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Gamma oscillatory complexity conveys
behavioral information in hippocampal
networks

Vincent Douchamps 1, Matteo di Volo2,3, Alessandro Torcini3,4,
Demian Battaglia 1,5,6,7 & Romain Goutagny 1,7

The hippocampus and entorhinal cortex exhibit rich oscillatory patterns cri-
tical for cognitive functions. In the hippocampal region CA1, specific gamma-
frequency oscillations, timed at different phases of the ongoing theta rhythm,
are hypothesized to facilitate the integration of information from varied
sources and contribute to distinct cognitive processes. Here, we show that
gamma elements -a multidimensional characterization of transient gamma
oscillatory episodes- occur at any frequency or phase relative to the ongoing
theta rhythm across all CA1 layers in male mice. Despite their low power and
stochastic-like nature, individual gamma elements still carry behavior-related
information and computational modeling suggests that they reflect neuronal
firing. Our findings challenge the idea of rigid gamma sub-bands, showing that
behavior shapes ensembles of irregular gamma elements that evolve with
learning and depend on hippocampal layers. Widespread gamma diversity,
beyond randomness, may thus reflect complexity, likely functional but invi-
sible to classic average-based analyses.

Coherent oscillations of neuronal activity are ubiquitous across brain
spatial and temporal scales1,2. Oscillations at different frequencies have
been associated with the formation of sensory or behavioral
representations3,4, in the temporal organization of complex codes5 or
in the flexible routing of information between neuronal populations6.
The possible functional roles of oscillations have been particularly
investigated in the hippocampal formation, where, in the CA1 area of
the dorsal hippocampus, convergent inputs could be disambiguated
by the interaction of gamma and theta oscillations: different gamma-
frequency carriers, timed at different phases of the ongoing global
theta oscillations, would mediate information from different
sources7,8. Hence, slow gamma (gammaS; 30–80Hz) predominates in
the CA1 stratum radiatum (rad, where the inputs from CA3 are

localized) mostly at the trough/descending phase of CA1 pyramidal
layer theta. On the other hand, medium gamma (gammaM; 60–120Hz)
predominates in the CA1 stratum lacunosum moleculare (l-m, where
the inputs from the entorhinal cortex layer 3 are localized), pre-
ferentially at the peak of CA1 pyramidal layer theta8. According to this
prevalent model, layer-specific gamma oscillations in CA1 would
identify the temporal dynamics of the afferent inputs, mediating spe-
cific memory-related processes (encoding for gammaM vs retrieval for
gammaS

7).
Such a model, appealing for its simplicity and the link it proposes

between distinct functions and discrete gamma sub-bands, may how-
ever fail to capture fully the richness of CA1 theta-gamma interactions9.
Recent studies investigating gamma oscillations at the theta cycle
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timescale reveal indeed a more dynamic and diverse landscape of
gamma oscillations, with a broader variety of possible associations
between gamma frequencies, theta phase, and an anatomical layer of
occurrence (see10 for a recent review). Yet, these studies continued to
yield a classification of hippocampal gamma into distinct sub-types,
reporting a multiplicity of supposedly typical average theta-gamma
patterns: from two11 to three8 ormore12,13 gamma sub-bands (but see14,15

for a contradictory hypothesis). Here, we refrain from distinguishing
sub-types, acknowledging that even stochastic-like oscillations with
fluctuating frequency and irregular timing can self-organize to process
information16. We therefore characterize in detail the properties of
individual transient gamma events, without ignoring their broad and
ubiquitous variability, whichmay be informative about behavior rather
than merely noise.

Results
Theta-gamma diversity is present in every CA1 layer
To characterize theta-gamma diversity, we analyzed local field poten-
tials (LFPs) simultaneously recorded in the dorsal hippocampal CA1
area using 16- or 32-channel siliconprobe (n = 5mice; Fig. 1a). For every
channel, we spectrally decomposed the LFP into its main frequency
components through an unsupervised algorithm (EEMD approach17,
Supplementary Fig. 1a).We then computed theCurrent SourceDensity
(CSD) signals using composite gamma LFPs (Fig. 1a), that is, the sumof

the components peaking within a broad gamma band (30–250Hz;
Supplementary Fig. 1b–d). Suchanapproachavoids anyfilteringwithin
narrow gamma bands imposed a priori. An analogous procedure was
used to construct a theta composite signal from the hippocampal fis-
sure (4–12 Hz; Supplementary Fig 1d; fissure theta shows larger, more
defined theta cycles than pyramidal-layer theta but with a 180° phase-
shift). We then performed a time-frequency analysis to segment the
gammaCSD signal into short epochs corresponding to individual theta
cycles (Fig. 1b). For each segment, we characterized each of its local
peaks in the gamma spectrogram (Fig. 1c) as amultidimensional vector
(i.e., a gamma element) describing its amplitude, frequency and phase
of occurrence relative to the coincident theta cycle (3 gamma fea-
tures), as well as the amplitude, frequency and asymmetry of this theta
cycle (3 theta features). We restricted the extraction to the four
strongest amplitude gamma elements per theta cycle, obtaining
thousands of elements per channel and mouse (see theta and gamma
counts on Supplementary Fig. 2 and our associated Zenodo drive with
all the gamma tables used in this manuscript18).

According to the dominant view of a theta-phase and frequency
specificity of the gamma contents between hippocampal layers, we
calculated themean probability density function of these two features
per layer across mice (Fig. 2a, b). Unexpectedly, a substantial overlap
was observed between layers for both variables, although the l-m
presented slightlymore gammaM events aswell as more phase-locking

Fig. 1 | Detecting and characterizing hippocampal gamma elements.
a Electrodes along the silicon probe were localized in the different layers of the
dorsal hippocampus using various indices to identify the hippocampal fissure,
including the location of the maximum theta power and of the largest sink in the
average theta-triggered CSD. b The gamma composite CSD wavelet spectrogram
from each channel was first segmented into theta cycles (two consecutive peaks)

from the theta composite signal recorded in the hippocampal fissure (white over-
lay). c local gamma peaks within the spectrogram were then detected within each
theta cycle via a patch detection algorithm. These “gamma elements” were then
characterized by extracting a vector of six features: three gamma features (ampli-
tude, frequency, and theta-phase of the gamma element) and three theta features
(amplitude, frequency and asymmetry of the coincident theta cycle).
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to the theta trough. We thus considered the joint distribution of the
three gamma features for all the gamma elements per layer and animal
(Fig. 2c for an example; Supplementary Fig. 2 for all mice and layers),
with a similar conclusion: gamma elements were broadly scattered in
both gamma frequency and theta-phase, although with a relatively
stronger concentration of these in the l-m. Such diversity was con-
firmed even when extracting gamma elements with alternative tech-
niques (e.g. filtering or independent-component analysis,
Supplementary Fig. 3a) or from publicly available state-of-the-art
recordings in rats8 (Supplementary Fig. 3b).

However, when computing the rad and l-m average theta-gamma
spectrograms using the same theta cycles than for the gamma ele-
ments characterization (Fig. 2d), we found that they were compatible
with the classic, previously reported dichotomy between a gammaS-
dominated rad and a gammaM-dominated l-m (Supplementary Fig. 2
for all mice and layers). In fact, our count approach revealed an
increasing divergence between these layers in their frequency and
theta-phase modes as the analysis was restricted to gamma elements
with gradually stronger gamma power (see details statistics on Sup-
plementary Fig. 4). The discrepancy between the two approaches
(count vs average) thus indicates that average theta-gamma spectro-
grams are biased by only a minority of high-power transient gamma
events.

This impression was confirmed by a dimensionality reduction
analysis in which we projected in two dimensions the landscape of
observed multi-dimensional gamma elements. We used a nonlinear
t-distributed stochastic neighbor embedding (t-SNE19) that attempts
preserving distance, so that elements close (or far) between them in
the original six-dimensional source spacewere still close (or far) on the

two-dimensional plane even after their projection. All elements from
all anatomical locations are projected simultaneously, however for
conveniencewe canplot separately for different layers, using precisely
the same coordinates, as we do in Fig. 2e for a representative mouse.
Strikingly, the domains covered by the projection of rad and l-m ele-
ments were largely overlapping, at the exception of the ones with the
highest power, highlighted in darker color and occupying clearly
complementary zones. The same projection can be used to also
represent the distributions across elements (now for both rad and l-m
combined) of other gamma element features, as in a thematic atlas.
Figure 2f shows a map of the frequencies and phases of different
gamma elements (see Supplementary Fig. 5 for other features and
mice), confirmingonce again thewidediversity of features and the lack
of a simple way to discriminate between rad and l-m elements in terms
of few features only.

We could also verify that this diversity originates from the local
circuits generating the inputs received by CA1. To do so, we took
advantage of recent publicly available recordings made in mice
undergoing transient deafferentation of CA1 via silencing of the
entorhinal cortex and/or CA3 inputs20. Suppression of either one of the
inputs impacted the density of recorded gamma elements scattered at
all frequencies and phases, confirming that diversity is already present
in the suppressed inputs (see the difference maps of Supplementary
Fig. 6). We remark, however, that EC input was more structured than
CA3 input, as its suppression caused a more marked decrease of
medium gamma elements with a stronger locking, corresponding to
the high amplitude elements already highlighted in Fig. 2d (right). Yet,
even for EC input, suppression effects were widespread (see
Discussion).

Fig. 2 | Hippocampal CA1 layers have overlapping gamma frequency and phase
distributions. a, b Average distributions (mean pdf ± SEM; n = 5 mice) of gamma
elements frequency and theta phase for each CA1 layer. Even if significant differ-
ences can be found between these distributions (see Supplementary Fig. 5 for
details), whatever the layer considered, most of the gamma elements frequency
distributions were spread across broad and overlapping ranges of frequencies,
encompassing both the classical gammaS and gammaM sub-bands definition (full
width at half maximum range: oriens (or), 35–97Hz; pyramidale (pyr), 34–102Hz;
rad, 31–97Hz; l-m, 38–100Hz). c A joint representation of the three gamma fea-
tures emphasizes the haphazard diversity of frequency (radius) and phase (angle)
between gamma elements (dots) recorded in both the rad and l-m layers, especially
at low amplitude (color: percentile of gamma amplitude). d Average theta-gamma
spectrograms, on the contrary, put forward amarked distinction in frequency (and
phase in a lesser extent) between the rad (left) and l-m layers (right), suggesting

these are respectively largely dominated by gammaS and gammaM oscillations. The
apparent conflict between the representations in panels c and d is explained by the
fact that average spectrograms are dominated by strong amplitude events. This is
well visualized by dimensionally reduced representations (e, f) of the six-
dimensional vectors describing gamma elements (obtained via a distance-
respecting t-SNE algorithm). e Gamma elements from the rad and l-m layers cover
similar areas in their joint bidimensional projection. However, the elements with
high gamma amplitude (top 30%, dots with darker shade) occupy complementary
zones for the two layers. f A color-coding by gamma frequency and phase of the
same bidimensional projection shows that these strong elements tend to be: of
gammaM type at theta trough, for the l-m layer; and gammaS atmost phases, for the
rad layer. These minorities of strong gamma elements are thus precisely the ones
giving rise to rad and l–m average spectrogram peaks in panel (e). Panels b–e:
examples from a representative mouse (mouse #3).
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In conclusion, we found no evidence for narrow gamma bands15.
The actual observations are eventually more compliant with a
description in terms of diverse ensembles of transient gamma oscil-
lations, widely scattered in frequency, phase, and other features.

