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Patterns in the temporal complexity of
global chlorophyll concentration

Vitul Agarwal 1 , Jonathan Chávez-Casillas 2, Keisuke Inomura 1 &
Colleen B. Mouw 1

Decades of research have relied on satellite-based estimates of chlorophyll-a
concentration to identify oceanographic processes and plan in situ observa-
tional campaigns; however, the patterns of intrinsic temporal variation in
chlorophyll-a concentration have not been investigated on a global scale. Here
we develop a metric to quantify time series complexity (i.e., a measure of the
ups and downs of sequential observations) in chlorophyll-a concentration and
show that seemingly disparate regions (e.g., Atlantic vs Indian, equatorial vs
subtropical) in the global ocean can be inherently similar. These patterns can
be linked to the regularity of chlorophyll-a concentration change and the
likelihood of anomalous events within the satellite record. Despite distinct
spatial changes in decadal chlorophyll-a concentration, changes in time series
complexity have been relatively consistent. This work provides different
metrics for monitoring the global ocean and suggests that the complexity of
chlorophyll-a time series can be independent of its magnitude.

Satellites have been used to monitor global ocean color for decades,
and satellite-derived products have been critical in determining the
global trends of primary productivity1–3, coastal runoff4,5, sea ice
extent6,7, and harmful algal blooms8. Of particular relevance is chlor-
ophyll-a concentration ([chl-a]), the primary pigment used by phyto-
plankton to perform photosynthesis, which can be reliably estimated
from the reflectance of blue and green light from the oceans9. Chlor-
ophyll-a concentrationestimates are used for various goals: estimating
primary productivity3, developing ecological indicators10, monitoring
long-term trends11, or testing earth-system-models12,13. Despite the
necessity of using [chl-a] time series in global studies, it is unclearwhat
role, if any, the time series complexity of [chl-a] time series plays in
accounting for region-specific differences in global ocean color.

The roughness or complexity of a time series can strongly
indicate multiple phenomena: high stochasticity in a target pro-
cess, measurement error, long tails in the data, rapidly changing
system states, or the confluence of all these factors and more. As
phytoplankton populations display chaotic dynamics, non-linear
behavior, and intermittent instability14–16, measurements of the
complexity of [chl-a] time series might also capture large-scale
patterns that structure global phytoplankton communities. There

are many ways of estimating the natural complexity of a time
series, such as calculating the fractal or Hausdorff dimension17,
permutation entropy18, or Lyapunov exponents19,20. These are all
different measures of complexity for dynamic systems and can
often be related to one another. Although some of these calcu-
lations have been performed at select locations21, a global analysis
of [chl-a] time series complexity would provide a deeper under-
standing of the spatio-temporal characteristics of phytoplankton
blooms as observed by satellite radiometers.

We used approximately 25 years (1998-2022) of global [chl-a]
observations that were based on measurements made with the Sea-
viewing Wide Field of View Sensor (SeaWiFS), Moderate Resolution
Imaging Spectroradiometer on the Aqua satellite (MODIS), Medium
Resolution Imaging Spectrometer (MERIS), Visible and Infrared Ima-
ging/Radiometer Suite (VIIRS) and the Ocean and Land Color Instru-
ments (OLCI-A and OLCI-B) sensors. Chlorophyll concentration
estimates were from the Garver-Siegel-Maritorena Model merged data
product22,23 at 25 km resolution and daily temporal resolution, avail-
able from the Hermes GlobColour website (https://hermes.acri.fr/).
Using a merged product allowed us to increase the spatial and tem-
poral coverage of our analysis; however, we also tested our analysis on

Received: 2 August 2023

Accepted: 8 February 2024

Check for updates

1Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA. 2Department of Mathematics and Applied Mathematical Sciences,
University of Rhode Island, Kingston, RI, USA. e-mail: vitulagarwal@uri.edu

