated with SDB-PC1, of which eight were
discovered in the sex-combined SMA analysis, and two,
3-hydroxyoctanoylcarnitine (1) and 3-hydroxyoctanoylcarnitine (2),
were unique to the sex-stratified analysis. A single metabolite, allan-
toin, was associated with SDB-PC2 among females (Supplementary
Data 6). Among the twelve metabolites identified in either the

Fig. 1 | Study design diagram. SDB sleep disordered breathing, PC principal
component, LASSO least absolute shrinkage and selection operator, OSA MRS
metabolite risk score calculated based on coefficients from LASSO regression
trained to predict OSA in previous publication30, HCHS/SOL the Hispanic Com-
munity Health Study/Study of Latinos. Baseline diabetes are based on American

Diabetes Association definition69, defined as fasting glucose >=126mg/dL, or post-
OGTT glucose >=200mg/dL or A1C> = 6.5%, or self-report of diabetes; baseline
hypertension is defined as systolic or diastolic BP greater than or equal to 140/90,
respectively, or current use of antihypertensive medications.
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male- and female-specific SMA analysis, only the associations of
pregnanolone/allopregnanolone sulfate andglucuronide of C10H18O2
(8) with PC1 were close to replicated in batch 2 among females (one
sided-p <0.05, Supplementary Data 7). When tested for evidence of
interaction with sex, only tauro-beta-muricholate had statistically
significant interaction effect (FDR-corrected p =0.014) (Supplemen-
tary Data 8).

Given that half of the discovered and replicated SDB PC1 meta-
bolites were from the progesterone steroids biosynthesis pathway, we
compared and visualized the concentration levels of the eight pro-
gesterone steroids sulfate metabolites with statistically significant
associations with SDB PC1 after FDR correction in batch 1 by age
groups ineach sex stratum.As age increases,we observed a decreasing
trend in the levels of circulating progesterone steroids sulfate meta-
bolites in both men and women. The patterns become more visible in
the rank-normalized metabolites (Supplementary Fig. S2). Sulfated
metabolites of progesterone − 5alpha-pregnan-3beta,20alpha-diol
disulfate, 5alpha-pregnan-3beta,20alpha-diol monosulfate (2), and
5alpha-pregnan-3beta,20beta-diol monosulfate (1), 5alpha-pregnan-
diol disulfate andPregnanolone/allopregnanolone sulfate, werehigher
among younger women compared to youngermen (in age groups <40
and 40–45), while the differences diminished in older age groups
(50–55, 55–60, and >60) thatwould typically include post-menopausal
women. The circulating pregnenolone steroids sulfate metabolites
pregnanediol sulfate (C21H34O5S)*, pregnenetriol sulfate*, and preg-
nenolone sulfate, were higher in men compared to women across all
age groups. The patterns were similar in the two batches.

To compare the SDB SMA results with our prior publication
reporting OSA-metabolite associations30, we examined the overlap
between the OSA and SDB PCs metabolite associations. While none of
the metabolites associated with SDB PCs were included in the OSA

SMA analysis, all metabolites reported as associated with OSA were
included in the present SDB SMA analysis (Supplementary Data 9).
Briefly, all metabolites had some evidence of association with SDB PC1
(p < 0.1 in either batch), but only two metabolites had FDR-corrected
association p <0.05 in the batch 1 discovery analysis.

In a secondary analysis, we compared the associations between
SDB PCs-associated metabolites (FDR-corrected p-value based on
batch 1 analysis for each SBP PC1 or PC2;metabolites reported in Fig. 3)
and the 7 individual SDBphenotypes comprising the SDBPCs. The four
SDB PC2 associated metabolites had the largest evidence of associa-
tion with average oxyhemoglobin saturation during sleep and with
REI3. SDB PC1 associated metabolites were marginally associated with
multiple SDB phenotypes, i.e., did not seem to strongly reflect asso-
ciations with any specific individual SDB phenotype. Three metabo-
lites, 1-stearoyl-2-arachidonoyl-GPC (18:0/20:4), 2-linoleoylglycerol
(18:2) and glucuronide of C10H18O2 (8), had low evidence of associa-
tions with all SDB phenotypes when evaluated individually (p >0.01;
Supplementary Fig. S3), highlighting the contribution of the PCA
approach.

LASSO regression for joint selection and estimation of meta-
bolite associations with SDB PCs in HCHS/SOL batch 1
To identify a set of metabolites that were jointly associated with SDB
PCs, we also implemented a LASSO regression in HCHS/SOL batch 1
(discovery dataset), both in sex-combined and sex-stratified study
samples. 112 metabolites were identified for SDB PC1, and 57 meta-
bolites for SDB PC2, with 14 metabolites overlapping between the two
groups. The breakdown of super pathways of the metabolites are
shown in Supplementary Fig. S4 and coefficients for all metabolites
from LASSO trained in sex-combined and sex-stratified samples are
provided in Supplementary Data 10.

Table 1 | Characteristics of Hispanics/Latinos represented by the metabolomic analytic sample from the HCHS/SOL study

Batch 1 Batch 2

Mean (SD)a Female Male Overall Female Male Overall

n 1874 1425 3299 960 562 1522

Age at baseline 42.82 (15.10) 41.62 (14.94) 42.22 (15.03) 51.89 (12.31) 51.18 (13.73) 51.57 (12.96)

BMI (kg/m2) 30.28 (6.86) 28.87 (5.37) 29.58 (6.20) 30.22 (5.96) 28.68 (5.04) 29.54 (5.62)

Current alcohol drinking 733 (39.1) 886 (62.2) 1619 (49.1) 340 (35.5) 313 (55.7) 653 (43.0)

Current smoker 287 (15.3) 382 (26.8) 669 (20.3) 145 (15.1) 142 (25.4) 287 (18.9)

Physical activity (MET-min/day) 481.45 (757.57) 943.14 (1197.58) 711.22 (1027.14) 331.97 (595.88) 798.99 (1208.27) 538.38 (946.79)

The Alternate Healthy Eating Index (AHEI 2010) 46.81 (7.47) 48.87 (7.47) 47.83 (7.54) 48.31 (7.03) 50.07 (7.42) 49.09 (7.25)

OSA status =OSA, REI3 ≥ 15 (%) 141 (7.5) 240 (16.8) 381 (11.5) 94 (9.8) 116 (20.6) 210 (13.8)

REI0 (events/hr) 14.24 (16.78) 22.20 (21.53) 18.21 (19.69) 18.87 (17.42) 26.05 (21.76) 22.05 (19.78)

REI3 (events/hr) 3.82 (7.73) 8.26 (15.09) 6.03 (12.18) 5.59 (10.28) 10.03 (15.17) 7.56 (12.87)

Average length of each respiratory event
(seconds)

17.82 (4.16) 19.61 (4.52) 18.71 (4.43) 18.47 (4.71) 21.06 (5.31) 19.62 (5.14)

Percentage sleep time with SpO2 < 90% 0.40 (1.50) 1.10 (4.23) 0.75 (3.18) 0.67 (2.26) 1.48 (4.13) 1.03 (3.25)

Sleep-related time in hypoxia (5% sleep <90%
saturation) (%)

42 (2.2) 82 (5.8) 124 (3.8) 32 (3.3) 36 (6.4) 68 (4.5)

