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Learning representations for image-based
profiling of perturbations

Nikita Moshkov1, Michael Bornholdt2, Santiago Benoit2,3, Matthew Smith2,4,
Claire McQuin2, Allen Goodman2, Rebecca A. Senft2, Yu Han2, Mehrtash Babadi2,
Peter Horvath 1, Beth A. Cimini 2, Anne E. Carpenter 2, Shantanu Singh 2 &
Juan C. Caicedo2,5,6

Measuring the phenotypic effect of treatments on cells through imaging
assays is an efficient and powerful way of studying cell biology, and requires
computational methods for transforming images into quantitative data. Here,
we present an improved strategy for learning representations of treatment
effects from high-throughput imaging, following a causal interpretation. We
use weakly supervised learning formodeling associations between images and
treatments, and show that it encodes both confounding factors and pheno-
typic features in the learned representation. To facilitate their separation, we
constructed a large training dataset with images from five different studies to
maximize experimental diversity, following insights from our causal analysis.
Training a model with this dataset successfully improves downstream per-
formance, and produces a reusable convolutional network for image-based
profiling, which we call Cell Painting CNN. We evaluated our strategy on three
publicly available Cell Painting datasets, and observed that the Cell Painting
CNN improves performance in downstream analysis up to 30%with respect to
classical features, while also being more computationally efficient.

High-throughput imaging and automated image analysis are powerful
tools for studying the inner workings of cells under experimental
interventions. In particular, the Cell Painting assay1,2 has been adopted
both by academic and industrial laboratories to evaluate how pertur-
bations alter overall cell biology. It has been successfully used for
studying compound libraries3–5, predicting phenotypic activity6–9, and
profiling human disease10,11, amongmany other applications. To reveal
the phenotypic outcome of treatments, image-based profiling trans-
forms microscopy images into rich high-dimensional data using mor-
phological feature extraction12. Cell Painting datasets with thousands
of experimental interventions provide a unique opportunity to use
machine learning for obtaining representations of the phenotypic
outcomes of treatments.

Improved feature representations of cellular morphology have
the potential to increase the sensitivity and robustness of image-based
profiling to support a wide range of discovery applications13,14. Feature
extraction has been traditionally approached with classical image
processing15,16, which is based on manually engineered features that
may not capture all the relevant phenotypic variation. Several studies
have used convolutional neural networks (CNNs) pre-trained on nat-
ural images11,17,18, which are optimized to capture variation of macro-
scopic objects instead of images of cells. To recover causal
representations of treatment effects, feature representations need to
be sensitive to subtle changes inmorphology. Researchers have found
that training or fine-tuning networks with high-throughput images can
improve downstream performance compared to models trained for
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natural images19–22. This indicates that representation learning can
identify domain-specific features from cellular images in a data-driven
way4,23–26, which also brings unique challenges to prevent confounding
factors27,28.

In this paper, we investigate the problem of learning repre-
sentations for image-based profiling with Cell Painting. Our goal is
to identify an optimal strategy for learning cellular features, and
then use it for training models that recover improved representa-
tions of the phenotypic outcomes of treatments. We use a causal
framework to reason about the challenges of learning representa-
tions of cell morphology (e.g., confounding factors), which natu-
rally fits in the context of perturbation experiments29,30, and serves
as a tool to optimize the workflow and yield better performance
(Fig. 1). In addition, we adopted a quantitative evaluation of the
impact of feature representations in a biological downstream task,
to guide the search for improved workflow. The evaluation is based
on querying a reference collection of treatments to find biological
matches in a perturbation experiment. In each evaluation, cell
morphology features change to compare different strategies, while
the rest of the image-based profiling workflow remains constant.
Performance is measured using metrics for the quality of a ranked
list of results for each query (Fig. 1G). With this evaluation frame-
work, we conduct an extensive analysis on three publicly available
Cell Painting datasets.

Within the proposed causal framework, we useweakly supervised
learning (WSL)23 to model the associations between images and
treatments, and we found that it powerfully captures rich cellular
features that simultaneously encode confounding factors and pheno-
typic outcomes as latent variables. Our analysis indicates that to dis-
entangle them, to improve the ability ofmodels to learn the difference
between the two types of variation, and to recover the causal repre-
sentations of the trueoutcomeof perturbations, it is important to train
models with highly diverse data. Therefore, we constructed a training

dataset that combines variation from five different experiments to
maximize the diversity of treatments and confounding factors. As a
result, we successfully trained a reusable single-cell feature extraction
model: theCell PaintingCNN (Fig. 1F), which yields better performance
in the evaluated benchmarks and displays sufficient generalization
ability to profile other datasets effectively.

Results
Recovering features of treatment effects
We use a causal model as a conceptual framework to reason and ana-
lyze the results of representation learning strategies. Fig. 1B presents
the causal graph with four variables: interventions (treatments T),
observations (images O), outcomes (phenotypes Y) and confounders
(e.g. batches C). Some variables are observables (white circles), while
others represent latent variables (shaded circles). Note that con-
founders can include a wide range of technical / nuisance variation,
which we group together and refer to as batch effects to be consistent
with the related literature. This graph is a model of the causal
assumptions we make for representation learning and for interpreting
the results.

Our goal is to estimate an unbiased, multidimensional repre-
sentation of treatment outcomes (Y), which can later be used in many
downstream analysis tasks. We use WSL23 (Fig. 1C) for obtaining
representations of the phenotypic outcomeof treatments by training a
classifier to distinguish all treatments from each other. In this way, the
model learns associations between observed images (O) and treat-
ments (T), while capturing unobserved variables in a latent repre-
sentation (Y and C). To recover the phenotypic features of treatment
effects (Y) from the latent representations, we employ batch
correction18 to reduce the variation associated with confounders and
amplify causal features of phenotypic outcomes (Fig. 1D). More details
of the assumptions and structure of our framework canbe found in the
Methods section.

Fig. 1 | Framework for analyzing image-based profiling experiments. A Example
Cell Painting images from the BBBC037 dataset of control cells (empty status) and
one experimental intervention (JUNwild-type overexpression) in theU2OS cell line.
B Causal graph of a conventional high-throughput Cell Painting experiment with
two observables inwhite circles (treatments and images) and two latent variables in
shaded circles (phenotypes and batch effects). The arrows indicate the direction of
causation. C Weakly supervised learning as a strategy to model associations
between images (O) and treatments (T) using a convolutional neural network
(CNN). The CNN captures information about the latent variables C and Y in the
causal graph because both are intermediate nodes in the paths connecting images

and treatments. D Illustration of the sphering batch-correction method where
control samples are amodel of unwanted variation (top). After sphering, the biases
of unwanted variation in control samples is reduced (bottom). E The goal of image-
based profiling is to recover the outcome of treatments by estimating a repre-
sentation of the resulting phenotype, free from unwanted confounding effects.
F Illustration of the Cell Painting CNN, an EfficientNet model trained to extract
features from single cells. G The evaluation of performance is based on nearest
neighbor queries performed in the space of phenotype representations to match
treatments with the same phenotypic outcome. Performance is measured with two
metrics: folds of enrichment and mean average precision (Methods).
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Weakly supervised learning captures confounders and pheno-
typic outcomes of treatments
WSL models are trained with a classification loss to detect the treat-
ment in images of single cells (Fig. 1C,Methods), which is a pretext task
to learn representations of the latent variables in the causal graph.
Given that the treatment applied to cells in a well is always known, we
quantify the success rate of single-cell classifiers on this pretext task
using precision and recall. We conducted single-cell classification
experiments using two validation schemes to reveal how sensitiveWSL
is to biological and technical variation (Fig. 2A). The leave-cells-out
validation scheme uses single cells from all plates and treatments in
the experiment for training, and leaves a random fraction out for
validation. By doing so, trained CNNs have the opportunity to observe
thewholedistributionof phenotypic features (all treatments) aswell as
thewhole distribution of confounding factors (all batches or plates). In
contrast, the leave-plates-out validation scheme separates different
technical replicates (plates) for training and validation, resulting in a
model that still observes thewhole distribution of treatments, but only
partially sees the distribution of confounding factors.

The results in Fig. 2B show a stark contrast in performance
between the two validation strategies. When leaving cells out (results
in blue), a CNN can accurately learn to classify single cells in the
training and validation sets with only a minor difference in perfor-
mance. When leaving plates out (results in orange), the CNN learns to
classify the training set well but fails to generalize correctly to the
validation set. The generalization ability of the two models is further
highlighted in the validation results in Fig. 2C, which presents the
precision and recall of each treatment.

Importantly, while theseWSLmodels exhibit amajor difference in
performance in the pretext classification task, their performance in the
downstream analysis task is almost the same after batch correction
(Fig. 2D). The large difference in performance in the pretext task fol-
lowed by no difference in the downstream task reveals that WSL

models leverage both phenotypes and confounders to solve the pre-
text task. On one hand, the validation results of leaving-cells-out are an
overly optimistic estimate of howwell a CNN can recognize treatments
in single cells, because the models leverage batch effects to make the
correct connection. On the other hand, the results of leaving-plates-
out are an overly pessimistic estimate because the CNN fails to gen-
eralize to unseen replicates with unknown confounding variation
(domain shift). The true estimate of performance in the pretext clas-
sification task is likely to be in the middle when accounting for con-
founding factors.