Nature Communications |         (2024) 15:1522 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-1523-9044
http://orcid.org/0000-0002-1523-9044
http://orcid.org/0000-0002-1523-9044
http://orcid.org/0000-0002-1523-9044
http://orcid.org/0000-0002-1523-9044
http://orcid.org/0000-0002-8494-7538
http://orcid.org/0000-0002-8494-7538
http://orcid.org/0000-0002-8494-7538
http://orcid.org/0000-0002-8494-7538
http://orcid.org/0000-0002-8494-7538
http://orcid.org/0000-0001-9232-7032
http://orcid.org/0000-0001-9232-7032
http://orcid.org/0000-0001-9232-7032
http://orcid.org/0000-0001-9232-7032
http://orcid.org/0000-0001-9232-7032
http://orcid.org/0000-0003-2516-1882
http://orcid.org/0000-0003-2516-1882
http://orcid.org/0000-0003-2516-1882
http://orcid.org/0000-0003-2516-1882
http://orcid.org/0000-0003-2516-1882
https://hermes.acri.fr/
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-45976-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-45976-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-45976-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-45976-8&domain=pdf
mailto:vitulagarwal@uri.edu


single missions (i.e., MODIS) and found only small differences on a
global scale (Figure S1). Previous studies have used this product to
understand phytoplankton bloom phenology based on change point
algorithms24,25, cycles in chlorophyll dynamics26, the climate-driven
components of [chl-a] variability27, and the contributions of citizen
science programs28.

Here, we show how two different complexity metrics can
indicate region-specific differences in several phenomena, such as
the regularity of daily changes in [chl-a] or the likelihood of
extreme values within a [chl-a] time series. Some of these dif-
ferences are likely driven by differential rates of satellite spatial
coverage, ocean color algorithm error, and naturally occurring
dynamics. On a decadal time scale, we observe changes in both
the mean magnitude of [chl-a] and the complexity properties of
the time series. This suggests that our understanding of the glo-
bal ocean may need to account for intrinsic variation within [chl-
a] time series, as well as how we perceive and estimate [chl-a]
from satellite radiometers.

Results and Discussion
An important component in global [chl-a] studies is the definition of a
phytoplankton bloom, often described as an anomalous or distinct
increase in the biomass of a particular species (or set of species).
Determining when a bloomoccurs is not trivial, with varying strategies
that can produce different results29,30. One example is defining the
bloom start date as the point where [chl-a] rises a certain percentage
above the median [chl-a]31–33. We defined an analogous term to what
economists call elasticity to analyze the sensitivity of [chl-a] time series
to thresholds, where the elasticity of a [chl-a] time series is a measure
of the responsivenessof thepercentage changebetween twovariables.
The variables measured were the number of times that there was an
increase in daily [chl-a] above a certain threshold and the threshold
itself (see Methods for further details). Higher elasticity describes a
rougher time series and a greater sensitivity to thresholds, likely due to
greater variability within day-to-day [chl-a] change (Fig. 1). As elasticity
does not heavily weigh the magnitude of [chl-a], but instead the
variability in the magnitude of [chl-a], it is not a direct measure of
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Fig. 1 | Global map of elasticity calculated from 25 years (1998-2022) of daily-
scale chlorophyll-a concentration time series. Darker colors (purple) indicate
greater elasticity for the corresponding 25x25km pixel, whereas lighter colors
(yellow) indicate lower elasticity. Some examples of time series with their elasticity

values are provided. Areas in white are pixels where greater than 80% of the time
series were missing observations or less than 400 days with consecutive mea-
surements. ‘Time index’ refers to the day of sampling starting from January 1st, 1998,
to January 1st, 2023.
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phytoplankton growth dynamics or productivity. It captures the reg-
ularity of change within a time series for each pixel, irrespective of the
mechanisms involved in driving those changes.