Navigation behavior can be decoded from individual gamma
elements
Is this diversity functional or just noise without meaning? In other
words, does behavior shape the seemingly stochastic dynamics of
gamma elements? To answer this question, we trained the mice to
learn a novel spatial referencememory task (Fig. 3a). In this task, mice
seek for an appetitive target located within an 8-arm radialmaze. They
need to learn a unique, stable goal location over multiple days of
training (10days; 4 daily trials). The changeof departure arm in eachof
the few daily trials enforces the comparison of allocentric cues with
internal representations. We therefore attempted decoding the cur-
rent position of the mouse within the maze during navigation beha-
vior, based on the features of the simultaneously recorded gamma
elements. To do so, we trainedmachine learning classifiers (ensembles
of randomized decision trees, Fig. 3b) to predict the rough location of
themouse (four non-overlappingmaze sections: target arm approach,
target arm reward field (Reward RF), other arms’ reward fields (other
RF, no reward) and rest of the maze; Fig. 3b) based on the six-
dimensional vector parametrization of a coincident individual gamma
element recorded on a specific channel. The training set for each
classifier was restricted to elements from a subset of randomly chosen
theta cycles, the unused elements being allotted for later cross-
validation of the performance. Decoding yielded performances well

above chance-level, particularly for the target armand the rewardfield,
for any layer within CA1 (Fig. 3c for a representative mouse; Supple-
mentary Fig. 7a–e for all mice). Given the limited modulation of the
performance by the anatomical position (channel), we summarized the
achieved channel-averaged performances of decoding for all mice. We
showed that performance for decoding target arm, reward field, and
other arm end-fields were well above the chance level for every mouse
(Supplementary Fig. 8a, see also the confusion matrix in Supplemen-
tary Fig. 8b). Even if the location could be better decoded from events
whose amplitude belonged to the largest quartile of the amplitude
distributions –the one dominating spectrograms (cf. Figure 2d)–,
decodingwaspossible even fromelements atweaker amplitudes in the
other quartiles, with the exclusion of only the lowest quartile of
amplitudes (Fig. 4a for target arm and reward field decoding perfor-
mance by gamma amplitude quartile; Supplementary Fig. 8c for other
locations). As hippocampal theta and gamma oscillations are modu-
lated by speed21,22 we analyzed whether the performance of location
decoding depends on the speed of movement of the mouse (Fig. 4b
and Supplementary Fig. 8d). Decodability of reward field and other
arms ending zones was higher when speed was low (lowest quartile)
and when speed was high (highest quartile) for the target arm. When
speed was large, decoding was significant for all four consideredmaze
locations and confusion between locations was reduced (Supplemen-
tary Fig. 8d). Yet, we were able to significantly decode location from
elements in other speed quartiles (down to the second quartile for
target and up to the fourth quartile for reward) indicating that speed is
not the unique determinant of gamma element modulations by maze
location (note that speed distributions over the different maze

Fig. 3 | Location during exploration behavior can be decoded from individual
gamma elements. a In our spatial navigation task, reward is located at the end-box
of a fixed target arm in a radial maze. The mouse enters the maze from a different
arm at every trial. Few trials are performed every day, over several days. Left:
example trajectories at different days of learning. Middle: the latency to reward
decreases across days (n = 5 mice; mean ± SEM; Mean X2

(9,49) = 19.342, p =0.02;
Friedman ANOVA), indicating that mice learn the task. Right: In probe trials, no
reward is given at the reward location. Mice spend a larger amount of time
exploring the former rewarded arm than an opposite one, denotingmemory of the
reward location (one-tailed t-test, t(4) = 3.22; p =0.032).bWe trained tree-ensemble
classifiers to decode rough location within the maze (target arm, reward RF, other

RFs and the remaining locations) from individual gamma elements (three theta and
three gamma features, cf. Figure 1b).We also trained alternative classifiers to detect
an alternative arm, remote from reward. c Fraction of correctly classified locations,
by maze location (colors as in b), for a representative mouse (mouse #3; see Sup-
plementary Fig. 7 for other mice and prediction performance with alternative
feature sets and in probe trials). Different classifiers were trained for different
depths along the dorsal hippocampal axis (cf. Fig. 1a). Solid lines indicate average
performanceacross all trials (shading, 95%bootstrap c.i.). Performance indetecting
target arm, reward and other arms RFswas significantly above chance level (dashed
black line) for every anatomical layer.

Article https://doi.org/10.1038/s41467-024-46012-5

Nature Communications |         (2024) 15:1849 4



sections are not identical but, still, largely overlapping, cf. Supple-
mentary Fig. 8l). Analogously, decodability was maintained across
several quartiles of the other features in the gamma element para-
metrization, that is, gamma frequency and phase relative to theta, and
theta cycle amplitude, frequency and asymmetry (Supplementary
Fig. 8e–i). In short, decodabilitywas not limited tonarrowcategories of
elements with specific feature combinations, but was on the contrary
rather pervasive, extending notably to gamma elements strongly
deviating from spectrogram averages. In some cases, more informa-
tion could even be extracted from weak than from strong amplitude
gamma transients (aswhendecodingpresence in the reward-less other
RF locations, Supplementary Fig. 8c).

To further verify that our classifier extracted genuine behavior-
related information from individual gamma elements, we first mod-
ified our classifier design by training the classifier not to specially
identify the target arm but a randomly chosen arm among the beha-
viorally non-saliant (i.e., neither departure nor target arm) ones. The
decoding performance that could be reached for these generic arms
was not as high as when decoding the approach to the actual target
arm (although the decoding of the reward zone was not significantly
changed, Fig. 4c, and Supplementary Fig. 8j “other” boxes). This indi-
cates that classifiers can detect signatures in gamma elements –akin to
an “eureka” signal–which specifically reflect behaviors observed when
approaching the target arm but no other arms of the maze. Second, at

the end of task learning, we performed a probe trial in which the
reward was removed. Such probe condition modified the behavior
during target arm approach and rewardfield exploration (cf. Figure 3a,
right), as reward was unexpectedly missing at the previously learned
location and context was thus altered. As shown by Fig. 4c and Sup-
plementary Fig. 8j (“probe” boxes), classifiers trained to decode target
arm and reward fields in learning trials could still significantly decode
transit in the target arm zone (although with a lower performance) but
the performance in decoding the reward field dropped at chance level.
Such pattern of performance modification was consistently observed
across all recording channels and mice (cf. Supplementary Fig. 7f–j).
Thus, behavior induced by the probe condition translates into mod-
ified gamma element signatures, since the same classifiers that deco-
ded relevantmaze locations in preceding trials could not identify them
anymore in the probe trial. Therefore, the features of individual
gamma elements –very diverse, especially when gamma amplitude is
low– are modulated by maze location and behavior in complex but
consistent ways that machine learning classifiers can successfully
identify.

Different features of theta and gamma oscillations synergisti-
cally reflect behavior
Which features give the largest contribution to the successful decod-
ing of maze location from diverse gamma elements? To address this

Fig. 4 | Decodingperformance is robust, genuine andsynergistic. aDependence
on gamma amplitude. Performance is significantly higher for amplitudes in larger
than smaller distribution quartiles (p <0.002 for target; p <0.033 for reward),
however it remains significant for all but the lowest quartile (p <0.006 for target
Q3). b Dependence on motion speed. Decoding performance for target arm
(reward RF) was higher for larger (lower) quartiles of speed (p <0.004 for target,
p <0.001 for reward), but was significant even for low (high) speed quartiles (target
Q3, p <0.0025; reward Q1, p <0.011). c In probe trials, decoding performance
dropped for both target arm (p <0.0005) and reward RF (p <0.0001). Decodability
of a generic other armwas lower than for target arm (p <0.0027), but performance
did not drop significantly for reward. d When training classifiers to decode maze
location based on reduced input feature sets (only gamma- or theta-related fea-
tures) decoding performance dropped (e.g., when comparing gamma-only with
combined theta and gamma inputs, p <0.0199 for target arm and p <0.0014 for
reward RF). n = 5 mice; dots, performance averaged over trials and electrodes for

different mice; boxes, IQRs and samplemean; whiskers, 95% sample c.i.; *, p <0.05;
**, p <0.01; ***, p <0.001 after Bonferroni correction; symbols in brackets denote
significance only before Bonferroni correction; one-tailed t-tests of sample vs
chance level; two-tailed t-tests between samples.) e Fractions of maze location
information conveyed by pair of features were large (bars, averages over mice and
feature pairs, grouped by pairs including a specific feature –i.e., n = 15 pairs per
feature time n = 5 mice–, for representative rad and l-m channels; whiskers, 95%
bootstrap c.i). Mutual information was mostly due to synergy between features,
which conveyed little unique or redundant information about location. f Speed
accounted for a small fraction only of the variability of individual gamma element
features, as revealed by normalized mutual information with speed (n = 5 mice,
averages over all mice and features, for representative channels; whiskers, 95% c.i
estimated from twice sample standard deviation). We don’t show individual mice
values in panels (e) and (f) to avoid figure crowding.
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question, we constructed machine learning classifiers using, as input
alternative, smaller subsets of features: only the three gamma features
(gamma-only) or only the three theta features (theta-only). Target arm
and reward field could still be decoded above chance level based on
the gamma-only or the theta-only subset of features, however, the
performance dropped with respect to the original classifier, indicating
that theta and gamma-related dimensions of the gamma elements
convey non-redundant information (Fig. 4d and Supplementary
Fig. 8k). Information theory can be used to further investigate the
contribution of different features to classifier performance. Indeed,
there are various ways in which the joint consideration of multiple
input features can yield more information about the target output.
First, each of the input features may convey some information that
none of the other input features convey, so that combining more of
these unique information contributions yields more overall informa-
tion. Second, some features may convey the same information, but
corrupted by independent noise, and this redundancy may be helpful
to achieve a better signal-to-noise ratio. Third, and perhaps more
interestingly, combinations of features may convey synergistic infor-
mation “beyond the sumof the parts”, which cannot be accessedwhen
considering features independently. We focus here on considering
mutual information between L, the target output maze location, and
pairs of possible inputs f and g (e.g., theta and gamma amplitudes),
since, in this case, the Partial Information Decomposition (PID23) fra-
mework provide precise guidelines for decomposing this total mutual
information into its unique, redundant and synergistic fractions.

We first found that, on average, pairs of gamma and theta feature
carried over 75% of the information needed to perfectly specify maze
location at any time, thus explaining why decoding of location is fea-
sible. This is revealed by the total height of the vertical bars in Fig. 4e,
where we show the average mutual information between maze loca-
tion and pairs of input features, pooled by included feature (i.e., all
pairs including gamma frequency, all pairs including gamma ampli-
tude, etc.; see also Supplementary Fig. 9 for detail on individual non-
averaged pairs). Next, we fractionated the total mutual information
into the parts constituted by the unique, redundant, and synergistic
fractions (respectively in yellow, green and orange colors, Fig. 4e).
Remarkably, the synergistic fraction was by far the most important,
accounting in most cases for over 70% of the total information con-
veyed by the feature pairs about maze location. These indicate that
individual theta- and gamma-related oscillatory aspects have indivi-
dually complex and changing relations with maze location (hence the
low unique information fractions) but that their joint patterns of
general covariation do depend on it (hence the large synergistic
fractions).