Hypoxic burden (%minute/hour) 14.17 (23.38) 26.62 (44.70) 20.37 (36.17) 20.41 (30.99) 33.59 (47.14) 26.26 (39.51)

Minimum SpO2% 88.27 (5.09) 86.70 (6.18) 87.49 (5.71) 86.93 (6.11) 85.38 (6.80) 86.25 (6.47)

Average SpO2% 96.66 (0.68) 96.38 (1.09) 96.52 (0.92) 96.43 (0.82) 96.19 (1.01) 96.32 (0.91)

Baseline diabetes status (ADA)b (%) 381 (20.3) 292 (20.5) 673 (20.4) 277 (28.9) 181 (32.2) 458 (30.1)

Baseline hypertension statusc (%) 613 (32.7) 449 (31.5) 1062 (32.2) 439 (45.7) 256 (45.6) 695 (45.7)

Incident diabetes (ADA)b (%) 183 (12.9) 122 (12.8) 305 (12.9) 118 (12.6) 80 (14.7) 198 (13.4)

Incident hypertensionc (%) 172 (9.2) 127 (8.9) 299 (9.1) 137 (14.3) 85 (15.1) 222 (14.6)
aMeans and percentages were weighted using sampling weights to provides estimates of the HCHS/SOL target population characteristics.
bBaseline and incident diabetes arebasedonAmericanDiabetesAssociationdefinition69, defined as fastingglucose >=126mg/dL, or post-OGTTglucose >=200mg/dLorA1C > = 6.5%, or self-report of
diabetes.
cBaseline and incident hypertension is defined as systolic or diastolic blood pressure greater than or equal to 140/90 respectively, or current use of antihypertensive medications.

Article https://doi.org/10.1038/s41467-024-46019-y

Nature Communications |         (2024) 15:1845 4



We constructed SDB PC1 MRS and SDB PC2 MRS for batch 1 and
batch 2 HCHS/SOL participants based on results from the LASSO
penalized regression. Study sample means and SD used in standar-
dizing the MRSs are provided in Supplementary Data 11. As expected
by construction, all SDB MRSs were significantly associated with their
corresponding SDB PCs in batch 1 in all models. The associations
replicated for sex-combined SDBMRSs but not for sex-specific SDB PC
2 MRS for females in batch 2 (Table 3). The sex-specific SDB PC MRSs,
when replicated in batch 2, did not show stronger associations with
their corresponding SDB PCs.

In the sensitivity analysis, we constructed SDB PC MRSs in a pro-
cess restricted exclusively to batch 1 participants (including both PCA
and MRS derivation). We then constructed the resulting b1-SDB PCs
and b1-SDB PC MRSs among batch 2 participants. In batch 2, b1-SDB
PCs and their corresponding b1-SDB PC MRSs were highly associated
(Supplementary Data 12).

Associations with incident cardiometabolic outcomes
In the HCHS/SOL sleep study target population, SDB PC1 showed
positive associations with incident diabetes and hypertension over an
average of 6.1 years (4.3–9.4 years) in both Model 1 and 2 among the
individuals without diabetes or hypertension at baseline, respectively.
These composite phenotypes showed stronger associations than the
individual SDB measures REI3 and hypoxic burden. SDB PC2 was not
significantly associated with either incident outcome (Supplementary
Data 13).

In the batch-combined analysis, both SDBMRSs were significantly
associated with increased incidence rate ratio (IRR) for incident
hypertension and incident diabetes mellitus, when adjusted for
demographic and lifestyle risk factors (Fig. 5 and Supplementary
Data 14). One SD increase of SDB PC2 MRS was associated with a 28%
(IRR: 1.28 95% CI: 1.12–1.46, p =0.0004) higher incidence rate of
hypertension and a 30% (IRR: 1.30 95% CI: 1.12–1.51, p = 0.0005) higher
incidence rate of diabetes, adjusted for demographic and lifestyle
covariates (Supplementary Data 14). The effect estimates were slightly
lower for SDB PC1 MRS when adjusting for the same covariates (Fig. 5
and Supplementary Data 14). For comparison, we also computed
OSA MRS, 1 SD increase of OSA MRS was associated with a 42% (IRR:
1.42 95% CI: 1.27–1.60, p < 0.0001) higher incidence rate of hyperten-
sion and a 57% (IRR: 1.57 95% CI: 1.38–1.80, p <0.0001) higher inci-
dence rate of diabetes. None of the single metric physiological
phenotypes (i.e., REI3, HB) were significantly associated with incident
cardiometabolic outcomes in both models (Fig. 5 and Supplementary
Data 14).

Secondary analysis was carried out by stratifying the study sam-
ples for incident diabetes into two subgroups: individuals with normal
glucose regulation (n = 1376) and with impaired glucose regulation
(n = 1532) at baseline. The observed associations between SDB PC1
MRS and incident diabetes became weaker in the two strata and lost
statistical significance. The association between SDB PC2 MRS was
statistically significant in both groups, with a stronger association
observed in the normal glycemic group (IRR = 1.43 95% CI: 1.09–1.87,
p = 0.009) compared to the impaired glucose regulation group
(IRR = 1.25 95% CI: 1.08–1.44, p = 0.002), both adjusted for demo-
graphic and lifestyle covariates (Supplementary Data 14). The asso-
ciation betweenOSAMRSand incident diabetes also becameweaker in
both strata compared to the combined sample, and remained statis-
tically significant only in the pre-diabetic group (IRR= 1.57 in the
combined group, IRR = 1.38 in the pre-diabetic group, and IRR = 1.32 in
the normal glycemic group) when adjusted for demographic and life-
style covariates.

Focusing on OSA MRS, which had the strongest associations with
incident outcomes among all MRSs, we also compared risks for inci-
dent outcomes by quartiles. Compared with the lowest quartile of the
OSA MRS, the top quartile showed more than a three-fold increase in
incidence rate for diabetes (IRR: 3.35 95% CI: 2.3–4.89, p <0.0001) in
Model 1 and its association remained statistically significant when
adjusted for lifestyle covariates in addition (Model 2 IRR: 3.26 95% CI:
2.22–4.79, p < 0.0001) (Supplementary Fig. S5 and Supplementary
Data 15).

There is no evidence supporting stronger associations with inci-
dent outcomes among SDB PCs MRSs trained in each sex stratum
separately versus the sex-combined MRSs.