When viewed globally, the elasticity of [chl-a] time series varied
across broad ocean regions. The oligotrophic gyres, known for their
low chlorophyll concentration and primary production rates34,35, had
the highest elasticity values. In contrast, regions with high chlorophyll
concentration and prominent seasonal cycles, such as the Patagonian
Shelf, the Baltic Sea, the west coast of Central America, and the
southwest Pacific Ocean36–39, showed lower elasticity values. As elasti-
city is sensitive to the regularity of [chl-a] change, regions with strong,
periodic drivers of phytoplankton blooms (often manifested in sea-
sonal or annual patterns) would naturally have lower values of elasti-
city in comparison to regions where the periodicity of [chl-a] change is
irregular. Figure S2 highlights how elasticity can vary for three differ-
ent model time series. If all daily changes within a time series were
equal, its elasticity would equal to 0 (no sensitivity to thresholds).
When evaluated for the relative frequency of daily changes, some
regions were prominent in their dynamic behavior, with more days of
significant [chl-a] increase regardless of any chosen threshold (Figure
S3). Interestingly, the North Atlantic gyre had lower than average
elasticity values than both Pacific gyres, despite similar values of [chl-
a]. The difference is likely due to the stronger seasonal patterns in the
North Atlantic and the influence of the annual spring bloom40,41, which
would impart more regularity in the [chl-a] time series in the North
Atlantic. Our results suggest that the elasticity metric tracks the rela-
tive strength of climatic and seasonal forcing of [chl-a] across broad
ocean regions and might provide a quantitative measure of differ-
entiating between them. Global Earth-system models may benefit by
matching the relative strength of climatic drivers to the measured
elasticity of [chl-a] time series on a global scale. For observational
studies that rely on measurements of [chl-a], more dynamic behavior
of time series in different ocean regions might necessitate an increase
in the precision and number of samples taken to identify trends.

Another metric often used to compute the complexity of a time
series is the fractal dimension. When considering a time series, we
can think of it as the graph of function fromR!RwhereR refers to
the set of real numbers. As a graph, it then becomes a subset ofR2. It
is known that when the function is smooth (i.e., differentiable), its
fractal dimension is 1, butwhen this function is not differentiable, the
fractal dimension might be greater. This dimension cannot be larger
than 2 as the graph is an embedding of R2. The fractal dimension is
an indicator of how rough a curve is. It can also be understood as the
autocorrelation of the time series as the lag period tends to 0. A
higher fractal dimension implies higher instantaneous autocorrela-
tion of the time series. For example, it is known that the fractal
dimension of a Brownian motion, a non-differentiable continuous
function, is 1.5. In this sense, the fractal dimension gives us a way to
quantify how volatile a time series and how likely we are to observe
extreme values on it.

When we computed the fractal dimension of every [chl-a] pixel
time series, the values across the global ocean were remarkably con-
sistent (typically above 1.85), with some key differences in particular
regions (Fig. 2). The subtropicalNorth andSouthPacific, tropicalNorth
Atlantic, the Amazon plume region, and the Eastern coast of Mada-
gascar had lower-than-average fractal dimensions. Part of the reason
for this difference could be tied to the influence of physical ocean
dynamics: such as the South Equatorial current and freshwater dis-
charge from the Amazon River42,43, eddy formation from the Agulhas
current nearMadagascar44–46, theGulf Streamandhurricane formation
in the tropical North Atlantic47,48 and the influence of tropical
instability waves in the equatorial Pacific49. Another reason could be
the episodic nature of elevated [chl-a] in many of these regions, which
may lead to a greater number of outliers within the [chl-a] time series.
As the box-counting method has been shown to return lower fractal

dimension values in time series with sharp changes50, we first remove
most outliers from each time series (see Methods) before calculating
the fractal dimension. This was done to minimize the error in our
computations due to likely erroneous measurements. In this case, our
global map of fractal dimension reveals the likelihood of anomalous
spikes within each time series (long tails in the data), possibly due to
naturally occurring dynamics, but also, atmospheric correction and
ocean color algorithm error. Regions less prone to outliers have time
series that return higher fractal dimensions due to fewer anomalous
spikes.