We also considered mutual information between maze location
and speed of movement, as the distributions of the speed of move-
ment were not completely identical for different maze sections (Sup-
plementary Fig. 8l). As shown by the leftmost bar of Fig. 4e, predictor
pairs including speed among the input variables did not convey sig-
nificantly more total information about maze location than any other
pair of gamma element features. Yet, even if feature pairs involving
speed do not carry more maze location information, the encoding of
maze location by oscillatory features may still indirectly reflect rela-
tions with speed, via the dependence of the oscillatory features
themselves on speed. Therefore, we also computed the redundancy of
speed with the other oscillatory features. Individual oscillatory fea-
tures of the rad shared more information with speed than oscillatory
features of the l-m (see Supplementary Fig. 9). However, the shared
information with speed never explained more than 5% of their varia-
tion entropy (Fig. 4f). Together these results indicate that variations of
gamma element features are not completely explained by speed, but
synergistically convey genuine maze location information, beyond
mere speed variations across locations. The dramatic drop in inter-
feature synergies observed during probe trials may thus explain the

lower maze location decoding performance in these with respect to
learning trials (Fig. 4c and Supplementary Fig. 8j and 9).

Complex gamma ensembles evolve with task learning
Behavior can be decoded out of gamma elements, but is the decoding
grammar similar across learning? And is the decoding performance
improving with training? We explored this by training classifiers over
gamma elements from trials within restricted ranges, starting from
early trials and then sliding the inclusion range to the latest trials.
Gamma element outstanding diversity was present at any trial range,
noticeably never losing their continuous and broadly dispersed fre-
quency and theta-phase distributions despite slight changes (Fig. 5a,
see also the t-SNE projections in Supplementary Fig. 6c and polar plots
in Supplementary Fig. 10). Maze location information could be sig-
nificantly decoded from these diverse gamma elements at any trial
range, although the detailed profiles of variation across learning were
heterogeneous for different mice, possibly reflecting idiosyncratic
navigation learning strategy. Yet, the cross-validated fraction of cor-
rect predictions was larger for late than for early trials, with a perfor-
mance improvement on average of ~7% for the l-m and of ~15% for the
rad layers (Fig. 5b).

We then compared the complex ways in which gamma element
variations reflected maze location by adopting a cross-classification
approach. Classifiers trained on trials within a specific training trial
range were used to predict maze location on trials from another
testing trial range, and the obtained fractions of correct prediction
were compiled into cross-prediction performancematrices (see Fig. 5c
for a representative rad layer example and Supplementary Fig. 11a for
rad and l-m layers in all mice; cross-validation cannot be used in cross-
classification, so we plot direct cross-prediction errors, hence slightly
different performance ranges, seeMethods for a detailed explanation).
The obtained matrices of cross-prediction performance across trial
ranges were characteristically asymmetric: the larger upper than lower
triangular parts indicate that a classifier trained in one trial range can
better predict location from past rather than future trial ranges (cf.
more yellow above the diagonal in Fig. 5c and Supplementary Fig. 11a;
see also Fig. 5d for a quantification). The performance of decoding yet
droppedwhen the training and testing trial rangeswere separated by a
timespan too large (cf. blue zone at the upper right corner in Fig. 5c
and Supplementary Fig. 11a). We interpret these findings as an indi-
cation that the complex mapping of maze location by gamma
ensemble features is not frozen but smoothly evolves through time.
However, the drift of this mapping is specifically shaped by previous
experience, hence the existence of an “arrow of time” in cross-trial
decodability.

Complex gamma ensembles are spatially organized
Frequency, phase, and other properties of gamma elements are nearly
equally distributed across CA1 layers. Can we still find differences
among anatomical locations despite this apparent homogeneity? A
possibility is that multiple gamma ensembles co-exists and, despite
their comparable spectral variability, display different associations
with behavior, reflecting distinct functional roles. To probe this
hypothesis, we adopted once again a cross-classification approach to
compare the mappings of maze location by gamma ensembles recor-
ded at different anatomical locations. Figure 6a shows a representative
matrix of the fraction of correct predictions obtained when training a
classifier on gamma elements recorded on a channel and testing it
from gamma elements recorded on another channel (see Supple-
mentary Fig. 11b for all mice). This matrix displays a hierarchical block
organization. Classifiers trained on channels within the hippocampus
can decode maze location from other hippocampal, but not extra-
hippocampal, channels (and vice versa). Furthermore, within CA1, at
least two blocks can be distinguished including channels located
within the pyr and upper rad layers, and lower rad and l-m layers,
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respectively. Cross-decodability between classifiers was high between
channels from the same block, but low with extra-block channels,
indicating that at least two types of CA1 gamma ensembles exist, dif-
ferentially modulated by behavior despite their large overlap in fre-
quency and phase distributions.

We then repeated this spatial cross-classification analysis but
separately for earlier and later trials along the learning of the task
(Supplementary Fig. 11b). We found that the cross-decodability
between the l-m-like and upper rad-like channel blocks increased in
later trials. In general, cross-decodability increased with task learning
between all channels. However, this was particularly noticeable for
classifiers trained within the l-m-like channel block as they gradually
improved in decoding the maze location from gamma elements
recorded in the upper rad-including channel range (Fig. 6b). Such
results suggest a convergence of current sensory representations
conveyed by entorhinal inputs to the l-m layer, onto internal model
representations, provided by CA3 inputs to the rad layer, suggestive of
potential prior learning24 (see Discussion).

Sparse firing at the “fringe-of-synchrony” underlies complex
gamma ensembles
We have shown that hippocampal gamma elements convey genuine
behavioral information, evolve with learning, and are related to anat-
omy. But what could be the circuit-level mechanisms generating this
diversity and its relation to behavior? We hypothesize that this diver-
sity stems from the dynamic regime of operation of the local networks
(in entorhinal cortex or CA3) generating input signals to CA1. Such

diversity, natural consequence of randomness in recurrent synaptic
connections combined with balanced excitation and inhibition, would
then be shaped by the detailed firing of excitatory and inhibitory
neurons in the source population. The specific amplitude, frequency,
and phase of individual gamma elements observed within CA1 would
be modulated by the detailed firing patterns in the input regions,
essentially representing a blurred reflection of the active neuronal
assemblies at a givenmoment. In this view, the behavioral information
conveyed by individual gamma elements, even those with weak
amplitudes, would be an indirect representation of the underlying
information carried by the firing patterns in the source regions. To
corroborate this hypothesis, we constructed a simple spiking model
for balanced excitatory-inhibitory populations with random recurrent
connectivity, representing a generic gamma-generating input source
to CA1.

Specifically, we considered a networkwith thousands of randomly
interconnected excitatory (E) and inhibitory (I) quadratic integrate-
and-fire (QIF) neurons25, driven by an external theta-modulated cur-
rent input and we simulated unit activity and the associated LFP-like
signals (Fig. 7a). Figure 7b shows a representative raster plot of activity
and Fig. 7c the corresponding LFP spectrogram. As a first result, we
found that gamma diversity, rather than surprising, should be expec-
ted, as it robustly emerges for most parameter combinations in the
spiking model, provided the network remains not too far, but still
below a transition to strongly synchronized oscillatory firing (i.e. at the
“fringe of synchrony”, rather than in a regime with fully developed
synchrony). Extracting gamma elements from simulated gamma

Fig. 5 | Relations of gamma elements with behavior depend on training. a Polar
scatter plots of individual gamma elements distribution (as in Fig. 1d), separate for
early (days 1–3) and late (days 8–10) trials (n = 5 mice). Wide diversity of gamma
elements features is observed at all stages of task learning (here for mouse #3; see
Supplementary Figs. 2, 5a and 10 formore details and allmice). Although remaining
complex, the distributions are however evolving with learning. b The average
performance of decoding maze location (average over all classes, for reference
channels in rad and l-m) is higher for late than for early trials, as revealed by
boxplots of percent performance improvement for representative channels in both
rad and l-m layers (p <0.013 for rad and p <0.04 for l-m). c, dWe performed cross-
classification analyses, training classifiers to decode maze location from gamma
ensembles in a range of trials and using them to extract information from other

trials in past or future time ranges. c The resulting cross-prediction error matrix
(here for a representative rad channel formouse #3; see Supplementary Fig. 11a for
l-m layer andothermice) is asymmetricwith respect to the diagonal, indicating that
classifiers trained on future trial ranges can decode information from past trial
ranges better than in the opposite direction. d This asymmetry is quantitively
confirmed by positive percent difference between performances in past-on-future
or future-on-past prediction directions (positivity of the increment, p <0.006 for
rad and p <0.0006 for l-m). In the boxplots of all this figure’s panels dots denote
performance improvements for differentmice. boxes, IQRs; horizontal line, sample
mean; whiskers, 95% sample c.i.; **p <0.01; ***p <0.001 after Bonferroni correction.
One-tailed t-tests are used for both comparisons of samples with chance level; and
between samples.
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spectrograms yields a diversity of gamma frequencies and phases
comparable to actual data (cf. radar plots in Fig. 5a and Fig. 2c). The
shown simulation is obtained for a specific choice of parameters
(square working point in Fig. 7d), however, the displayed gamma
diversity is preserved over a very broad range of conductance and
external drive intensity. This is quantified by large spectral entropy
values in Fig. 7d, remaining uniformly high over most of the repre-
sented parameter space, colocalizing with regimes of weakly syn-
chronized and low-amplitude oscillations (triangle, circle and square
example working points in Fig. 7d and Supplementary Fig. 12a).

Spectral entropy drops uniquely above a transition to a strongly syn-
chronized oscillatory regime, characterized by higher amplitude fluc-
tuations of the mean membrane potential (star symbol in Fig. 7d).
Wherever spectral entropy is high, oscillations are transient and dis-
play scattering in frequency and phase like in empirical data (four
paradigmatic cases are characterized in Supplementary Fig. 12c). In
simulated ensembles of gamma elements, as in real data, frequencies
aremore narrowly tuned in oscillatory events with high amplitude and
the exact frequency at which these high amplitude events tend to
occur can be smoothly controlled by varying the strength of the cou-
pling of excitatory to inhibitory neurons (triangle circle, and square
symbols in Supplementary Fig. 12b–c).

We also considered the regularity of single-neuron spike trains.
Over the broad range of parameters associated with large gamma
element variability, the average firing rate of neurons is small com-
pared to the average frequency of gamma oscillations (Supplementary
Fig. 13a), so neurons do not fire at every gamma cycle and their spike
trains are temporally irregular (note however that in our model, firing
rate of excitatory neurons is higher than the one recorded in the hip-
pocampus or entorhinal cortex of behaving rodents Supplementary
Fig. 13b, d) associated to large spike train entropy values (Fig. 7d). On
the contrary, entering the high amplitude fluctuation regime (star
symbol), spike train entropy drops, indicative of a regime of spike-to-
spike synchrony, in which neurons tend to fire nearly at every gamma
cycle (Fig. 7d). In such a regime, only a limited amount of information
couldbe conveyedby spike patterns, asmostneurons are activewithin
each gamma cycle. On the contrary, in the high entropic regime, richly
informative “codewords” could be constructed by monitoring which
neurons are active andwhich are silent at each specific gammacycle. In
other words, regimes with high gamma element variability are expec-
ted to have a higher coding capacity.