In the sensitivity analysis, we considered b1-SDB PC MRSs devel-
oped via an analytic pipeline including both PCA and LASSO analysis
restricted to batch 1 participants who were not taking any anti-
hypertensive or antidiabetic medications at baseline.We refer to these
MRSs as b1-SDB PC1 and b1-SDB PC2 MRSs. These MRSs were each
associated with increased risks for incident diabetes among batch 2
participants, while b1-SDB PC1MRS but not b1-SDB PC2was associated
with increased risks for incident hypertension (associations were in
both regression Models 1 and 2; Supplementary Data 16). In compar-
ison, SDBPC2MRS from themain analysiswas associatedwith incident
hypertension. Otherwise, the effect estimates of b1-SDB PCMRSs were
generally stronger than the SDB PC MRSs developed in the primary
analysis. Lack of an observed association of b1-SDB PC2 MRS with
incident hypertension, and differences in themagnitude of effect sizes
between the main and the sensitivity analyses should be interpreted
with caution due to lower sample sizes in the sensitivity analysis and
the difference in the sensitivity analysis sample representing healthier
individuals.
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REI3: Respiratory Event Index (REI) computedover all respiratory events, defined as
apneas or hypopneas with at least 50% cannula flow reduction for a minimum
duration of 10 s with >=3% oxygen desaturation; REI0 REI computed over all
respiratory events regardless of oxygen desaturation; HB hypoxic burden; avgE-
ventLength the average length of apnea and hypopnea events (combined); min-
SpO2 minimum oxyhemoglobin saturation during sleep; avgSpO2 average
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provided in Supplementary Data 17.
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Discussion
We constructed new SDB measures based on seven correlated SDB
phenotypes using PCA, weighted to represent the target population of
the HCHS/SOL study. High scores for SDB PC1 appeared to char-
acterize a SDBphenotypedescribedby a high frequencyofobstructive
events and marked hypoxemia – a pattern typical of severe SDB and
more often observed in men compared to women. In contrast, high
SDB PC2 reflected a subphenotype that correlated mostly strongly
with shorter event duration, and to a lesser degree, with hypoxia
measures, while being almost uncorrelated with traditional event fre-
quency measures (REI0 and REI3). In the HCHS/SOL, higher SDB PC2
was more common in younger women, individuals with more severe
insomnia, self-reported poor sleep, frequent awakenings and longer
sleep duration. SDB PC2 is highly correlated with shorter respiratory
event duration, which has been reported in other cohorts to be more
common in females, in younger individuals, and associatedwith higher
arousal responses for any given change in oxygen saturation33. More-
over, in a discovery-replication approach within distinct subsamples

from the HCHS/SOL, we identified multiple metabolites individually
associated with each SDB PC, as well as metabolites that are collec-
tively associated with SDB. We used the latter set of metabolites to
construct MRSs of SDB aggregating multiple metabolites. The
SDB MRSs have stronger associations with incident cardiometabolic
outcomes – diabetes mellitus and hypertension – compared to single
SDB metrics, REI3 and hypoxic burden.

Higher concentrations of multiple sulfated metabolites of pro-
gesterone and its precursor pregnenolone were associated with lower
(healthier) values of SDB PC1 (FDR-corrected p < 0.05) in the discovery
dataset: pregnanolone/allopregnanolone sulfate (which replicated), as
well as additional seven progestin steroids (highlighted in green in
Fig. 6). Since progesterone in circulation is quickly metabolized by
the liver and has a half-life of approximately 5min34, only the glucur-
onide and sulfatemetabolites of progesterone steroidsweremeasured
in the Metabolon platform. Progesterone is a female reproductive
hormone that is mostly synthesized in ovaries and by the placenta
during pregnancy, and to a lesser degree in adrenal cortex and other

Table 2 | Characteristics of study participants with low and high values of SDB PCs

SDB PC1 SDB PC2

Mean (SD)a Top 10% Bottom 10% Top 10% Bottom 10%

n 1165 1166 1165 1166

Demographic variables

Age at baseline 53.92 (12.22) 29.88 (10.89) 38.22 (15.30) 43.96 (14.38)

Sex =Male (%) 649 (55.7) 301 (25.8) 404 (34.7) 447 (38.3)

Sleep disordered breathing

REI0 (events/hr) 57.79 (25.18) 2.03 (1.67) 14.70 (26.05) 17.30 (13.22)

REI3 (events/hr) 37.38 (23.05) 0.08 (0.15) 7.75 (19.34) 2.17 (3.13)

Minimum SpO2% 74.12 (7.34) 91.92 (1.53) 85.62 (7.58) 91.49 (1.81)

Average SpO2% 94.61 (1.65) 97.07 (0.33) 95.92 (1.49) 97.02 (0.29)

Percent sleep time with SpO2< 90% 7.50 (8.65) 0.01 (0.05) 1.76 (5.87) 0.02 (0.09)

Sleep-related time in hypoxia (5% sleep <90% saturation) (%) 466 (40.0) 0 (0.0) 118 (10.1) 0 (0.0)

Average length of each respiratory event (seconds) 22.44 (5.32) 16.03 (5.05) 14.59 (2.73) 23.38 (4.47)

Hypoxic burden (%minute/hour) 109.42 (73.75) 1.16 (1.11) 20.74 (52.43) 14.34 (11.73)

Lifestyle variables

BMI (kg/m2) 33.94 (6.41) 26.82 (5.74) 30.78 (7.43) 27.31 (4.79)

Current alcohol drinking 536 (46.0) 591 (50.7) 551 (47.4) 520 (44.7)

Current smoker 176 (15.1) 208 (17.9) 311 (26.7) 171 (14.7)

Comorbidities

Incident diabetes (ADA)b(%) 160 (18.6) 46 (6.3) 95 (12.0) 118 (13.1)

Baseline diabetes status (ADA)b(%) 450 (38.6) 86 (7.4) 255 (21.9) 195 (16.7)

Incident hypertensionc(%) 125 (10.7) 56 (4.8) 107 (9.2) 105 (9.0)

Baseline hypertension statusc(%) 662 (56.8) 100 (8.6) 337 (28.9) 317 (27.2)

Self-reported sleep duration and sleep disturbance

Sleep duration (hours) 7.87 (1.42) 8.32 (1.44) 8.07 (1.57) 7.89 (1.22)

Women’s Health Initiative Insomnia Rating Scale total score 6.95 (5.42) 6.31 (5.22) 7.38 (5.44) 6.24 (5.15)

Typical night’s sleep in past 4weeks (restless or very restless) (%) 213 (20.4) 208 (20.7) 256 (24.7) 187 (18.2)

Take sleeping pills (%) 83 (7.2) 52 (4.5) 115 (10.1) 76 (6.6)

Trouble getting back to sleep (3 or more times a week) (%) 214 (18.8) 193 (17.0) 252 (22.5) 214 (18.9)

Wake up earlier than you plan (3 or more times a week) (%) 269 (23.3) 235 (20.5) 259 (22.7) 256 (22.2)

Wake up several times at night (3 or more times a week) (%) 487 (42.2) 328 (28.6) 426 (37.3) 383 (33.1)

Trouble falling asleep (3 or more times a week) (%) 248 (21.5) 262 (22.9) 334 (29.3) 263 (22.8)

Epworth Sleepiness Scale total score 7.05 (5.31) 5.25 (4.06) 5.55 (4.54) 5.52 (4.71)

Self-reported snoring (6-7 nights a week) (%) 626 (65.7) 67 (8.5) 248 (29.1) 200 (25.2)

SDB sleep disordered breathing, PC principal component, OSAmoderate or severe OSA (REI3 ≥ 15)
aMeans and percentages were weighted using sampling weights to provides estimates of the HCHS/SOL target population characteristics.
bBaseline and incident diabetes arebasedonAmericanDiabetesAssociationdefinition69, defined as fastingglucose >=126mg/dL, or post-OGTTglucose >=200mg/dLorA1C > = 6.5%, or self-report of
diabetes.
cBaseline and incident hypertension is defined as systolic or diastolic blood pressure greater than or equal to 140/90 respectively, or current use of antihypertensive medications.
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tissues in both men and women, and in testes in men35. All proges-
terone steroid sulfates were present in both men and women in our
dataset (Supplementary Fig. S2). The pattern of differences in these
metabolites between sexes according to age suggests that sulfated
metabolites of progesterone in women are of gonadal origin, whereas
the sulfated metabolites of pregnenolone are of adrenal origin. Future
studies will need to verify this possibility in cohorts where the date of
menopause is known. If true, these data point to the possibility that
different classes of steroids of different origins may be involved in the
development of SDB, and its association with incident hypertension
and diabetes mellitus.