This is indeedwhatweobserve in the downstreamanalysis results:
after batch correction, the representations of models trained with
leave-cells-out and leave-plates-out yield similar downstream perfor-
mance in the biological matching task, indicating that both models
find similar phenotypic features, but capture different confounding
variation. Importantly, batch correction is not improving the situation
of either of the two strategies compared in Fig. 2D. Instead, batch
correction is removing the noise and biases and leveling out the
situation of both models. This means that neither of the models
learned anything different or more useful than the other despite hav-
ing drastically different performance on the auxiliary task.

The sameeffect is observedwith alternativeWSL approaches. Our
experiments are based on an EfficientNet model trained with a classi-
fication loss and weak labels. We explored the use of other loss func-
tions that have the potential to improve performance in the presence
of weak labels: Online Label Smoothing31 and Multiple Instance
Learning with Attention32 (Methods). We did not observe improved
results when using these alternative WSL formulations (Supplemen-
tary Fig. 1), primarily because these methods are designed to improve
the performance of a classifier with weak or noisy labels, instead of
learning disentangled representations. We use the classifier as a pre-
text training component, but themainproblem tobe solved is learning
representations that are invariant to confounding factors.

Fig. 2 | Validation strategies for the single-cell classification task in weakly
supervised learning. A Illustration of the two strategies: leave-cells-out (in blue)
uses cells from all plates in the dataset for training and leaves a random fraction out
for validation. Leave-plates-out (in orange) uses all the cells from certain plates for
training, and leaves entire plates out for validation. Any difference in performance
is due to confounding factors. Note that plates-left out are selected such that all
treatments have two full replicate-wells out for validation, which may or may not
correspond to entire batches, depending on the experimental design. B Learning

curves of models trained with WSL for 30 epochs with all treatments from each
dataset. The x-axis is the number of epochs and the y axis is the average F1-score.
The color of lines indicates the validation strategy, and the style of lines indicates
training (solid) or validation (dashed) data. C Precision and recall results of each
treatment in the single-cell classification task. Each point is a treatment (negative
controls are labeled in blue), and the color corresponds to the validation strategy.
D Performance of models in the downstream, biological matching task after batch
correction. Source data is provided as a Source Data file.
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Note that using all replicates in the leave-cells-out validation
experiment does not result in information leaks with respect to the
downstream biological task. Compounds are always known ahead of
time, which is the information the models use for training. What we
assume to be unknown is the mode of action (MoA), which is infor-
mation always left out for downstream evaluation and never seen by
models during training. This approach measures how well the MoA
information emerges from learned representations instead of directly
training for MoA classification. Similar evaluation setups have been
also used in previous work23,33.

Technical variationmanifests in images in subtle ways that cannot
be readily distinguished by eye. There is a set of technical factors that
includes microscopes, date and time of acquisition, technician, plate-
to-plate variation (differences in assay preparation), well-position
effects (differences in humidity and temperature), among others.
Despite the best efforts to automate and standardize experiment
preparation and image acquisition, these factors continue to influence
image-based measurements because they reflect microscopic events
that cannot be fully controlled. Some of these factors have stronger
effects than others, but all of them accumulate in images in unique
ways that represent confounding factors. Technical variation may be
recorded in images as hidden patterns that the human eye is invariant
to, but computational methods can easily see and incorporate in their
metrics. Batch correction methods aim to remove these factors of
unwanted variation from image features, and given their unspecified
nature, this is still an open research problem.

Treatmentswith strongphenotypic effect improveperformance
The WSL model depicted in Fig. 1C captures associations between
images (O) and treatments (T) in the causal graph, while encoding
technical (C) and phenotypic (Y) variation as latent variables because

both are valid paths to find correlations. Given that controlling the
distribution of confounding factors does not result in downstream
performance changes, in this section we explore the impact of con-
trolling the distribution of phenotypic diversity. Our reasoning is that
WSL learning favors correlations between treatments and images
through the path in the causal graph that makes it easier to minimize
the empirical error in the pretext task. Therefore, the variation of
treatments with a weak phenotypic response is overpowered by con-
founding factors that are stronger relative to the phenotype.

To measure the phenotypic strength of treatments we calculate
the Euclidean distance between control and treatment profiles in the
CellProfiler feature space after batch correction with a sphering
transform (Fig. 3A). We interpret this procedure as a crude approx-
imation of the average treatment effect (ATE), a causal parameter of
intervention outcomes, because the Euclidean distance calculates the
difference in expected values (aggregated profiles) of the outcome
variable (phenotype) between the control and treated conditions. We
chose distances in the CellProfiler feature space as an independent
prior for estimating treatment strength because these are non-train-
able, and because in our experiments CellProfiler features exhibit
more robustness to confounding factors (Supplementary Fig. 2).

We ranked treatments in ascendingorder basedon the strengthof
the phenotypic effect and took 20% in the bottom, middle and top of
the distribution (Fig. 3B, Table 1). Next, we evaluated the performance
of WSL models trained on each of these three groups and we found
that performance improves in the downstream biological matching
task with treatments that have a stronger phenotypic effect (Fig. 3C).
These results were obtained by training under a leave-cells-out vali-
dation scheme, giving the CNN full access to the distribution of con-
founders. The trend indicates that it is possible to break the limitations
of WSL for capturing useful associations between images and

Fig. 3 | Effect of training models with subsets of treatments. A Illustration of
phenotypic outcomes with varied effects and their distance to controls (see
Methods). B Distribution of distances between treatments and controls as an
estimation of treatment effect sorted by distance for each dataset. The x axis
represents individual treatments and the y axis represents the log normalized
distance to controls. From this distribution, we select 20% of treatments with the

weakest (blue), median (orange), and strongest (red) treatments for experiments.
C Evaluation of performance in downstream analysis (biological matching task) for
each dataset. Each barplot represents one experiment conducted with a model
trained with the corresponding subset of the data. The x axis represents perfor-
mance according to mean average precision (higher is better). Source data is
provided as a Source Data file.
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treatments in the latent variables as long as the phenotypic outcome is
stronger than confounding factors. Note that training with all treat-
ments (greenpoints in Fig. 3C)may result in lower overall performance
if themajority of the treatments have weak phenotypes (BBBC037), or
may result in marginally improved performance if the confounding
effects are too strong (BBBC022), or may result in better performance
when there is a balance between both latent variables (BBBC036).
Training with all treatments only improves performance with respect
to the CellProfiler baseline in one of the three datasets (Fig. 3D).

Note that strong phenotypic effect (large ATE) is not the same as
having high compound concentrations (Methods). Detecting treat-
ments with subtle phenotypic effects is challenging in any platform,
including imaging and gene expression5,34. Selecting treatments with
strong phenotypic effects serves as a strategy to trade-off the sensi-
tivity to subtle biological variation and the introduction of con-
founding variation. When confounding variation is stronger than
subtle phenotypes, WSL models will preferentially rely on the most
prominent signal (confounding). Removing treatments with weak
phenotypic effect can break this dependency, resulting inmodels with
better performance. The threshold that separates strong vs weak
phenotypes was selected in our study based on the percentiles of the
ATE distribution, and it can be used as a mechanism to decide how
much biological or confounding variation the model observes during
training.

A training set with highly diverse experimental conditions
Training a model with all the data in an individual dataset does not
necessarily improve performance with respect to the baseline (Fig. 3C
green vs pink points). Changing the distribution of confounders does
not impact performance in the biological matching task after batch
correction (Fig. 2D). The only factor that impacted performance was
changing the distribution of phenotypic outcomes (Fig. 3C). There-
fore, we hypothesize that training with data beyond the individual
dataset of interest while favoring phenotypic diversity could result in
improved performance.

To increase the diversity of experimental conditions in the train-
ing set, we created a combined training resource by collecting strong
treatments from the five dataset sources listed in Table 2. We first
filtered strong treatments fromeach source andprioritized treatments
shared across sources (Methods and Fig. 4). We selected 348 treat-
ments from BBBC022 (strongest 35%), 354 from BBBC036 (strongest
23%) and 47 treatments from BBBC037 (strongest 23%). We com-
plemented these treatments with the corresponding replicates in the
LINCS and BBBC043 datasets, and added 7 new compounds and 32
new gene overexpression perturbations, resulting in 488 treatments in
total (Fig. 4).This combined set also represents two cell lines, two types
of negative controls, and examples from more than 200 plates. This

results in training datawith high experimental diversity with respect to
the two latent variables in the causal graph: technical variation (con-
founders C) and phenotypic variation (outcomes Y).

