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High-order sensory processing nanocircuit
based on coupled VO2 oscillators

Ke Yang1,7, Yanghao Wang 1,7, Pek Jun Tiw1, Chaoming Wang2, Xiaolong Zou2,
Rui Yuan1, Chang Liu1, Ge Li3, Chen Ge 3, Si Wu2, Teng Zhang 1 ,
Ru Huang 1 & Yuchao Yang 1,4,5,6

Conventional circuit elements are constrainedby limitations in area andpower
efficiency at processing physical signals. Recently, researchers have delved
into high-order dynamics and coupled oscillation dynamics utilizing Mott
devices, revealing potent nonlinear computing capabilities. However, the
intricate yet manageable population dynamics of multiple artificial sensory
neurons with spatiotemporal coupling remain unexplored. Here, we present
an experimental hardware demonstration featuring a capacitance-coupled
VO2 phase-change oscillatory network. This network serves as a continuous-
time dynamic system for sensory pre-processing and encodes information in
phase differences. Besides, a decision-making module for special post-
processing through software simulation is designed to complete a bio-inspired
dynamic sensory system. Our experiments provide compelling evidence that
this transistor-free coupling network excels in sensory processing tasks such
as touch recognition andgesture recognition, achieving significant advantages
of fewer devices and lower energy-delay-product compared to conventional
methods. This work paves the way towards an efficient and compact neuro-
morphic sensory system based on nano-scale nonlinear dynamics.

The emergence of technological innovations, such as wearable
electronics1, auto-driving2, and virtual reality3, are calling for advanced
sensory systems, that minimize redundant data movement between
sensors and processing units, thereby enhancing area and energy
efficiencies. In a typical sensory system, the sensory data follows a
hierarchical processing flow, encompassing low-level sensory proces-
sing (e.g., encoding, filtering, and feature enhancement) to high-
level abstract representation (e.g., recognition, classification, and
localization)4. The biological sensory system adopts an efficient
method to handle sensing in the noisy analog domain. Signals pass
through skin receptors and afferent neurons for pre-processing and
finally reach to spinal cord for post-processing (Fig. 1a).

With regards to low-level sensory processing, it’s vital to encode
and transmit the proliferated data from the sensory nodes efficiently.
However, the conventional architecture suffers from inefficient power
consumption and notable latency. As shown in Fig. 1b, the detected
data from the sensors must initially undergo digitization through an
analog-to-digital (ADC) circuit before being temporarily stored in a
memory unit, awaiting processing by the computing unit. This process
introduces significant time delays and energy consumption. To
address this issue, novel computing primitives such as near-sensor
computing and in-sensor computing have been proposed and
demonstrated on emerging nanoelectronics devices5–7. In near-sensor
computing, processingunits or accelerators are locatedbeside sensors
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Fig. 1 | The sensory processing framework in different systems. a Biological
sensory system. Receptors and neurons convert physical stimuli into electrical
pulses which are transmitted to the cortex for high-level processing.
b Conventional sensory system. In digital processing way, the signals from sensors
are first digitalized through ADC and then put into separate memory units and
processing units. In the ANN way, a crossbar composed of sensors can perform
linear operations and realize classification. c Dynamic sensory system. The

proposed sensory system consists of an oscillatory network and a decision-making
module. When receiving a sensory mode s, the coupling dynamic will convert
discrete oscillator frequencies f into phase differences O at the same frequency
through coupling. Then the decision-making module outputs a classification
result r. d Hardware mapping of the dynamic sensory system. The circuit can
encode the sensory information into the phase pattern O after electrical coupling.
The post-processing of the decision-making module is in software (gray shadow).
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and perform specific computational tasks at sensor endpoints. As for
in-sensor computing, individual self-adaptive sensors or multiple
connected sensors can directly pre-process sensory information.
These innovative solutions effectively minimize redundant data
transfers between sensors and external circuits, optimizing raw fea-
tures in real-time and seamlessly executing vector-matrix multi-
plication for artificial neural networks.

New materials, devices, algorithms, and architectures need to be
further developed for the collaborative design of near-sensor and in-
sensor computing. In particular, the rich internal dynamics of emer-
ging volatile memristors can provide a compact and energy-efficient
solution to convert sensory information into periodic spiking activities
that resemble the encoding mechanism in the biological neural sys-
tem, which has been successfully demonstrated in the visual and
haptic sensory8–15. Nevertheless, the dynamics contained in these
periodic spiking activities, such as the potential to synchronize
through mutual interaction, are not fully exploited to match the
complexity of the sensory system. Memristive devices represent a
novel component that bridges intrinsic physical dynamics with intri-
cate high-order electronic responses16, such as oscillation, chaos, and
action potential17–20. These dynamic devices can interact through
electronic coupling, enabling spatial population computing to address
classification problems, control problems, and combinatorial optimi-
zation problems21–26. In these dynamic computing systems, time serves
as a distinct physical variable that inherently reveals the system’s
evolution law, characterized by inherent parallelism. The new para-
digm of memristive dynamic computing is poised to bring significant
advantages in area andpower efficiency, as eachdevice can represent a
set of differential equations with state variables rooted in physical
processes, thereby reducing the need for a large number of digital
circuit operations.