Finally, to prove that gamma element variability is shaped by
neuronal firing patterns, we trained a random forest classifier to pre-
dict from the vector parameterization of specific gamma elements the
firing or silence of each given neuron in a small window centered on
the input gamma element. We focused specifically on E neurons,
whose firing was sparser (Fig. 7e).We then quantified the performance
of decoding by evaluating the fraction of true and false positive output
inferences. The performance was heterogeneous and for many neu-
rons, the true positive fraction did not get above 30% (Supplementary
Fig. 13c). However, for a subset of 24% of neurons, decoding was
possible with a very accurate performance (Fig. 7f), with both true
positive and true negative fractions above 70%, for a precision of ~72%
(fraction of predicted spikes that are existing) and a recall of ~74%
(fraction of existing spikes that are predicted). These “decodable”
neurons did not have significant differences in firing rate, the strength
of external drive or yet degree of local connectivity with respect to the
other, “undecodable” neurons. However, their firing was more phase-
concentrated relative to the ongoing theta oscillation (Supplementary
Fig. 13d) and tended to occur in phase ranges immediately preceding
or following theta oscillation peak (Supplementary Fig. 13e). Even if
these details may not be generalizable beyond the specificities of our
model, still we are able to prove thatdecoding the firing of a fraction of
the population neurons from gamma elements is possible. Therefore,
the variability of gamma element features reflects, at least in part, the
underlying neuronal firing variability and could inherit from it the
capacity to –indirectly– carry information about behavior.

Discussion
Using machine learning-based decoding of electrophysiological
recordings during a behavioral task, we showed that in vivo hippo-
campal theta-gamma oscillations are not well described by sharply
distinct narrow-bandmodes.On the contrary, at everyCA1 channel, we
observed broad distributions of gamma frequency and theta-phase of
appearance, largely overlapping between distinct anatomical layers

Fig. 6 | Relations of gamma elements with behavior depend on and
anatomical layer. We studied cross-classification between different recording
locations and its variations along task learning. a The cross-prediction error matrix
(all trials, mouse #3; see Supplementary Fig. 11b for other mice) displays a block
structure, indicating that different anatomical locations have alternative types of
gamma elements to behavior inter-relations. Hippocampal and non-hippocampal
channels form different blocks. Within hippocampus CA1, superior rad and l-m
channels belong as well to different sub-blocks. b These anatomically-organized
patterns of inter-relations evolve along task learning, as revealed by increased l-m
vs rad cross-decodability in late with respect to early stages (percent improvement
of cross-prediction performance; p <0.016 for both l-m-on-rad and rad-on-l-m
cross-prediction directions). The improvement in cross-predictability across
learning was larger in the l-m-to-rad than in the rad-to-l-m direction (significance of
difference, p <0.042). In the boxplots boxes denote IQRs; horizontal line, sample
mean; whiskers, 95% sample c.i.; *, p <0.05; **, p <0.01; ***, p <0.001 after Bonfer-
roni correction. One-tailed t-tests are used for comparisons of: samples with
chance; and between samples.
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(Fig. 2, Supplementary Figs. 2–5). This diversity of gamma oscillations
is widespread and common to all analyzed datasets, including data
previously used to conclude the existence of narrow gamma bands
(Supplementary Fig. 3). Consequently, if we were given the phase and
frequency of an individual transient gamma element without being
told from which layer this element has been recorded, we would be
generally unable to provide an answer to this question. This apparent
homogeneity in oscillatory features, broken only for the strongest
amplitude events, does not prevent the existence of distinctions
between layers. These distinctions, however, are not anymore just of
spectral nature, but instead emerge at an “algorithmic” level26, i.e. in
the way in which this pervasive gamma variability relates to behavior
(Figs. 3, 4, Supplementary Figs. 7–9) and evolves through learning
(Figs. 5, 6, Supplementary Figs. 10–11).

Hippocampal oscillations would thus be better described in terms
of a collection of complex gamma ensembles, i.e. collections of

transient oscillatory events that, despite their heterogeneity in phase
and frequency, are distinctively modulated by both behavior and
learning. In other words, such diversity is not noise to average out but
rather an informative signal. Even studies that previously reported this
diversity and called for abandoning a strict dual gamma band view
often ended up implicitly emphasizing high amplitude oscillatory
events8,12,13,27 (but see15 for a criticism of independent multiple gamma
views), which are spectrallymore discrete (as the average spectrograms
they dominate, Fig. 2d) but constitute only a rare minority of gamma
elements. Here, beyond these studies, we find that also gamma ele-
ments with weaker oscillatory amplitude do carry task-related infor-
mation, despite –or, eventually, precisely because of– their haphazard
variability. Therefore, by taming complexity rather than ignoring it, we
extend our investigation of oscillations-to-behavior interrelations to a
broad majority of gamma elements, structurally ignored by previous
approaches based on averages or “representative” patterns.

Fig. 7 | Large diversity of gamma elements reflects firing patterns at the fringe-
of-synchrony. a We generated simulated LFP-like signals using a computational
model of a generic local circuit, generating gamma oscillations and driven by an
external theta-modulated input current. Themodel network included thousands of
randomly interconnected spiking excitatory (E) and inhibitory (I) neurons.
b Typical raster plot of the spiking activity of selected neurons, with superposed
traceof the associated LFP-like signal computed from themodel.c Spectrogramsof
the gamma composite component of simulated LFP-like signals reveal the exis-
tenceof transient gammaoscillatory events at variable frequencies andphaseswith
a landscape of gamma elements diversity comparable to real recordings. d The
diversity and frequency distribution of simulated gamma elements depend on
model parameters, such as the density of within-population connectivity K and the
average strength of I-to-E synaptic coupling. The parameter-dependency surface of
spectral entropy (middle panel) shows that narrower-band oscillations with amore
precise frequency occur onlywhen connectivity K is very large (starworking point).
However, in this case, the level of population synchronization would be unrealis-
tically large (large signal standard deviation; rightmost panel). The degree of

synchronization also correlates with the average entropy of individual spike trains
(quantifying their temporal irregularity). Entropy is large at the “fringe-of-syn-
chrony” (triangle, circle and square points, corresponding to oscillations with dif-
ferent mean frequencies, cf. Supplementary Fig. 12), when spikes are emitted only
every few gamma oscillatory cycles in a random-like fashion, while is low in the
more synchronous regime (star point) where synchrony is spike-to-spike. e We
constructed a classifier predictingwhether a given neuron is emitting a spike or not
within a small window centered on a gamma element, whose parameterization is
fed as input to the classifier. f, For a subset of more precisely phased neurons (cf.
Supplementary Fig. 13), successful decoding was possible, with precision and recall
above 70%, indicating that gamma element diversity reflects spiking patterns (for
all comparisons with chance level, at least p <0.023 or smaller). Estimations of
Entropy and decoding are performed for E neurons only, as they require binning of
spike trains and bin-size have been optimized to E average firing rate. In the box-
plot, boxes denote IQRs; horizontal line, samplemean; whiskers, 95% sample c.i.; **,
p <0.01; ***, p <0.001 after Bonferroni correction. One-tailed t-tests are used for
comparisons of samples with chance level.
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Next, we address the question of the causes underlying this
gamma diversity. Some previous work hinted at their origin in non-
linear collective dynamics of mesoscopic circuits (rather than sup-
posing distinct cell types and connectivity motifs for distinct
frequencies14). Our modeling analyses in Fig. 7a–d also suggest that
gamma variability over the whole gamma range of frequencies is
jointly generated through network-level mechanisms. In our model, it
is the dynamics of random recurrent networks with balanced excita-
tion and inhibition that inherently gives rise to complex ensembles of
oscillatory events with fluctuating and diverse frequencies. This is
achieved without the need of careful parameter tuning, as variability
naturally arises as soon as the circuit is set to operate in a broad fringe
in proximity but still below a transition to partially synchronized col-
lective oscillations28. This contrasts with many previous models29,30

whichoperated inmore synchronous regimes (akin to the starworking
point in Fig. 7d): their narrowly tuned rhythms cannot indeed render
the strong variability observed for individual gamma elements,
although matching prescribed target frequencies based on average
oscillatory patterns observed in vivo (but in our model the frequency
of high-amplitudeoscillatory events can alsobe tuned tobemore “rad”
or “lm” -like; cf. Supplementary Fig. 12).

Our modeling analyses also allow us to formulate hypotheses
about the mechanisms through which gamma element fluctuations
would acquire a dependence on behavior and learning. Indeed, in
Fig. 7f, we show that the (lack of) firing of specific neurons can be
reliably decoded from instantaneous gamma element variability. This
implies that the fine details of this variability –the ones that machine
learning classifiers learn to parse to extract behavior-related informa-
tion– are partially shaped by the details of underlying neuronal firing
dynamics. We thus believe that the information we extract from
gamma elements is the blurred shadow of information conveyed by
neuronal ensembles whose spiking eventually represents environ-
ment- and behavior-related aspects. Hence, the multiplicity of gamma
frequencies would not indicate the existence of a multiplicity of
channels for information routing, as in early interpretations of discrete
gamma bands models11. Instead, it would reflect the irregularity of
sparsely synchronized firing in randomly wired local networks, both
resulting in large entropy of neuronal activity (Fig. 7d, right) and thus
bandwidth for information coding. Note, that in regimes with higher
synchrony, firing entropy would be severely reduced (see once again
Fig. 7d, right), trimming, therefore, the amount of information that
spiking could convey, relative to fringe-of-synchrony regimes asso-
ciated with pervasive gamma element variability. Yet, high amplitude
oscillatory events may still act as switches to transiently boost com-
munication and enable the “push-forward” and “pull-back” of infor-
mation encoded in rich spiking representations (as previously
hypothesized16). This same theory16 also predicts that low amplitude
oscillatory transients would be scattered in phase, but high amplitude
transients would phase-synchronize in a self-organized manner. Such
prediction is well compliant with the observed properties of inputs
received at the l-m and originating mostly from the entorhinal cortex,
which are a mixture of low-power gamma elements scattered in phase
with higher-power elements concentrated around a specific phase
(Fig. 2, Supplementary Figs. 2 and 6). On the contrary, inputs received
at the rad layer are scattered in phase at all power levels, suggesting
that the generating populations in CA3 may be tuned in an even more
asynchronous regime, only transiently ringing as an effect of filtering
noise31,32.

When decoding information from gamma elements, we would
then be in reality capitalizing on indirect signatures of other codes,
relying on cell ensemble firing33, sequential activation of cell
ensembles34 or the dynamic selection of internal attractors or
assemblies35,36. More in general, changing neuronal correlation and
firing may translate into broadband deformations of the extracellular
field power spectrum shape37, thus explaining why information can be

decoded even from oscillatory events at frequencies remote from
spectral peaks.