The influence of progesterone- and pregnenolone-derived ster-
oids on SDB has been a source of interest for decades given the con-
siderable sexual dimorphismof this trait– i.e., the prevalence, severity,
and physiological subtype all vary by sex. For example, while men are
3- to 4-fold more likely to have SDB than women, this sex differences
attenuates after women reach menopause36. Women with SDB have a
less collapsible airway,more hypopneas relative to apneas, and shorter
event duration thanmen33. Progesterone is a proposedmechanism for
protecting women from SDB. It is an anti-oxidant37 that also is a
respiratory stimulant that increases hypoxic and hypercapnic ventila-
tory response (including through effects on CO2 receptors), increases
genioglossusmuscle tone anddecrease upper airwaycollapsibility38–40.
Animal studies have shown the important roles of nuclear and mem-
brane progesterone receptors mediating the stability of the breathing
pattern and therapeutic effects in treating apnea of prematurity in
both male and female mice41. SDB increases substantially among
postmenopausal women42–44, which may, at least in part, relate to
changes in sex hormones. Two small cross-sectional studies reported

inverse between progesterone levels and OSA43,45. Post-menopausal
women who use hormone replacement therapy that includes both
estrogen and progesterone have lower respiratory event frequencies
than their counterparts who do not use this therapy46. On the other
hand, clinically induced sex hormone deficiency in young women has
not associated with increased SDB47. The complexity of interpreting
effects due to exogenous versus endogenous progesterone levels,
bioavailability, receptor sensitivity, and the effects of other sex ster-
oids has limited our understanding of role of progesterone steroids in
the pathogenesis of SDB. In our study, the association with SDB PC1
suggests protective associations of progesterone steroids sulfate
metabolites with SDB phenotype characterized by a high frequency of
obstructive events and marked hypoxemia; while this association was
observed in both women andmen, this phenotype was more severe in
men. Future longitudinal assessments of sex hormones and SDB may
further elucidate mechanisms for SDB development across the life
course.

Higher values of SDB PC2 were associated with lower concentra-
tions of three sphingomyelins: sphingomyelin(d18:2/24:2), sphingo-
myelin(d18:2/24:1,d18:1/24:2), sphingomyelin(d18:2/23:0,d18:1/23:1,
d17:1/24:1). Sphingomyelin has long been regarded as an inert struc-
tural component of the plasma membrane. However, recent studies
have showed that it also plays an important role in the pathogenesis of
cardiovascular, metabolic and neurodegenerative disease, potentially
via mitochondrial dysfunction and abnormal reactive oxygen species
(ROS) formation48–51. Dysregulation of sphingomyelin has been impli-
cated in immune regulation, inflammation and apoptosis and acute
and chronic lung pathology52. Several studies also reported circulating
and urinary sphingolipids were altered among SDB patients and the
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Fig. 3 | Single metabolite association analysis in sex-combined analysis in
batch 1. -log10(p) is based on unadjusted two-sidedpderived by accounting for the
complex sampling design, using adjusted standard errors to compute the t-statistic
in single metabolite association analysis with SDB PCs as dependent variables.
*indicates FDR-corrected p-value, derived using the Benjamini-Hochberg method
to control false discovery rate (FDR) for multiple testing among metabolites in all
models for each SDB PC in the discovery dataset (batch 1) is below 0.05. sdb_pc1:
the first principal component of the seven sleep disordered breathing traits
included in the principal component analysis; sdb_pc2: the second principal com-
ponent of the seven sleep disordered breathing traits included in the principal
component analysis. Model 1 adjusted for demographic variables, including age,
sex, field center, Hispanic/Latino background (Mexican, Puerto Rican, Cuban,

Central American,Dominican, andSouthAmerican andother/multi) andbodymass
index (BMI). Model 2 adjusted for all model 1 covariates and lifestyle variables –
alcohol use, cigarette use, total physical activity (MET-min/day), and diet (Alter-
native Healthy Eating Index 2010) in addition to demographic variables. Model 3
adjusted for all model 1 and 2 covariates and comorbidities - indicators for diabetes
and hypertension, and continuous measures of fasting insulin, fasting glucose,
HOMA-IR, HDL, LDL, total cholesterol, triglycerides, systolic blood pressure and
diastolic blood pressure. Metabolites with *indicate they were identified based on
accurate mass data, retention time and mass spectrometry but not reference
standards. Therefore, the verification is not as robust as metabolites without *.
Source data are provided in Supplementary Data 4.
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potentials for biomarkers53,54. Abnormalities in multiple lipid species
have been implicated in sleep and circadian disruption55. Future stu-
dies are needed to understand the role of these metabolites in SDB.

The associations between these sphingomyelins and SDB PC2
were no longer statistically significant (FDR-corrected p >0.05) in
analysis adjusted for comorbidities (blood pressure-related pheno-
types, diabetes and glycemic phenotypes, and cholesterol and lipid
measures). Since diabetes mellitus and hypertension are common
comorbidities to SDB, it is possible that these PC2-associated meta-
bolites may partly reflect metabolic state related to these diseases,
rather than being specific to SDB. Sphingolipids have been shown to
mediate loss of insulin sensitivity, and to promote diabetic proin-
flammatory state, although the roles of specific sphingolipid species
and pathways remain obscure56.

It should be recognized also that the SDB PCs in this study were
not constructed with the goal of developing new SDB phenotypes and
did not utilize comprehensive polysomnography. Future work should
build on emerging literature of subtypes of SDB19,57,58 and characterize
their metabolomics correlates and potential differences
between them.

We found that metabolic scores reflecting SDB better predicted
adverse cardiometabolic outcomes compared to the physiological
phenotypes such as REI or those measuring hypoxia. We developed
SDBMRSs, expanding our earlier work on OSAMRS30. We now further
studied the association of the MRSs with incident cardiometabolic
outcomes. Previous work in HCHS/SOL demonstrated that SDB was
associated with incident hypertension and diabetes and insomnia was
associated with incident hypertension20. Other studies also have
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SDB PC1: the first principal component of the seven sleep disordered breathing
traits included in the principal component analysis; SDB PC2: the second principal
component of the seven sleep disordered breathing traits included in the principal
component analysis. Model 1 adjusted for demographic variables, including age,
sex, field center, Hispanic/Latino background (Mexican, Puerto Rican, Cuban,
Central American, Dominican, and South American and other/multi) and body
mass index (BMI).Model 2 adjusted for allmodel 1 covariates and lifestyle variables
– alcohol use, cigarette use, total physical activity (MET-min/day), and diet
(Alternative Healthy Eating Index 2010) in addition to demographic variables.
Model 3 adjusted for all model 1 and 2 covariates and comorbidities - indicators for
diabetes and hypertension, and continuous measures of fasting insulin, fasting
glucose, HOMA-IR, HDL, LDL, total cholesterol, triglycerides, systolic blood