To implement memristive nonlinear oscillators in a dynamic
computing system, it’s vital to employ resistors/capacitors coupling to
explore additional computing resources in synchronous/asynchro-
nous dynamics, facilitating the construction of an oscillatory neural
network (ONN). Oscillatory neural network is the embodiment of
spatial complexity and can utilize synchronization dynamics to con-
vert information into oscillations’ phase, frequency, or waveform.
Compared with artificial neural network (ANN), which only uses one-
order nonlinear dynamics, ONN captures more dynamics and com-
plexity of the high-order nonlinear dynamic nodes due to its ability to
assimilate information in the continuous-time domain. There have
been several works applying coupled electric oscillators, deriving
dynamic behavior from charge oscillation, spin-torque dynamics, and
phase-transition dynamics to undertake recognition tasks, control
tasks, as well as solving optimization problems with ultra-low device
number and power cost20,23–25. However, existing works still face cer-
tain limitations. On the one hand, ONN hardware is not yet capable of
interacting with the physical environment and collecting sensory
information in real-time. On the other hand, output information from
theONN is encoded in the phase patterns, which can be challenging to
directly decipher for high-level processing. Thus, a unified framework
enabling efficient spatio-temporal pattern processing is yet to be
explored.

The proposed solution to the aforementioned challenges draws
inspiration from biology. The brain employs an efficient method to
handle sensing in the noisy analog domain, demonstrating the ability
to discriminate sensory input such as visual movement and sound
patterns at extremely fast speed. Taking the visual pathway as an
example, a subcortical pathway exists from the front-end retina to the
back-end superior colliculus (SC), accounting for the rapid recognition
of motion patterns27 (Fig. 1a). In contrast to the hierarchical feedfor-
ward approach of extracting features layer by layer28, the retinal net-
work in this shortcut adopts a structure combining two dynamic

networks29. Specifically, a recurrent network is indicated to retain the
memory trace of external visual inputs, mapping the spatio-temporal
structure of a motion pattern into a specific state of the network.
Subsequently, the state of the retina is read out to the second dynamic
network, allowing for spatial sampling and information integration29.
Here, the neurons compete with each other throughmutual inhibition
until thewinner emerges, referring to the categoryof the input sensory
pattern30.

In this article, we propose and implement a dynamic sensory
system based on coupled VO2 oscillators, which adopt near-sensor
computing. The comprehensive computing architecture is shown in
Fig. 1c, d and will be detailed in the following section. We initially
showcase the implementation and characteristics of the VO2 sensory
neuron and delve into the synchronization in the ONN realized by the
interaction between neurons. The system is composed of two dynamic
motifs: an oscillation neural network based on coupled VO2 oscillators
for low-level phase difference encoding in hardware, and a decision-
making network for high-level processing in software. Finally, we
provide experimental demonstrations of touch recognition and a
gesture recognition task using the proposed sensory system. This
marks the first instance of achieving sensory computing based on
coupled memristive oscillators, endowed with the capability to inter-
act with the environment. The VO2 oscillator exhibits high cycle-to-
cycle uniformity and it showcases the remarkable capability of reach-
ing oscillation frequencies of up to 2.6MHz. Three coupled oscillators
can encode eight kinds of synchronization modes and have a lower
EDP (energy-delay product) of 3.07 pJs. The synchronization
mechanism exhibits significant tolerance to device-to-device variation
through phase locking, showing the potential of the dynamic com-
puting system.

Results
Dynamic sensory oscillation system
The novel dynamic sensory system adopts the theory of synchro-
nized oscillation31,32. Memristive oscillators possess the remarkable
capability to unify sensing, storage, and computation by dynamically
adjusting their intrinsic frequencies in response to sensory signals.
These oscillators are further interconnected through weak coupling,
forming a synchronization pattern that enables the continuous-time
output of pre-processed signals. Within this framework, information
is encoded and conveyed through phase differences. As depicted in
Fig. 1c, the input sensory stimuli alter the sensing capacitance
and determine the intrinsic frequencies of the VO2 oscillators.
As a result, the specific sensory pattern is converted to a set of
natural frequencies (f1, f2,…, fn) that are involved in the dynamic
evolution of the network. The oscillatory neurons with the natural
frequencies (f1, f2,…, fn) interact with each other and evolve towards a
collective ground state which refers to the synchronization with
stationary phase pattern (O1(t), O2(t),…, On(t))

33 (Fig. 1c). Here, sn
serves as an abstract representation of the physical stimuli received
by neuron n in the ONN, while fn,On(t) denotes the natural frequency
and voltage output of neuron n in the ONN. Following, the encoded
and pre-processed information which is continuous in time from
ONN is transmitted to the following decision-making module for
further analysis and classification. The decision-making module
reads out the phase pattern via a linear weight layer and obtains
the classification result through information integration and mutual
inhibition.