Previous studies showed that increasing speed was associated
with modulations of gamma amplitude, frequency or theta-phase,
often with elaborate nonlinear relations, possibly dependent on
learning21,22. The difficulty to identify relations between individual
oscillatory features and speed may reflect the essentially synergistic,
and thus conditional, nature of the mapping between gamma element
variability and exploration behavior (Fig. 4e). Some aspects of the
performance of our decodersmaywell hint at an influence of speed on
the classifier decisions. For instance, it was easier to correctly identify
presence in the target arm when speed was high, and in the reward
field when speed was low. Similarly, gamma elements during fast
movement in other arms tended to bemisclassified as occurring in the
target arm (cf. Supplementary Fig. 8b). Nevertheless, decoding per-
formance remained well above chance level for all speed quartiles.
Furthermore, the redundancies of individual gamma elements feature
with speed (Fig. 4f) and the unique information about maze location
conveyed by speed (Fig. 4e) both remained very low. Maze location
affects the features of gamma elements in complex and synergistic
ways, indicating that individual features do not exhibit a straightfor-
ward anddirect relationshipwithbehavioral information.Nonetheless,
such a relationship does exist within the high-dimensional space
encompassing all features, and our classifier effectively leverages this
association for successful decoding purposes. This is particularly the
case of the l-m gamma ensemble, whose synergistic mutual informa-
tion levels where systematically larger than for the rad (cf. Supple-
mentary Fig. 9), possibly reflecting richer and higher-dimensional
encoding schemes by the activity of entorhinal cortex than of CA3
circuits. Nevertheless, there is no drastic change in prediction per-
formance depending on the anatomical layer, indicating that all hip-
pocampal layers received behaviorally-relevant information (likely
through non-canonical hippocampal circuitry38,39) and that the infor-
mation about location likely injected in the oscillatory activity by place
cellsfiring donot provide the pyrwith better positional correlates than
gamma waves from other layers, this surplus of information being
probably not visible at the rough spatial resolution level we use for our
decoding. Indeed, our decoder does not finely predict animal position
in the maze as some previous algorithms40. This is however not sur-
prising, as our decoder operate on quite minimalistic inputs, para-
meterizing individual gamma elements at one time and at one
recording location, while these previous algorithms exploited way
more complex and higher-dimensional inputs. Furthermore, our aim
was not to construct a performing decoder but to dismiss the
hypothesis that gamma element variability is noise, and, for this less
ambitious aim, the achieved performance is sufficient. However, it is
likely that superior decoding, potentially allowing a finer identification
of location beyond our rough subdivisions, becomes accessible when
going beyond individual gamma elements to consider combinations of
them (either temporal sequences or co-occurrences across layers).

Despite a substantial overlap in the frequency distributions of
gammaelements at all layers, our cross-decodability analyses could yet
reveal the existence of at least two types of gamma ensembles, cor-
responding to distinct blocks in the matrices of Fig. 6a and Supple-
mentary Fig. 11b. Gamma elements recorded within the l-m (and the
dentate gyrus) were modulated by maze location in very similar ways,
but differently from channels within the more superficial rad. Inter-
estingly, our cross-decodability approach exhibits a clear distinction
between superficial and deep rad (Fig. 6a). Since cells located proxi-
mally in CA3 gave rise to collaterals that tended to terminate more
superficially in the rad thandid those arising frommid and distal levels
of CA341, it is tempting to speculate that different CA3 inputs convey
different information to CA1.

Remarkably, it is at the algorithmic level26 of howbehavior-related
information is encoded thatwecan recover a clear distinction between
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the rad and l-m layers that was not so evident at the level of frequency
and phase distributions. Nevertheless, we provide a further confirma-
tion that spatial location and navigation behavior are differently
represented by the entorhinal cortex and CA3 circuits, serving as the
input sources for functionally distinct gamma ensembles.

These representations are not fixed but evolve through the
learning of the task, and more information about location can be
decoded from late trials (Fig. 5b). Such improvement is paralleled by
(and may be attributed to) an increase in the cross-decodability
between layers, meaning that the nature of the representation is
dynamically transformed. Decoders able to read sensory-related
representations at layers receiving an entorhinal input become
increasingly able to equally readmodel-based representations at layers
innervated by CA3 (Fig. 6b). In other words, the grammar of sensory-
related inputs, parsed by our decoders, becomes more and more
compliant with the one of internal models. This result finds a natural
interpretation within a predictive brain framework, since, with the
learning of an internal model, the activity of sensory-processing
regions shifts toward representing model-based inferences, beyond a
passive encoding of external evidence24.

Further, our results show that there is not a sharp distinction
between naïve and expert types of location representations, but rather
that these representations are smoothly adjusted through time as an
effect of idiosyncratic experience. Our analyses indeed reveal an
“arrow of time”, with present decoders able to read out information
from past gamma elements but not yet future ones (Fig. 5c, d). Each
mouse has a different history of learning and, thus, potentially, a dif-
ferentwayof coding rich individual behavior intodifferently organized
but invariantly complex languages based on gamma ensembles
(eventually, cross-classification between mice was not significant). A
reduction in behavioral variability may contribute to the observed
improvement in decoding accuracy during late trials compared to
early ones. However, even in well-trained animals, there remains a
considerable trial-to-trial variability in behavior. Despite this, a com-
prehensive characterization of these behavioral fluctuations is cur-
rently lacking. Future investigations may benefit from employing
automated machine learning algorithms to categorize and analyze
behavioral patterns42,43, potentially enabling more sophisticated
decoding approaches beyond basic maze location tracking. Note that,
if gamma element variability is the manifestation of statistically rich
firing dynamics, as hinted to by our modeling (cf. Fig. 7), our results
imply that the organization and probability of occurrence of different
cell assemblies is updated through learning in region-specific
manners44.

To conclude, hippocampal gamma activity is more diversified
than a limited number of narrow frequency bands used by afferent
generators at specific phases of the ongoing theta oscillation. At first
sight, this variety may seem to threaten prominent views in which
information from the two main hippocampal CA1 afferents is con-
ditionally routed and disentangled at the neuronal level thanks to
their distinct preferential frequency and theta-phase13,27,45,46. In these
views, indeed it is a precise temporal and spectral separation of
inputs that allows different structural pathways to mediate distinct
cognitive functions7,47. Here, we show that such precise separation in
frequency and phase most of the times does not occur. Yet, the
diversity of gamma ensembles is not mere noise as it allows the
successful decoding of behavior, is meaningfully coupled to both
anatomy and learning and is likely to reflect the recruitment of
sparsely synchronized and richly informative firing patterns, una-
vailable inmore synchronized regimes. By emphasizing the relevance
of low power events with “misbehaving” phase and frequency,
usually discarded, our results suggest that system’s functionmay rely
on the self-organized coordination between noisy and weak oscilla-
tory bursts16 rather than on rigid architectures with precisely tuned
oscillations.

Methods
Animals and surgery
Subjects. Five adults male CD1 mice (~3-month-old at the time of
surgery) were housed in individual cages post-surgery, under a 12-h
light/dark cycle (light at 8:00A.M.). They had water and food ad libi-
tum till the start of the habituation period; they were then water-
restricted (2h-daily access, ~2 h after testing) for the entire duration of
the experimental protocol. All experimental protocols agreed with the
European Committee Council directive (2016/63/UE) regarding animal
experimentation and were approved by the French Ministry of
Research (APAFIS#20388-2019042517013497).

Surgery. Animals were anesthetized with isoflurane during the entire
surgery. Linear silicon probes with either 16 or 32 channels (50 µm-
spacing; A1x16-3mm-50-177-CM16LP or A1x32-6mm-50-177-CM32,
Neuronexus, Ann Arbor, USA) were chronically implanted through the
CA1-DG axis of the right dorsal hippocampus (AP: 2.06 and ML: 1.3
from bregma; DV: 1.7 from the dura). They were covered with DiI stain
(InvitrogenMolecular probes, USA) before insertion. Two screws were
positioned in the posterior and anterior portions of the skull, serving
as ground and reference electrodes, respectively.

Histological procedures. The mice were perfused with 0.1M PBS
followed by 4% paraformaldehyde in PBS solution with added heparin
(25 kUI). Brains were postfixed for 24 h in 4% paraformaldehyde before
being cryoprotected in 20% sucrose solution for 48 h. They were then
frozen in isopentane and sliced into 40-µm coronal sections. Implan-
tation sites were visualized through a fluorescencemicroscope (Zeiss)
thanks to the Dil stain.

Behavioral apparatus and protocols
Eight-arm radial maze. The radial arm maze consisted in a central
platform (52-cmdiameter) fromwhich eight identical arms (55 ×10 cm)
expanded, separated by a 45-degree angle. Each arm was surrounded
by a 3-cm high wall. A shallow circular recess at the end of each arm
could hold the reward (75 µL of 5%-sucrose solution). The maze was
situated 65 cm above the floor in a room displaying numerous distal
visual cues that remained in position for the entire duration of the
experiment. Mice were transferred from their home cage to the maze
using an opaque box (start box: 20x10x15 cm).

Habituation to the apparatus. One week after surgery, mice were
habituated to the experimental apparatus and the experimenter. A
recording cable was plugged on a permanent basis to the head-
mounted pre-amplifier so the mice could get used to its presence and
weight. The animals were then handled by the experimenter for a few
days before starting the habituation per se. This period consisted of
transferring the mouse from its home cage to a single arm removed
from the maze and placed elsewhere in the room. The mouse had to
wait for 20 s in the start box (positioned at the entry of the arm) before
the door opening. The aim was to reach the other end of the arm to
consume the reward. This was repeated for three to five days, with five
to eight trials a day (or until the mouse was not showing clear signs of
anxiety). Mice were then exposed to the radial arm maze for two days
during a daily 10-min trial in which the start box was positioned at the
center of the maze and opened after 20 s. Every arm was reinforced
only once per trial to promote explorationof all arms across both days.
The inter-trial interval was five min, during which the apparatus was
cleaned with 35% ethanol.

Arm-to-Arm task. In the Arm-to-Arm (ATA) task, mice must find the
rewarded arm, the same across the 10 days of training (~24 h between
sessions). The four daily trials start each from one of the four possible
departure arms (two and three arms away from the target arm, both
left and right; identical across sessions to ensure a constant distance to
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the target) following a pseudo-random order to promote allocentric
navigation. Hence, the animals wait in the start box positioned at the
end of one arm for 20 s before opening of the door. It then has up to
three min to find the rewarded arm otherwise the trial is stopped. The
inter-trial interval was five min, during which the apparatus was
cleaned with 35% ethanol. On the 11th day, a five-minute probe test is
carried out to assess the animal’s spatial referencememory: themouse
is released from a new departure arm (opposite to the target) and no
reward is available. The mouse is considered to have learned the
reward location if it either visitedmore often or spentmore time in the
target and its two adjacent arms than chance (proportion: 0.125).

Electrophysiological recordings and analysis
Recording and preprocessing. The electrophysiological activity was
recorded with an Intan recording controller (RHD Recording Con-
troller, Intan Technologies, USA). The signals were amplified 200x,
recorded whole-band (0.1–10 kHz), and digitized at 20 kHz. They were
synchronizedwith a video system tracking the positionof the animal at
20Hz (Imetronic, France). The basic pre-processing of the LFPs
included the removal of both slow variations and 50-Hz (and harmo-
nics up to 200Hz) electrical noise (Chronux Matlab toolbox48), arte-
fact correction49 and finally downsampling to 1 kHz.

Anatomical localization of the electrodes. Each electrode was
assigned to an anatomical hippocampal layer depending on its dis-
tance from the hippocampal fissure along the estimated probe posi-
tion in the histological slice. The theta power from each electrode was
calculated by a group of complex Morlet wavelets (1–14Hz by 1-Hz
steps; 2-s duration; the number of cycles linearly dependent on fre-
quency, between 2 and 4 cycles) on the LFPs filtered for theta range
(4–12 Hz; zero-phase digital filtering using a finite impulse response
filter of order = 256). The fissure was located at the peak of the Gaus-
sian fit of the theta power curve, possibly between two electrodes.

