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Multi-night cortico-basal recordings reveal
mechanismsofNREMslow-wave suppression
and spontaneous awakenings in Parkinson’s
disease

Md Fahim Anjum 1 , Clay Smyth1, Rafael Zuzuárregui1,2, Derk Jan Dijk 3,4,
Philip A. Starr 1, Timothy Denison5 & Simon Little 1

Sleep disturbance is a prevalent and disabling comorbidity in Parkinson’s
disease (PD). We performed multi-night (n = 57) at-home intracranial record-
ings from electrocorticography and subcortical electrodes using sensing-
enabledDeep Brain Stimulation (DBS), pairedwith portable polysomnography
in four PD participants and one with cervical dystonia (clinical trial:
NCT03582891). Cortico-basal activity in delta increased and in beta decreased
duringNREM (N2 +N3) versuswakefulness in PD.DBS caused further elevation
in cortical delta and decrease in alpha and low-beta compared to DBS OFF
state. Our primary outcome demonstrated an inverse interaction between
subcortical beta and cortical slow-wave duringNREM.Our secondary outcome
revealed subcortical beta increasesprior to spontaneous awakenings in PD.We
classified NREM vs. wakefulness with high accuracy in both traditional (30 s:
92.6 ± 1.7%) and rapid (5 s: 88.3 ± 2.1%) data epochs of intracranial signals. Our
findings elucidate sleep neurophysiology and impacts of DBS on sleep in PD
informing adaptive DBS for sleep dysfunction.

Sleep disruption is one of the most prevalent non-motor symptoms of
Parkinson’s disease (PD) with up to 90% of PD patients experiencing
sleep dysfunction1 and 60% having multiple sleep disturbance
symptoms1,2. Sleep dysfunction in PDhas a negative impact on daytime
mood, cognition, fatigue, and other co-morbidities3–7, with non-motor
and sleep-related symptoms being a greater determinant of quality of
life than classicalmotor symptoms8–10. Changes in sleep patterns often
predate classical neurological symptoms in PD and overnight slow-
wave dysfunction correlates with rates of disease progression and
severity11,12. Therefore, understanding the neurophysiology of sleep
disturbances in PD may potentially result in new principled therapies
directed toward better sleep quality, mitigation of daytime symptoms,

improved patients’ quality of life and the development of therapeutic
targets for disease progression modification.

Sleep architecture in humans is broadly definedbyphysiologically
distinct stages of rapid eye movement (REM) and non-REM (NREM)
sleep. NREM sleep is further characterized by rhythmic low-frequency
electroencephalography (EEG) activity in the delta (0–4Hz) and theta
(4–8Hz) ranges, increased parasympathetic activity, and limited
dreaming. There are currently three formally defined sub-stages of
NREM: N1 (light sleep), N2 (appearance of K complexes and sleep
spindles) and N3 (characterized by slow delta waves)13. Sleep dys-
function in PD manifests as dream enactment behavior, fragmented
sleep and disrupted sleep patterns, including notable reductions in
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both REM and NREM sleep10. In particular, reductions in NREM slow
wave activity in the delta range (<4Hz) are associated with worsening
of daytime motor symptoms and accelerated disease progression in
PD11,14,15.

During wakefulness, beta oscillations (13–31 Hz) are the hallmark
oscillatory signature of PD and correlate with daytime motor
symptoms16. Recent studies with non-human primates (NHPs) during
sleep have shown that subcortical beta activity is also associatedwith a
decrease in cortical delta activity and suggested a role for subcortical
beta in spontaneous awakenings in PD17. Indeed, the presence of sub-
cortical beta oscillations in subthalamic nucleus (STN) and globus
pallidus (GPi) has been detected during sleep in PD patients18–23.
However, these studies have been single-night studies, recorded in
externalized patients post-operatively in a laboratory. To date, human
studies have not yet investigated mechanistic interactions between
subcortical beta and cortical sleep physiology (inc. slow waves),
spontaneous awakenings within individuals with PD nor investigated
DBS stimulation effects on sleep physiology with high temporal pre-
cision. In summary, past studies have been limited to single-night,
across-participant analyses that have not yet determined if subcortical
beta is a reliable biomarker of awakening within individuals, or in the
presence of deep brain stimulation (DBS).

Understanding the real-world contribution of the cortico-basal
ganglia circuit to sleep dysfunction in PD and its interaction with DBS
has been limited by an inability to chronically record the intracranial
activities overnight, at high resolution. This challenge has been miti-
gated by the advent of a new generation of sensing-enabled DBS
devices that can stream neural data remotely from participants’ own
homes24. A better understanding of cortico-basal activities during
sleep has the potential to reveal underlying mechanisms of sleep
dysfunction in PD and could contribute to improved sleep therapies
including sleep-targeted adaptive deep brain stimulation (aDBS) for
neurological disorders25.

In this study, we recruited four participants diagnosed with PD
and one comparison participant with cervical dystonia, all with
chronically implanted intracranial electrodes capable of sensing sen-
sorimotor cortical and basal ganglia (STN and GPi) field potentials
(FPs). We conducted large data collection, within-participant, multi-
night, at-home, intracranial cortical and subcortical recordings paired
with portable polysomnography over multiple nights (n = 57) in the
presence and absence of DBS stimulation. We demonstrate significant
negative interactions between subcortical beta oscillations and cor-
tical slowwave activity in the delta band during N2/N3NREM, an effect
modulated by DBS, and also show that subcortical beta significantly
increases prior to spontaneous awakenings at high-temporal resolu-
tion (5 s time window). Finally, we demonstrate successful classifica-
tion of N2/N3 NREM vs. wakefulness in both classical (30 s) and sub-
classical (5 s) time windows using constrained machine-learning
approaches using bandpower features from intracranial neural
recordings—toward the development of sleep-specific adaptive DBS
therapies for neurological disorders. Our findings on the mechanisms
of cortical-subcortical interactions during sleep provide a foundation
for the development of adaptive DBS approaches for restoring phy-
siological sleep patterns in people with PD.

Results
Four participants (Table 1) with PD (x2 with bilateral STN +
sensorimotor cortical ECoG and x2 with bilateral GPi electrodes +
sensorimotor cortical ECoG) andoneparticipantwith cervical dystonia
(bilateral GPi electrodes + sensorimotor cortical ECoG), successfully
initiated recordings from intracranial cortico-basal and external por-
table polysomnography (Dreem226,27) over a total of 57 nights (53 ON
and 4 OFF stimulation nights), remotely in their own homes. Intra-
cranial and extracranial recordings were synchronized by resampling
the extracranial (Dreem2 headband) data and determining the delays

(lag) between the intracranial and extracranial signals by the applica-
tion of cross-correlation to the accelerometry data from both sources
(Fig. 1E and Supplementary Fig. 3). As a secondary validation, included
in the protocol were pre-planned synchronized perturbations (x5 taps)
of the accelerometers on both the RC+ S and the wearable PSG (this
secondary validation was performed independently and bilaterally for
the two hemispheres) and the final synchronization outcomes were
manually inspected for each night. Large artifactual spikes in the
subcortical intracranial data were detected by first smoothing
the absolute squared data with Gaussian kernel and then finding time
periods that exceeded a threshold (determined for each night;
see “Methods” for details). These were removed along with the cor-
responding cortical data (Supplementary Fig. 3). Finally, the ECG arti-
facts in the subcortical data were removed using an optimized
combination of two ECG data removal algorithms28,29 (Supplementary
Fig. 3; see “Methods” for details) resulting in interpretable cortical and
subcortical recordings, even in the presence of DBS.

A total 407 h of sleep were recorded across all participants
(Supplementary Table 1 and Supplementary Fig. 1). Poly-
somnography (PSG) data were collected from the Dreem2 PSG
headband which provided automated sleep scoring for 30 s epochs
according to standard sleep staging (Wake, NREM: N3, N2, N1 and
REM) via automated EEG-based sleep staging algorithm which has
previously been validated on healthy participants (Fig. 1C)26,27. As N1
generally is difficult to detect and physiologically distinct, we
focused our analysis on N2 and N3 stages for NREM sleep (denoted as
N2/N3 NREM). Finally, N2/N3 NREM to wakefulness captured by
polysomnography weremanually re-scored by a board certified sleep
physician to corroborate the automated scoring and obtain more
precise awakening estimates. PD participants slept on average
7.23 ± 0.19 h per night during the multi-night ON stimulation
recording phase (n = 44; total duration in minutes per night:
N1 = 34.11 ± 1.38; N2 = 164.54 ± 8.07; N3 = 92.41 ± 10.67; REM= 94.89
± 6.49; Wake after sleep = 46.59 ± 4.53). In a separate two-night,
consecutive ON versus OFF DBS comparison, all four PD participants
showed an increase in time of N3 and REM sleep during ON stimu-
lation compared to the OFF stimulation nights (Supplementary
Table 1 and Supplementary Fig. 2). Power spectral density plots from
intracranial electrodes (Fig. 1G and Supplementary Fig. 4) demon-
strated expected classical changes in canonical frequency bands in
NREM and REM sleep stages, supporting appropriate dissociation of
different sleep stages using portable PSG device sleep staging.