The decision-making network we employed is a simplified mean-
field decision-making model34,35. In the decision-making network illu-
strated in Fig. 1c, there are n neurons, each representing one of the
classification decisions of the sensory pattern. Among the neurons,
mutual inhibition is introduced tomake themcompetewith eachother
and determine the sole winner as the final result. The model can be
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mathematically described by the following equations35:

xi tð Þ ¼ JEsi þ
XNdm

j≠i

JMsj þ Ii ð1Þ

ri =
β

γ
ln½1 + e

xi�θ
α � ð2Þ

τs
dsi
dt

= � si + γð1� siÞri ð3Þ

where xi and ri denotes the synaptic input and neuronal activity of the
ith neuron. si represents the synaptic. The Eq. (1) describes the neurons
in the decision-making module that receive synaptic current from
themselves feedback JEsi, other neuron JMsj and the input from the
former layer Zi. The Eq. (2) describes the neuron’s nonlinear activation
function with a threshold θ. The Eq. (3) describes the slow dynamics of
the synaptic current. Specifically, the synaptic input xi described by
Eq. 1 is composed of three parts, which are the self-excitation JEsi
(JE ≥0), total recurrent input from other neurons with JM ≤0 indicating
mutual inhibition and the feedforward input Ii from the ONN module.
The neuronal activity ri can be further calculated by xi using the
nonlinear activation function in Eq. 2 with parameters α, β, γ, and

threshold θ. The slow dynamics of the synaptic current originating
from the activity-dependent receptors is formulated in Eq. 3, which
plays a crucial role in the spatiotemporal informationprocessingof the
decision-making network. The time constant τs (≫ 1) in Eq. 3 controls
the time window for integrating input over time by the decision-
making neurons. The first network’s output is the voltage oscillation
signals, which is the ((O1(t), O2(t), …, On(t)) in Fig. 1c, d. First, the
voltage oscillation signals through linear combination. The impact of
the linear combination is to adjust the signal to an appropriate range.
The weight of the linear combination can be trained by Force
learning35. Then the weighted signals are the input to the decision-
making module as shown in Eq. 1. The expected output r of the
decision-making module is that one neuron fires with maximum
strength while the others fire less.

The specific hardware and software mapping of the dynamic
sensory system is shown in Fig. 1d. A VO2 threshold device is employed
to construct an oscillator circuit, where the frequency can respond to
changes in the sensing capacitor. Then, multiple VO2 oscillators with
sensing functions can be capacitively coupled. The oscillator will syn-
chronize to the same frequency under suitable conditions.Meanwhile,
the information of output voltage oscillation transitions from fre-
quency to phase difference after coupling. This design utilizes the
interaction of dynamic devices in space and encodes the sensory
information in the phase pattern after electrical coupling. The coupled
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oscillation voltage signals can then be transmitted to the decision-
making model for further processing.

Dynamics of VO2 sensory oscillator
The Mott material VO2 features a fast and high-uniformity insulation-
metal phase transition dynamic15, encompassing a temperature-
sensitive electronic transition and a structural transformation from a
low-temperature, low-symmetry monoclinic (M1) phase to a high-
temperature, high-symmetry tetragonal (R) phase36. This physical
phase transition dynamic is promising for constructing neuromorphic
applications. Compared with NbO2, VO2 has a smaller volumetric
enthalpy, indicating lower power consumption due to its relatively low
transition temperature (about 340K)37. The artificial neuron based on
VO2 has been demonstrated to generate multiple spiking modes,
showing the potential for computing at the edge of chaos38. Here, we
construct a voltage-driven artificial sensory neuron as a primary
computing cell with a monocrystalline VO2 memristor, a constant
resistance and a sensing capacitor, as illustrated in Fig. 2a. The core
function is to detect external environmental stimuli via capacitive
receptors and convert the information into electric spikes, as depicted
in Fig. 2a. The VO2 thin film is grown on c-Al2O3 substrates in an epi-
taxial manner by pulsed-laser deposition (PLD) technique. The VO2

memristive device adopts a planar configuration with the switching
layer positioned between the Au electrodes as shown in Fig. 2b. The
Scanning Electron Microscope (SEM) and Cross-sectional Scanning
Transmission Electron Microscope (STEM) images in (Fig. 2d and
Supplementary Fig. 1) confirm the structure of the fabricated device.

The VO2 memristor exhibits a volatile nonlinear dynamic, whose
internal state variable can be defined as the device’s temperature39.
When the VO2 device is applied with a quasi-static voltage sweep, the
corresponding current exhibits a hysteresis switching response
(Fig. 2c). Initially, the device stays in a semiconducting monoclinic
state, a high resistive state (HRS,Roff).When the voltage across exceeds
a threshold value, denoted as Vth, the metal-insulator transition (MIT)
takes place andVO2 turns to ametallic rutile phase, a low resistive state
(LRS, Ron). An abrupt increase in the current can be observed which
also exhibits a saturation in our case due to the compliance during
measurement. Given the orders of magnitude change in resistance
(from 20kΩ to 300Ω), the compliance current is applied to safeguard
the devices. The quasi-static voltage sweep without compliance is
shown in Supplementary Fig. 2. During the voltage retrace process,
when the voltage descends below the critical value formaintaining the
metallic state, denoted as Vhold, the VO2 layer undergoes a reverse
process and returns to its high resistive state which corresponds to the
sharp decrease in current. The VO2 device is a bidirectional symmetric
planar device, demonstrating a symmetrical response to positive and
negative voltage scans (as shown in Supplementary Fig. 3). Its con-
ductance rapidly decreases after removing the applied voltage (auto-
matically fromon-state to off-state). Therefore, it is a volatile non-polar
memristive device. The underlying physics in MIT of the VO2 device
has attracted wide interest yet40,41. The switching of VO2 is believed to
involve complex electronic and structural phase transitions42.