Cell Painting CNN learns improved biological features
We found that training amodel on this combined Cell Painting dataset
consistently improves performance and yields better results than
baseline approaches in the task of biologically matching queries
against a reference annotated library of treatments, across all three
benchmarks (Fig. 5A). We consider two baseline strategies in our eva-
luation: 1) creating image-based profiles with classical features
obtained with custom CellProfiler pipelines (Methods), and 2) com-
puting profiles with a CNN pre-trained on ImageNet, a dataset of nat-
ural images in red, green, blue (RGB) colorspace (Methods). Intuitively,
we expect feature representations trained on Cell Painting images to
perform better at the matching task than the baselines. In the case of
CellProfiler, manually engineered features may not capture all the
relevant phenotypic variation, and in the case of ImageNet pre-trained
networks, they are optimized for macroscopic objects in 3-channel
natural images instead of 5-channel fluorescence images of cells.

According to the MAP metric, a WSL model trained on the highly
diverse combined set improves performance 7%, 8% and 23% relative
to CellProfiler features on BBBC037, BBBC022 and BBBC036 respec-
tively (difference of cyan points vs pink points in the x axis of Fig. 5A).
Similar improvements are observed with the Folds of Enrichment
metric (y-axis of Fig. 5A), obtaining 6%, 7%, and 30% relative
improvement on the three benchmarks respectively. Importantly, the
combined dataset allowed us to train a single model once and profile
all the three benchmarks without re-training or fine-tuning on each of
them, demonstrating that themodel captures features of Cell Painting
images relevant to distinguishmore effectively the variation of the two
latent variables of the causal model. We also evaluated the perfor-
mance of feature extraction with masked cells vs with cells in context,
and found that masking cells degrades performance (Supplementary
Note 1, Supplementary Fig. 3). All of the experiments reported in our
manuscript are based on single-cells cropped in context.

We found that ImageNet features showed variable performance
compared to CellProfiler features (Fig. 2B), sometimes yielding similar
performance (BBBC022), sometimes lower performance (BBBC037)
and sometimes slightly better performance (BBBC036). The three
benchmarks used in this study are larger scale and more challenging
than datasets used in previous studies17,18 where it was observed that
ImageNet features are typically more powerful than classical features.
Our results indicate that, in large scale perturbation experiments with
Cell Painting, ImageNet features do not conclusively capture more
cellular-specific variation than manually engineered features using
classical image processing.

Fig. 5B shows a UMAP projection35 of the feature space
obtained using our Cell Painting CNN for the three datasets eval-
uated in this study. From a qualitative perspective, the UMAP plot of
the BBBC037 dataset (a gene overexpression screen) shows groups
of treatments clustered according to their corresponding genetic
pathway, and recapitulates previous observations of known
biology36. The BBBC02237 and BBBC03638 datasets (compound
screens) likewise show many treatments grouped together

Table 1 | Subsets of treatments used for model training

Dataset 20% Weak 20% Median 20% Strong All

BBBC037 41 41 41 205

BBBC022 199 199 199 995

BBBC036 310 310 310 1,550

Table 2 | Source datasets of the combined training resource

Dataset Plates Fields of view Treatment Type Treatments Queries Ground truth Purpose Reference

LINCS 136 23,094 Compounds 129 N/A N/A Training only Way et al.7

BBBC043 16 7,992 Gene ORFs 50 N/A N/A Training only Caicedo et al.10

BBBC036 55 122,022 Compounds 1550 1,365 Mechanism of action Training and evaluation Bray et al.38

BBBC022 20 66,558 Compounds 995 849 Mechanism of action Training and evaluation Gustafsdottir et al.37

BBBC037 5 17,254 Gene ORFs 205 204 Genetic pathway Training and evaluation Rohban et al.36
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according to their mechanism of action (MoA). The clustering is
generally consistent across several choices of layers used for fea-
ture extraction, resulting in similar groups from a qualitative point
of view. Some, but not all, of these clusters are also prominent in the
chemical feature space for compound perturbations, suggesting
complementarity for correctly connecting MoAs (Supplementary
Fig. 4). The quantitative performance metrics offer a more accurate
picture of the biological relevance of these clusters (Supplementary
Note 3, Supplementary Fig. 8B).

Batch correction recovers phenotype representations
Batch correction is a crucial step for image-based profiling regardless
of the feature space of choice. We hypothesized that a rich repre-
sentation might encode both confounders and phenotypic features in
a way that facilitates separating one type of variation from the other,
i.e. disentangles the sources of variation. To test this,we evaluatedhow
representations respond to the sphering transform, a linear transfor-
mation for batch correction based on singular value decomposition
SVD (Methods). Sphering first finds directions of maximal variance in

Fig. 4 | A combined set of Cell Painting images for training. Statistics of the
combined Cell Painting dataset created to train a generalist model, which brings
488 treatments from 5 different publicly available sources (Methods): LINCS,
BBBC043, and the three datasets evaluated here; left: Sankey funnel diagram
illustrating the distribution of the 8.3 million single cells in this combined dataset.

There are two types of treatments (compounds and gene overexpression), two
types of controls (empty and DMSO), two cell lines (A549 and U2OS), obtained
from232plates. Right: the Venndiagrams illustrate the common treatments among
dataset sources. Source data is provided as a Source Data file.

Fig. 5 | Quantitative and qualitative evaluation of feature representations of
treatment effects. The evaluation task is biological profile matching (see Fig. 1G).
A Performance of feature representations for the three benchmark datasets
according to two metrics: Mean Average Precision (MAP) in the x axis and Folds of
Enrichment in the y axis (see Methods). Each point indicates the mean of these
metrics over all queries using the following feature representations: CellProfiler
(pink), a CNNpre-trained on ImageNet (yellow), a CNN trained on the combined set
of Cell Painting images (cyan), and a CNN trained on Cell Painting images from the

same dataset (green). In all cases, sphering batch-correction was applied on well-
level profiles. B 2D UMAP projections of treatment profiles obtained with the Cell
Painting CNN (672 features) after batch correction for the three datasets evaluated
in this work. The plot includes a projection of well-level profiles (gray points),
control wells (red points), and aggregated treatment-level profiles of treatments
(blue points). Dashed lines indicate clusters of treatment-level profiles where all or
the majority of points share the same biological annotation. Source data is pro-
vided as a Source Data file.
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the set of control samples and then reverses their importance by
inverting the eigenvalues. This transform makes the assumption that
large variation found in controls is associated with confounders and
any variation not observed in controls is associated with phenotypes.
Thus, sphering can succeed at recovering the phenotypic effects of
treatments if the feature space is effective at separating the sources of
variation.

We found that all themethods benefit from batch correction with
the sphering transform, indicated by the upward trend of all curves
from low performance with no batch correction to improved perfor-
mance as batch correction increases (Fig. 6B). Downstream perfor-
mance in the biological matching task improves by about 50% on
average when comparing against raw features without correction. The
UMAP plots in Fig. 6A show the Cell Painting CNN feature space for
well-level profiles before batch correction. When colored by Plate IDs,
the data points are fragmented, and the density functions in the two
UMAP axes indicate concentrationof plate clusters. After sphering, the
UMAP plots in Fig. 6C show more integrated data points and better
aligned density distributions of plates. The performance of the Cell
Painting CNN in the biological matching task also improves upon the
baselines (Fig. 6B) and displays a consistent ability to facilitate batch
correction in all the three datasets, unlike the ImageNet CNN.

We evaluated two alternative batch correction methods that use
nonlinear transformations of features to remove unwanted variation:
Harmony39 and Gradient Reversal Layer40 (GRL). The results indicate
that these nonlinear batch correction methods do not improve the
performance in the downstream analysis task, and in fact are unable to
match sphering (Supplementary Fig. 5). The main reason is that Har-
mony and GRL require prior knowledge about what the unwanted
source of variation is. In high-throughput imaging, the technical

sources of variation are complex and hierarchically organized, and
these methods make the assumption that there is a single source of
confounding variation organized categorically (batch labels). Sphering
is more effective because it does not make such assumptions, and
instead uses control cells to model technical variation in an unbiased,
non-parametric way.

To further investigate what are the features that characterize
treatments or batch effects, we ran a Grad-CAManalysis on a sample of
cell images in the BBBC022 dataset. We did not observe any major
indication of features that can be localized in the 2D image plane at the
single-cell level that could reveal small differences in technical varia-
tion (Supplementary Note 2, Supplementary Fig. 6). Batch effects
appear more prominently after aggregating single-cell features into
population level profiles (Supplementary Fig. 7). This suggests that
technical variation (such as wells, plates, and batches) may be accu-
mulated during the aggregation steps while single-cell heterogeneity
may be smoothed out. Thus, correcting batch effects and separating
biological from technical variation may be more efficient when con-
sidering information at various resolutions jointly (single-cells, image-
level, well-level, treatment-level).