We conducted several additional analyses to further test the
sensitivity of elasticity and fractal dimension to our methodological
choices. As the estimation of satellite chlorophyll using merged data
can often contain bias due to the differences among individual
sensors51–54, we calculated elasticity and fractal dimension for MODIS
data alone (2002-2022) and compared it against the merged dataset
for the entire time period. The results were largely similar on a global
scale (Figure S1), with some minor differences in the magnitude of
elasticity for the oligotrophic gyres. Similarly, when we tested for the
influence of time series resolution (daily, weekly, monthly, etc.) on the
metrics, our results showed that aggregated time series are typically
smoother (i.e., possess lower fractal dimension). The elasticity also
changes with coarser resolution for some regions and indicates geo-
graphically similar, but greater differences (Figure S4). To get an
estimate of deviation for each complexity metric, we re-calculated the
elasticity and fractal dimension for every time series based on random
selected windows of 4000 days each. The standard error based on 30
trials suggests that elasticity can vary up to ±0.20 in some regions such
as the oligotrophic ocean, whereas fractal dimensions only vary up to
±0.04. Figure S5 highlights the deviation of both complexity metrics
for the global dataset. Lastly, we also compared both complexity
metrics to some traditional measures of variability for each time series
(mean [chl-a], standard deviation, relative standard deviation, and
average seasonal amplitude). The calculated fractal dimension of each
time series showed a nonlinear positive relationship, whereas the
elasticity showed a nonlinear negative relationship with each metric
(Figures S6-7). When evaluated against each other on a similar scale,
elasticity and fractal dimension did not present any strong relation-
ships (Figures S8-9).

When calculated annually, both the elasticity and the average
fractal dimension of the global ocean had a significant shift in 2003
and a gradual return to 1998 levels thereafter (Fig. 3a–c), whereas the
mean [chl-a] showed a general decrease till 2019. Interestingly, a sec-
ond transition around 2019 shows a rise in mean [chl-a], a sharp
increase in fractal dimension and a drop in elasticity. The error was
larger prior to 2003 for every metric, likely due to fewer observations
and the sole data source being SeaWiFS. The satellite data record from
2003 onwards containedmerged observations and included data from
MODIS-Aqua and MERIS. As data collection by SeaWiFs stopped in
2010 and by MERIS in 2012, while data collection by VIIRS began in
2012, it is possible that the sharp changes around the years 2010-2012
can be attributed to changes in the temporal and spatial coverage of
the time series during this period. Similarly, although previous studies
have noted little to no inter-annual differences in [chl-a] over the 2003
transition26, changes inmean complexity over thisperiod are likely tied
to the increase in spatial coverage due to a greater number of sensors
in orbit. Even though we observed a decline in [chl-a] since 2003 in
agreement with the existing literature55,56, the true estimates of chan-
ges in [chl-a] likely depend on the methods used to determine trends
and the composition of the spatial dataset57,58.We only considered part
of the global ocean based on data availability (i.e., fewer high-latitude
regions). Consequently, themean [chl-a] only provides context for the
changes in elasticity and fractal dimension. Our results suggest a
decline in global [chl-a] and a concurrent change in the structure of
[chl-a] time series in the satellite record.
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These results have several implications. First, an increase in the
fractal dimension and a decrease in elasticity imply a lower frequency
of anomalous events in many regions and an increase in stronger,
repeatable cycles of [chl-a]. Part of this change can likely be attributed
to the greater number of satellite sensors in orbit (and merged in the
[chl-a] product) and a change in the magnitude of error-related out-
liers. Errors may decrease due to the greater availability of data and
possibility of quality control but may also increase over time as the
hardware of individual satellites age. Further improvements in satellite
capabilities may allow future studies to increase the precision of their
conclusions and enhance the predictability of [chl-a] time series by
quantifying more accurately the impact of stochasticity and the mea-
surement error59. While we did not evaluate the chlorophyll-a product
uncertainty in this study, future studies may consider accounting for
the difference between [chl-a] algorithms, different uncertainty cal-
culations, and their relationship to time series complexity60–62. One
possibility is that temporal complexity is driven by high variability
within certain regions of the visible spectrum; for example, slight day-
to-day differences in the green spectrummay propagate across [chl-a]
calculations and lead to greater roughness within the time series. This
variability could be caused by several factors – such as rapid differ-
ences in the taxonomic composition of phytoplanktonor the influence
of terrestrial discharge.