Spectral power changes in NREM
We investigated overnight spectral changes in intracranial activities,
specifically investigating the hypothesis that there is a negative
interaction between cortico-basal delta and beta during N2/N3
NREM30. Power spectrum analyses and Linear Mixed Effect (LME)
models for average overnight band powers with a fixed effect for
sleep stage (N2/N3 NREM vs. Wake; accounting for multiple nights
within participants) and a random effect for participants (n = 5)
showed a decrease in average beta power (13–31 Hz; cortex: β = −0.41,
95% CI = [−0.44, −0.38], p value = 8.4e−45; subcortex: β = −0.23, 95%
CI = [−0.27, −0.2], p value = 3.1e−27) and increase in delta
power (1–4Hz; cortex: β = 0.43, 95% CI = [0.39, 0.48], p value = 3.2e
−37; subcortex: β = 0.1, 95% CI = [0.08, 0.13], p value = 5.5e−14;
n = 106; CI = confidence interval) both in cortical and subcortical
regions in N2/N3 NREM sleep compared to wakefulness (Fig. 2A, B;
multi-night ON stimulation). These spectral changes in N2/N3 NREM
compared to wake were also observed during the single night of OFF
DBS sleep recordings in both cortical and subcortical regions of all
four PD participants (Fig. 2C).

A direct comparison of PD (n = 4) vs. Dystonia (n = 1) revealed that
subcortical beta powerwas lower in the dystonia than all four of the PD
participants during N2/N3 NREM sleep (LMEmodel for PD vs. Dystonia
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fixed effect: β = 0.19; 95% CI = [0.11, 0.28]; p value = 2.3e−5; n = 53). A
similar comparison of cortical beta did not show any statistically sig-
nificant changes at the group level during N2/N3 NREM sleep
(p value = 0.34). However, during wakefulness both cortical and sub-
cortical beta was higher in PD compared to dystonia (LME model for
PD vs. Dystonia fixed effect; cortical beta: β =0.14; 95% CI = [0.015,
0.26]; p value = 0.028; subcortical beta: β = 0.36; 95% CI = [0.31, 0.41];
p value = 2.4e−19). Further, bandpower changes betweenN2/N3NREM
sleep and wakefulness conditions in the dystonia participant were
smaller compared to the PD participants. Indeed, LME models
demonstrated statistically significant fixed effects of disease state (PD
vs. Dystonia) on the changes of band power betweenN2/N3 NREM and
wake stage in cortex (delta:β =0.24, 95%CI = [0.15, 0.34],p value = 4.3e
−6; beta: β = −0.21; 95% CI = [−0.28, −0.14], p value = 1.7e−7) and sub-
cortex (delta: β =0.08, 95% CI = [0.017, 0.14], p value = 0.01; beta:
β = −0.17, 95% CI = [−0.24, −0.09], p value = 3.5e−5), supporting more
pronounced N2/N3 NREM vs. wake changes in PD vs. the Dystonia
participant.

We also investigated how these activities alter with DBS
during N2/N3 NREM and compared power spectrums between ON
and OFF stimulation conditions in our PD cohort (n = 4; Table 1).
Spectral power comparisons revealed a relative further increase
in delta and further decrease in alpha and sigma activities in
cortical region during N2/N3 NREM sleep in the ON vs. OFF DBS
conditions (Fig. 2D). Indeed, LME models with participants as
random effects revealed that stimulation (ON DBS) resulted in a
further increased cortical delta (1–4 Hz; β = 0.027, 95% CI =
[0.0003, 0.05], p value = 0.03) and decreased cortical alpha
(8–13 Hz; β = −0.031, 95% CI = [−0.06, −0.004], p value = 0.03) as
well as sigma (13–15 Hz; β = −0.03, 95% CI = [−0.049, −0.01],

p value = 0.01) in N2/N3 NREM for the ON vs. OFF condition.
Location of the DBS leads in the subcortical structure (GPi/STN)
did not show any statistically significant effect in the changes of
cortical delta (p value = 0.06) and alpha (p value = 0.4) but had a
statistically fixed effect only in decreased sigma power (13–15 Hz;
β = −0.56, 95% CI= [−1.02, −0.1], p value = 0.026) in GPi compared
to STN. No significant changes in subcortical activities during N2/
N3 NREM were observed in ON vs. OFF power spectrum com-
parisons, however, changes in subcortical baseline power levels in
the ON vs. OFF DBS state and lower SNR (signal-to-noise ratio) in
data from GPi of PD3 (ON state) may have obscured any under-
lying changes. Overall, these data reveal that DBS results in
relatively higher cortical delta activity and reduced alpha and low-
beta activities in N2/N3 NREM sleep.

Finally, we investigated the impact of dopaminergic medications
by dividing each night into four quadrants andmeasuring effects in the
neurophysiology at the end of the night (when the dopaminergic
medications had partially worn off) compared to the beginning of the
night. We utilized data from 1st and 4th quadrant of all 4 PD participants
during ON stimulation and implemented a linear mixed effect (LME)
model of cortical delta with subcortical beta and time quadrant (1st or
4th) as fixed effects. The LME model showed a statistically significant
fixed effect of quadrant (beginning/end of the night) on the cortical
delta (β = −0.01, 95% CI = [−0.02, −0.006], p value = 1.7e−5, n = 99,155)
while subcortical beta showed a statistically significant negative effect
on cortical delta as expected while accounting for both quadrants
(β = −0.44, 95% CI = [−0.49, −0.4], p value = 3.2e−87). The negative
effect of subcortical beta was significantly stronger during the 4th

quadrant (effect of 1st/4th quadrant on the interaction: β = −0.006, 95%
CI = [−0.01, −0.002], p value = 0.003).

Table 1 | Participant demographics, clinical characteristics and stimulation settings

Participant ID PD2 PD3 PD7 PD9 Dystonia

Demography

Age 58 66 40 48 65

Gender M M M M M

Diagnosis PD PD PD PD Dystonia

Dx 11 13 9 13 30

DBS stimulation settings

Stim target STN GPi STN GPi GPi

Pulse width (us) 60 60 60/90 90 60

Stim amp. (mA) L: 2.4
R: 3.1

L: 3.7
R: 2.8

L: 1.7–3.4
R: 1.7–3.4

L: 3–3.7
R: 3–3.7

L: 4.5
R: 3.5

Stim freq. (Hz) 130.2 178.6 130.2 150.6 130.2

Stim contact L: C+2−
R: C+1−

L: C+1−
R: C+1−

L: C+2−
R: C+2−

L: C+2−
R: C+2−

L: C+1−
R: C+2−

Symptoms and clinical characteristics

Medication
details

A-HCL 100mg (3 times
daily) C-Ldopa
25–100mg IR (5
times daily)

C-Ldopa 25–100mg CR
(1–2 tabs at bedtime) and
25–100mg IR (3
times daily)

C-Ldopa 25–100mg (1 time
daily) Rasagiline (Azilect)
1mg (1 time daily)

Rytary 195mg (3 times daily) –

UPDRS-III (OFF) 49 66 41 39 –

UPDRS-III (ON) 5 24 14 16 –

UPDRS 1.7 No sleep symptoms Slight sleep symptoms Slight sleep symptoms Mild sleep symptoms –

UPDRS 1.8 No daytime sleepiness Mild daytime sleepiness Moderate daytime
sleepiness

Mild daytime sleepiness –

Sleep diagnosis No sleep conditions Nocturia, RBD Daytime sleepiness OSA, Insomnia Restless Leg Syndrome

Neuropsych
report (pre-op)

No reported sleep dis-
order or conditions

Mild sleep difficulties,
with nocturia and RBD

Day time sleepiness (stron-
gest 4–5pm), usually
sleeps late and sleeps very
little overnight

Had long-term difficulties
sleeping before PD.Occasion-
ally couldn’t fall asleep at night.

Good sleep. No move-
ments /dystonia at night.
Restless Leg Syndrome
at night.