Discussion
This paper presents an improved methodology for learning repre-
sentations of phenotypes in imaging experiments, which uses weakly
supervised learning, batch correction with sphering, and an evaluation
framework to assess performance. We used this methodology to
analyze three publicly available Cell Painting datasets with thousands
of perturbations, andwe found that: 1) CNNs capture confounding and
phenotypic variation as latent variables, 2) the performance of CNNs
canbe improved by trainingwith datasets thatmaximize technical and
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Fig. 6 | Effect of batch correctionon feature representations.Batch correction is
based on the sphering transform and applied at the well-level, before treatment-
level profiling (Methods). A UMAP plots of well-level profiles before batch correc-
tion for the three benchmark datasets (rows) colored by plate IDs (left column) and
by control vs treatment status (right column). The UMAP plots display density
functions on the x and y axes for each color group to highlight the spread and
clustering patterns of data. B Effect of batch correction in the biological matching

task. The x axis indicates the value of the regularization parameter of the sphering
transform (smaller parameter means more regularization), with no correction in
the leftmost point and then in decreasing parameter order (increasing sphering
effect). The y axis is Mean Average Precision in the biological matching task.
C UMAP plots of well-level profiles after batch correction for the three benchmark
datasets with the same color organization as in (A). Source data is provided as a
Source Data file.
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biological diversity, and 3) batch correction is necessary to recover a
representation of the phenotypic outcome of treatments. The WSL
approach in our methodology aims to learn unbiased features of cel-
lular morphology that can be used to approach various problems and
applications in cell biology. This is in contrast to supervised strategies
that aim to solve one task with high accuracy, and therefore only
capture features relevant to that task. Our approach can also be gen-
eralized to other imaging assays or screens, and we anticipate that the
same principles will be useful for improving performance in
downstream tasks.

We trained a Cell Painting CNN model that can extract single-cell
features to create image-based profiles for estimating the phenotypic
outcome of treatments in perturbation experiments. Following
insights derived from the analysis with our methodology, we con-
structed a large training resource by combining five sources of Cell
Painting data to maximize phenotypic and technical variation for
training a reusable feature extraction model. This model successfully
improved performance in all three benchmarks while also being
computationally efficient (Supplementary Note 3, Supplementary
Fig. 8). The fact that the best-performing strategy involved training a
single model once and profiling all the three benchmarks without re-
training or fine-tuning has a remarkable implication: it indicates that
generating large experimental datasets with a diversity of phenotypic
impacts could be used to create a singlemodel for the community that
could be transformational in the same way that models trained on
ImageNet have enabled transfer learning on natural image tasks.

Many machine learning applications typically aim to replicate
human behavior (e.g., classifying cats) with 100% accuracy. However,
the purpose of image-based profiling is not tomimic human behavior,
but rather uncover new knowledge. The accuracy metrics reported in
our study (Fig. 5 and Supplementary Fig. 9) are limited by currently
available knowledge about these treatments. However, ground truth
annotations may be incomplete; uncovering and understanding the
mechanisms of these drugs is one of the goals of these studies. The
metrics serve the purpose of estimatingmethodological improvement
that can result in future discoveries. Improvements in performance in a
drug discovery project could potentially mean new candidate treat-
ments useful for certain diseases.

We used a causal conceptual framework for analyzing the results,
which we found very useful to interpret performance differences
between feature extraction models. In practice, the framework was
useful for guiding decision making while training models, and it is
helpful to understand and communicate the challenges of learning
representations in imaging experiments. In theory, it also opens new
possibilities to formulate the problem in novel ways, for instance,
creating learning models that account for all four variables simulta-
neously. This framework is a compact way to express the causal
assumptions of the underlying biological experiment, which is con-
sistent with the experimental evidence that we observed throughout
this study. We believe that this is a first step towards studying the
causal relationships between disease and treatments using high-
throughput imaging experiments and modern machine learning.

Quantifying subtle phenotypic effects remains an ongoing chal-
lenge. We successfully trained a model that improved performance
after using treatments with strong cellular response, which helped
reduce the impact of technical variation on downstream tasks. How-
ever, this still does not recover the phenotypic signal of all treatments,
and the list of treatments withweak effects remains long. The question
whether such effects are overpowered byunwanted variationor if they
can even be detected by imaging is still open. Our work presents a
strategy to learn representations under real world conditions, and a
benchmark to continue study subtle phenotypic effects under noisy
conditions.

There are many sources of confounding factors in biological
experiments, and microscopy imaging is not exempt. Imaging is a

powerful technology for observing cellular states, and it is sensitive to
phenotypes as well as unwanted variation. If left unaccounted for,
unwanted variation can result in biased models that confound biolo-
gical conclusions, and this is especially true for large capacity, deep
learningmodels. Our experiments show that deep learning can exploit
confounding factors to minimize training error, and that batch effect
correction is critical to recover the biological representation of inter-
est in conventional or deep-learning based features. This is an active
research area with novel solutions being explored, including multi-
layer normalization strategies41, and the use of generative models42.
Other potential solutions may include invariant risk minimization
games43 or similar formulations.

Deep learning for high-throughput imaging promises to realize
the potential of perturbation studies for decoding and understanding
the phenotypic effects of treatments. The public release of the JUMP-
Cell PaintingConsortium’s dataset ofmore than 100,000 chemical and
genetic perturbations, collected across 12 different laboratories in
academia and industry, is an excellent example of the scale and bio-
logical diversity that imaging can bring for drug discovery and func-
tional genomics research44. Our Cell Painting CNN is a publicly
available model trained specifically for phenotypic feature extraction
in image-based profiling studies, and can generalize to new data with
new perturbations. We expect that our methodology, together with
larger datasets, will be useful to create better models for analyzing
images of cells in the future.

Methods
Ethical statement
This study does not involve human subjects and does not involve
animals or wet-lab experiments. All the relevant ethical principles that
apply to data science andmachine learning research were observed in
this work.

Causal assumptions
The causal graph in our framework includes four variables: inter-
ventions (treatments T), observations (images O), outcomes (phe-
notypes Y) and confounders (e.g. batches C). Each of the nodes in the
graph is a random variable with an associated probability distribu-
tion, which is unknown. Table 3 summarizes the assumptions made
in practice for each variable.

The exact cardinality of each variable depends on the dataset of
focus. A dataset in our study is a particular instance of the graphwith a
total of P images observed. Therefore, a dataset can be thought of as a
matrix with P rows and (N + WxH + M+K) columns, if all the variables
were concatenated. In practice, each submatrix is processed by a
separate transformation function, notably images are the input to a
neural network that predicts the treatments and recovers the pheno-
type in a hidden feature layer (see Weakly Supervised Learning below
for more details).

Note that confounders involve a wide range of technical and
unwanted variation, not limited to batch effects only. There are also
well-position effects, and plate effects, among others, which are hier-
archically organized sources of variation that typically confound the

Table 3 | Assumptions for variables of the causal graph

Variable Type Encoding Cardinality Order

Treatments T Categorical One-hot vector T 2 f0,1g2 N∼Oð103Þ
Images O Two

dimensional
Continuous pixel
intensities in a
matrix

O 2 RW ×H W ×H∼ 104

Phenotypes Y Latent
variable

Continuous multi-
dimensional vector

Y 2 RM M∼Oð102Þ

Batches C Categorical One-hot vector T 2 f0,1gK K ∼Oð102Þ
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analysis. In the literature, all these sources of variation are usually
grouped and called batch effects, because addressing them separately
is still an open research problem. In our work, we do not make explicit
distinction of what is the source of the confounding factors, and for
that reason, we model it as an unobserved latent variable.

For simplicity, we assume that there is a single context (X, not in
the diagram) for experimental treatments, which are clonal cells of an
isogenic cell line; perturbation experiments with multiple cell lines
may need a different model. We assume that images and treatments
are observables (O and T) because the images are acquired as a result
of the experiment, and the treatments are chosen by researchers. We
also assume that the phenotype and confounders are latent variables
(Y and C) that we want to estimate and separate.

The relationships in the causal graph are interpreted as follows:
the arrow fromT toY indicates that treatments are applied to cells and
are the main direct biological cause of phenotypic changes in cells in
the perturbation experiment. The arrow from Y toO indicates that we
partially observe the phenotypic outcome through images. This
observation is assumed to be noisy and incomplete, requiring hun-
dreds of cells and multiple replicates to increase the chances of mea-
suring the real effect of treatments. In addition, the image acquisition
process and the overall experiment are influenced by technical varia-
tion. The arrow from C to O indicates that images are impacted by
artifacts in image acquisition, includingmicroscope settings and assay
preparation. The arrow from C to Y indicates that phenotypes are
impacted by variations in cell density and other conditions that make
cells grow and respond differently. The arrow from C to T indicates
that treatments are impacted by plate map designs that are not fully
randomized and usually group treatments in specific plate positions.

We observe treatment outcomes (Y) indirectly through imaging
assays, and thus, we need image analysis to recover the phenotypic
effect and to separate it from unwanted variation (C). A representation
of the phenotypic effect can beobtainedwith theworkflowdepicted in
Fig. 1C-E, which illustrates three major steps: 1) modeling the correla-
tions between images and treatments using a CNN trained with weakly
supervised learning (WSL), 2) using batch correction to learn a trans-
formation of the latent representation of images obtained from
intermediate layers of the CNN, and 3) generating representations of
treatment effects in cellular morphology for downstream analysis.