Second, when evaluated for differences across space, we also
found that changes in mean [chl-a] and both the complexity metrics
from 2003-2022 were inconsistent for different ocean regions
(Fig. 3d–f). For example, areas such as the Black Sea, parts of the
Western equatorial Pacific, and the subtropical Indian Ocean had an
overall increase in [chl-a] in 2022 compared to 2003. In contrast,
changes in the elasticity and fractal dimension were more spatially
consistent across the global ocean. These patterns indicate that both
metrics are insensitive to changes in [chl-a] magnitude and, thus,
independent of the processes that control [chl-a] magnitude in dif-
ferent regions.

Third, although there is a long history and multiple benefits to
categorizing marine ecological provinces based on environmental,
geophysical, and biogeochemical data sources63–66, measurements of
time series complexity offer a valuable addition to monitoring global
ocean change on a larger scale. Our results could form the basis of
further refinement in the definitions of marine ecological provinces.
Future studies may also consider how disparate regions in the global
ocean are similar in time series complexity andwhether the patterns of
observations by satellite radiometers are tied to specific environ-
mental or ecological drivers of [chl-a]. Examples of possible drivers
includemixed layer stability, eddy formation, temperature change and
plankton growth and grazing rates.
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daily-scale chlorophyll-a concentration time serieswith randomresampling of
anymissing observations. Blue and yellow indicate a higher fractal dimension for
the corresponding 25x25km pixel, whereas brown indicates lower fractal dimen-
sions. Most of the global ocean has relatively high fractal dimensions (global mean
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missing observations. ‘Time index’ refers to the day of sampling starting from
January 1st, 1998, to January 1st, 2023. Note: the color scale is not linear and has been
chosen to highlight spatial differences.
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Methods
We generated a 25-year daily time series (1998-2022) of [chl-a] by
extracting a merged data product at 25 km resolution from https://
hermes.acri.fr/. The merged data product used the Garver-Siegel-
Maritorena Model22,23, which combined data from the Sea-viewing
Wide Field of View Sensor (SeaWiFS), Moderate Resolution Imaging
Spectroradiometer on the Aqua satellite (MODIS), Medium Resolution
Imaging Spectrometer (MERIS), Visible and Infrared Imaging/Radio-
meter Suite (VIIRS) and theOceanand LandColor Instruments (OLCI-A
and OLCI-B) sensors.

Every time series on a daily scale contains some gaps due to
insufficient satellite coverage and quality flags that were removed
(FigureS10). Toproceedwith the analysis and remove anyblankpixels,
we instituted a cut-off of 20% to filter through the entire global time
series dataset. Only the time series with greater than 20% of days

sampled over 25 years were considered in further analysis. This
ensured a minimum of ~1800 days had available [chl-a] estimates for
every time series. These thresholds were chosen to strike a balance
between data availability and spatial coverage. In our analysis, we
wanted tomaximize global spatial coverage without compromising on
our ability to accurately estimate complexity due to sampling gaps.

We used a multi-step process to calculate the elasticity of every
pixel time series. First, we created a 1-day-lagged time series and sub-
tracted it from the original time series, giving us estimates of daily [chl-
a] change. Anymissing samples in the original time series were carried
forward to the time series of daily change. Only the time series that had
at least 400 samples of daily [chl-a] change proceeded to the next step
in the calculation. Next, we created two uniform distributions of
thresholds (τ1andτ2; 1000 values each) that ranged from 1% to 50% of
the median of the individual [chl-a] time series. For every time series,
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we then calculated the number of days where daily [chl-a] change
exceeded the threshold (X1 and X2). This calculation occurred inde-
pendently for both sets of thresholds. Third, we calculated the relative
difference in the threshold (ε) used to find X1 and X2 according to Eq. 1,
and the relative difference in daily change (N) between X1 and X2
according to Eq. 2.