Signal decomposition. For further analyses, instead of using a classic
passband filter, we used an unsupervised, nonlinear, and non-
stationary technique to isolate the dominant oscillations present in
the LFPs in time, amplitude, and frequency: the Empirical Ensemble
Mode Decomposition (EEMD50). The resultant components, termed
Intrinsic Mode Functions (IMFs), can then be summed to recompose
the original signal. Hence, to filter the LFPs in either theta (4–12 Hz) or
gamma (30–250Hz) frequency range, we summed the IMFs whose
mean of the Hilbert-derived instantaneous frequency fell within the
relevant range, thus obtaining a theta and a gamma composite LFP
signals. For every trial, LFPs were decomposed independently for the
period of actual navigation, that is, from when the animal is about to
navigate in the maze (hence excluding start box or behavioral inac-
tivity periods sometimes following the box opening) to up to 5 s fol-
lowing arrival to reward (or trial end if the animal did not find the
water). Ten IMFs were requested, resulting from the average of 2000
iterations with added noise (input noise level of 0.3 except for some
trials from two mice [mouse #3 and #4] needing 0.8 to satisfactorily
alleviate mode mixing). To reduce confounds from potential theta
harmonics, we started our gamma range at 30 Hz8 unlike some pre-
vious reports of a lower bound at 25Hz (see15 for a recent review). Note
that, to contrast our results with establishedmethods (Supplementary
Fig. 3), we also processed the signal using a finite impulse response
filter combined with a zero-phase filtering for both theta and gamma
bands or with an independent component analysis (KD-ICA algorithm
within ‘ICAofLFPs’ Matlab toolbox51) instead of the EEMD
decomposition.

Theta cycles identification and selection. Theta cycles were identi-
fied on the theta LFP composite from the closest channel to the hip-
pocampal fissure. Using the fissure as a theta reference offers larger,

more defined theta cycles but implies an inverted theta phase com-
pared to theta recorded within the CA1 pyramidal and oriens layers.
Peaks in the signal were identified as the start/end of each candidate
cycle. The trough was determined as the point with the lowest ampli-
tude between two consecutive peaks, and the flanks, as the points at
half-amplitude between the trough and these surrounding peaks. The
theta phases (0–360°; peak = 0/360°) were obtained by linear inter-
polationwithin eachquadrant formedby the starting peak-descending
flank (0–90°), the descending flank-trough (90–180°), the trough-
ascending flank (180–270°) and the ascending flank-next peak
(270–360°). This waveform-derived phase determination is more
respectful of the theta waves asymmetry than the one from the Hilbert
transform52,53 although we compared both methods (Supplementary
Fig. 3). Note that EEMD-based composite signals are supposed to
better respect the wave asymmetry than classic filters12. To be selected
for analysis, the candidate theta cycles had to meet the following
criteria12: a duration compatible with the theta frequency band (i.e., 83
to 250ms) and a sufficient power (amplitude of the envelope of the
theta LFP composite signal at the cycle start, mid and end points
superior to the envelope of the 1–4Hz infra-theta LFP composite sig-
nal). They further needed a coincident video sample to determine the
animal position in the maze at that time.

Amplitude of theta cycle-nested gamma. To lessen volume-
conducted activity, the amplitude of gamma oscillations was calcu-
lated on the current source-density (CSD) signal derived from gamma
LFP composites as previously described for LFP46. CSD at a given time
point t was calculated as follows:

CSD n, tð Þ= �LFP n� 1, tð Þ+2 � LFP n, tð Þ � LFP n+ 1, tð Þ
Δd2 ð1Þ

where LFP(n,t) is the gammaLFP composite recorded at the electroden,
LFP(n+1,t) and LFP(n-1,t) are the gamma LFP composites from electrodes
directly above and below, respectively, and Δd is the distance (in mm)
between contacts.

The continuous amplitude of the CSD signal, used as an instan-
taneous metric of power, was then obtained for each channel using
complex Morlet wavelets convolution (0.5-s duration; from 15 to
200Hz by 5-Hz steps and assessed by a number of cycles linearly
dependent on the wavelet main frequency, between 6 and 20 cycles).
The portion of this convolution corresponding to the time of each
theta cycle was then isolated12,13 and the CSD amplitude for each
gamma frequency was averaged per theta phase (10° phase bins).
Hence, the gamma spectral contents of each theta cycle were sum-
marized in a ‘snippet’ (38 ×36 matrix: frequency x theta phase bin).

Gamma bouts detection. Within each individual theta-cycle, we
extracted gamma elements as patches of locally higher gamma com-
posite power in the CSD spectrogram. To identify these patches, we
treated single-theta cycle spectrograms as color-scale images and
binarized them, assigning to pixels with a gamma composite power
larger or lower than a fixed threshold black or white color, respectively.
We then used a standard flood-fill algorithm54 to identify connected
components within the binarized spectrogram image, each corre-
sponding to a potential gamma patch. Since the number of connected
components depend on the applied threshold, we decreased system-
atically the threshold starting from a value equal to the maximum
power value within the original spectrogram. When reducing the
threshold, more image pixels rise above threshold and the number of
connected components tend to increase, apart from a few exceptions
(see below). The scanning of decreasing threshold values stoppedwhen
a maximum (arbitrarily chosen) number of four connected patches
(and thus gamma elements per theta cycle) was identified. Cases could
arise in which the addition of new black pixels to the binarized image
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caused patches disconnected at higher threshold values to finally
merge. However, such patch fusion should be prevented, as themerged
patch includes multiple and distinct power peaks. We thus added
tracked record of the components’ extensions immediately prior to
merging, storing them as separated. Another special case needing ad
hoc handling was the one of components located at the boundaries of
the theta cycle and therefore potentially extending across two con-
tiguous theta-cycle. To avoid double counting of a same component
(detectable in both the cycles across which it is split), we thus parsed
simultaneously neighboring theta cycles, to identify the complete
extension of cross-cycle boundaries patches and count them only once
(assigning them to the cycle over which the strongest amount of power
was located).

After determining connected components segregated from the
background and correcting for patch fusion and double counting, we
then computed for each retained component the following gamma
element features: gamma amplitude, frequency, and theta-phase of
occurrence. Eachpixel within a componentwas associated to a specific
power, frequency, and phase triplet of values (respectively, the color,
the vertical, and the horizontal coordinate within the single-theta cycle
spectrogram image). The gamma element power was evaluated as the
average power over all pixels within a connected component. The
gamma element frequency and phase were then determined as the
average among the frequencies and phases of the pixels within the
component, weighted pixel-by-pixel by the pixel power.

We also compute the associated theta wave instantaneous fre-
quency (inferred from cycle duration), amplitude (average voltage
difference between the trough and the two adjacent peaks) and
asymmetry (rise – decay ratio).

All gamma elements were appended to a list for each trial and
channel, which was then filtered to exclude the top and lowest 1%
amplitude gamma elements. Analogously, we excluded some gamma
elements occurring in theta cycles coincident with unlikely large run-
ning speeds (> 100 cm/s).

Dimensionally reduced representations of gamma elements
We used a standard t-Stochastic Neighborhood Embedding (t-SNE)
algorithm19 to create bidimensional representations of the diversity of
gamma elements. This algorithm guarantees that distance inter-
relations between data-points in the source high-dimensional space
are preserved as much as possible in the target bidimensional space
representation. The projection was learned for all gamma elements
simultaneously (all layers and trials), and then different groups of
elements could be shown in different panels (see. Figure 1f, g and
Supplementary Fig. 5) filtering the same common and frozen projec-
tion. We used standard hyperparameters (perplexity = 30, no exag-
geration) with an approximated Barnes-Hut algorithm. We used an
Euclidean distance metric except for the theta phase of gamma
appearance where circular distance was used.

Maze location classifier training
General classification approach. We used first a supervised classi-
fication approach to predict rough location within the maze based
on an input vector parameterizing individual gamma elements. The
input was given by a six-dimensional vector including general
information about the theta cycle (theta-composite amplitude,
frequency and asymmetry) and specific features of the considered
element (gamma element power, frequency, and theta phase of
occurrence), computed as described in previous sections. The
output was a categorical label, referring to a subdivision of themaze
in four sections: “Reward RF” (end-field of target arm where reward
was delivered); “target arm” (including the arm leading to the
reward location and the outer area of approach to this same arm, “);
“other RFs” (arm end field other than the reward field); and, finally,
“other locations” (including all areas not including in the previous

subdivisions, i.e. maze center and generic maze arms not leading to
reward).

As multi-class classifiers, we used boosted ensembles of classifi-
cation trees, limiting the maximum number of decision splits in a tree
to 500, and the number of learners in an ensemble to 500 trees. Tree
ensembles were fitted using the RUSBoost algorithm55, with a slow
learning rate of 0.01, to alleviate the problem of output class unba-
lance (as some classes, as “target arm” or “Reward RF” are under-
represented relatively to others). In this algorithm, random under-
sampling is applied to training sets to guarantee that each class is
represented by close numbers of samples, providing simultaneously
the capability to learn rare classes and protection against biases due to
variations across different conditions (e.g. early vs late trials) of the
fractions of samples per class.

Classification performance. Classification performance was eval-
uated both in terms of resubstitution error (error on same data sam-
ples used for training) and generalization error (error on data samples
not used for training), estimated via 4-fold cross-validation. In gen-
erating the random partitions into training and testing sets of ele-
ments, beyond output class balancing, we took care to use for testing
gamma elements measured in theta cycles not included in the training
set, thus conferring protection against overfitting. The list of theta
cycles (and gamma elements therein) available for a selection of
training and testing pools corresponded to the total list of elements
retained for a channel in a mouse, over all the trials (unless otherwise
specified, see next section on cross-classification). Different classifiers
were trained independently for eachdifferent channel. Figure2d–f and
Supplementary Fig. 8 report average performances over all CA1
channels, as classification performance was shown to have only weak
dependency from the layer (cf. Figure 2c and Supplementary Fig. 7).
Generally, unless otherwise specified, classification performances (and
misclassification rates) are expressed in terms of correct (incorrect)
classification fraction, evaluated over all available gamma elements
(cross-validation ensuring that prediction on an element was per-
formed in terms of classifiers not having seen this element during
training). Despite cross-validated training had access to the whole list
of gamma elements extracted from a channel, after training, we could
also evaluate classification performance on subsets of gamma ele-
ments to assess whether the probability of correct classification
depended on various features of the gamma elements fed as input. We
thus separated gamma elements according to them belonging to dif-
ferent quartiles of the distribution of different features (fromQ4, with
top values, toQ1, with the lowest values): the six features of the gamma
element descriptive vector (gammapower, frequency andphase, theta
amplitude, frequency and asymmetry), as well as motion speed
(averaged over the time range of the considered theta cycle); and
computed fractions of correct classification separately over each dis-
tribution quartile.

Classification with alternative input features. We also trained clas-
sifiers using alternative reduced sets of input features. Instead of using
the full six-dimensional descriptive vectors of gamma elements as
input vector (as in the “theta + gamma” classifiers just described), the
“theta-only” (or “gamma-only”) classifiers were trained just in terms of
the three theta (or gamma) features entries.