The monocrystalline VO2 memristor provides high cycle-to-cycle
uniformity (Supplementary Fig. 4). The deviation of the threshold
voltage is 0.00021 and the deviation of the hold voltage is 0.00013.
Thehigh cycle-to-cycle uniformity is crucial for the practical oscillation
demonstration because the oscillator must consistently output a
constant frequency. 40 VO2 devices are characterized to study their
device-to-device variation, which will affect different natural fre-
quencies of VO2 oscillators, as shown in Supplementary Fig. 5. The
threshold voltage under quasi-static voltage sweep varies from 3.55V
to 4.10 V and the hold voltage varies from 1.52 V to 1.96 V. Devices with
similar performance are more likely to establish out-of-phase syn-
chronization after capacitive coupling. Furthermore, the VO2 device’s
electrical response to pulse stimuli is important to dynamic oscillation.

Supplementary Fig. 6a shows the testing circuit diagramof thedevices’
switching time. We gradually increase the pulse voltage from the
threshold voltage and recode the time difference between voltage
input and current response. The testing result is shown in Supple-
mentary Fig. 6b–h. It can be observedwhen the voltage increases from
the threshold voltage of the device (4.5 V), the device will have a
transition fromoff-state to on-state. The switching timewill first have a
rapid reduction from 300ns to 120 ns when the pulse voltage is
around the Vth. The similar effects can also be observed in other
threshold devices, like Ag-based atomic-switching threshold devices
and B-Te-based Ovonic threshold devices43. When the applied voltage
is greater than 4.8 V, the switch speed saturates (around 115 ns). When
the voltage pulse is removed, the VO2 device will quickly switch back
from on-state to off-state. Voltage pulses with different voltage
amplitudes are applied on the VO2 device for 10μs and the time dif-
ference between voltage input and current response is recorded, as
shown in Supplementary Fig. 7b–h. It can be observed that the
switching time is settled around 90ns. The amplitude of the applied
voltage has less influence on the device’s retention process. We plot
the switching time of off-state to on-state and on-state to off-state in
Supplementary Fig. 8. The devices’ switching time and retention
properties limit the overall working frequency. As for the VO2 device in
this work, the maximum working frequency is around 2.6MHz.
Leveraging the pronounced nonlinear transition characteristics of the
VO2 device, vital behaviors of biological neurons can be emulated and
more nonlinear coupling behaviors can be constructed further.

The VO2 device is connected with resistance and sensing capaci-
tance to formanoscillation circuit, as shown in Fig. 2a.When subjected
to a constant voltage inputVdd, the VO2 device is expected to cyclically
transition between its HRS and LRS, generating an oscillating signal at
the output node. The dynamics of the VO2 oscillator circuit can be
described as the following ordinary differential equation:

Cs
dVm

dt
=
Vdd � Vm

RL
� Vm

RVO2

ð4Þ

Where Cs is the sensing capacitance connected in parallel to the VO2

device. Vm is the output voltage across the VO2 memristive device.
Specifically, the initial high resistance of the VO2 results in the accu-
mulation of charge in the capacitance until the device’s voltage arrives
Vth, allowing the transition towards the metal phase to take place.
Subsequently, due to the discharge of capacitors, when the devices’
voltage is lower than Vhold, the low resistance state can no longer
sustain sufficient voltage to hold themetal state, causing the device to
revert to its HRS. It should be pointed out that the constraint of the
series resistance is implied above to ensure an appropriate working
voltage range for the VO2 device. It is necessary to ensure that the
device’s voltage higher than Vth at its HRS and lower than Vhold at its
LRS. In the VO2 thinfilm, the switching voltage variationarises from the
generation and dissipation of Joule heating and can be effectively
minimized to maintain a low level42.

The output frequency dependence on circuit parameters is also
investigated through electrical measurements. As shown in Fig. 2e, f,
the frequency of the output spike is influenced by the value of parallel
capacitor. As we increase the capacitance, the oscillating frequency is
reduced accordingly ascribed to a longer charging time to reach the
threshold. Output waveforms corresponding to different parallel
capacitance values can be found in Fig. 2e. According to results in
Fig. 2g, h, the value of the series resistor is also negatively related to
output frequency which lies in the fact that a larger resistance dimin-
ishes the charging current. Outputs corresponding to different series
resistances are shown in Fig. 2g.

The artificial haptic neuron equipped with a capacitive sensor can
efficiently respond to external stimuli. Supplementary Fig. 9a shows the
characteristic of the commercial pressure sensor where the pressing
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action causes an increment in its capacitance. The haptic neuron can
thereby convert the pressure information into the oscillating fre-
quencies. The resultant output in time domain is shown in Supple-
mentary Fig. 9bwhile the single-sided amplitude spectrum throughFast
Fourier Transform (FFT) is depicted in Supplementary Fig. 9c, jointly
validating the function of our electric haptic neuron. In addition, we
construct another type of haptic neuron to sense the stretching level.
The capacitance of the adopted sensor is directly proportional to the
degree of stretch (Supplementary Fig. 10a), further accounting for the
decreasing of frequencies (Supplementary Fig. 10b).