UPDRS Unified Parkinson’s Disease Rating Scale, Dx disease duration (years), RBD REM sleep behavior disorder, OSA obstructive sleep apnea, PD Parkinson’s disease, R right, L left, C-Ldopa
Carbidopa-Levodopa (Sinemet), A-HCL Amantadine HCL (Symmetrel), Stim DBS stimulation. UPDRS scores were pre-operative. None of the participants suffered from Dementia.
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Changes in functional connectivity in NREM
Wenext exploredNREM-related changes in the functional connectivity
between sensorimotor cortical and subcortical regions to investigate
sleep-related changes in cortico-basal ganglia circuitry in PD. For this,
we compared the spectral coherence in cortical and subcortical
activities between N2/N3 NREM sleep and wakefulness. In all partici-
pants, LMEmodels investigating spectral coherence with a fixed effect
of sleep stage (N2/N3 NREM vs. Wake) revealed that the total

difference in spectral coherence in beta decreases (β = −0.19; 95%
CI = [−0.23, −0.14], p value = 5.4e−13) while in delta increases (β =0.05,
95% CI = [0.04, 0.06], p value = 7e−13; n = 105) during N2/N3 NREM
sleep compared towake, ON stimulation (Fig. 2E, F). A decrease in beta
coherence and increase in delta coherence during N2/N3 NREM were
also observed in the PD participants during their single night record-
ings OFF stimulation (Fig. 2G). PD vs. Dystonia comparison also
showed that cortico-basal delta/beta coherence changes in N2/N3
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Fig. 1 | Methodology, data collection and analysis procedures. A Schematic of
the RC + S system setup for recording intracranial cortical Field Potentials (FP) in
participants. B Illustrations of the placement of RC+ S sensing depth electrodes in
subcortex (middle and right) for both Subthalamic Nucleus (STN) and Globus
pallidus internal (GPi) and cortical ECoG locations (left). Example image from PD2
and PD3 participants. C Setup of the Dreem2, portable headband for recording in-
home overnight polysomnography. D Illustration of a single night of sleep
recording in a PD participant (DBS ON) with polysomnography (purple) showing
sleep stages (right y-axis; AW: awake; RM: REM; [N1, N2, N3]: NREM) and simulta-
neous cortical (top 2 panels) and subcortical (bottom 2 panels) spectrogram of FPs
from both hemispheres showing multi-frequency changes across sleep stages
where the x-axis is time and y-axis (left) is frequency (Hz). FP was recorded bilat-
erally from cortical and subcortical regions. E Flowchart of data analysis and

preprocessing procedures formulti-night sleepdataset of all participants (n = 5; ~10
nights per participant) and ON/OFF dataset (2 nights per participant) of PD parti-
cipants (n = 4). FRepresentative traces of the RC + S FP time series (5 s epochs) in all
sleep stages fromcortex (left column) and subcortex (right column; STN). Columns
share scale bars and rows share color legends (Wake, REM, N1, N2, and N3). Data
from one PD participant (PD2) with ON stimulation from the left hemisphere.
G Comparisons of spectral powers of intracranial FPs among sleep stages in cortex
(left) and subcortex (right) for a single participant across multiple nights (n = 12;
PD2; DBS ON; 5 s epochs; averaged across each night; data pooled from both
hemispheres; shares color legend with F). Data are presented as mean ± SEM.
Spectral comparisons for all participants are provided in Supplementary Fig. 4.
Source data are provided as a Source Data file.
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Fig. 2 | Dynamic changes inpower spectra and functional connectivitybetween
cortical and subcortical regions during N2/N3 NREM sleep. A Power spectrum
changes duringN2/N3NREMwithwake as baseline for all participants (n = 5)during
ON stimulation in cortical (top) and subcortical (bottom) areas. y-axis shows the
difference in power spectra (mean ± SEM; dB) between N2/N3 NREM and wakeful-
ness. B Power in delta increases (top) while beta decreases (bottom) during N2/N3
NREM compared to wakefulness during ON stimulation in cortical (left) and sub-
cortical (right) areas. Bar plots show the difference in spectral power (mean ± SEM;
each data point shows average difference in dB across one night). C During OFF
stimulation, delta power increases while beta decreases in N2/N3 NREM compared
to the wakefulness in PD participants (n = 4) in cortical (top) and subcortical
(bottom) areas (difference in power spectra in dB; mean± SEM). D Difference in
cortical spectral power between ON and OFF stimulation (ON power-OFF power;
each colored line for one participant; mean± SEM in gray) in 4 PD participants in
N2/N3 NREM (top), showing increased delta and decreased alpha and sigma

activities (8–15 Hz) while ON stimulation. The spectral power in subcortical regions
didn’t show any statistically significant difference (bottom). E Changes in cortical-
subcortical spectral coherence (mean ± SEM)duringN2/N3NREMwithwakefulness
as baseline for all participants (n = 5) during ON stimulation. y-axis shows the dif-
ference in spectral coherence between N2/N3 NREM and wakefulness. F Total dif-
ference in spectral coherence in delta (left) and beta (right) during N2/N3 NREM
compared to wake during ON stimulation. Barplots show difference in spectral
coherence (mean± SEM; each point shows average difference in spectral coher-
ence across one night). G During OFF stimulation, delta coherence increases while
beta coherence decreases in N2/N3 NREM compared to the wakefulness in PD
participants (n = 4; mean± SEM). Data from both hemispheres were pooled for all
panels. Baseline is shown as horizontal line at 0 for A, C, D, E, and G. For B and F:
n = 12 (PD2);n = 11 (PD3); n = 11 (PD7);n = 10 (PD9);n = 9 (Dystonia). Source data are
provided as a Source Data file.
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NREM versus wakefulness were smaller in the dystonia participant
compared to the PD participants (LME model with PD/Dystonia con-
dition as a fixed effect; delta coherence: β =0.05, 95%CI = [0.02, 0.08],
p value = 0.0005; beta coherence: β = −0.21, 95% CI = [−0.32, −0.11],
p value = 0.0001).

In our ON vs. OFF DBS analysis (PD participants only; n = 4;
Table 1), we also noted a statistically significant further decrease in
cortico-basal sigma (13–15Hz) coherence during ON stimulation
compared to OFF (LME model with ON/OFF condition as fixed and
participants as random effects; β = −0.014, 95% CI = [−0.021, −0.006],
p value = 0.005) during N2/N3 NREM with a statistically fixed effect of
the location of DBS leads (STN/GPi: β =0.08, 95% CI = [0.002, 0.16],
p value = 0.047). Collectively, these data demonstrate that functional
connectivity between cortical and subcortical structure is modulated
duringN2/N3NREMsleep compared towakefulness. Specifically, there
is a decrease in beta coherence and an increase in delta coherence in
PD during N2/N3 NREM in both ON and OFF stimulation condi-
tions with wakefulness as the baseline, effects that are enhanced in the
DBS ON condition.

Interaction between cortical delta and subcortical beta activity
Spectral power and functional connectivity analyses above revealed
opposing changes in delta and beta activities in N2/N3 NREM sleep vs.
wakefulness. To further examine for a direct relationship between
these two rhythms, we investigated the interactions between cortical
delta and subcortical beta activities specificallywithinN2/N3NREMon
shorter, within-sleep stage, time scales (5 s). Here, we observed an
inverse relationship between cortical delta power and subcortical beta
power during N2/N3 NREM sleep (Fig. 3A). To quantify this relation-
ship, we first used a within-participant analysis which revealed a
negative correlation between subcortical beta and cortical delta power
(5 s epochs) in all PD participants during N2/N3 NREM in both ON and
OFF stimulation conditions (Fig. 3B, C). LME models for each PD par-
ticipant individually showed a negative fixed effect of subcortical beta
on cortical delta duringN2/N3NREMsleep inON stimulation, across all
nights (PD3: β = −0.43, p value = 1.24e−19; PD9: β = −0.59, p value = 7.1e
−39; PD2: β = −0.47, p value = 1.49e−54; PD7: β = −0.55, p value = 1.48e
−13). Furthermore, LME modeling using band powers of N2/N3 NREM
epochs from all participants (Cervical dystonia and PD participants;
accounting for the dependency between left and right hemispheres
andmultiple nights within participants; n = 241,643) showed an overall
negative fixed effect of subcortical beta power on cortical delta power
(β = −0.36, 95% CI: [−0.42, −0.3], p value = 2.5e−30) during N2/N3
NREM sleep, ON stimulation. Additionally, the LME model revealed a
fixed effect of PD vs. Dystonia state (β =0.16, 95% CI: [0.1, 0.22],
p value = 1.7e−7), demonstrating that this effect was greater in the PD
participants than our dystonia comparison participant. A negative
fixed effect of subcortical beta power on cortical delta power was also
obtained through an LME model in PD participants during N2/N3
NREM in the OFF stimulation condition (β = −0.4, 95% CI: [−0.49,
−0.31], p value = 2.5e−17; n = 18,226). These results demonstrate that
there is an inverse relationship between subcortical beta and cortical
delta power within N2/N3 NREM sleep in PD both during ON and OFF
stimulation conditions and that this effect is significantly stronger than
in our comparison dystonia participant.