Classification of alternative arm and in probe trials. We also used an
alternative set of output labels inwhich the “Target arm” section of the
maze was merged with the “other locations” section, but in which an
“Alternative arm” was considered instead as a separate section, with
the same extension of the Target arm zone (arm plus outer arm
approach zone) but including an arm different from the one leading to
reward. This alternative arm was chosen to be opposite to the target
one. In this alternative zone labeling, the “reward RF” zone was left
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unchanged, i.e. it still included the reward location (and was therefore
not contiguous to the “Alternative arm” zone). Classifiers were trained
on this new labeling in a completely independent way from the clas-
sifiers trained on the original labels.

Probe trialswere not used for training, but locationpredictionwas
performed using classifiers trained over control trials, with the ordin-
ary output zone labeling (i.e., including the “Target arm” and not the
“alternative arm” zone).

Cross-classification
General approach. Once trained, a classifier serves as an implicit
model of the distribution of gamma ensembles in relation to behavior.
Changes of the ensembles-to-behavior relation across conditions or
channels can be studied using a cross-classification approach, in which
classifiers trained on a sample are evaluated on a different sample.
Preserved or decreased performance levels will then denote, respec-
tively, similarity or dissimilarity or relation to behavior.

Cross-classification through learning. To study evolution of the
ensemble-to-behavior mapping across task learning by the mice, we
selected gamma ensembles over subsets of trials only. Specifically, we
sorted all trials available from the earliest to the latest and compiled a
table of how many gamma elements each trial provided on average
over all channels. We then defined two “early” and “late” trials ranges,
including trials with ordinal numbers respectively smaller and larger or
equal than a pivot trial number. This pivot trial number was chosen
such that the cumulative sums of gamma ensemble counts per trial
over the early and late ranges were as close as possible between them.
The early and late trial range specifications were therefore adapted to
the actual behavioral history of each mouse. Furthermore, the early
and late trial ranges usually included unequal numbers of trials, as
maze exploration is faster in later than in earlier trials and, conse-
quently, individual late trials usually contribute smaller counts of
gamma ensembles.

We then adopted a finer subdivision of trials when constructing
the cross-classification matrices of Fig. 3c and Supplementary Fig. 11a.
Once again, we ordered trials and grouped them into smaller window
ranges such that the cumulative sum of gamma ensemble counts for
the trials included in each window was as close as possible to 3000
elements. Every window included all trials with ordinal numbers
between the ones of a start and stop trials. Windows could have an
overlap, but two consecutive windows could not have the same start
and stop trials. Different windows generally included different num-
bers of trials, with windows at earlier times being generally narrower
than windows at later times.

Classifiers were then trained over just the early or late range of
trials, or, yet, just trials within a specific learning window, using the
same class-balanced, cross-validated approach described in the pre-
vious section. The partial datasets were randomly downsampled to
exactly include the same number of elements (as the numbers of ele-
ments provided by early and late trials ranges or by different windows
were close between them, but not identical). Although cross-validation
was still used in training, it could not be systematically used in evalu-
ating cross-classification performances, as the original and checking
datasets did not include the same theta cycles and partitions gener-
ated for the one was thus invalid for the other. Therefore, in the cross-
classification performance matrices of Fig. 3c and Supplementary
Fig. 11a, we reported average resubstitution error along the diagonal
and, in off-diagonal entries, direct average performance on the con-
sidered checking dataset.

The improvement of decodability in late relatively to early trials
(Fig. 3b) was evaluated, for each mouse, as the relative percent dif-
ference between cross-validated performance, averaged over all clas-
ses, of classifiers trained just on late or early trials (for a representative
channel in the middle of rad or of the l-m layers). The performance

asymmetry in classifying past vs future trials (Fig. 3d) was evaluated as
a relative percent difference between the averages of the upper and
lower triangular parts of the cross-classificationmatrices of Fig. 3c and
Supplementary Fig. 11a.

Cross-classification through channels. Classifiers trained on a
channel were used to extract location based on gamma elements of
another channel. We computed cross-classification performance
across channels based on the whole set of available trials (Fig. 3e and
Supplementary Fig. 11b) and also based on just trials in the early and
late ranges. For a better comparison with cross-classification analyses
across trials we once again computed cross-classification perfor-
mances and relative percent variations in terms of resubstitution and
direct checking errors. Cross-classifiability between rad and l-m layers
was evaluated averaging cross-classification matrix entries in blocks
delimited by channel ranges matching the different layers. Note that
some uncertainty exists at layer edges, as electrodes could slightly
move from one day to the next, causing some of them to transit above
or below the depth delimiting two layers. A channel was thus included
in the block average only if it belonged to a specific layer in at least
three quarters of the trials used to build the classifier.

Information-theoretical analyses of element features to beha-
vior relation
Mutual Information between pairs of features and maze location.
To study the nature of the relation existing between different
descriptive features of the gamma element and maze location, we
complemented decoding by machine-learning classifiers with infor-
mation theory analyses56 and computed mutual information between
pairs of input variables and simultaneously visited maze location. We
used a rough estimation of the probability distributions of input vari-
ables, quantizing them into four unequal bins, matching the distribu-
tion quartile limits. By replacing feature values by their quartile label in
the feature distribution, we then automatically maximized single
variable entropies, as entropy for discretized variables is maximal for
uniform distributions. Output labels were already categorical and in a
number of four, corresponding to the four rough maze sections pre-
viously described (Reward RF, Target Arm, Other RF, Other locations).
For each pair of quantized input features f and g and output maze
location labels L, we computed over the list of all gamma elements for
representative channels in rad and l-m layers the joint normalized
frequency histogram P(f,g,L) and, out of it, the totalmutual information
that the pair of inputs (f,g) carries about the output L:

I f , g ; Lð Þ=
X
f , g , L

P f , g, Lð Þ log2
P f , g, Lð Þ

P f , gð ÞP Lð Þ ð2Þ

normalized by the total entropy H Lð Þ= �P
LP Lð Þlog2P Lð Þ of the out-

put variable (to quantify the fraction of location information carried by
the pair of input features).

Partial Information Decomposition. We then decomposed this total
mutual information using the Partial Information Decomposition (PID)
framework23 into: unique fractions of information, i.e. information that
f (or g) carry about L but that g (or f) don’t carry; a redundant fraction
of information, i.e. information that both f and g carry about L; and a
synergistic fraction of information, i.e. information that neither f or g
alone carry about L but that they carry when jointly considered. We
evaluate the synergistic information of f and g relative to L as:

Syn f , g ; Lð Þ= I f , g ; Lð Þ � I f ; Lð Þ � I g ; Lð Þ+Red f , g ; Lð Þ ð3Þ

where Red f ,g; Lð Þ is the redundant fraction of information and must
be added back once because twice removed from the total mutual
information I f ,g ; Lð Þ when subtracting I f ; Lð Þ and I g ; Lð Þ, mutual
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information of Lwhich just f or just g. To estimate redundancy, we use
the so-called Minimal Mutual Information ansatz, under which the
redundant information fraction is made to correspond exactly to the
minimum between the two individual mutual information terms, i.e.
Red f , g ; Lð Þ= min I f ; Lð Þ, I g ; Lð Þ½ �. In thisway, theunique information
carried by the least informative of the two variables (say, g) is set to
zero, and the remaining difference equated to the unique information
carried by the most informative variable, i.e.
Unique f ; Lð Þ= I f ; Lð Þ � I g ; Lð Þ. Unique, redundant and synergistic
fractions of the total mutual information can also be normalized by
the entropy of the stimulus. Figure 2g shows average total mutual
information with location and decomposed fractions, averaged over
all pairs of input features including a specific reference feature. Besides
the six features describing gamma elements we also considered pairs
of inputs including motion speed V as input variable, discretized in a
quantile-based way as the other features. We also analyzed separately
the four gamma elements extracted out of each theta cycle, ranking
them in decreasing order of power, to reveal whether the informative
content of elements concentrated on the strongest power elements or
was uniform across stronger or weaker gamma power elements.
Details about the decomposition for specific pairs of features are
shown in Supplementary Fig. 9.

Redundancywith speed. The general dependency of gamma element
features on speed could be assessed by the redundancy between dis-
cretized gamma element features f and the speed variable V, i.e.
Red f ; Vð Þ= I f ; Vð Þ: Such redundancy was then normalized by the
entropy of f, to quantify the fraction of information about the varia-
bility of f explained by the variability of V (cf. Figure 2f).

Computational model of gamma elements generation
Model definition and parameters. We considered a network com-
posed of n = 2000 quadratic integrate and fire (QIF) neurons25, 80% of
them excitatory (E) and 20% inhibitory (I). The membrane potential
vEj (v

I
j ) of each excitatory (inhibitory) neuron j obeyed the following

differential equations:

τEm
_vEj = vEj
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+ Iθ tð Þ+ IEj
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where τEm = 10ms (τIm =4:5ms) is the excitatory (inhibitory) membrane
time constant and IEj (I

I
j ) the neuronal excitability encompassing single

neuron characteristics as well as synaptic drives originating fromother
neural regions and acting on the excitatory (inhibitory) neuron j. The
input term Iθ tð Þ is a forcing current periodically modulated at a θ-like
frequency of 10Hz and gαβ the synaptic coupling strength between a
post-synaptic neuron s in population β and pre-synaptic neurons in
populationα, with [α,β] being either E (excitatory) or I (inhibitory). The
connectivity matrix elements εαβjl are equal to one (zero) if a
connection from a pre-synaptic neuron l of population β towards a
post-synaptic neuron j of population α, exists (or not). Furthermore,
kαβ
j =

P
lε

αβ
jl is the number of pre-synaptic neurons in population β

connected to a neuron j in population α, or, in other terms, its in-
degree restricted to population β. The emission of the n-th spike
emitted by neuron l of population α occurs at time t nð Þ

l whenever the

membrane potential vα crosses threshold for firing, while the reset
mechanism is modeled by resetting vα to a rest value, immediately
after the spike emission (see57 for details on threshold and reset in QIF
neuron model). For the sake of simplicity, we assumed synapses to be
fast and synaptic transmission instantaneous, therefore the post-
synaptic potentials were modeled as δ-pulses without any delayed
activity. Connectivity within the E and I populations was random and
quenched, with in-degrees kαα distributed according to a Gaussian
distribution with mean Kαα and with a standard deviation Δαα , this
latter parameter measuring the level of structural heterogeneity in
each population. We chose here to set KEE =KII � K , providing a
common scale for the strength of local connectivity in the model. As a
further simplification (suitable for potential mean-field reduction not
explored in this study), we then assumed that the E and I populations
are globally cross-coupled, i.e. εαβjl = 1,for any j,l if α≠β. The neuronal
excitabilities Iαj were distributed according to a Gaussian distribution
with mean Iα0 and standard deviation Dα . The DC currents and the
synaptic coupling were rescaled with the median in-degree as
Iα = Iα0

ffiffiffiffi
K

p
and gαβ = gαβ

0 =
ffiffiffiffi
K

p
to obtain a self-sustained balanced

dynamics for K ! 128,58,59. The structural heterogeneity parameters
were rescaled asΔαα =Δαα

0

ffiffiffiffi
K

p
in analogy to Erdοs-Renyi networks28.We

employed, unless stated otherwise, the following values of the
parameters: IE0 =0:3; I

I
0 =0:25; D

E =0:1 � IE0; DI = II0;K = 20; ΔEE = 2 � K ;
ΔII =0:2 � K; gEE

0 =0:27; gII
0 = 1:44 � gEI

0 = gIE
0 =0:01. The θ-forcing was

assumed to be perfectly sinusoidal, as Iθ tð Þ=A
ffiffiffiffi
K

p
cos 2πνtð Þ, with

ν = 10Hz and A=0:042.