Compound concentration and phenotypic strength
There is an important distinction between compound concentration
and phenotypic strength. Although they are causally related, they are
different concepts. First, the concentration of compounds was pre-
determined as part of the experimental design. Two of our three
evaluation datasets (BBBC022 and BBBC036) are compound screens,
and the third dataset is a gene overexpression experiment at a single
“dosage” (BBBC037). The compound screens prioritized diversity of
compounds with a fixed dose instead of multiple concentrations for
titration studies. Therefore, for most of the compounds in BBBC022
and BBBC036 only a single concentration was available, usually a high
one. Second, the strength of phenotypes is the effect that perturba-
tions produce on cells, regardless of their type or concentration. A
high dose does notmean that the phenotypic effect is strong, because
some compounds may not induce a phenotypic effect that can be
detected with imaging, even at high concentrations. Therefore, it is
important to separate the cause (compound dose) from the effect
(phenotypic change) to correctly interpret the results.

Average treatment effect
To estimate Average Treatment Effect (ATE) we use the Euclidean
distance between feature representations obtained with classical fea-
tures as an independent measure of cellular morphology. The Eucli-
dean distance is a useful estimator of ATE, because it is by definition
the expected difference between two outcomes. We approximate this

quantity with the Euclidean distance between negative controls and
treatments given that profiles are high-dimensional and we aim to
capture the total effect (distance). The cosine similaritywas not used in
this context because it only measures the directionality of the effect
and ignores its magnitude. We consistently use the cosine distance
among treatment profiles in all the biologicalmatching tasks involving
MoAs (see Methods Similarity Matching for more details).

Weakly supervised learning
Weakly supervised learning23 (WSL) trains models with the auxiliary
task of learning to recognize the treatment applied to single cells.
Treatments are always known in a perturbation experiment, while
other biological annotations, such as mechanism of action or genetic
pathwaymay not be known for certain treatments, only reflect part of
thephenotypic outcome, and is usually unknownat the single-cell level
(which is the resolution used for training models in this work). We use
an EfficientNet45,46 architecturewith a classification loss with respect to
treatment labels for training WSL models.

WSL captures the correlations between observed images and
treatments andmakes the following assumptions: 1) if a treatment has
an observable effect then it can be seen in images, and therefore,
training a CNN helps identify visual features that make it detectably
different from all other treatments. 2) Treatment labels in the classi-
fication task are weak labels because they are not the final outcome of
interest, they donot reflect expert biological ground truth, and there is
no certainty that all treatments produce a phenotypic outcome, nor
that they produce a different phenotypic outcome from each other. 3)
Cells might not respond uniformly to particular treatments47, which
yields heterogeneous subpopulations of cells that may not be con-
sistent with the treatment label, i.e, treatment labels do not have
single-cell resolution. 4) Intermediate layers of the CNN trained with
treatment labels capture all visual variation of images as latent vari-
ables, including confounders and causal phenotypic features.

Image preprocessing
The original Cell Painting images in all the datasets used in this work
are encoded and stored in 16-bit TIFF format. To facilitate image
loading from disk tomemory during training of deep learningmodels,
we used image compression. This is only required for training, which
requires repeated randomized loading of images for minibatch-based
optimization.

The compression procedure is as follows:
Compute one illumination correction function for each channel-
plate48. The illumination correction function is computed at 25% of
the width/height of the original images.
Apply the illumination correction function to images before any of
the following compression steps.
Stretch the histogram of intensities of each image by removing
pixels that are too dark or too bright (below 0.05 and above 99.95
percentiles). This expands the bin ranges when changing pixel
depth and prevents having dark images as a result of saturated
pixels.
Change the pixel depth from 16 bits to 8 bits. This results in 2X
compression.
Save the resulting image in PNG lossless format. This results in
approximately 3X compression.
The resulting compression factor is approximately (2X)(3X) = 6X.

This preprocessing pipeline is implemented in DeepProfiler and
can be run with a metadata file that lists the images in the dataset that
require compression, together with plate, well and site (image or field
of view) information. Note that compression is only used to optimize
storage space, data transferring and computing time, especially given
the large size of uncompressed datasets (which can be in the order of
TBs). Histogram clipping is not meant to enhance image contents, it is
used as a preprocessing step before compressing pixel depth from 16
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bits (64 K pixel values) down to 8 bits (256 pixel values). Histogram
clipping reduces the impact of noise in the tails of the original pixel
distribution and to prevent allocation of compressed bits on unne-
cessarily high or low levels of brightness. Thepercentiles are relative to
each individual image.

EfficientNet
The deep convolutional neural network architecture used in all our
experiments is the EfficientNet45,46. We use the base model
EfficientNet-B0 to compute features on single-cell crops of 128 × 128
pixels. It consists of 9 stages: input, seven inverted residual convolu-
tional blocks from MobileNetV249 (with the addition of squeeze and
excitation optimization) and final layers. The usage of convolutional
blocks from MobileNetV2 in combination with neural architecture
search gave EfficientNet an advantage in terms of computational effi-
ciency and accuracy compared to ResNet50. This model has only 4
million parameters and can extract features from single cells in a few
milliseconds using GPU acceleration. EfficientNet has been previously
used for image-based profiling, including in models trained with the
CytoImageNet dataset50, by top competitors in the Recursion Cellular
Image Classification challenge in Kaggle, and for studying variants of
unknown significance in cancer lung cells10.

Training cell painting models
TheCell Paintingmodels are trainedonsingle-cell crops obtained from
full images using cell locations and full-image metadata. Cropped
single cells are exported to individual images together with their seg-
mentationmask if available. In all our experiments, we used single cells
cropped froma regionof 128 × 128pixels centeredon the cell’s nucleus
without any resizing. We preserve the context of the single cell
(background or parts of other cells), meaning that the segmentation
mask is not used in our experiments.

To train a weakly supervised model we first initialize an Effi-
cientNet with ImageNet weights and sample mini-batches of 32
examples for training with an SGD optimizer with a learning rate of
0.005. We train models for 30 epochs; each epoch makes a pass over
example cells of all treatments in a balanced way. Balancing is set to
draw the samenumber of single cells fromeach treatment (themedian
across treatments) in one epoch, and every epoch resamples new cells
from the pool. This strategy leverages the variation of cells in treat-
ments that are overrepresented (such as controls), and oversamples
cells from treatments with fewer than the median. Balancing is
important to optimize the categorical cross-entropy loss to compen-
sate for rare classes among the hundreds of treatments used for
training in our experiments.

All single cells go through a data augmentation process during
training, which involves the following three steps:
1. Random crop and resize. This augmentation is applied with 0.5

probability. The crop region size is random, 80% to 100% of the
size of the original image, then resized back to 128 × 128 pixels.

2. Random horizontal flips and 90-degree rotations.
3. Random brightness and contrast adjustments, each channel is

augmented and renormalized separately.

Data augmentation is a strategy for regularization; it is used to
prevent models from learning simple associations and to force the
model to find alternative explanations. Crop and resize may change
cell size, which is a biologically meaningful feature. However, it is not
the only feature that we aim to capture in Cell Painting studies. Other
simpler assays and algorithms can be used for that purpose. Instead,
Cell Painting captures a wider range of structural and morphological
cellular variations that are subtle and important for distinguishing the
effects of thousands of perturbations. In practice, we observed that
random cropping and resizing improves training performance and
prevents overfitting. This is because treatments that impact cell size

also tend to impact other features as a result, including colocalization
of stains and textures. These features are then captured robustly when
random variations in cell size are introduced as an augmentation
during training.

In addition, introducing random brightness and contrast aug-
mentations prevents overfitting to non-biological illumination varia-
tions, resulting in more robust morphological features. The key
observation is that pixel brightness is meaningful relative to other
structural or morphological patterns in the same channel, but not in
absolute values. By randomly changing the absolute brightness and
contrast of each channel individually, we simulate technical artifacts
that could result in one of the channels having abnormal illumination
variation (either brighter or darker than usual). Note that all the pixels
in the same channel change by the same amount. This facilitates
learning features that describe structural patterns in the image
regardless of potentially unexpected illumination changes.

Instead of data augmentations, equivariance can be used as part
of themodel, which has been investigated in other domains, including
pathology. We leave this possibility for future research.

We used two data-split approaches for creating training and
validation subsets for the single-cell treatment classification task:

Leave plates out: we selected the plates in a way that the data of one
subset of plates is only the train data and another one is in
validation.
Leave cells out: all plates are used for training and validation. We
randomly choose single cells from each well, meaning that
approximately 60% of cells from each well would be in the training
set and the rest in the validation set.

The training of deep learning models was performed on NVIDIA
DGX with NVIDIA V100 GPUs and servers with NVIDIA A6000 GPUs; a
single GPU was used to train each model.

Feature extraction with trained Cell Painting models
Weextract features of single cells and store them in oneNumPy file per
field of view using an array of vectors (one per cell). The feature
extraction procedure requires access to full images, metadata and
location files. Since a trained model is natively trained for five-channel
images, there is no need to replicate each channel separately, thus,
each cell requires one inference pass and the feature vector contains
representation of all channels simultaneously. The size of the feature
vectors is 672 for reported results, which were extracted from Effi-
cientNet’s block6a-activation layer.