Next, we utilized cross-correlation analyses to determine whether
subcortical beta was leading or lagging cortical delta changes. We
observed that the subcortical beta increase was leading the cortical
delta decrease in 3 out of the 4 PD participants during N2/N3 NREM
sleep (Fig. 3D; average lag over multiple nights ON DBS; PD2: 5.4 s,
n = 12; PD3: −9.1 s, n = 11, PD7: −6.4 s, n = 11, PD9: −4.5 s, n = 10). Finally,
as a control analysis to rule out a prosaic inverse relationship between
cortico-basal circuit delta and beta, simply reflecting the depth of
NREM sleep, we also measured the interaction between cortical delta
and cortical beta power from the same region. If the inverse

relationship between cortico-basal delta and beta was simply a func-
tion of sleep stage depth, we would also expect a strong inverse rela-
tionship between cortical delta and cortical beta. Unlike correlations
between subcortical beta and cortical delta, whichwere negative for all
PD participants, cortical delta and beta showed a weaker negative
correlation in 3 PD participants and a positive correlation in one PD
participant (Fig. 3E) aswell as in the Dystonia participant during N2/N3
NREM (ON stimulation). LME model for 3 out of 4 PD participants
showed negative fixed effects of cortical beta on cortical delta during
N2/N3 NREM sleep in ON stimulation (PD3: β = −0.67, p value = 1.72e
−54; PD9: β = −0.36, p value = 1.9e−9; PD2: β = 0.23, p value = 9.4e−11;
PD7: β = −0.43, p value = 2.3e−20). Across all participants, LME analysis
did show a weaker overall negative fixed effect of cortical beta power
on cortical delta power (β = −0.23, 95%CI: [−0.33, −0.12], p value = 3.4e
−5; n = 241,643) during N2/N3 NREM sleep with a fixed group effect of
PD/Dystonia state (β = −0.04, 95%CI: [−0.07, −0.013], p value = 0.004).
Additionally, in direct model comparison, the LME model for cortical
delta with a fixed effect of subcortical beta showed a statistically sig-
nificant improvement over the model of cortical delta with a fixed
effect of cortical beta (simulated likelihood ratio test with 100 repli-
cations; p value = 0.01). This demonstrates that subcortical beta had a
stronger effect on cortical delta compared to the relationship between
cortical beta activity and cortical delta activity supporting that this
subcortical beta—cortical delta effect is greater than any effect of sleep
stage depth.

Changes in spectral power before spontaneous awakenings
To better understand neural activities at a finer time resolution and
investigate the dynamics of intracranial neurophysiology that lead to
awakenings, we analyzed the change in spectral powers in delta and
beta during NREM towake transitions. Therewere a total of 25.20 ± 1.9
awakenings per night from all sleep stages (including N1 to wake
transitions) with an average duration of 2.07 ±0.23min for PD parti-
cipants during ON stimulation. For N2/N3 NREM specifically, therewas
a total of 12 ± 1.1 N2/N3 NREM to wake transitions per participant, per
night, with each spontaneous awakening averaging 3.70 ±0.52min for
PD participants.

In our time-resolved analysis of N2/N3 NREM to wakefulness
transitions for all (n = 5) participants (multi-night ON stimulation data-
set), the subcortical beta power demonstrated a rise before awakenings
which was further sustained after awakening (Fig. 4A; immediate pre-
wake N2/N3 NREM: t= −7.5 s, β =0.35, 95% CI: [0.16, 0.54], p value =
0.0003, n= 1022; early post-wake: t= +12.5 s, β = 1.6, 95% CI: [0.53, 2.7],
p value =0.003) and post-awakening power was higher than pre-
awakening N2/N3 NREM (β = 1.6 vs. 0.35). Disease state (PD/dystonia)
showed a statistically significant fixed effect on the rise of subcortical
beta power before awakenings (β = −0.87, 95% CI: [−1.5, −0.24],
p value =0.007) which was not significant after awakenings (early post-
wake: p value =0.21) suggesting that the rise of subcortical beta power
in the immediate pre-awakening N2/N3 NREM is relatively PD specific.
Conversely, cortical beta power did not show any statistically significant
changes in the immediate pre-awakening N2/N3 NREM or in early post-
wake periods (immediate pre-wake N2/N3 NREM: t= −7.5 s; p value =
0.07; early post-wake: t= +12.5 s, p value =0.45; Fig. 4B).

DuringN2/N3NREM,we found that cortical delta power gradually
increases as sleep deepens (Fig. 4D) in all participants. The cortical
delta power in the early post-awakening (t = +12.5 s) periods was lower
compared to the delta power found in deep N2/N3 NREM stage,
(Fig. 4D; early post-wake: β = −5, 95% CI: [−6, −4], p value = 2.4e−20,
n = 1022) and no fixed effects of PD/dystonia condition (p value = 0.51).
Our analyses didn’t show any statistically significant changes in cortical
delta in the immediate pre-awakening N2/N3 NREM compared to the
deep N2/N3 NREM (t = −7.5 s; p value = 0.54; Fig. 4D). The subcortical
delta showed statistically significant post-awakening changes com-
pared to deep N2/N3 NREM (early post-wake in subcortical delta:
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t = +12.5 s; p value = 0.034; Fig. 4C) with no fixed effects of PD/dystonia
condition (p value = 0.42) and did not demonstrate pre-awakening N2/
N3 NREM changes that were statistically significant (immediate pre-
wake N2/N3 NREM in subcortical delta: t = −7.5 s; p value = 0.36;
Fig. 4C). These data support that changes in cortical and subcortical
delta during N2/N3 NREM to wake after sleep transitions are not PD
specific, but rather a general feature of changes in neurophysiology in
NREM sleep vs. wakefulness.

Classifying NREM vs. wakefulness and spontaneous awakenings
We next investigated classification performance using machine-
learning (ML) models on intracranial neurophysiology to distinguish

N2/N3 NREM and wakefulness. To accomplish this, we utilized data
from the sensorimotor cortical and subcortical regions of 4 PD parti-
cipants, during the multi-night ON DBS dataset and trained
participant-specific support vector machine (SVM) classifiers with six
bandpowers features including: delta (0–4Hz), theta (4–8Hz), alpha
(8–13 Hz), sigma (13–15 Hz), high beta 15–31 Hz) and low gamma
(31–50Hz).

First, we trained a participant-specific SVM model for each PD
participant (n = 4) in classical 30 s time windows to classify all N2/N3
NREMvs.wake epochs usingfirst cortical and then subcortical features
(Fig. 5A). Our results showed strong classification performance both
using sensorimotor cortex and subcortical regions (Cortex: 93.6 ± 1.4%