pressure and diastolic blood pressure. model_1.b1: model 1 in batch 1(n = 3299
samples);model_2.b1:model 2 in batch 1(n = 3256 samples); model_3.b1:model 3 in
batch 1(n = 3182 samples); model_1.b2: model 1 in batch 2(n = 1522 samples); mod-
el_2.b2: model 2 in batch 2(n = 1500 samples); model_3.b2: model 3 in batch
2 (n = 1457 samples). * indicates FDR-corrected p <0.05 in batch 1 and FDR-
correctedone-sided p <0.05 in batch 2. Data are presented as effect estimates with
95% confidence intervals. P-values were derived from 1 degree-of-freedom Wald
test, followed by False Discovery Rate Control (FDR). Batch 1 analysis used two
sided tests and Batch 2 analysis used one sided tests. Exactp values are provided in
Supplementary Data 4. Metabolites with * indicate they were identified based on
accurate mass data, retention time and mass spectrometry but not reference
standards. Therefore, the verification is not as robust as metabolites without *.
Source data are provided in Supplementary Data 18.
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demonstrated associations between SDB with cardiometabolic and
cardiovascular disorders59,60. Here, we saw that MRSs had stronger
associations with incident diabetes and hypertension compared to
measured physiological traits (REIs, hypoxia-related metrics, and
SDB PCs), suggesting that the plasma-based SDB-related metabolites
may be better markers of cardiometabolic risk than are physiological
metrics made from a single overnight sleep study. While we are unable
to verify this hypothesis using existing data, one explanation for this
discrepancy is that there is variability in phenotypes generated from
single-night polygraphy61, reducing the predictive ability of derived
physiological traits. In contrast, metabolomic profiles constructed as
MRS may be more stable. In addition, MRS may better describe the
metabolomic environment compared to SDB phenotypes that focus
on breathing-related variables. Further, when examining only indivi-
duals with normal glycemic levels at baseline, the SDB PC2 MRS
exhibited a more robust association with incident diabetes compared
to the MRS derived using a simpler OSA phenotype (a binary measure
SDB;null association in the analysis). This suggests a promising role for
the SDB PC2MRS for identifying individuals with SDB at elevated risks
of developing diabetes before the onset of glucose dysregulation (i.e.,
early-stage diabetes). Given the null findings ofmany SDB intervention
trials who recruited patients on the basis of physiological traits, future
studies can evaluate the use of metabolic markers for identifying
individuals who may benefit from SDB treatment.

Strengths of this study include the use of a large population of
under-studied Hispanic/Latino adults, large panel of measured
metabolites, rigorous analysis including a replication study, and
assessment of association of constructed MRSs as well as of tradi-
tional SDB severity measures with incident hypertension and dia-
betes. The study also has a few limitations. Our study population is
based on the HCHS/SOL cohort, which was designed to be repre-
sentative of the diverse Hispanic/Latino population in the U.S. His-
torically, this population has been under-represented in research
despite its risk for several adverse health outcomes. Future work
should be done in other studies and populations to increase the
generalizability of the findings. It is worth noting that in our previous
study, OSA-metabolomics associations were replicated in a different
racial minority cohort, Multi-Ethnic Study of Atherosclerosis
(MESA)30. In this work we did not attempt to replicate the observed
associations in MESA, because of the limited number of metabolites
common in both HCHS/SOL and MESA. We used PCA, a linear
dimension reduction method. Despite its advantage of interpret-
ability, it could be less flexible than other non-linear techniques, and
may not be an optimal method if the underlying structure among
SDB phenotypes is non-linear. While it is attractive to interpret the
SDB PCs as newly proposed clinical SDB measures, it is important to
clarify that they were utilized to capture the variance ofmultiple SDB
phenotypes in our dataset in a parsimonious manner rather than as

Table 3 | Estimated associations between SDB PC metabolite risk scores and their respective phenotypes, in batch 1 and 2

Both Female Male

n Coef [95%CI] p n Coef [95%CI] p n Coef [95%CI] p

Batch 1

SDB PC1 MRS

Model 1 3299 0.29 [0.24, 0.34] 2.03E-33 1874 0.31 [0.25, 0.36] 1.55E-27 1425 0.26 [0.19, 0.33] 1.44E-12

Model 2 3256 0.30 [0.25, 0.36] 4.75E-34 1854 0.31 [0.25, 0.36] 2.72E-28 1402 0.26 [0.19, 0.33] 9.72E-13

SDB PC2 MRS

Model 1 3299 0.23 [0.19, 0.28] 6.04E-22 1421 0.24 [0.17, 0.32] 7.71E-10 1425 0.23 [0.17, 0.28] 1.12E-14

Model 2 3256 0.23 [0.18, 0.28] 5.50E-22 1406 0.23 [0.15, 0.30] 1.20E-09 1402 0.22 [0.17, 0.28] 2.35E-15

Sex Specific SDB PC1 MRS

Model 1 1421 0.32 [0.26, 0.37] 1.94E-32 1425 0.32 [0.26, 0.38] 2.82E-26

Model 2 1406 0.32 [0.27, 0.37] 5.74E-35 1402 0.32 [0.26, 0.37] 8.50E-28

Sex Specific SDB PC2 MRS

Model 1 1421 0.13 [0.06, 0.19] 1.12E-04 1425 0.23 [0.17, 0.30] 2.77E-12

Model 2 1406 0.10 [0.04, 0.17] 1.70E-03 1402 0.22 [0.16, 0.29] 4.38E-12

Batch 2

SDB PC1 MRS

Model 1 1522 0.15 [0.08, 0.23] 1.18E-04 960 0.09 [0.01, 0.19] 6.26E-02 562 0.20 [0.10, 0.31] 1.37E-04

Model 2 1500 0.15 [0.07, 0.23] 2.29E-04 950 0.08 [−0.01, 0.17] 9.28E-02 552 0.20 [0.10, 0.30] 5.50E-05

SDB PC2 MRS

Model 1 1484 0.14 [0.05, 0.22] 1.54E-03 941 0.13 [0.01, 0.26] 3.72E-02 562 0.14 [0.05, 0.23] 2.22E-03

Model 2 1463 0.14 [0.06, 0.22] 4.57E-04 932 0.13 [0.02, 0.24] 2.50E-02 552 0.15 [0.05, 0.25] 2.32E-03