Simulated local field potential. The Local Field Potential was mod-
eled as LFP= (|IA |+|IG | ), which is the sum of the absolute values of
AMPA and GABA currents impinging on pyramidal cells, following60.
The global currents IA and IG were the linear sum of contributions
induced by single pre-synaptic spikes, each represented as a combi-
nation of two exponentially decaying functions. This representation
can be obtained using auxiliary variables xAj , xGj . The time evolution of
AMPA and GABA-type currents of neuron j were thus described by the
following ordinary differential equations:

τdA
dIAj
dt

= � IAj + xAj
ð6Þ

τdG
dIGj
dt

= � IGj + xGj ð7Þ

τrA
dxAj
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k
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ð9Þ

where τdA(τdG) and τrA(τrG) are respectively the decay and rise time of
the AMPA-type (GABA-type) synaptic currents. Always following60, we
high-pass filtered the obtained model LFP signal at 1 Hz with a 4th
order Butterworth filter and employed τrA =0:4ms;
τrG =0:25ms; τdA =2ms;τdG = 5ms.

Numerical simulations. Numerical simulations of the model were
performed with a standard Euler integration scheme with time step
δt = 0.001ms. Since all disorder in connectivity and conductance is
quenched, a deterministic integration scheme can be used as in ref. 57.
Simulations were performed scanning a range of K and gIE

0 values to
explore different dynamical regimes (cf. Fig. 4 and Supplementary
Figs. 12 and 13).
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Indicators of dynamic regime. After the generation of synthetic LFPs,
gamma elements could be extracted from them following the same
procedures as for real LFP and CSD signals. We also computed an
indicator of powerdistribution across frequencies, computing spectral
entropy. To do so, the power spectrum P(f) of simulated time-series
was computed and over a range between fmin = 25 Hz and fmax = 125 Hz
sampled at df =0.1 Hz and normalized to provide a density functional.
We then evaluated spectral Entropy as the quantity
E = � 1

Emax

P
f P fð Þ � log2 P fð Þð Þ, where Emax = log2 Mð Þ and

M = fmax � fmin

� �
=df . Higher values of E correspond to higher disper-

sion of power across gamma frequencies.
We also estimated the ratio between the amounts of high- and low

gamma power, estimating the total power in the low (25–50Hz)
gamma band Plow, and the total power in the high (50–100Hz) gamma
band Phigh. The ratio rgamma = (Plow – Phigh)/(Phigh+ Plow) indicated
whether the LFP is dominated by high gamma (positive rgamma), by low
gamma (negative rgamma), or by an equilibrated mix of the two (rgamma

close to zero).
As variance in time domain is proportional to powermagnitude in

spectral domain, we computed standard deviation of the mean
membrane potentials across inhibitory neurons as a measure of the
amplitude of generated gamma oscillations.

Finally, we evaluated the average entropy of spike trains. To
do so, we would ideally resort to a binning procedure in which
every bin match a cycle of ongoing gamma oscillations and the
binned spike train is binarized into a sequence where a symbol “1”
or “0” are added whenever the bin does (not) contain at least a
spike from the considered neuron. The entropy of the neuron
spike train would then be H = �p � log2 pð Þ � ð1� pÞ � log2 1� pð Þ,
where p is the probability that a bin is assigned the symbol “1”.
Pragmatically, given the large variability of gamma cycle lengths
and the difficulty to segment them, we evaluated an approximated
expression of p, estimated as the ratio between the average firing
rate of the considered neuron and the average period (i.e. inverse
of frequency) of gamma oscillations (cf. Supplementary Fig. 13a)
and plugged then this estimate for p into the above formula for H.
As the firing rate of E and I neurons are rather different and would
require different bins, making difficult comparisons across values
obtained for different bin choices, we decided to focus on E neu-
rons only for entropy analyses.

The values of spectral and spike train entropy, high/low gamma
power ratio and standard deviation of potential were computed for
simulations of models with different connectivity to study the
dependency on them of the obtained dynamical regimes.

Neuronal firing classifier training
We also used a similar RUSBoost tree ensemble classifier design to
predict not the location in the maze but the presence or absence of a
spike emitted by a given neuron i in a window of width 100ms cen-
tered on the time of occurrence of an input gamma element. Specifi-
cally, we checked for the presence of at least a “1” in a ~ 100 ms-long
chunk of the binarized spike trains used for entropy computation,
centered on the bin including the gamma element time. We thus
focused on decoding, exclusively on E neurons, as the bin size used for
binarization has been optimized for the E firing rate. Gamma elements
were parameterized for maze location classifiers. Training and testing
data came from computational model simulations, as in this case the
exactfiring state of eachneuron in thenetwork and its relationwith the
extracted gamma elements are known with precision. We used the
same hyperparameters and cross-validated training scheme for clas-
sifying maze location. A different tree ensemble was trained for the
prediction of the firing of each neuron. Performance was evaluated in
terms of the True and False Positive (correctly or wrongly detected “1”,
i.e. spike presence, TP and FP) and True and False Negatives (correctly
or wrongly detected “0”, i.e. spike absence, TN and FN), in terms of

which we also evaluated the Precision, i.e. TP/(TP + FP) and Recall, i.e.
TP/(TP + FN).

The performance was heterogeneous across neurons and two
groups could be distinguished as evident from the bimodality of
the TP and TN scores joint distributions (cf. Supplementary
Fig. 13c). We call these two peaks the “undecodable” and “decod-
able” subgroups of neurons in the model and we empirically
separate them by segmenting the “decodable peak with the con-
ditions, TP > 0.6 and TN > 0.6, as justified by the found joint dis-
tribution shape. We statistically compared firing rate, excitability
I0 and in-degree k between the two groups but found no statisti-
cally significant difference (Kruskal-Wallis test of medians). How-
ever, the two groups could be statistically distinguished by their
phase concentration defined as:

φ=
1
K

XK
k=1

e�iϕk

�����
����� ð10Þ

whereφk is the phase of the ongoing theta oscillation at which the k-th
spike of the considered neuron is emitted and ||∙|| denotes modulus of
the complex number.

Statistical analysis
All statistics were performed using either built-in Matlab (R2021a)
functions, Matlab toolboxes, or Statistica 13.

Electrophysiological data was analyzed on all 40 trials per animal
except for mice mouse #3 (missing trial 15) and mouse# 4 (missing
trials 21–24) due to technical issues with the electrophysiological
recording.

Behavior. Average latency to reach the reward during the learning
phase of the task (i.e., days 1–10) was analyzed by a non-parametric
Friedman ANOVA (within-factor: days). For the probe test, we carried
out a repeated measure ANOVA (within-factor: arms) on the ratio of a
number of visits in each arm compared to the chance level (0.125).
Post-hoc tests were used when appropriate. For all analyses, the sig-
nificance threshold was 0.05.

Distributions of gamma bouts features. The probability density
function (pdf) of each gamma feature (amplitude, frequency, and
theta-phase) was established across all trials, per electrode. As the
pdfs of gamma frequency often displayed a wide range whatever
the channel and the animal, we restricted most of our analyses to
one representative channel per anatomical layer: the channel dis-
playing the pdf the most consistent with expectations from the
dual-gamma band literature, usually based only on very strong
gamma episodes (here: the strongest 5% gamma bouts). Hence, we
favored channels showing a dominance of lower gamma fre-
quencies in the rad, and faster gamma frequencies in the l-m. The
mean pdf of each layer was calculated across mice, before gen-
erating an artificial sample of the relevant gamma feature match-
ing this pdf (n = 10000; random sample with replacement). For the
frequency, the statistical difference in the distribution from each
pair of layers was evaluated using a bootstrap method (2000
repetitions using 1500 subsamples) on the Kullback-Leibler
divergence61 so that to be significant, the mean divergence
between separate layers had to be greater than the upper 95%
confidence interval on the mean divergence between shuffled
layers. In addition, both the modes of the individual mouse fre-
quency pdfs and the ratio between gammaM and gammaS were
compared across layers using one-way ANOVA or non-parametric
Kruskal-Wallis tests on the between-factor ‘layer’, with post-hoc
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comparisons. The ratio was defined as:

ratio =
gammaM � gammaS
gammaM +gammaS

� 	
ð11Þ

with gammaS and gammaM being the sum of probabilities for the
individual mouse frequency range centered on the frequency modes
between 25–50Hz and60–100Hz, respectively, andwhose probability
is ≥ 50% of this mode.

For the phase, all statistical analyses were carried out using the
‘circStat’ Matlab toolbox62. First, the statistical difference between
artificial distributions from each pair of layers, generated as for the
frequency mean pdf, was assessed using the Kuiper two-sample test
(note that very similar results were obtained using the circular Wat-
son’s U2 test with 1000 permutations). Second, their mean phases
were compared by pairs of layers using the Watson-Williams test for
circularmeans after checking thenon-uniformity of thesedistributions
(omnibus test). This latter analysis was also done on the individual
mouse distributions (n = 5) to compare the grand mean phase across
layers. All the above analyses were performed iteratively on distribu-
tions containing a varying range of data, from all data (0th percentile:
no further data selection) to the 95th percentile of the maximum
amplitude (i.e., only the gamma bouts with the 5% strongest ampli-
tude), by steps of five percentiles. Percentiles were calculated for each
trial and electrode before pooling the bouts from all trials per
electrode.

Classification, cross-classification and mutual information. For
single mouse performance levels (fraction of classification correct and
confusion matrices), as well as for information-theoretical quantities
we evaluated 95% confidence intervals using a bootstrap with repla-
cement approach (1000 replicas) over the lists of gamma elements
retained for inclusion in each of the analyses. When comparing multi-
mouse samples of performance metrics or testing their significance
against a threshold (as in the boxplots of Figs. 2–3 and Supplementary
Fig. 8), we used t-test (two-tailed for inter-sample comparisons and
one-tailed for comparison of single samples against a chance-level or
zero threshold). We report uncorrected p-values in captions and text,
however significance, unless specified otherwise, is assessed using
Bonferroni correction for multiple comparisons (*, **, *** denote cor-
rected p-values smaller, respectively, than 0.05, 0.01, 0.001; symbols
in brackets indicate significance only prior to multiple comparisons
correction; when significant deviations in both directions above or
below chance level occur, we use upward ↑ or downward ↓ symbols
instead of *’s). Boxes in the boxplotmark the inter-quartile range (IQR),
the horizontal line sample mean µ, the whiskers µ ± 2*σ where σ is
sample standard deviation.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
We have made available a large set of raw and derived data in the
public repository Zenodo, as loadable MathWorks Matlab (https://
www.mathworks.com/products/matlab.html) workspace files. These
online resources are accessible at the link https://doi.org/10.5281/
zenodo.10181305. All other data will be made available upon reason-
able request.

Code availability
We made available on the same public repository as for data, three
MathworksMatlab Live Notebooks and one Python Jupyter Notebooks
allowing the reproduction of all the key analyses of this study (gamma
element extraction, classifier training and comparison, information

theory analyses of feature relevance, computational model simula-
tion). Note that the neededdata for running the includedexamples can
be directly loaded from these same live notebooks. These online
resources are accessible once again at the link https://doi.org/10.5281/
zenodo.10181305.
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