The sensory neurons in our ONN exchange and integrate infor-
mation through electrical coupling, as illustrated in Fig. 2i; where the
output nodes of the pair of neurons are connected via a capacitor. The
processing results can be extracted from the phase pattern after syn-
chronization. Specifically, synchronization is a dynamic state emerging
from the ONN system, which can be described as the adjustment of
rhythms among different oscillatory neurons due to their weak
interactions44,45. Generally, the synchronized neurons will hold an
identical frequency with a stationary phase pattern. Theoretically,
there are some requirements for the synchronization, including (1) the
oscillating elements involved are nonlinear self-sustained oscillators,
which have stable limit cycles in phase space and therefore lead to
immunity to small perturbations; (2) the interaction between these
oscillatory neurons should be weak enough in case of breaking their
oscillating individuality. In capacitive coupling configuration, the two

oscillatory neuronswith identical natural frequencies tend to lock their
phase with each other to an out-of-phase pattern as observed in the
upper panel of Fig. 2j, where the phase difference is calculated by
measuringΔt between the peaks of the outputs from the two channels.
The reason of the out-of-phase result lies in the fact that the two
electrodes of the coupling capacitors always attract charges of oppo-
site polarity which results in a mutual inhibitory effect between their
oscillatory behavior. Moreover, the neurons modify their phase pat-
tern depending on the difference between their natural frequencies
and the strength of the mutual coupling. Specifically, as shown in the
lower panel of Fig. 2k, if we decrease the natural frequency of the
secondneuron (whoseoutput is denoted as output2 in the blue line) by
increasing its series resistance, the two neuronswill synchronizewith a
lower frequency and a smaller phase difference. Supplementary Fig. 4
shows the phase relationship of two oscillatory neurons coupled by
different parallel capacitors in synchronization.

Generally, Synchronization can only be achieved when the initial
frequency difference between the two oscillatory neurons is within a
certain range. A large capacitor canprovide stronger coupling strength
to synchronize neurons that are more inconsistently paced (Fig. 2k).
It’s worth noting that the synchronization between the artificial neu-
rons can also be realized with resistive coupling, which will lead to in-
phase coupling. It should be pointed out that the natural frequencies
(f1, f2,…, fn) are intrinsic properties of the oscillatory neurons that
modulate the final phase pattern after the interaction. However, they
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are invisible during the information processing and can be only mea-
sured when the neurons are individual without coupling in the net-
work. The extracted features are contained in the phase rather than
frequency of output (O1(t), O2(t),…, On(t)). Since the ONN generally
needs only a few periods to be synchronized and the frequencies are
not required to readout, the whole encoding and nonlinear feature
extracting process seems to happen simultaneously. The total pro-
cessing time of ONN equals the time to achieve synchronization,
showcasing its high time efficiency.

Experimental implementation of touch recognition
Environmental variables can interact within memristive devices and
realize high-order complex behaviors (Supplementary Note. 1). When

memristive devices are coupled, the dynamics can be further utilized
for coding and computation. Under different sensing capacitances, the
coupling system can represent various dynamic behaviors such as
synchronization, frequency, phase, and even waveform. This feature
demonstrates the dynamic high-order memristive circuit’s ability to
interact with the environment and manifest unique behaviors under
different environment stimuli.

We first demonstrate the function of our sensory recognition
system with a simple binary classification experiment where the sys-
tem needs to distinguishwhether a touch event occurs. A flow chart of
the coupled VO2 memristive oscillators (in experiment), the decision-
makingmodule (in software), and themathematical link between them
is shown in Fig. 3a. We can have the following ordinary differential
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equations to describe the coupled oscillators:

C1
dV 1

dt
¼ Vdd � V 1

RL
� V 1

RVO21
þ C12

dðV 2 � V 1Þ
dt

ð5Þ

C2
dV 2

dt
¼ Vdd � V 2

RL
� V2

RVO22
þ C12

dðV 1 � V 2Þ
dt

ð6Þ

These equations imply the synchronization under proper para-
meters. With appropriate coupling capacitances, the oscillators with
different intrinsic oscillation frequencies can oscillate with the same
frequency but in different phases. When we change the sensing
capacitors, the system’s phase different mode will also change, which
encodes the sensing information. Besides, a detailed software algo-
rithm flow about the decision-making module in post-processing is
shown in Supplementary Fig. 15.

In this demonstration, we set up two oscillatory neurons in the
ONN network to encode and process the haptic information. Specifi-
cally, one of the neurons is served as a reference neuron with a fixed
natural frequency, that is the parallel capacitor in this neuron is con-
figured as a fixed one. Whereas the other neuron is a sensory neuron
equipped with a pressure sensor whose characteristic is shown in
Supplementary Fig. 9. If no touch event happens, the capacitive sensor
maintains its original state with a relatively small capacitance. In this
condition, the sensory neuron exhibits a relatively high frequency
accounting for a large mismatch with the reference neuron. Conse-
quently, these two neurons cannot be synchronized to an identical
frequency through interaction and adjustment as shown in Fig. 3b. On
the contrary, when stress is applied to the pressure sensor, the com-
pressed distance between the electrodes leads to an increment in the
sensor capacitance. The oscillation of the sensory neuron is thereby
slowed down which allows the network to synchronize through the
evolution. The synchronization pattern corresponding to a typical trial
of touch event is depicted in Fig. 3c.

There are two competing neurons in the subsequent decision-
makingmodulewith each one representing one preference. These two
decision-making neurons are denoted as nsyn and nunsyn with response
rsyn and runsyn respectively. The decision-making network is trained to
distinguish the synchronization pattern and the disorder pattern.
When the neuron nsyn is activated, it means a synchronization pattern
is detected by the decision-making module which indicates a touch
event and vice versa. The detailed information about training can be
found in the method section. Figure 3e shows the evolution of the
decision-making network when the synchronized pattern in Fig. 3c is
received. At the beginning, the activities of both neurons are low and
intermingled with each other. As time goes on, owing to integration of
input information and competition enabled by mutual inhibition, the
neuron nsyn eventually wins which points to a touch event. The
opposite case is also depicted in Fig. 3d. The detailed processes and
formulas of this high-level processing can be found in Supplemen-
tary Fig. 15.