C.Cortical-subcortical delta-beta interaction

B.Cortical-subcortical correlation 

A.Cortical-subcortical power 

E.Cortical delta-beta interactionD.Subcortical beta delays 

ON OFF

Fig. 3 | Inverse relationship between subcortical beta and cortical delta activ-
ities during N2/N3 NREM sleep. A Example of subcortical beta (purple) and cor-
tical delta (green) power (PD3; single night; ON stimulation; smoothed with 20-
point Gaussian kernel) depicting the inverse relationship. B Average Spearman’s
rho correlation between subcortical beta and cortical delta power for 4 PD parti-
cipants in ON (left; mean± SEM; each point shows overnight correlation) and OFF
(right; stem plots; n = 4; single night per participant) stimulation. C Scatter plots
depicting the correlation between subcortical beta (STN: brown, red; GPi: blue,
light blue) and cortical delta power in4 PDparticipants (ON stimulation; 5 s epochs;
each plot is single night data pooled from both hemispheres). LME models con-
structed for cortical delta with subcortical beta as fixed and hemisphere as random
effect (PD3: β = −0.58, p value = 0; PD9: β = −0.87, p value = 1.2e−144; PD2: β = −0.41,
p value = 1.8e−129; PD7: β = −0.41, p value = 1.3e−139). D Normalized cross-
correlation between subcortical beta and cortical delta power (mean± SEM)
showing the subcortical beta preceding cortical delta in PD participants (ON

stimulation). The bar plot (left; each point shows overnight lag) shows lags in
subcortical beta compared to cortical delta. Example of cross-correlation showing
the lag in subcortical beta with normalized cross-correlation vs. lag time (s) for
subcortical beta with cortical delta as reference (right; PD2; single night; ON sti-
mulation; dashed vertical line is zero-lag). E Interactions between cortical delta and
beta. The bar plot (left) shows average Spearman’s rho correlation between cortical
delta and beta power (mean ± SEM; 4 PD participants across multiple nights; each
point shows overnight correlation; ON stimulation). The scatter plots (middle and
right) show cortical delta and beta power (ON stimulation; 5 s epoch; single nights
for PD2 and PD9). LME models were similar to C (PD2: β =0.18, p value = 4.7e−12;
PD9: β = −0.36, p value = 1.7e−60). For barplots inB (ON stimulation),D and E: data
pooled from both hemispheres with n = 12(PD2), n = 11(PD3), n = 11(PD7), and
n = 10(PD9).Data fromall panels are fromN2/N3NREM.Allp valueswere two-sided.
Source data are provided as a Source Data file.
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accuracy; STN/GPi: 87.4 ± 3% accuracy; Fig. 5B; Table 2; Supplementary
Fig. 5A and Supplementary Tables 2 and 3) for N2/N3 NREM vs. wake
classification across all PD participants at the standard 30 s epoch
level. We then probed N2/N3 NREM vs. wake classification at a finer
temporal scale (reducing from 30 s to 5 s epoch) for rapidly dynamic
awakening detection- toward sleep-specific aDBS development. Spe-
cifically, we trained participant-specific SVM models using 5 s epochs
achieving high classification performances (Cortex: 90.6 ± 1.6% accu-
racy; STN/GPi: 80.6 ± 4.1% accuracy; Fig. 5C; Table 2; Supplementary
Fig. 5B and Supplementary Tables 2 and 3) for N2/N3 NREM vs.
wakefulness. This highlights the potential for rapid sleep staging using
intracranial neurophysiology and faster time scales than traditional
30 s epochs. Feature ranking using mutual information revealed that
the top cortical feature for N2/N3 NREM vs. wakefulness distinction
was delta power while the top subcortical feature was beta power
(Fig. 5D and Supplementary Fig. 5C), aligning with our earlier findings
of cortical delta—subcortical beta interactions in spontaneous awa-
kenings. Three top-ranked features for epochs near the awakening
events revealed a gradual distribution of features in the manifold
between N2/N3 NREM and wakefulness during the N2/N3 NREM to
wake transitions (Fig. 5E and Supplementary Fig. 5D) supporting a
gradual shift of the classifier output from N2/N3 NREM to awakening.

Finally, we assessed the time-resolved performance of theML classifier
models during transitions from N2/N3 NREM to wake transitions. The
average wakefulness classification of the MLmodels during the N2/N3
NREM towake transitions showed a gradual increase in wake detection
during the awakening events (Fig. 5F and Supplementary Fig. 5F).
Specifically, we found low wake detection during sustained N2/N3
NREM (sustained N2/N3 NREM: 10 ± 1.1%) and ~4x greater wake
detection using cortical bandpower features preceding (t = −2.5 s;
37.2 ± 5.1%) the awakening events despite the low temporal resolution
of the classical hypnogram (updated at a 30 s sampling rate). Classifi-
cation further improved shortly after the wakening events (t = +12.5 s;
82.4 ± 4.7%; sustained wake: 91.56 ± 3.3%) across all PD participants.
Finally, our participant-specific ML models showed consistent perfor-
mance across the cross-validation schemes (2-fold vs. 5-fold; Table 2).

Discussion
We collected multi-night intracranial cortico-basal neural recordings
from five participants (four PD and one dystonia) from cortical and
subcortical regions, paired with polysomnography for both DBS ON
and OFF conditions, remotely in participants’ own homes over
57 nights. We found increased cortico-basal slow wave and decreased
beta activity as well as matching changes in cortico-basal functional

Fig. 4 | Changes in N2/N3 NREM spectral power before spontaneous awaken-
ings. Subcortical beta increases before spontaneous awakening.A Subcortical beta
power (mean ± SEM; 5 s epochs; 4 PD participants; ON stimulation; data pooled
from both hemispheres) during N2/N3 NREM to wakefulness transitions (left).
Vertical dashed-line (purple) shows awakening time. x-axis shows time since N2/N3
NREM sleep onset (left) and time since awakening (middle). The black line (top;
Norm of RC + S accelerometry; mean ± SEM; rescaled with min-max normalization)
shows across-participantmovement for all N2/N3NREM towakefulness transitions.
The bar plots (mean± SEM) show change in subcortical beta power during
immediate pre-awakening N2/N3 NREM (−7.5 s, top) and early post-awakening
(+12.5 s, bottom) compared to average subcortical beta power indeepN2/N3NREM
(N2/N3 NREM data after 40 s from N2/N3 NREM onset to 40 s before awakening).
Data pooled from both hemispheres. The average early post-awakening (+12.5 s;
p value = 0.003) and immediate pre-awakening N2/N3 NREM subcortical beta

powers (−7.5 s; p value = 0.0003; inset zoomed plot shows the rise of beta; black
arrow shows −7.5 s) are higher compared to deep N2/N3 NREM. B Same as A, for
cortical beta showing no significant trend across participants for both pre and post-
awakenings. C Same as A, for subcortical delta showing a significant reduction
across participants for post-awakenings (+12.5 s) compared to deep N2/N3 NREM
(p value = 0.03).D Same asA, for cortical delta power which gradually increases as
sleep deepens. The average early post-awakening (+12.5 s) delta powers are lower
than those during deep N2/N3 NREM (p value = 2.4e−20). The average early post-
awakening (+12.5 s) cortical delta power is also lower than the immediate pre-
awakeningN2/N3NREMdelta power (−7.5 s). For barplots in all panels, LMEmodels
were constructed for bandpower with deep N2/N3 NREM vs. pre/post-awakening
and disease states as fixed and participants as random effects (n = 1022; 5 partici-
pants) with two-sided p value < 0.05*, <0.01** and <0.001***. Source data are pro-
vided as a Source Data file.
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Fig. 5 | Classification of N2/N3 NREM vs. wakefulness with cortical data.
A Flowchart describing themachine learning (ML)model generation using support
vector machine (SVM) and performance evaluation. B Performance of participant-
specific ML models for N2/N3 NREM vs. wakefulness classification for all PD parti-
cipants (n = 4) with classical 30 s epoch window in terms of confusion matrices
(left) and receiver operating characteristic (ROC) performance (right). C Same as
B, for 5 s epochwindow.DBandpower feature importanceand rankingwhere x-axis
represents 6 bandpower features and y-axis shows average mutual information
between bandpower and N2/N3 NREM and wake state across all PD participants
(mean ± SEM; n = 4; each dot is one participant). 5 s data epochs were utilized.
E Depiction of the top three bandpower features (delta, beta and gamma) in a
scatter plot for data from N2/N3 NREM to wake transitions. Data points represent

5 s epochs from a single PD participant (PD2). Color bar (left) shows the time
around awakening in seconds. F Performance of the ML models trained on 5 s
epochs shown in C during N2/N3 NREM to wake transitions. The x-axis represents
time in seconds around awakening and y-axis is wake classification by the ML
models across all transitions of the participant (mean± SEM) with n = 86(PD2),
n = 104(PD3), n = 163(PD7), and n = 59(PD9). The vertical black dashed line shows
awakening time and the horizontal green dashed line represents 50% average wake
detection by the models. For all panels, left and right side data were pooled. For
ground truth of 5 s epochs, actual awakening events within the classical 30 s sleep
epochs were determined with EEG and accelerometry data by a board certified
sleep physician and then segmented into N2/N3 NREM andWake 5 s segments (see
“Methods”). Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-46002-7

Nature Communications |         (2024) 15:1793 9



connectivity during N2/N3 NREM, an effect that was enhanced by DBS.
Within N2/N3 NREM, there was a direct inverse relationship between
subcortical beta and cortical delta activity and further, we found that
subcortical beta power rose prior to spontaneous awakenings at high
temporal resolution (5 s). These data support the hypothesis that
subcortical beta is related to overnight sleep disruptions and sponta-
neous awakenings in PD. Finally, we utilized ML models on cortico-
basal intracranial data and achieved high performance in classifying
N2/N3 NREM and wakefulness both in the classical (30 s) and in sub-
classical rapid (5 s) time windows, providing a foundation for future
personalized sleep adaptive DBS.