Sex Specific SDB PC1 MRS

Model 1 941 0.08 [0.00, 0.15] 4.53E-02 562 0.13 [0.04, 0.21] 2.21E-03

Model 2 932 0.07 [−0.01, 0.14] 7.52E-02 552 0.13 [0.04, 0.21] 2.63E-03

Sex Specific SDB PC2 MRS

Model 1 941 0.03 [−0.09, 0.14] 6.61E-01 562 0.12 [0.02, 0.22] 1.86E-02

Model 2 932 0.03 [−0.07, 0.13] 4.92E-01 552 0.13 [0.04, 0.22] 5.17E-03

Coef: coefficients are estimates of the incident rate ratio per 1 SD increase in ametabolite risk score (MRS). p-values were derived from a two-sided, 1 degree-of-freedomWald test. Bolded values in
the p column indicate their values are below 0.05. Model 1 adjusted for demographic variables, including age, sex, field center, Hispanic/Latino background and body mass index (BMI); Model 2
adjusted for allmodel 1 covariates and lifestyle variables – alcohol use, cigarette use, total physical activity (MET-min/day), anddiet (AlternativeHealthyEating Index 2010) in addition to demographic
variables.
SDB PC1MRS/SDBPC2MRS:metabolite risk scores developed based oncoefficients fromLASSO regression trained in both sex strata combined topredict the outcome (SDBPC1, or SDB PC2) in the
discovery dataset (batch 1). Sex-specific SDB PC1 MRS/PC2MRS: metabolite risk scores developed based on coefficients from LASSO regression trained in each sex stratum to predict the outcome
(SDB PC1, or SDB PC2) in the discovery dataset (batch 1).
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newclinicalmeasures. A new clinicalmeasure should ideally be based
on careful consideration of reliability, validity, and feasibility of each
metric as made in clinical settings, where its predictive ability would
be assessed. This is beyond the scope of our current study. Infor-
mation loss may have occurred secondary to the use of rank nor-
malization of the SDB phenotypes and the metabolite levels at a
preprocessing step. The discovery and the replication datasets dif-
fered by age and several health characteristics, which may have
reduced the ability to replicate findings. Given the observational
nature of the study, and the cross-sectional association between the
SDBPCs andmetabolites, we cannot drawcausal inferences. Thus, we
cannot determine whether metabolite levels contribute to more
severe SDB, or if SDB severity causes metabolomic changes, or if
there are common mechanisms that influence both SDB and meta-
bolites. Another limitation of this analysis is that some of the parti-
cipants may have been treated for OSA. Less than 1% of the study
participants (29 out of 3299 batch 1, and 17 out of 1522 batch 2 par-
ticipants) reported “ever prescribed CPAP, BIPAP or oral device

treatment”. Still, it is possible that some participants started treat-
ment following the results from their home sleep apnea testing at the
baseline examination. While it is unknown if these participants were
actually treated or adhered to treatment, it is possible that OSA
treatment in some study participants may have weakened the
observed associations with incident cardiometabolic outcomes.
Lastly, SDB MRSs do not include all the significantly associated
metabolites, including the replicated metabolite pregnanolone/
allopregnanolone sulfate, because only the metabolites in con-
tinuous format were used in the weighted sum forming the
SDB MRSs.

Compared to our previous study30 of OSA-metabolomics asso-
ciations, the current analysis focuses on an expanded dataset, con-
sistent of two batches from the HCHS/SOL, whereas the previous
analysis used the first HCHS/SOL batch and a different study, MESA. In
contrast to the previous analysis, both HCHS/SOL batches used the
same metabolomics platform, allowing for investigation of a sub-
stantially larger number of metabolites. Other differences from the
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Fig. 5 | Association between SDB phenotypes and incident cardiometabolic
outcomes in the combined batch. * indicates p <0.05. ** indicates p <0.01.
*** indicates p <0.001. Incidence rate ratios (IRR) were calculated using survey-
weighted generalized linear regressions for each pair of cardiometabolic outcome
(i.e., incident diabetes, incident hypertension) and SDB related phenotypes as the
predictor in the combineddataset (batch 1 andbatch 2), and arepresented as effect
estimates with 95% confidence intervals (CIs). p values were derived from a one
degree-of-freedom Wald test. Exact IRR, 95% CIs and p values are provided in
SupplementaryData 14.Model 1 adjusted for demographic variables, including age,
sex, field center, Hispanic/Latino background (Mexican, Puerto Rican, Cuban,
Central American,Dominican, andSouthAmerican andother/multi) andbodymass
index (BMI). Model 2 adjusted for all model 1 covariates and lifestyle variables –
alcohol use, cigarette use, total physical activity (MET-min/day), and diet (Alter-
native Healthy Eating Index 2010) in addition to demographic variables. REI3
Respiratory Event Index (REI) computed over all respiratory events, defined as

apneas or hypopneas with at least 50% cannula flow reduction for a minimum
duration of 10 s with >=3% oxygen desaturation; HB hypoxic burden; SDB PC1MRS:
metabolite risk score calculated based on the coefficients from LASSO regression
trained in both sexes combined to predict SDB PC1 in the discovery dataset
(batch 1); SDB PC2 MRS metabolite risk score calculated based on the coefficients
from LASSO regression trained in both sexes combined to predict SDB PC2 in the
discovery dataset (batch 1); OSA LASSO MRS: metabolite risk score calculated
based on coefficients from LASSO regression trained to predict OSA in previous
publication30; incident_dm: Incident diabetes (fasting glucose >=126mg/dL, or
post-OGTT glucose >=200mg/dL or A1C > = 6.5%, or self-report of diabetes),
n = 2908 samples for Model 1 and n = 2874 samples for Model 2; incident_htn:
incident hypertension (systolic or diastolic blood pressure is greater than or equal
to 140/90 or participant self-reported as currently taking antihypertensive media-
tions), n = 2388 samples forModel 1 and n = 2360 samples forModel 2. Source data
are provided in Supplementary Data 14.
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previous publication include a different set of phenotypes, and the
additional study of MRS associations with incident cardiometabolic
outcomes. We report the associations of the 7 metabolites associated
with OSA in HCHS/SOL in the previous manuscript (notably, of these
only 4 replicated in MESA), with SDB phenotypes (Supplementary
Data 9). Allmetabolites had evidence of associationwith at least one of
the SDB PCs in at least one of the HCHS/SOL batches. However, only
two associations passed FDR correction in batch 1 analysis in the cur-
rent SDB analysis. It is important to consider the implications of these
results for the development of clinical metabolomics biomarkers.
Importantly, both the specific phenotypes and the set of metabolites
used in association analyses are important and variation of either
phenotypes or metabolites can lead to very different results. Similarly,
the set of metabolites considered in the joint regression (LASSO or
another approach) analysismay also result in identification of different
biomarkers.While thismay indicate a potential limitation of biomarker
development using untargeted metabolomics, it also suggests
opportunities to identify metabolite associations and develop bio-
markers for subphenotypes of a disease, e.g., for SDB that is driven by
specific endotypes. It also highlights the importance of replication
analyses and for the accumulation of evidence acrossmultiple studies,
followed by rigorous targeted studies.

To summarize, using a discovery-replication study design, we
identified and replicated multiple metabolites associated with SDB
after being corrected for multiple comparisons. We constructed SDB
MRSs which exhibited stronger associations with cardiometabolic
sequalae of SDB, compared with physiologic SDB measures, including
after accounting for demographic and lifestyle factors. These findings
provide a strong basis for the use of metabolomics in studying SDB,
including for clarifying and measuring risks for incident outcomes by
different quantitative SDB phenotypes and dichotomous subtypes.
Future evaluations are needed to study the use of MRSs for risk stra-
tification, treatments response, and ultimately as biomarkers that
guide diagnosis and treatment decisions.

Methods
Ethics statement
The HCHS/SOL was approved by the institutional review boards (IRBs)
at each field center, where all participants gave written informed
consent, and by the Non-Biomedical IRB at the University of North
Carolina at Chapel Hill, to theHCHS/SOLData CoordinatingCenter. All
IRBs approving the HCHS/SOL study are: Non-Biomedical IRB at the

University ofNorthCarolina atChapelHill. ChapelHill, NC; Einstein IRB
at the Albert Einstein College ofMedicine of Yeshiva University. Bronx,
NY; IRB at Office for the Protection of Research Subjects (OPRS),
University of Illinois at Chicago. Chicago, IL; Human Subject Research
Office, University of Miami. Miami, FL; Institutional Review Board of
San Diego State University, San Diego, CA. All methods and analyses of
HCHS/ SOL participants’ materials and data were carried out in
accordance with human subject research guidelines and regulations.
This work was approved by the Mass General Brigham IRB and by the
Beth Israel Deaconess Medical Center Committee on Clinical
Investigations.