ImageNet pre-trained models
ImageNet pre-trained convolutional networks are widely used in
computer vision applications and they have also been used in image-
based profiling applications. ImageNet is a large collection of natural
images with objects and animals of different categories51. A deep
learning model trained on this dataset is capable of extracting generic
visual features from images for different applications, also known as
transfer learning. Pre-trained models for morphological profiling have
been evaluated in several studies10,11,17,18,33,52,53.

We use DeepProfiler to extract features of single-cells with the
pre-trained EfficientNet-B0 model available in the Keras library. The
size of single-cell images in our experiments is 128 × 128 after being
cropped from field-of-view images. An ImageNet pre-trained model
expects images of higher resolution, specifically 224 × 224 in our case;
therefore the cell crops are first resized. The pixel values are then
rescaled using min-max normalization and adjusted to have values
[−1:1] to match the required input range. As Cell Painting images are
five-channel and ImageNet pre-trained models expect three-channel
(RGB) images, we follow the well established practice of computing a
pseudo RGB image for each grayscale fluorescent channel by repli-
cating it three times before passing it through the model (thus each
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cell requiresfive inferencepasses). Features extracted for eachchannel
are concatenated and the resulting feature vector size is 3,360 (672 is
the size of the block6a-activation layer of the EfficientNet used in our
experiments).

Multiple instance learning with attention
Multiple instance learning (MIL) is a learning technique for datasets
with weak labels, where the training examples are assorted into sets of
examples – bags, and each bag has a single label54. In the binary clas-
sification setting, the bag is assigned as negative if all examples in the
bag are negative, otherwise, the bag is assigned as positive. This
technique, paired with an attention mechanism, was used to analyze
histology images32 where the prediction of the bagwould stand for the
diagnosis (given that examples come from the same sample).

We implemented this approach as an alternative weakly super-
vised learning method. Given the multi-class setting, the construction
of bags was adjusted as follows: 1) bag size is 16, 2) the bag is labeled as
negative control class (DMSO or EMPTY) if all cells in the bag come
from negative control wells, 3) bags are labeled with a treatment class
when it contains examples of negative controls mixed with examples
of the corresponding treatment. 4) Treated bags have 4 to 12 examples
(25-75%) belonging to the treatment class and the rest are randomly
sampled from negative controls.

To train a weakly supervised model with MIL we first initialize an
EfficientNet with ImageNet weights and batch size of 32 bags, then
training with an SGD optimizer with a learning rate of 0.005. We train
models for 50 epochs; each epochmakes amodel pass over bags of all
treatments in a balanced way. Bags are resampled at every epoch, and
for each treatment class we generate the same number of bags. The
augmentation pipeline was the same as for the training of other Cell
Painting models and the MIL model was trained only with the com-
bined Cell Painting dataset using leave-cells-out data split (see
Methods).

Online label smoothing
Online label smoothing (OLS)31 is a technique for training models with
weak or noisy labels. During the training process the labels are dyna-
mically updated at the endof each epoch. The update rule for label L of
the training example is the following:

L=αLhard + 1� αð ÞLsof t ð1Þ

whereα sets the shift from the current label to the newpredicted label.
At the beginning of training, Lhard is the ground-truth label and later, it
is the label computed in the previous epoch. Lsof t is the predicted label
after the training epoch is finished. We used OLS to train a model with
the combined Cell Painting dataset using the leave-cells-out validation
scheme (see Methods). The parameter α for the label update rule was
set to 0.03. Additionally, the label smoothing55 parameter was
set to 0.1.

Gradient reversal layer
Gradient reversal layer (GRL)40 is an approach to domain adaptation
for representation learning. It works by adding an adversarial classifier
in a separate network branch that classifies the known domains of data
points. The gradient calculated in this branch is used to move the
parameters of the model in the opposite direction of the classifier’s
best performance, thus preventing the model from learning solutions
that depend on the domain information.

The training setup with gradient reversal layer does not differ
from training other Cell Paintingmodels (seeMethods), except for the
addition of a classifier branch for domain classification and gradient
reversal layer. The branch for domain classification consisted of three
dense layers (of sizes 1024, 512 and 128) and the softmax function for
class prediction. We trained WSL +GRL for each benchmark dataset

separately and considered experimental plates as domains, which
means that the number ofdomains for eachdatasetwas different (5 for
BBBC037, 20 for BBBC022 and 55 for BBBC036).

Segmentation
The cell segmentation for the benchmark datasets (BBBC037,
BBBC022 and BBBC036) was performed with methods built in Cell-
Profiler v2 based on Otsu thresholding56 and propagation method57

basedonVoronoi diagrams58 orwatershed from59. The segmentation is
two-stepped: first, the images stained with Hoechst (DNA channel)
were segmented using global Otsu thresholding. This prior informa-
tion is then used in the second step: cell segmentation with the pro-
pagation or watershedmethod. The input channel for the second step
depends on the dataset, as well as the other specific parameters of
segmentation. The segmentation part of the pipelines is available in
the published CellProfiler pipelines (see Code availability section). For
the purposes of this project, we used the center of the nuclei to crop
out cells in a region of 128 × 128 pixels. These cell crops are used in all
the deep learning workflows.

Feature extraction with CellProfiler
CellProfiler60 allows the construction of customizable automated
pipelines for analysis of biological images. It facilitates the analysis and
extraction of meaningful information from high-throughput imaging
experiments. The pipeline starts with image import, then it is followed
by image pre-processing, such as illumination correction and noise
removal. Then the objects are identified: nuclei are identified first and
with this prior information the boundaries of the whole cell are infer-
red. Once cells are segmented, CellProfiler extracts feature vectors per
cell, which are designed to be human readable and grouped by cell
region (nucleus, cytoplasm or cell). Each of those feature groups has
several common subgroups, such as shape features, intensity-based
features, texture features and context features. Table 4 lists those
feature subgroups.

Feature extraction for the evaluated datasets was performed with
CellProfiler version 2. The table above lists the groups and names of
features used in our experiments. Most of these features are extracted
from each channel independently, except for the correlation features.
The resulting size of single-cell feature vectors is approximately 1,700
(the exact value can vary among datasets). In our analysis, we used
well-level aggregated profiles (see also “Feature aggregation and pro-
filing”) to obtain baseline results. We reused publicly available features
that were computed by the authors of the original study (BBBC03761,
BBBC02237 and BBBC03638). The links to the original data sources are
listed in the Data Availability section below.

Feature aggregation and profiling
Image-based profiling aims to create representations of treatment
effects, which is obtained by aggregating information of single cells
into population-level profiles. This process follows a multi-step
aggregation process. Features of single-cells are first aggregated
using the median operator at field-of-view (image) level. Next,
fields-of-view features are aggregated using the mean to create a
well-level profile. Finally, treatment-level profiles are obtained with
the average across replicate wells. The feature aggregation steps are
the same for CellProfiler and deep learning features. CellProfiler
well-level features with NA values were removed in the aggregation
pipeline.

This choice of alternating between median and mean follows the
fact that at thefield-of-view level there ismoredata (hundreds of cells),
which is potentially noisy and prone to errors (from segmentation or
feature extraction). Therefore the median is used as the robust esti-
mator of the localmorphological trend. At the replicate level, there are
only less than ten data points to aggregate (9 fields of view, or 5
replicates), and then the average is computed to capture a smooth
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trend of morphological features among them. This pipeline was ori-
ginally proposed by62, and has been used in many other studies18.

Batch correction with the sphering transform
To recover the phenotypic features of treatments from the latent
representations of the weakly supervised CNN, we employ a batch
correction model inspired by the Typical Variation Normalization
(TVN) technique18. This transform aims to reduce the variation asso-
ciated with confounders and amplify features caused by phenotypic
outcomes (Fig. 1D). The main idea of this approach is to use negative
control samples as a model of unwanted variation under the assump-
tion that their phenotypic features should be neutral, and therefore
differences in control images reflect mainly confounding factors. We
follow this assumption and use a sphering transformation to learn a
function that projects latent features from the CNN to a corrected
feature space that preserves the phenotypic features caused by
treatments. We note that given how control wells are placed in plates,
they may not represent all of the unwanted variation caused by plate
layout effects, nevertheless, we assume it is a sufficient approximation.

In our implementation, we aim to reduce the profiles of control
wells to awhite noisedistribution using a sphering transform, and then
use the resulting transformation as a correction function for treated
wells. First, the orthogonal directions of maximal variance are identi-
fied using singular value decomposition (SVD) on thematrix of control
wells. Then, directions with small variation are amplified while direc-
tions with large variation are reduced by inverting their eigenvalues.
We control the strength of signal amplification or reduction with a
regularization parameter. The computation involves only profiles of
negative controls and as a result, weobtain a linear transformation that
can be applied to all well-level feature vectors in a dataset.

The sphering transformation takesnwell-level profiles of negative
controls with vector size d as an input matrix Xn×d . Then, its covar-
iance matrix is calculated as Σ= XTX

n followed by eigendecomposition
Σ=UΔUT , where Δ is the diagonal matrix of eigenvalues, and U is the
matrix of orthonormal vectors. We renormalize the orthonormal vec-
tors by inverting the square root of the eigenvalues inΔ togetherwith a
regularization parameter λ. The resulting ZCA-transformation63 matrix
is Q=UðΔ+ λÞ�1

2UT , which can be used to compute the corrected
profile of a treatedwell t with amatrixmultiplication: t’=Qt. The effect
of sphering and its regularization on representations and profiling
performance is presented in Fig. 4 and Supplementary Fig. 5. This
transformation was originally studied for image-based profiling in
detail by Michael Ando and others18, and has been subsequently used
in many other studies5,9,10,23,64–69. Our implementation is a simplified
version of TVN following the principles of the sphering transform63,70,71.