It is established that during the daytime, subcortical beta oscilla-
tions are excessive in PD and potentially contribute to circuit disrup-
tion and motor symptoms31,32. Here, we show that subcortical beta
oscillations also disrupt cortical slow oscillations during N2/N3 NREM
sleep in humans with PD and are partially responsible for awakenings
during the night, validating findings from PDmodels in primates17. The
rise of subcortical beta at least 7.5 s before awakenings, at which time
delta didn’t yet show a statistically significant change, plus the leading
of subcortical beta (9 s–4 s; 3 out of 4 PD participants; Fig. 3D) com-
pared to cortical delta within N2/N3 NREM, support a potential causal
relationship between awakenings and subcortical beta in PD. Sleep-
related cortico-basal network beta fluctuations also have translational
implications for emerging adaptive DBS therapies that often use beta
as a control signal input. The overall reduction in beta as shown in our
participants would result in a down titration of stimulation in beta
triggered aDBS algorithms which could be problematic if higher sti-
mulation amplitudes are beneficial for sleep in a given patient. Con-
versely, the rapid rise of the subcortical beta prior to awakenings
should, in theory, trigger an increase in stimulation amplitude that
could be beneficial. Although, the response to beta amplitude would
be dependent on the parameterization of the control algorithm and
the rapidity of stimulation amplitude changes, with opportunity for
personalization. Also, the subcortical beta signal, although captured
by the statistical (LME) models, was also partially obscured by a lower
SNR in some patients, which potentially poses a challenge for ML
algorithms to track and utilize this biomarker for online pre-wake
prediction. Further, we show that DBS stimulation, while known to
reduce subcortical beta oscillations during wakefulness33, also sig-
nificantly impacts cortical delta and low-beta power during N2/N3
NREM sleep. This finding aligns with previous studies where an
increased accumulation of EEG delta power during NREM sleep was
found as a result of subthalamic DBS in PD34, but here provides a
candidate causal mechanism. Data in our study indicates that DBS
therapy appears to improve sleep in PD, at least in part, through direct
modulation of beta and delta oscillations.

The link between sleep dysfunction and daytime motor, mood
and cognitive symptoms makes sleep an enticing potential target for
further investigation5–7. Moreover, sleep disturbances, and particularly

reductions in cortical slowwave activity duringNREMhavebeen linked
to faster disease progression11,14. Therefore, improving NREM sleep
architecture with adaptive DBS has the potential to reduce overnight
insomnia, improve waking motor and non-motor symptoms and
increase cortical slow waves that could impact disease progression.
This supports the proposal that daytime neural activities and over-
night sleep physiology are notably dissociable and require different
strategies for aDBS to optimize rhythms during these two distinct
phases. Implementing different aDBS algorithms around the circadian
cycle could be achieved by the introduction of daytime (versus sleep)
neural classifiers, circadian (clock) based algorithms and combined
feedforward and feedback controllers that optimize both daytime and
nighttime neurophysiology35,36.

Our ML analyses demonstrate N2/N3 NREM vs. wakefulness clas-
sification not only in classical 30 s sleep epochs but also at rapid time
windows (5 s) with high accuracy. The ML models showed increasing
wake detection around the actual awakening events using intracranial
brain recordings (Fig. 5F). The performance of these ML models,
despite being constrained to simplerML algorithms (with potential for
embedding on emerging DBS devices) and having only limited power
band feature inputs, suggests the viability andpotential applications of
machine-learning algorithms for identifying micro-stages of sleep and
designing adaptive DBS therapies that can modulate stimulation to
manage or prevent awakenings.

Limitations include the fact that our ground-truth sleep stage
labelings were obtained through a portable polysomnogram and
automated sleep-scoring algorithm, validated on healthy controls26,
insteadof a conventional laboratory-based PSG.However,we note that
our intracranial recordings, grouped according to sleep stages defined
from our portable PSG, revealed anticipated and classical changes in
cortical (ECoG) activities across various stages (Fig. 1F, G and Supple-
mentary Fig. 4). In particular, the observed elevation in cortical delta
power during N3 sleep and reductions in beta power provide evidence
of the differentiation of underlying sleep stages within our group of
participants using this pipeline (Fig. 1F, G and Supplementary Fig. 4).
To mitigate any limitations of the automated sleep-scoring algorithm,
we manually re-scored all awakenings by a board certified sleep phy-
sician. Furthermore, our portable remote setup enabled us to collect
multi-night recordings in a natural setting which compares favorably
to single-night PSG recordings (from a sleep laboratory) that can be
subject to first night acclimatization and sleep disruption effects. We
also reportmany nights of recordings per participant (n = 57 total), but
from a relatively small number of participants, which supported highly
statistically powered LME analyses that modeled within, as well as
across, participant effects—similar to the strengths of primate
research. This approach was found to be well suited to looking for the
within-participant cortico-subcortical interactions which were the
primary focus of this study. However, evaluation of across participant
factors, including analysis of how beta-delta interactions predict

Table 2 | N2/N3 NREM vs. wakefulness classification in PD participants

Cortex Subcortex (STN/GPi)

30 s epoch 5 s epoch 30s epoch 5 s epoch

5-fold CV 2-fold CV 5-fold CV 2-fold CV 5-fold CV 2-fold CV 5-fold CV 2-fold CV

Accuracy 93.60 ± 1.40 93.65 ± 1.37 90.60 ± 1.63 90.93 ± 1.61 87.43 ± 3.04 87.15 ± 3.09 80.62 ± 4.08 81.80 ± 3.62

AUC 97.50 ±0.67 97.53 ± 0.69 95.42 ± 1.10 95.70 ± 1.08 94.02 ± 1.83 93.93 ± 1.85 88.30 ± 3.37 89.23 ± 2.97

Sensitivity 93.88 ± 1.67 93.50 ± 1.14 93.62 ± 1.23 90.70 ± 1.47 86.50 ± 3.26 88.00± 2.93 88.72 ± 1.36 82.48 ± 4.66

Specificity 93.30 ± 1.15 93.88 ± 1.60 87.57 ± 2.06 91.13 ± 1.79 88.35 ± 2.85 86.33 ± 3.25 72.53 ± 8.14 81.08 ± 2.86

PPV 93.35 ± 1.19 93.85 ± 1.58 88.32 ± 1.87 91.13 ± 1.74 88.07 ± 2.93 86.55 ± 3.17 77.38 ± 5.13 81.18 ± 3.11

NPV 93.88 ± 1.63 93.48 ± 1.17 93.20 ± 1.38 90.73 ± 1.48 86.80± 3.17 87.75 ± 3.02 86.22 ± 1.70 82.50± 4.16

Individual machine-learning model performance (mean ±SEM) for N2/N3 NREM vs. wakefulness binary classification using cortical data.
PPV positive predictive value, NPV negative predictive value, AUC area under the receiver operating characteristic curve, CV cross-validation.
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clinical outcomes at scale would require a different study design with
large numbers of participants (but would also require much less
within-participant data). Finally, our comparison participant was a
single cervical dystonia patient (rather than a formal control group)
reflecting the uniqueness of this participant cohort, with high-
resolution sensing-enabled pulse generators and chronically implan-
ted ECoG electrodes. However, despite this, and in view of the large
within-participant dataset size and LMEmodeling, wewere able to find
exploratory evidence in support of a difference between the dystonia
participant and the PD group, which motivates future larger studies
with formal comparison at the group level. In this study, we restrict our
analysis to NREM and canonical power bands with a focus on beta and
delta30. We did not examine changes in other sleep stages or specifi-
cally analyze sleep spindles (which overlap in frequency with low beta)
or other frequency bands. In particular, PD is associated with REM
sleep behavior disorder and a detailed analysis of the changes in
neurophysiology during REM in PD might also reveal PD-specific cor-
tico-basal neurophysiology which will be addressed in future analyses.
The setup of this study, albeit naturalistic (at-home multi-night
recordings), did employ investigational DBS hardware including the
neurostimulator (Summit RC + S) and chronic cortical electro-
corticography that are not widely available. This was necessary to
elucidate the network-level mechanisms of sleep disruption in PD.
However, the identified biomarker, subcortical beta, could be targeted
using currently available devices and electrodes. Finally, our ML
models in this study were limited to straightforward binary classifica-
tion (N2/N3 NREM vs. wakefulness) and were region-specific (trained
separately for cortical and subcortical data) with a view toward the
constraints of current and emerging sensing-enabled DBS devices.
While we could not conduct out-of-sample tests due to the limited
availability of data from similar setups, we utilized multiple cross-
validation schemes for validating the performance of the ML models.