The Hispanic Community Health Study/Study of Latinos
The Hispanic Community Health Study / Study of Latinos (HCHS/SOL)
is a prospective community-based cohort study of 16,415 Hispanic/
Latino individuals aged 18–74 years at the baseline examination (2008-
2011)62. Individuals were selected into the study using a multi-stage
stratified random sampling from four geographic regions: Bronx NY,
Chicago IL, Miami FL, and San Diego CA. The sampling strategy and
studydesignwerepreviously described63. Of study participants, 12,803
individuals were genotyped. Gender was self-reported according to a
multiple-choice question with “male” and “female” as potential
responses, and was later verified as biological sex for all genotyped
individuals. Fasting blood samples were collected at the baseline
examination. Within a week of the baseline examination in the clinic,
14,440 individuals were assessed for SDB using a validated Type 3
home sleep apnea test (ARES Unicorder 5.2; B-Alert, Carlsbad, CA) that
measured nasal air-flow, position, snoring, heart rate and oxyhe-
moglobin saturation3. Among the baseline HCHS/SOL participants,
11,623 returned to a second clinic visit (visit 2) from 2014 to 2017, on
average 6 years after the first visit.

Metabolomics profiling and quality control
OfHCHS/SOLparticipants fromthebaseline examinationwho alsohad
genetic data, 4004 individuals were selected at random for metabo-
lomics profiling of fasting serum samples collected at baseline
(metabolomics batch 1, processed in 2017). In 2021, additional
2368 serum samples from 2330 participants, also collected at baseline,
were profiled in a second metabolomics batch 2. The second batch
metabolomics data measured in HCHS/SOL was obtained based on
three criteria. First, it included 50 samples for quality control analysis
between the first and second batch. Second, it added individuals who

Fig. 6 | Biosynthesis of progesterone steroids. Metabolites highlighted in green
indicate FDR-corrected p <0.05 in the single metabolite association (SMA) analysis
for SDB PCs in the discovery dataset (batch 1) inModel 1 adjusted for demographic

variables, including age, sex, field center, Hispanic/Latino background (Mexican,
PuertoRican, Cuban, Central American, Dominican, andSouthAmerican andother/
multi) and body mass index (BMI).
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did not have metabolomics measured in the first batch. Including, it
sampled a subset of individuals who participated in the ECHO-SOL
ancillary study64. The ECHO-SOL ancillary study participants were a bit
older on average compared to the entire cohort: a participant had to
be at least 45 years old at the timeof ECHOexam,where the ECHO-SOL
exam took up to 3 years after a participant’s baseline exam. It also
sampled at random individuals with eGFR measures available from
both the baseline and second HCHS/SOL exams.

Serum samples were stored at −70 °C at the HCHS/SOL Core
Laboratory at the University of Minnesota until analysis by Metabo-
lon, Inc. (Durham, NC) in 2017 (batch 1) and 2021 (batch 2). Serum
samples were then extracted and prepared using Metabolon’s stan-
dard solvent extraction method. Prior to extraction, samples were
split into equal parts for untargeted analysis on both the gas
chromatography-mass spectrometry and liquid chromatography-
mass spectrometry (GC-MS and LC-MS)-based metabolomic quanti-
fication platforms65,66. Instrument variability was determined by cal-
culating the median relative standard deviation (SD) for the internal
standards added to each sample prior to injection into the mass
spectrometers. Overall process variability was determined by calcu-
lating the median relative SD for all endogenous metabolites (i.e.,
non-instrument standards) present in 100% of the technical replicate
samples. Metabolite quantitation was relative, so that relationship
between metabolite levels between metabolites and between indi-
viduals in the same sample are consistent, but the specificmetabolite
concentration for a given person and a given metabolite values may
be different from those obtained by an absolute quantitation
method. Detailedmethods ofmetabolite assaying byMetabolon, Inc,
are provided in Supplementary Note 1.

We tooka discovery-and-replication approachusing batch 1 as the
discovery and batch 2 as the replication dataset. Preprocessing of the
metabolomic data is described in Supplementary Fig. S6. First, we
removed batch 2 individuals who overlapped with batch 1 and dupli-
cated samples from the same individuals, resulting in 2178 remaining
observations. Next, we keptmetabolites thatwere known and available
in both batches and excluded xenobiotics. We also excluded meta-
bolites withmissing values inmore than 75%of the individuals in either
batch 1 or batch 2. Metabolites with missing values in 25 − 75% of the
individuals in both batches were dichotomized as “observed” and “not
observed” – referred to as “dichotomized metabolites” henceforth).
Metabolites that had different missingness patterns between the bat-
ches (e.g., < 25%missing values in one batch and > 25%missing value in
the second batch) were excluded. For metabolites with missing values
in up to 25% of the individuals in both batches, we assumed that
missing values were due to concentrations below the minimum
detection limits, thus imputed the missing values for each metabolite
with the lowest non-missing value of that metabolite across the sam-
ples within the batch. We then rank-normalized these metabolite
measures in each batch separately. In the sex-stratified analysis, we
used the same rank-normalized metabolites (and did not rank-
normalize within sex groups).

Sleep disordered breathing phenotypes
We selected seven available, correlated SDB phenotypes, previously
studied by our group and others in the context of SDB genetics and
omics20,23,33, and were shown to capture potentially different char-
acteristics of SDB and its association with clinical outcomes. These
included Respiratory Event Index 0 (REI0), the sum of all respiratory
events (apneas or hypopneas with at least 50% airflow flow reduc-
tion for a minimum duration of 10 s), regardless of oxygen desa-
turation, divided by estimated sleep time; the sum of all respiratory
events associated with >=3% oxygen desaturation divided by esti-
mated sleep time (REI3); respiratory event duration (the average
length of each respiratory event); sleep-apnea associated hypoxic
burden21; the minimum and the average oxyhemoglobin saturation

during the sleep period; and the percentage of estimated sleep
period with oxyhemoglobin saturation below 90%. We then per-
formed sampling-weighted Principal Component Analysis (PCA),
accounting for the HCHS/SOL study design, over the complete
HCHS/SOL study population with non-missing SDB measures. The
goal of the PCA was to capture the most substantial variance among
the multiple, correlated, SDB phenotypes in our dataset while
reducing the dimensionality of the data, allowing for more parsi-
monious modeling. We rank-normalized the 7 SDB measures prior
to PCA analysis due to the highly non-normal distribution of some
of the measures and so that measures with wide range do not
dominate the PCA results. We used the PCs that explain at least 10%
of the variance in the SDBmeasures in the subsequent analyses. As a
sensitivity analysis, we also implemented PCA among the batch 1
participants, and derived SDB PCs for the batch 2 participants based
on the loadings from batch 1, with SDB phenotypes rank-normalized
within each batch separately.

To interpret SDB phenotypes captured by the PCs, we char-
acterized the studypopulations definedby the lowandhigh 10%values
of each of the PCs selected for further analysis. Characteristics include
demographic (age, sex), cardiometabolic (BMI, hypertension, dia-
betes), and sleep measures (SDB and self-reported insomnia, sleep
duration, sleepiness) variables.