Experimental implementation of gesture recognition
When expanding the oscillators from two to three, Supplementary
Fig. 14 shows the synchronization dynamic between three oscillatory
neurons through capacitances under different oscillators natural fre-
quencies. We keep the two oscillators’ natural frequencies the same
and change the other oscillator’s natural frequency by changing the
series resistor R3. The R1 =R2 = 10.2 kΩ. When changing R3, the phase
differences present monotonic changes when R3 < 10.8 kΩ. Especially,
when R3 =R1 = R2 = 10.2 kΩ, the three coupled oscillation frequencies
exhibit a phase difference of π/3 and 2π/3. It shows the VO2 device-to-
device variation can be suppressed by the coupling capacitors.

We further demonstrate a gesture recognition task, the “rock,
paper, scissors”, using our bio-inspired recognition system. For this
demonstration, we use three sensory neurons in the ONN to receive
the stretching information from the thumb, forefinger, and middle
finger, as illustrated in Fig. 4a.

Then we can have the following ordinary differential equations:

Cs1
dVthu

dt
=
Vdd � Vthu

Rthu
� Vthu

RVO21
+Cp12

dðVfor � VthuÞ
dt

+Cp13
dðVmid � VthuÞ

dt

ð7Þ

Cs2

dVfor

dt
=
Vdd � Vfor

Rfor
� Vfor

RVO22
+Cp23

dðVthu � Vfor Þ
dt

+Cp12

dðVmid � Vfor Þ
dt

ð8Þ

Cs3
dVmid

dt
=
Vdd � Vmid

Rmid
� Vmid

RVO23
+Cp13

dðVthu � VmidÞ
dt

+Cp23

dðVfor � VmidÞ
dt

ð9Þ

These three neurons are denoted as nthu, nfor and nmid with their
output Vthu, Vfor and Vmid, accordingly. A visual representation of the
experiment setup, along with block diagrams of the components used
is shown in Supplementary Figs. 11, 12. The sensory neurons are pow-
ered by the (10 V, 300μs) long voltage pulse as Vdd, and the series
resistors are configured as Rthu = Rfor = Rmid = 8.2 kΩ. The coupling
capacitors of 100pF are adopted.Wepower up thememristive ONNas
soon as the gesture is ready. The random initialization will give a ran-
dom phase output. To ensure that the initial state doesn’t affect the
phase difference after coupling, we set a start-up circuit to make sure
the phase modes of each output node remain stable in multiple
experiments. The set-up circuit is a simple voltage divider circuit to
determine the initial stage of the coupled oscillators. The total circuit
diagram of ONN with a start-up circuit is shown in Supplementary
Fig. 16. We supplement the transient process at the beginning of
coupling in Supplementary Fig. 17 to show initial signals and their
synchronization. The transient process before the stable synchroni-
zation is around 20 μs.

The stretching sensor covers theouter surfaceof thefinger so that
the bending of the finger is encoded into the natural frequency of the
sensory neuron according to Supplementary Fig. 10. As the ONN
evolves towards the stationary state, the input gesture will bemapped
to the corresponding synchronization pattern. The phase patterns
responding to the typical trials of “paper”, “scissor” and “rock” are
shown in Fig. 4b, d, f, respectively. In these examples, the output phase
patterns are (ϕ1 = 0◦, ϕ2 = 236◦, ϕ3 = 105◦), (ϕ1 = 0◦, ϕ2 = 270◦, ϕ3 = 126◦)
and (ϕ1 = 0◦, ϕ2 = 40◦, ϕ3 = 165◦). It could also be found that the resul-
tant oscillatory pattern of “rock” has a lower synchronized frequency
of 45 kHz, which lies in the fact that the natural frequencies of all the
sensory neurons are low due to the obvious bending of these three
fingers. Phase patterns fromONN in case of more gesture input can be
found in Supplementary Figs. 19 and 20. Supplementary Table 1 lists
the phase mode from experimental ONN to three dynamic sensory
neurons. Formathematical verification of the coupling among sensory
nodes, the FFT is applied to analyze the frequency consistency, as
shown in Supplementary Fig. 18. The FFT result shows the consistency
of frequency in all eight cases that 3 coupled oscillators can encode.

The readoutmatrix of the decision-making network is also trained
by FORCE learning. Here, three competing neurons which are denoted
as npaper, nscissor and nrock are employed to represent the different
classification decisions. As shown in Fig. 4c, e, since the phase patterns
originated from the “paper” and “scissor” are close to each other, their
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corresponding neurons are initially intermingled together. After inte-
grating the evidence for several periods, the neuron that represents
the correct decision eventually prevails over the others and exceeds
the threshold. And the activities of the other neurons are suppressed
to a very low value throughmutual inhibition. The case of “rock” could
also be found in Fig. 4g. The successful demonstrations of touch
recognition and gesture recognition experimentally have proven the
great potential of our bio-inspired system for accomplishing the sen-
sory recognition task in general. The delay time before stable coupled
is about 20μs. The system has a low energy-delay-product of 3.07 pJs,
which is reduced by 1000 × compared to classic CMOS methods46.