ε=
τ2
τ1

� 1 ð1Þ

N =
X2

X 1
� 1 ð2Þ

Lastly, a linear model was created to find the slope between
logeε and logeN according to Eq. 3. The absolute value of the slope (β1)
of this linear model was termed as the elasticity of the time series (as
there are no non-negative values). The greater the value of β1, the
stronger the negative relationship between logeε and loge N.

logeN = � β1logeε+β2 ð3Þ

It is known from the classical theory of linear models67, that the
slope coefficient of a linear regression has the interpretation of being
the average amount by which the response changes when the pre-
dictor changes by a unit. However, when considering a regression like
the one in Eq. 3, where both predictor and response variable are
measured in logarithmic scale, the coefficient of the predictor can be
computed as

∂logeN
∂logeε

=
∂N
N

� �

∂ε
ε

� � ð4Þ

which corresponds to what the economists denote as elasticity. Some
examples ofmodel time series and their respective elasticity values can
be found in Figure S2 in the Supplementary material. As elasticity is
based on relative change and is not sensitive to the magnitude of
specific points, we did not remove any outliers fromany time series for
this part of the analysis. We also did not attempt to measure statistical
significance, nor remove any pixels based on significance thresholds.
Future studies may consider detailed statistical analyses to quantify
the false discovery rate, the chosen number of threshold combina-
tions, or the applicability of linear assumptions in the estimation of
elasticity.

For the second part of the analysis, we used the R package
fractaldim68 to calculate the fractal dimension of every [chl-a] time
series. First, we cleaned every time series by removing outliers that
exceeded 3 standard deviations from the mean [chl-a] value. This was
done to remove any aberrant spikes of [chl-a] thatwere likely incorrect
and were missed in quality control. On average, there were about
0.004%of all pixel time series thatwere removed as outliers (~1–2 days
every year across all locations). Given the large number of sampling
gaps in some cases, we also performed bootstrapping for every pixel
time series, which is a resampling technique. To be precise, the gaps in
each time series were filled in by randomly selecting values (with
replacement) from within the measurements of the same time series.
This method of resampling was chosen to ensure we had a complete
time series for every pixel without adding bias. We then calculated the
fractal dimension of the time series using the box-counting method.
The number of missing values and the range of [chl-a] (max - min) for
every pixel time series did not show any relationship with the calcu-
lated fractal dimension (Figure S11). Examples ofmodel time series and
their calculated fractal dimension can be found in Figure S12 in the
Supplementary material.

For calculating the yearly elasticity and fractal dimension, the
process was similar to the one described above, except the time series

lengthwas limited to the sampling points in each year from 1998-2022.
To ensure enough data, we only calculated the fractal dimension and
the mean [chl-a] of the time series (before random resampling) if at
least 100 days were sampled for that year. Similarly, we only calculated
the elasticity if there were at least 100 consecutive samples for that
year. The results were reported in Fig. 3 as numerical averages for
every pixel with error bars representing the 95% confidence intervals
ð1:96× S:E:Þ. Table T1 in the supplementary material reports the num-
ber of samples used to calculate the annual [chl-a] mean, fractal
dimension, and elasticity. Percent change for either metric (repre-
sented as ρ) was calculated according to Eq. 5:

% change=
ρ2022 � ρ2003

ρ2003
× 100 ð5Þ

All the analyses and plotting were conducted in R69 using the R
packages “raster”70, “maps”71, “ggplot2”72, “cowplot”73, “fractaldim”68,
“MASS”74, “viridis”75 and “ncdf4”76.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Remote sensing data are available from https://hermes.acri.fr/. Data
can be downloaded for specific locations and time periods under
“GlobColour data search”. Sample datasets (processed) to reproduce
part of the analysis can be found at https://doi.org/10.5281/zenodo.
1049836277. Source data are provided with this paper.

Code availability
The code required for the analysis is available at https://github.
com/vitul-agarwal-1/chl-complexity (https://doi.org/10.5281/zenodo.
10498357). All the analyses and plotting were conducted in R69 using
the R packages raster70, maps71, ggplot272, cowplot73, fractaldim68,
MASS74, viridis75 and ncdf476.
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