Oneof themajor technical aspects of our studywas recording full-
spectrum, time-domain, intracranial cortical and subcortical neural
activity during sleep, over multiple nights (n = 57). This research
leveraged the availability of a critical investigational DBS device
(Summit RC + S), which is no longer available. This study data and that
by other teams in our research community supports the need for such
ongoing DBS research tools to be made available through collabora-
tion between academics, regulators and industry37.

In this study, we recorded and analyzed intracranial oscillatory
neural activity with extracranial polysomnography at-home over mul-
tiple nights in PDparticipants, in the presence and absence ofDBS.Our
data revealed that cortico-basal network spectral power and con-
nectivity in the delta and beta bands are increased and decreased in
N2/N3 NREM versus wakefulness respectively, an effect that was
enhanced by DBS. Further, within N2/N3 NREM, cortical delta band
slow wave activity was inversely related to subcortical beta, which also
rises prior to spontaneous awakenings. Finally, our machine-learning
models achieved high accuracy in distinguishing between N2/N3
NREM and wakefulness, both in classical and a faster time scale. These
findings uncover a role of subcortical beta in sleep dysfunction in PD
and provide targets as well as machine-learning models for future
personalized sleep-specific adaptive DBS.

Methods
Participants, demography, and ethics
This study was reviewed by our Institutional Review Board (University
of California San Francisco Institutional Review Board) and registered
on clinicaltrials.gov (NCT03582891; IDE G180097). The study was also
reviewed by the Human Resources Protection Office (HRPO) at
Defense Advanced Research Projects Agency (DARPA). This study was
conducted in accordance with the Declaration of Helsinki. All partici-
pants provided informedwritten consent for participation in the study
and publishing of their de-identified data. No direct compensation was

provided to the participants for participating in the study. However,
participants were reimbursed for mileage driven from home and hotel
fees for study visits. We recruited 4 participants with idiopathic PD for
this study (Table 1). A movement disorders physician diagnosed each
individual with PD according to the Movement Disorder Society PD
diagnostic criteria38. The motor component of the United Parkinson’s
Disease Rating Scale (UPDRS) scores were administered by trained
raters. We also recruited one participant with cervical dystonia as a
comparison participant. Participants were recruited from a parent
study focused on investigating closed-loop DBS for daytime motor
symptoms. Details of the study protocol are included in the Supple-
mentary Materials under “Study protocol documentation” section.
Implanted electrodes were connected to an investigational sensing-
enabled Summit RC + S DBS implantable pulse generator provided by
Medtronic (Fig. 1A)24. The First participant enrolment for this studywas
in February 2021 and the last enrolment was in June 2021. All partici-
pants had chronic bilateral cortical ECoG electrodes and two PD par-
ticipants were implanted with bilateral electrodes in the Subthalamic
Nucleus (STN; PD2 and PD7) and two PD participants along with one
dystonia participant were implanted with bilateral electrodes in the
Globus Pallidus (GPi; PD3, PD9 and dystonia participant) nuclei
(Fig. 1B). DBS electrode implantation targets were determined by the
clinical team. A movement disorder specialist programmed the parti-
cipants with conventional DBS settings, optimizing stimulation to
address daytime motor symptoms. The cohort investigated here
included by definition patients undergoing DBS implantation. This
introduces a potential bias regarding the severity of the disease (PD/
cervical dystonia) studied by including only those with relatively more
advanced disease conditions.

Experimental design and protocols
We collected data using two protocols: long-term multi-night data
collection ON stimulation plus separate two night comparison
recordings, one night ON DBS and one night OFF DBS. The primary
outcomeof the studywas the interaction between subcortical beta and
cortical delta. The secondary outcome of the study was the ele-
vated amplitude of beta prior to spontaneous awakenings. During the
long-term overnight data collection, each participant (n = 5) was
equipped with a portable PSG (Dreem2) headset and overnight intra-
cranial data as well as polysomnography data were recorded for ~10
nights (Supplementary Table 1) that were predominantly consecutive.
We initially collected a total of 58 nights of data. Upon manual
inspection, we rejected a recording from one night which had 95%
missing intracranial data. In the ON/OFF protocol, overnight data from
the PDparticipants (n = 4) were collected for two consecutive days. On
the first day DBS was ON (3.075 ±0.65mA) and the next day DBS was
OFF. During both data collection protocols, the PD participants were
on their regular clinical dopaminergic replacement medications. ON/
OFF recordings were not completed in the cervical dystonia partici-
pant at the participant’s request. All data recordings were performed
remotely in participants’ homes.

Polysomnography acquisition
Extracranial polysomnography (PSG) was recorded through the
Dreem2 headband which includes an automated sleep staging algo-
rithm with extracranial electroencephalography (EEG) data (Dreem2
headband, Dreem Co., Paris, France)26,27. The Dreem2 headband pro-
vided sleep stage classification hypnograms according to AASM scor-
ing methods26,27. The sleep staging was performed using EEG data at
every 30 s epoch. Sleep onset was defined as the start of the NREM
sleep (3 consecutive epochs were required to classify N1). Wakefulness
after sleep onset (WASO) was calculated as the total waking time after
sleeponset andbefore the last epochof sleep. Finally, to overcomeany
loss of accuracy incurred through automated sleep staging and to
obtain amoreprecise timing estimate of awakenings (automated sleep
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stagingworks on a 30 s epochwindow), wemanually re-scored theN2/
N3 NREM to wakefulness transitions through evaluation of the por-
table PSG recordings (EEG and accelerometry data), according to
American Academy of Sleep PSG staging rules. Manual scoring was
taken as primary where there was disagreement between manual and
automated scores.

Intracranial data collection
For each participant, the Summit RC + S device was implanted bilat-
erally and connected to bilateral sensing and stimulation-capable
quadripolar leads in the basal ganglia targets (STN in 2 PD participants
or GPi in 2 PD participants and 1 cervical dystonia participant) plus
quadripolar sensorimotor chronic electrocorticography (ECoG), sen-
sing only strips, with 4 electrode contacts spanning the central gyrus
(Fig. 1B). Overnight intracranial data were collected from cortical and
subcortical structures in both left and right hemispheres (Fig. 1D) in
addition to data from bilateral accelerometers embedded within the
chest-mounted pulse generator devices. The time series FP data were
recorded at either a 250Hz or 500Hz sampling rate.

Data preprocessing
The intracranial recordings were validated and synchronized to the
PSG recordings using accelerometry data. Cross-correlation was
applied to accelerometry data from both the Dreem2 band and the
RC + S neurostimulator in order to ascertain the delay between PSG
andRC+ S time series (Supplementary Fig. 3). All intracranial datawere
downsampled to 250Hz and filtered through a 0.8–100Hz zero-phase
IIR elliptic bandpass filter with 1 dB passband ripple and 100 dB
attenuation (“filtfilt” and “designfilt” function in Matlab; Fig. 1E). Large
artifactual spikes in the subcortical intracranial data were removed
along with the corresponding cortical data (Supplementary Fig. 3). To
identify artifacts, absolute squared subcortical data were first
smoothed with a Gaussian kernel with 1 s window then any period
larger than 5 times the median over the whole night was considered
artifactual spikes. The subcortical data underwent artifact removal for
ECG interference through the application of an optimized combina-
tion of two complementary ECG data removal algorithms (“Per-
ceptHammer” and “Perceive” library; Matlab; Supplementary
Fig. 6)28,29. For each 10min non-overlapping window of subcortical FP
data, the “Perceive” library28 was first utilized to generate an initial
starting seed of ECG artifact template based on the presence of char-
acteristic sharp QRS-like signal deflections. This was done to perso-
nalize the initial seed template and account for the variations of ECG
artifacts that occur across hemispheres (left/right side), participants
and even duration of the night. For each night, all ECG artifact tem-
plates for 10min windows found by the Perceive method were aver-
aged which was then fed to the Template subtraction pipeline
(PerceptHammer29) as an initial template seed for the actual ECG
artifact detection and removal operation. Notably this second algo-
rithm uses Woody’s adaptive filter to identify locations of the artifact
and then update the template recursively to improve it further. The
template subtraction pipeline was applied separately for each 10min
non-overlapping window with the same initial template seed. This
window-wise ECG removal was implemented to account for any
changes of ECG artifact throughout the night. Finally, forced searches
were conducted by the PerceptHammer pipeline for artifacts missed
by the adaptive filter. In order to avoid the template locking into a low-
frequency rhythmic neural activity during the recursive update which
results in the removal of low-frequency contents of neural activities,
we compare the final template formed by Woody’s adaptive filter with
the initial template seed generated by the Perceive method via nor-
malized cross-correlation. If the maximum cross-correlation is less
than a predetermined threshold of 0.9, the results were rejected and
the PerceptHammer pipeline was re-applied via forced searches with-
out any recursive update of the initial template.