Couple VO2 oscillators can have stronger computing superiority
compared to theothermethods includingnon-volatilememristors and
CMOS circuits15,46–49. A detailed comparison table with previous works
is shown in Supplementary Table 2. The volatile memristive devices
including VO2 and NbO2 suffer from the large device-to-device varia-
tion. Multiple VO2 devices exhibit certain device-to-device variations
even at the same size, which can be disadvantageous when used as
individual oscillators. However, the coupling oscillation strategy we
adopt enables the synchronization of two oscillators with distinct
intrinsic oscillation frequencies to a common frequency. Subse-
quently, we encode and classify them based on their phase patterns.

The alteration in sensing capacitance exerts a more pronounced
impact on the phase difference after the oscillators are coupled.
Consequently, this strategy serves to mitigate the impact of device-to-
device variation. Besides, due to thehigh threshold voltage and lowon-
state resistor, the VO2 oscillators have a high power, which can be
improved in the future. The delay time in coupled oscillation can be
defined as the time of the transient process from the initial state to the
stable coupling state, which is only 20 μs in this work (as shown in
Supplementary Fig. 3). Most importantly when expanding to larger
systems, n coupled VO2 oscillators can encode 2n distinguishable
modes while the other dynamic processing methods may require
exponential device consumption. In this work, we experimentally
demonstrate the three coupled VO2 oscillators, and the eight encoding
modes are shown in Fig. 5. Due to coupling characteristics, the output
voltage signals can form clear trajectories in phase space, which reflect
the classifiable modes as shown in Fig. 5a, c, e, g, i, k, m, o. The tra-
jectories and their projections on x-y, y-z, and x-z planes present the
dynamic of stable limit cycles, whose shapes reflect the phase differ-
ences of different oscillators. The eight kinds of limit cycles attach
great importance to dynamic computing based on memristors. It
shows the actual physicalmemristors with variations can be accurately
controlled in population dynamics. To prove that the eight feature
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Fig. 5 | The trajectories in the phase plane of three coupled VO2 oscillators in
eight coupledoscillationmodesand thedecision-making classification results.
a The experimental output voltage trajectory in the phase plane of case ‘000’. The
red, green and blue dotsmean the trajectory projection on x-y, x-z, y-z plane. b The
decision-making classification results in the software of case ‘000’. The different
colors represent the different responses to preferred cases. Besides, the

experimental trajectories in the phase plane of case ‘100’, ‘010’, ‘001’, ‘110’, ‘011’,
‘101’, and ‘111’ correspond to (c, e, g, i, k, m, o). The decision-making classification
results in the software of case ‘100’, ‘010’, ‘001’, ‘110’, ‘011’, ‘101’, and ‘111’ correspond
to (d, f, h, j, l, n, p). Three coupled VO2 dynamic devices can encode eight sensory
modes in phase space to form limit cycles, which can be classified by the decision-
making module.
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modes can be classified in the proposed dynamic systems, we expand
the scale of the decision-making module to 8 neurons, and each neu-
ron presents onemode. The software simulation is shown in Fig. 5b, d,
f, h, j, l, n, p. When voltage signals in onemode are linear weighted and
input into the module, the neuron corresponding to this combination
will fire with maximum and suppress the other neurons. The results
show the decision-making module can handle such dynamic classifi-
cation problems while other methods like recurrent neural networks
need hundreds of neurons in hidden layers.

Discussion
The brain is a highly complex nonlinear system. The artificial neural
network on hardware, which applies linear vector-matrix multiplication
and nonlinear activation function, suffers from high power consump-
tion and limited intelligence compared to the biological counterpart.
This defect occurs due to the oversimplification and abstraction of the
neural system, leading to the loss of many key dynamics in the brain.
Generally, the order of neurons and theway they interact determine the
complexity and dynamics of the system. Emerging dynamicmemristive
devices can capture neural behaviors and further reduce area and
power consumption. Thus, ONN used in this work replaces hierarchical
structure and a huge number of parameters with complex dynamics
brought by recurrent connections of oscillatory neurons. Although
sensory neurons in our system are designed to capture mechan-
osensory information, the system can be easily extended to other sen-
sory inputs or multi-sensory inputs by replacing the capacitive sensor
(or select the appropriate resistive sensor based on the input signal and
connect it in series with the device). It should be pointed out that the
recurrent network is required tomap different spatiotemporal patterns
into spatially separated neural states, can also be replaced by reservoir
computing. Recent research has also shown the potential of nonlinear
volatile memristors to implement reservoir computation in a compact
and efficient way48,50,51. With regard to the decision-makingmodule, this
part is currently realized in software. The key to building a hardware
decision-making network is to emulate the inhibition function with
electric devices which still needs to be explored.