The selection of the regularization parameter λ is critical for
obtaining improved results as presented in Fig. 6. In our work, we
select this parameter by inspecting the plot and identifying a value that
maximizes quantitative performance for each feature extraction
strategy independently. When performance is saturated, we select the
largest parameter that provides stable results. In practice, we found
10−3 to be a good choice in many cases.

Harmony
Harmony39 was originally developed to integrate single-cell RNA-seq
and spatial transcriptomics data from various datasets. The input data
is projected into lower dimension space with PCA and then clustered
with a modified k-means algorithm. Harmony iteratively adjusts single
data points (cells) with a series of corrections inferred with the help of
clustering, until the final clustering is stable.

In our experiments, we used Harmony on its own and combined
with sphering transform, when sphering is applied first and then Har-
mony (in both cases on well-level profiles). Experimental plates were
treated as “datasets” and wells as “cells”. For the number of clusters
parameter we used 205 in BBBC037 (one per perturbation), and 300
for BBBC022 and BBBC036. Applying Harmony slightly improves
performance in the biological matching task if sphering was not used
in all metrics\datasets, but it is not consistent when combined with
sphering (Supplementary Fig. 5).

Similarity matching
To assess the similarity between treatment profiles the cosine simi-
larity is measured between pairs of treatments. The cosine similarity is
one of several similarity metrics that can be used in profiling12 and has
been used in previous studies62.

cosine similarity =
A � B
Aj jj j Bj jj j ð2Þ

where A and B are image-based profiles, i.e., multidimensional vectors.
We adopt the cosine similarity in all our similarity search andbiological
matching experiments.

Evaluation metrics
For quantitative comparison of multiple feature extraction strategies,
we simulate a user searching a reference library to find a “match” to
their query treatment of interest. We used a leave-one-treatment-out
strategy for all annotated treatments in three benchmark datasets,
following previous research in the field18,61,62. In all cases, queries and

Table 4 | List of CellProfiler features used for profiling cellular morphology

Feature Group Features and description

AreaShape Compactness, Eccentricity, Extent, FormFactor, MajorAxisLength, MaxFeretDiameter, MaximumRadius, Mean-
Radius, MedianRadius, MinFeretDiameter, MinorAxisLength, Orientation, Perimeter, Solidity, Zernike shape features.

Correlation, Correlation_Manders,
Correlation_RWC

Those correlations are calculated for pairs of channels.

Granularity Granularity for each channel and each instance of the granularity spectrum.

Intensity IntegratedIntensityEdge, LowerQuartileIntensity, MADIntensity, MassDisplacement, MaxIntensityEdge, Mean-
Intensity, MedianIntensity, MinIntensity, StdIntensityEdge, StdIntensity, UpperQuartileIntensity.
Each feature is calculated per channel.

Location CenterMassIntensity, MaxIntensity. Each location is calculated per channel.

Neighbors AngleBetweenNeighbors, FirstClosestDistance, NumberOfNeighbors, PercentTouching, SecondCloses-
tObjectNumber.Features in this group are only calculated for “Cell” and “Nuclei” groups.

RadialDistribution FracAtD, MeanFrac, RadialCV. Each feature was calculated per channel.

Texture AngularSecondMoment,Contrast, Correlation, DifferenceEntropy, DifferenceVariance, Entropy,Gabor, InfoMeas1\2,
InverseDifferenceMoment, SumAverage, SumEntropy, SumVariance, Variance. Each feature was calculated per
channel.
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reference items are aggregated treatment-level profilesmatched using
the cosine similarity (Methods). The result of searching the librarywith
one treatment query is a ranked list of treatments in descending order
of relevance. A result in the ranked list is considered a positive hit if it
shares at least one biological annotation in common with the query;
otherwise it is a negative result (Fig. 1G).

There are several quantitative evaluations of feature representa-
tion quality that we use in our study. At the single-cell level, we expect
neural networks to classify single cells into their corresponding
treatment, and therefore use accuracy, precision and recall to evaluate
performance (see Fig. 3 and main text). For downstream analysis we
adopted a biological matching task, which simulates a user searching
for treatments that correspond to the same mechanism of action or
genetic pathway (for compound and gene overexpression perturba-
tions respectively). These queries are conducted and evaluated at the
treatment-level, and the main idea is to assess how well connected
treatments are in the feature space according to known biology.

As ground truth annotations for evaluating downstream biologi-
cal tasks, we usedmechanism of action (MoA) labels publicly available
in compound libraries. These annotations may not be 100% accurate
for several reasons; for example, the phenotype of compounds may
vary depending on the tested dose resulting in a different MoA for the
same compound. The MoA annotations have not been manually and
individually confirmed for each compound in the study; they only
represent a potentially expected phenotype according to what we
know in the literature about these compounds. Factors such as the
dosage, the sensitivity of imaging, and confounders, among others
may determine whether the MoA association is correct or not. The
quantitative evaluation presented in this study is an attempt to mea-
sure how likely two related phenotypes are given the observations and
the available annotations.

We use two main metrics for evaluating the quality of the results
for a given query: 1) folds of enrichment and 2)mean average precision
(mAP). The folds-of-enrichment metric (see details below) is inspired
by statistical analyses in biology and determines how unusual positive
connections happen to be in the top 1% of the list61. On the other hand,
the mAP metric is inspired by information retrieval research, and
quantifies the precision and recall trend over the entire list of results
for all queries.

In order to simulate queries, we proceed as follows:
Choose a query treatment - which belongs to an MoA or pathway
that has at least two treatments in the database and, therefore, it is
possible to find a match.
Library treatments - all the others while leaving the query treatment
out. Library treatments represent a database of treatments with
known MoAs or pathways annotations, which can be candidate
matches for a given query.

Folds of enrichment
For each query treatment we calculate the odds ratio of a one-sided
Fisher’s exact test. The test is calculated using a 2 × 2 contingency
table: the first row contains a number of treatments with the same
MoAs or pathways (positive matches) and different MoAs or pathways
(negative matches) at a selected threshold of the list of results. The
second row is the same, but for the treatments below the threshold
(the rest). Odds ratio is a sumof the first row divided by the sumof the
second row. It estimates the likelihoodof observing the treatmentwith
the same MoA or pathway in the top connections.

We calculate the odds ratio of each individual query, and then
obtain the average over all query treatments. The threshold we use is
1%of connections,meaningweexpect the top 1%ofmatching results in
the list to be significantly enriched for positive matches. This metric in
the text is referred to as “Folds of Enrichment”. The implementation of
the metric is available as a part of analysis pipelines (see Code avail-
ability section).

Mean average precision
For each query treatment, average precision (area under precision-
recall curve) is computed following the common practice in informa-
tion retrieval tasks. The evaluation starts from the most similar treat-
ments to the query (top results) and continues until all positive pairs
(response treatments with the same MoA or pathway) are found. Pre-
cision and recall are computed at each item of the result list.

Precision=
TP

TP + FP
ð3Þ

Recall =
TP

TP + FN
ð4Þ

where TP are the true positives, FP are the false positives, and FN are
the false negatives in the list of results until the current item. This is
evaluated for each query separately. As the number of treatments per
MoA or pathway is not balanced, the precision-recall curve has a
different number of recall points. Therefore, precision and recall are
interpolated for each query to cover the maximum number of recall
points possible in the dataset, and thus allow for averaging at the same
recall points. The interpolated precision at each recall point is defined
as follows72:

pinter rð Þ=maxr 0 ≥ rp r0ð Þ ð5Þ

Average precision for a query treatment is the mean of pinter at all
recall points. The reported mean average precision (mAP) is the mean
average precision over all queries.

Benchmarks and ground truth annotations
For this study, we used three publicly available Cell Painting datasets
representing gene overexpression perturbations (BBBC03761) and
compound perturbations (BBBC02237 and BBBC03638). The three
datasets were produced at the Broad Institute using the U2OS cell-line
(bone cancer) following the standardized Cell Painting protocol1,
which stains cells with six fluorescent dyes and acquires imaging
samples in five channels at 20X magnification. The compound per-
turbation experiments used DMSO as a negative control treatment,
while in the gene overexpression experiments no perturbation was
used for negative control samples. All experiments were conducted
usingmultiple 384-well plates at high-throughput with 5 replicates per
treatment (except for high-replicate positive and negative controls).

We conducted quality control of images in all the three datasets
by analyzing image-based features with principal component analysis.
The outliers observed in the first two principal components were
flagged as candidates for exclusion, and were visually inspected to
confirm rejection.We foundmost of these images to be noisy or empty
and not suitable for training and evaluation. With this quality control,
two wells were removed from BBBC037, 43 wells from BBBC022, and
no wells were removed from BBBC036. If treatments had multiple
concentrations in BBBC022 and BBBC036, we kept only themaximum
concentration for further analysis and evaluation.