Model covariates
All analyses used up to three conceptual models. Model 1 (i.e., base
model) adjusted for demographic variables, including age, sex, field
center, Hispanic/Latino background (Mexican, Puerto Rican, Cuban,
Central American, Dominican, and South American and other/multi),
and bodymass index (BMI). Hispanic/Latino backgroundwas included
because cultural differences between groups are potentially asso-
ciated with differences in diet, which is highly associated with levels of
many metabolites. Model 2 is further adjusted for lifestyle variables –
alcohol use, cigarette use, total physical activity (MET-min/day), and
diet (Alternative Healthy Eating Index 2010) in addition to demo-
graphic variables. Model 3 is a lifestyle and comorbidity model that is
adjusted for Model 2 variables, and in addition, for continuous mea-
sures of fasting insulin, fasting glucose, HOMA-IR, HDL, LDL, total
cholesterol, triglycerides, systolic blood pressure, diastolic blood
pressure, as well as for indicators of diabetes and hypertension, which
encapsulate additional information about medication use, not cap-
tured by continuous measures.

Single metabolite associations (SMA) between individual meta-
bolites and SDB PCs
Using survey-weighted generalized linear regressions, each meta-
bolite’s concentration level was regressed separately against SDB PC
outcomes, with a recognition that cross-sectional data cannot
establish a causal direction. We used the Benjamini-Hochberg
method67 to control false discovery rate (FDR) for multiple testing
among metabolites in all models for each SDB PC in batch 1.
Metabolites wereflagged for further validation if the FDR-correctedp
< 0.05 in Model 1, for either SDB PC1 or PC2. In the replication ana-
lysis, we tested the associations of these flagged metabolites with
SDB PCs in linear regression models in batch 2 in Models 1–3. We
computed one-sided p-values guided by the estimated directions of
the associations in batch 168, and determined replication if the FDR-
corrected one-sided p-value was <0.05. To further understand the
SMA results in relations to the original SDB phenotypes, we also
conducted the SMA between individual metabolites with replicated
associations with the SDB PCs and the 7 individual SDB phenotypes
(rank-normalized) individually.

In a follow-up analysis, we visualized the concentrations of raw
and rank-normalized metabolites from sex hormone-related pathways
that were associated with SDB by sex and age strata.
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To evaluate whethermetabolites reported as associated with OSA
in our previous study in HCHS/SOL and MESA30, we extracted and
described their estimated associations with the SDB PCs in both
batches.

LASSO regression for constructing the SDB metabolite risk
scores (SDB MRS)
For each SDB PC, we applied LASSO linear regression over all 582
continuously modeled metabolites, adjusted for the covariates from
Model 1 (unpenalized) in HCHS/SOL batch 1. We selected the LASSO
tuning parameter by minimizing the prediction error for SDB PCs in a
10-fold cross-validation. SDB MRSs were calculated as weighted sums
of the normalized metabolite serum concentrations, with weights
being the metabolite coefficients from the LASSO regression from
batch 1. In association analyses using the MRSs, we standardized (z-
scored) them to have mean of 0 and variance of 1 using the sample
mean and variance (Supplementary Data 9).

To validate the associations between the SDB MRS with SDB PCs,
we constructed the SDB PC1 MRS and SDB PC2 MRS in batch 2 using
the weights from the LASSO regression conducted in batch 1, then
assessed their associations with the corresponding SDB PCs in Models
1–3. In secondary analyseswe assessed potential sex differences via: (1)
sex-stratified SDBMRSs constructed based on sex-stratified LASSO; (2)
sex-stratified association analyses for sex-specific and sex-combined
SDB MRSs. We also assessed the associations between SDB MRS
quartiles and the corresponding SDB PCs.

As a sensitivity analysis, we assessed the robustness of the
developed MRSs by limiting potential impacts of sample overlap and
of medication use. Thus, we applied LASSO regression to develop
MRSs using a new set of SDB PCs developed exclusively among the
batch 1 participants who were not taking any antihypertensives or
antidiabetics at the baseline exam.

Incident outcomes
We also studied the associations of the SDB PCs and their MRSs with
incident hypertension and diabetes, assessed at visit 2, among indi-
viduals free of hypertension and free of diabetes, respectively, at the
baseline exam. Diabetes was determined based on American Dia-
betes Association (ADA) definition or scanned medication (at the
baseline exam) or self-reported diabetes medication use (at the
second exam). ADA criteria are based on laboratory tests – fasting
glucose >=126mg/dL, or post-OGTT glucose >=200mg/dL or
A1C > = 6.5%69. In a secondary analysis, incident diabetes was asses-
sed separately among individuals with impaired glucose tolerance
(fasting glucose within 100–125mg/dL, or post-OGTT glucose within
140–199mg/dL, or A1C within 5.7–6.5%) and among normal glycemic
individuals. Hypertension was determined following the NHANES
guidelines: systolic or diastolic blood pressure is greater than or
equal to 140/90 or participant self-reported as currently taking
antihypertensive medications70.

Association analyses between SDB phenotypes and incident
cardiometabolic outcomes
Finally, survey-weighted Poisson regressions were implemented to
assess the associations between incident hypertension and diabetes
among batch 1 and 2 combined study samples with various SDB phe-
notypes including benchmark singular sleep measures (i.e., REI 3%,
hypoxic burden) and our newly developed composite measures (i.e.,
SDB PCs, and SDB MRSs), as well as our recently developed OSAMRS,
adjusting forModel 1 and 2 covariates, respectively. The OSAMRS was
trained using LASSO on moderate to severe OSA (defined as REI3 > =
15) in the HCHS/SOL cohort and previously validated in the MESA
cohort30. We combined the two batches in this analysis to increase
statistical power by having a larger sample size. To combine metabo-
lomics data of batch 1 and batch 2we aggregated themetabolites from

non-overlapping batch 1 and batch 2 individuals, after imputation and
rank-normalization of each metabolite separately in each batch.

In a sensitivity analysis,we estimated the associations between the
SDB PCs MRS developed in a process (both PCA and LASSO) involving
only batch 1 participants whowere not taking any antihypertensives or
antidiabetics at baseline and incident cardiometabolic outcomes
within batch 2 participants who also did not take antihypertensives or
antidiabetics at baseline.

All analyses were done in R 3.6.3. svyglm was used for survey-
weighted generalized linear regression models, and svyprcomp was
used for sampling-weighted principal component analysis, both of
which were from the survey package (version 4.1)71. The glmnet R
package (version 3.0)72 was used for the LASSO linear regression.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
HCHS/SOL data are available through application to the data base of
genotypes and phenotypes (dbGaP) accession phs000810. HCHS/SOL
metabolomics data are available via data use agreement with the
HCHS/SOL Data Coordinating Center (DCC) at the University of North
Carolina at Chapel Hill, see collaborators website: https://sites.cscc.
unc.edu/hchs/. Researchers can email the HCHS/SOL DCC at hchsad-
ministration@unc.edu. The metabolite association data generated in
this study areprovided in the Supplementary Information. Sourcedata
for results presented in the figures are provided with this paper.

Code availability
The code used for conducting the analyses, as well as for the gen-
eration of figures and tables presented in this study, are written in R,
and available at https://github.com/yzhang104/HCHS-SOL_SDB_
metabolomics.git73.
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