Regarding nonlinear VO2 memristive oscillators, our primary
focus is on leveraging their coupled oscillation characteristics to
investigate the impact of expanding spatial complexity on computing
capacity. The dynamic process ofmetal-insulator transition of VO2 can
also be affected by other environment signals such as irradiation and
environment temperature. The transition can be driven by near-IR
excitation and has a faster transition speed of about 75 fs52,53. Besides,
this currently the transition temperature (67 °C) is close to room
temperature, which may cause variations of oscillation frequency at
different times. It can be optimized by increasing the phase transition
temperature through doping Ge4+ to change phase stability54,55. The
VO2 memristive device’s specific compositional, structural, and
mesoscale levers are supposed to be explored for tuning phase sta-
bilities, transformation pathways and nucleation mechanisms36. In the
current iteration of ourwork, the sensing devices are connected toVO2

devices using breadboards and cables, as depicted in Supplementary
Figs. 8, 9. There is potential benefit for integrating VO2 devices and
sensing devices on a single substrate. The pressure sensor array can be
made of MXene on flexible substrates56. MXene is a 2-dimensional
metal carbide/nitride exhibiting conductivity changes in response to
external pressure. Besides, VO2 devices can also have certain sensing
functions. For example, environment temperature will change the
threshold voltage of VO2 devices, affecting the intrinsic oscillation
frequency and further affecting the phase difference after coupling.
Thus, VO2 devices inherently possess the capability to undertake cer-
tain sensing functions, such as detecting changes in light, stress, and
temperature. Furthermore, the Mott device (VO2 and NbO2) can be
fabricated at relatively low temperatures (< 300 °C), making them
compatible with 3D integration techniques.

In summary, we propose and implement a bio-inspired sensory
recognition system combined an oscillatory neural network (ONN)
based on VO2 oscillatory neurons in experiments for pre-processing
and a decision-making network in simulation for post-processing. The
ONN integrates sensing, storage and computation and can control its
various dynamic behaviors by changing the intrinsic frequency of the
oscillator through sensing signals. The synchronization is generated
through weak coupling. The dynamic sensory system based on cou-
pling memristive oscillators is achieved for the first time, with the
ability to interact with the environment, demonstrating the potential
of nonlinear dynamic system computing. It is the first time to intro-
duce decision networks to process the continuous time signal output
by the memristor oscillators, which can use a biologically plausible
approach to identifying the information from high-order memristive
oscillations. We also apply Force learning as a better training method,
which ismore suitable for automatically processing classification tasks
under continuous spatiotemporal signals. Compared with traditional
hardware, the dynamic sensory system has a significant improvement
in power consumption evaluation according to the experimental sen-
sory recognition tasks. This work serves as a pioneering step toward
the development of a more efficient neuromorphic sensory system
based on nano-scale nonlinear dynamics.

Methods
Device fabrication
The 20nm VO2 films were grown on c-Al2O3 substrates in an epitaxial
manner by pulsed-laser deposition (PLD) technique using a 308 nm
XeCl excimer laser operated at an energy density of about 1 J/cm2 and a
repetition rate of 3Hz. The VO2 films were deposited at 530 °C in a
flowing oxygen atmosphere at the oxygen pressure of 2.0 Pa. Then,
the films were cooled down to room temperature at the speed of
20 °C/min. The deposition rate of VO2 thin films was calibrated by
X-ray Reflection (XRR). The electrodes, which are composed of Au
(40 nm) and Ti (5 nm) with a distance of 400nm, were patterned with
electron beam lithography (EBL) along with electron beam evapora-
tion and lift-off. More than two hundred devices were fabricated.

Electrical measurement
The electrical measurements, including the DC test of the VO2 mem-
ristor and the pulse test of the sensory neurons, are conducted using
an Agilent B1500A semiconductor parameter analyzer. The Agilent
B1500A is also employed to provide the long voltage pulse during the
experiments of touch recognition and gesture recognition. All the
oscillatory waveforms are captured by the RIGOL MSO8104 digital
storage oscilloscope.

Training procedure
A decision-making (DM) network is applied to classify temporal pat-
terns from coupled VO2 oscillations in simulation35. The neurons in this
network are self-excited and mutually inhibited, resulting in a winner-
take-all characteristic. The neurons accumulate evidence from inputs
over time and the one with a stronger input will eventually exhibit a
heightened response which corresponds to the inferred choice. The
number of neurons depends on the task scale. For synchronized/
unsynchronized classification, a similar network with only 2 input neu-
rons and 2 DM neurons was used. For phase pattern classification, the
network consisted of 8 input neurons corresponding to the 8 coupled
oscillators. These input neurons were fully connected to 8 DM neurons
which represent the 8 categories. The network parameters are listed in
Supplementary Table 3. The detailed post-processing flow with for-
mulas and explanations is shown in Supplementary Fig. 15. In the
inference process, the voltage oscillation signals from the coupled
oscillators first pass through the linear combination layer and then
input into the decision-making module. In the training process, we set
the training target output and compute the error function between the
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target and the actual output. Then the error function to adjust the
weight of the linear combination with an update matrix. For each input
pattern, a few periods of oscillation somewhere towards the end of the
measureddatawere takenas training samples. These sampleswere then
concatenated and repeated in the time dimension to form a complete
training input. As for the test inputs, data starting from random initial
points somewhere near the beginning were taken. This ensures that the
network uses mainly unseen data during testing. Using BrainPy, we
trained the fully connectedweights by applying FORCE learning57,58. The
goal was to provide the correct DM neuron with a larger linear combi-
nation of inputs as compared to the other DM neurons. This was done
by setting a positive constant as the target function to be received by
the correct DMneuron and a negative constant as the target function to
be received by the other DM neurons. In these tasks, the respective
networks correctly classified the input patterns.

Data availability
All data supporting this study and its findings are available within the
article, its Supplementary Information and associated files. All source
data for this study have been deposited in [https://www.scidb.cn/en/s/
ueEBre] or are available from the corresponding author upon
request. Source data are provided with this paper.

Code availability
The codes supporting the findings of this study are available from the
corresponding authors upon request.
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