The ground-truth annotations for compounds correspond to
mechanism-of-action (MoA) labels when known, and can include
multiple annotations per compound. In the case of gene over-
expression, the ground-truth corresponds to the genetic pathway of
perturbed genes. We used annotations collected in prior work for the
same three datasets61 and applied minor updates and corrections (see
Data Availability section). Only treatments with at least two replicates
left after quality control are included in the ground-truth.

Measuring treatment effect
The effect of treatments is approximated by computing the distance
between the morphological features of treatments and controls. We
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use batch-corrected features obtained with CellProfiler (with sphering
regularization parameter 1e-2) in the following way:
1. Calculate themedian profile of control wellswithin the sameplate

(median control profile of the plate).
2. For each treatedwell, calculate the Euclidean distance between its

well-level profile and the median control profile of its plate.
3. Estimate the distribution of control well distances against the

median control profile per plate. Then, calculate their mean and
standard deviation.

4. Using the statistics of control distances per plate, Z-score the
distances of treated wells obtained in step 2.

5. Finally,wedefine the approximatemeasure of the effect of a given
treatment as the average of the Z-scores of its well replicates
across plates.

Intuitively, we expect treatments with stronger effects to have a
high average Z-score while treatments with weaker or no detectable
effect are expected to have low average Z-score. We use this measure
to rank treatments and select subsets of treatments for evaluation of
the impact of treatment effect during training, as well as for sampling
treatments with high phenotypic effect for creating a combined
training dataset.

Combined Cell Painting dataset
We combined five publicly available Cell Painting datasets to create a
training resource that maximizes both phenotypic and technical var-
iation. The five dataset sources include the three benchmarks descri-
bed above (BBBC037, BBBC022, and BBBC036), as well as two
additional datasets: 1) BBBC04310, a gene overexpression experiment
to study the impact of cancer variants, and 2) LINCS5, a chemical screen
of FDA approved compounds for drug repurposing research. Both
BBBC043 and LINCS are perturbation experiments conducted with
A549 cells (lung adenocarcinoma). In total, these five sources of data
havemore than 6,000 treatments, in hundreds of plates, thousands of
wells, and millions of images resulting in the order of hundreds of
millions of imaged single cells.Our goalwas to select a sample of single
cells from these five sources to maximally capture phenotypic and
technical variation.

Instead of sampling single cells uniformly at random, we follow
the distribution of treatments to include biological diversity, and the
organization of the experimental design to represent various sources
of technical noise. Technical variation is organized hierarchically in
experiments, starting with the five sources of Cell Painting images,
continuing with batches, plate-maps, plates, and well positions. We
aimed to bring samples from as many of these combinations as pos-
sible to have cells representing different types of technical variation. In
terms of biological variation, three of the five data sources have U2OS
cells and the other two have A549 cells, resulting in two different
cellular contexts being represented. The five sources also include two
types of perturbations (chemical and genetic), and multiple
treatments.

To preserve as much phenotypic variation as possible, we sample
treatments from both cell lines, both types of perturbations, and we
identify the treatments with strongest effect in each of the five sources
following the procedure described in the previous section. Several
treatments overlap across data sources, and we prioritized those that
can be found in two or more sources simultaneously. An example is
negative controls: all compound screens use DMSO as the negative
control, and we would expect their phenotype to match across data
sources. The same expectation holds for the rest of treatments.
Negative control wells are typically present in each plate of the
experiment in several replicates.

The selection of strong treatments started with the BBBC022
and BBBC036 datasets (chemical perturbations). We selected the

500 strongest treatments (see Measuring treatment effect) from
BBBC022 and searched for those in BBBC036, which resulted in
301 strong treatments in common between both datasets. We addi-
tionally selected 50 unique treatments from BBBC022 and 62 unique
treatments from BBBC036. Out of those 413 treatments, 122 over-
lapped with the LINCS dataset and were included. We additionally
selected 7 random treatments from LINCS, from top 20 (by number of
associated treatments) MoAs. Treatment selection from BBBC037 and
BBBC043 (gene overexpression perturbations) was similar, and we
identified28overlappinggenes.We assume that “wildtype”genes from
both datasets are the same, and then we selected the 29 strongest
unique perturbations from the BBBC037 dataset and the 32 strongest
perturbations from BBBC043 from non-overlapping subsets.

Negative controls from compound screening datasets and nega-
tive controls from gene overexpression datasets are considered as
different classes in the combined dataset (DMSO and EMPTY). Not all
control wells were included from the LINCS dataset in the final sample,
as these would result in extreme overrepresentation, so we randomly
sampled three control wells per plate. As the final step, the treatments
with less than 100 cells were filtered out. In total the dataset contains
490 classes (488 for treatments and 2 for negative controls), 8,423,455
individual single-cells (47% treatment and 53% control cells). See Venn
diagrams in Fig. 4 for more details.

Statistics and reproducibility
This study uses machine learning to analyze publicly available Cell
Painting datasetswith the goal of understanding image-based profiling
methodologies. No statistical method was used to predetermine
sample size. Certain images were excluded from the analysis following
the quality control procedure described in the “Benchmarks and
ground truth annotations” section of the Methods. The experiments
were not randomized, and data training-validation splits were created
as described in the “Training Cell Painting models” section of the
Methods. The Investigators were not blinded to allocation during
experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The Cell Painting datasets used in this study (raw images and CellPro-
filer profiles) are available at public S3 buckets that can be accessed
using the AWS Command Line Interface (CLI). Please install the AWS
CLI following the instructions on this link: https://docs.aws.amazon.
com/cli/latest/userguide/getting-started-install.html. Then, to down-
load data use the “cp” command with the “--recursive” and “--no-sign-
request” flags. For example, BBBC037 dataset can be downloaded with
the following command: ‘aws s3 cp s3://cytodata/datasets/TA-ORF-
BBBC037-Rohban/./ --recursive --no-sign-request'. The following are S3
URLs needed to get all the data, including images and precomputed
features. BBBC037 gene overexpression dataset in U2OS cells36, s3://
cytodata/datasets/TA-ORF-BBBC037-Rohban/. BBBC022 compound
screening in U2OS cells37, s3://cytodata/datasets/Bioactives-BBBC022-
Gustafsdottir/. BBBC036 compound screening in U2OS cells38, s3://
cytodata/datasets/CDRPBIO-BBBC036-Bray/. BBBC043 gene over-
expression dataset in A549 cells10, s3://cytodata/datasets/LUAD-
BBBC043-Caicedo/. LINCS compound screening in A549 cells5, s3://
cellpainting-gallery/cpg0004-lincs/broad/images/2016_04_01_a549_
48hr_batch1/. Combined Cell Painting dataset that was collected in
this study is available in Cell Painting Gallery S3 bucket: s3://cellpaint-
ing-gallery/cpg0019-moshkov-deepprofiler/. Source data (SourceDa-
ta.xlsx) is provided with this paper. Source data are provided with
this paper.
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Code availability
To run all the experiments in this study, we developed DeepProfiler, a
tool for learning and extracting representations fromhigh-throughput
microscopy images using convolutional neural networks (CNNs).
DeepProfiler uses a standardized workflow that includes image pre-
processing, training of CNNs and feature extraction, as discussed in
previous sections. DeepProfiler is implemented in Tensorflow73 (ver-
sion 2) and is publicly available on GitHub https://github.com/
cytomining/DeepProfiler74. The documentation of DeepProfiler is
available in the following link: https://cytomining.github.io/
DeepProfiler-handbook/, and describes the steps for installing, con-
figuring and running the software for profiling new images and for
training models. In DeepProfiler we used the following EfficientNet
implementation: https://github.com/qubvel/efficientnet. Additionally,
DeepProfiler code is available on Zenodo https://doi.org/10.5281/
zenodo.1041095874. The processing and profiling pipelines for the
three benchmarks evaluated in this work (Jupyter notebooks and
Python scripts to analyze features) are available on GitHub: https://
github.com/broadinstitute/DeepProfilerExperiments and Zenodo.
https://doi.org/10.5281/zenodo.1041964074 This repository also
includes the DeepProfiler configuration files used for training the
models on each dataset, as well as the configuration for training the
Cell Painting CNN model. In addition, the ground truth files and code
for evaluation of the downstream tasks are also available in this
repository. The Cell Painting CNN model (trained with leave-cells-out
training-validation split) is available on Zenodo: https://doi.org/10.
5281/zenodo.7114557. The ImageNet pre-trained EfficientNet model
used in this study can be found here: https://github.com/Callidior/
keras-applications/releases/download/efficientnet/efficientnet-b0_
weights_tf_dim_ordering_tf_kernels_autoaugment.h5. The code and
CellProfiler pipelines for three evaluated datasets can be found in the
following GitHub repositories: BBBC037: https://github.com/
carpenterlab/2017_rohban_elife, BBBC036: https://github.com/
gigascience/paper-bray2017, and BBBC022: Supplementary materials
in ref. 37.
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