Power spectrum analysis
To calculate the power spectra, the intracranial data from each night
were z-scored for each location. Then, the N2/N3NREMdata segments
were collected together according to the PSG hypnogram labels. The
selected data were segmented into 5 s epochs and power spectra were
calculated for each epoch using a Hamming window of 1 s, 512-point
FFT with 50% overlap by Welch’s method (“pwelch” in Matlab) which
was normalized by the total power in 0–50Hz. The calculated power
spectrums for each epoch were then pooled over both hemispheres
within participants. For calculating the change in power spectrum in
N2/N3 NREM with wakefulness as the baseline, the power spectrums
for wake epochs were calculated in a similar manner as during N2/N3
NREM and the difference between the average wake power spectrum
and N2/N3 NREM power spectrum for each night was calculated. For
calculating the ON vs. OFF power spectrum, average power spectra
were calculated for ON and OFF nights and their difference was taken.
The averages were calculated on log-transformed power spectra.

Spectral coherence analysis
To compute the spectral coherence, the intracranial data obtained from
each night were normalized using z-scoring for each location. Subse-
quently, N2/N3 NREM data segments were extracted and then divided
into 5 s epochs. For each epoch, 5 s of cortical and subcortical data were
utilized for estimating the one-sided magnitude squared coherence
using the multitaper method (“mscohere”; Matlab) with Hamming
window of 1 s and 512-point FFT. The epoch-wise spectral coherences
were then pooled over both hemispheres. Similarly to the power spec-
tral analysis, spectral coherences for wake epochs were calculated and
the difference between the average of wake and N2/N3 NREM spectral
coherence for each night was calculated in order to obtain the change in
spectral coherence in N2/N3 NREM with wake as the baseline.

Beta-delta correlation analysis
To analyze the interaction between subcortical beta and cortical delta
activity during N2/N3 NREM sleep in intracranial signals, we applied z-
scoring, power spectrum calculation and normalization techniques as
previously described. However, there was one exception regarding the
normalization of the cortical power spectrum where instead of nor-
malizing it by dividing the total power (0–50Hz), we divided it by the
total power excluding the beta range (0–13Hz and 31–50Hz). This
adjustment was necessary to avoid detecting spurious negative corre-
lations that could be caused by the normalization procedure itself.
However, we note that both normalization methods (with and without
excluding beta range during normalization) provided highly similar
statistical outcomes and conclusions. Both subcortical beta and cortical
delta were calculated for 5 s epochs which were log-transformed for
each night and each hemisphere. The band powers were then pooled
over both hemispheres. Subsequently, for each participant, we calcu-
lated the Spearman’s rho correlation coefficient between subcortical
beta and cortical delta power across all 5 s epochs for each night. For
calculating the delay between subcortical beta and cortical delta power,
normalized cross-correlation (“xcorr” function inMatlab) was calculated
between these bandpowers of the 5 s epochs fromabove for each night.
Lag was calculated by finding the minimum (trough, reflecting a nega-
tive relationship) normalized cross-correlation between the two band
powers. Epoch band powers for each night were smoothed using a 20-
point Gaussian kernel. Data for each night were mean-subtracted and
pooled from both hemispheres. To investigate interactions between
delta and beta powers from cortex, we applied the same power spec-
trum calculation techniques on 5 s epochs as previously described in
beta-delta correlation analyses. The only exception was the normal-
ization step of the power spectrum which was not applied to avoid
detecting artificial negative correlations that could be imposed by the
normalization of the power spectrum. In order to avoid any risk of
introduction of a potential spurious negative interaction in our single

Article https://doi.org/10.1038/s41467-024-46002-7

Nature Communications |         (2024) 15:1793 12



(cortical) site analysis we removed the normalization step for investi-
gating cortical-cortical delta-beta interactions. Spearman’s rho rank
correlation coefficient was calculated between the cortical delta and
beta power in all 5 s epochs throughout each night for all participants.

NREM to wake after sleep transition analysis
To investigate the changes in spectral power during N2/N3 NREM to
wake transition events, all intracranial data were bandpassed using the
zero-phase IIR elliptic bandpass filters. Next, the data were z-scored for
each night for each hemisphere at all locations. Hilbert transform was
applied to the z-scored data and the absolute squares of the results were
converted into a decibel scale for band-specific power. After detecting
all N2/N3 NREM to wake transitions, events with N2/N3 NREM sleep less
than 85 s and wake periods of less than 25 s were ignored. Band-power
for each 5 s epoch was averaged. The time label for each 5 s epoch was
found by taking the average of the start time and stop time of the epoch
(e.g., epoch from 0s to 5 s was labeled as 2.5 s). All epochs in N2/N3
NREM data after 40 s from N2/N3 NREM onset and 40 s before awa-
kening were averaged to calculate deep N2/N3 NREM (slow-wave sleep;
SWS) power. All epochs in awake stage data after 25 s from wake onset
were averaged to calculate awake stage power. All data were analyzed
from the ON stimulation multi-night dataset.

Machine-learning models
For both 30 s and 5 s epochwindows, individual SVMmodels (“fitcsvm”

in Matlab) with Gaussian kernel were trained for each PD participant.
For class balance, we randomly reduced the number of N2/N3 NREM
epochs (using “datasample” in Matlab) to match the total number of
wake epochs. To calculate the bandpower features, we first standar-
dized the intracranial data for each location across each night using
z-score. Then, the N2/N3 NREM and wake stage data were collected
based on the PSG hypnogram labels. These data were segmented into
30 s and 5 s epochs and power spectra were calculated for each epoch
usingWelch’smethodwith a 1 s Hammingwindow and a 512-point FFT,
along with a 50% overlap (“pwelch” in Matlab). Uniform prior dis-
tribution was assumed during training and no score transform was
applied. Kernel width was 2.6 and the standardization of the features
were enabled. 5-fold cross-validations were performed for observing
the N2/N3 NREM vs. wake classification performances. For the models
using 5 s epochs, customized cost function was applied during the
training to make the models more sensitive to wake events. The
threshold for binary classification was 0.5 and no further threshold
optimization was conducted. For feature importance and ranking, the
mutual information between bandpower features of 5 s epochs and
N2/N3 NREM vs. wake class labels were calculated39. Similar feature
ranking results were obtained using 30 s epochs. Data from left and
right hemispheres were pooled for all analyses. In addition to 5-fold
cross-validation, we also implemented a 2-fold (50% of the data were
used for training and the remaining data were tested) cross-validation
scheme to investigate the robustness of our performance.

Statistical methods
A significance threshold of 0.05 was employed to determine statistical
significance. Linear mixed effect models (LME) were utilized (“fitlme”
in Matlab) for investigating the spectral power and coherence differ-
ences, the interactions between cortical and subcortical beta with
cortical delta powers. For LME models, full covariance matrix was
applied using the Cholesky parameterization which estimated all ele-
ments of the covariance matrix. We accounted for the correlation
between 5 s epochs within the same night by including “night #” as a
random effects term in our LME models. Theoretical likelihood ratio
test (“compare” in Matlab) was used for comparing LME models. Wil-
coxon rank sum test (“ranksum” in Matlab) was utilized for measuring
group-level differences in wake predictions. All analyses were per-
formed using Matlab 2021b (Mathworks).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data supporting the findings of this study are available within the
article and its Supplementary files. Any additional requests for infor-
mation can be directed to, and will be fulfilled by, the corresponding
authors. The raw (identifiable) data from participants are privacy-
protected. The processed de-identified data can only be shared on
request as these datasets are part of an ongoing medical research
study with active data collection and will subsequently be shared
according to the National Institute of Health (NIH) data sharing
requirements. Source data are provided with this paper.

Code availability
Codes generated and/or analyzed in this study will be shared upon
reasonable request for reviewing purposes only. These codebases are
part of the analyses of an ongoing medical research study. Publicly
accessible code will be available upon the completion of the ongoing
study at: https://github.com/MDFahimAnjum.
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