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scCircle-seq unveils the diversity and
complexity of extrachromosomal circular
DNAs in single cells

Jinxin Phaedo Chen 1,2 , Constantin Diekmann 1,2, Honggui Wu 3,4,
Chong Chen 5, Giulia Della Chiara 6, Enrico Berrino 7,8,
Konstantinos L. Georgiadis2,9, Britta A. M. Bouwman1,2, Mohit Virdi6,
Luuk Harbers 1,2, Sara Erika Bellomo7, Caterina Marchiò7,8,
Magda Bienko 1,2,6 & Nicola Crosetto 1,2,6

Extrachromosomal circular DNAs (eccDNAs) have emerged as important intra-
cellular mobile genetic elements that affect gene copy number and exert in
trans regulatory roles within the cell nucleus. Here, we describe scCircle-seq, a
method for profiling eccDNAs and unraveling their diversity and complexity in
single cells. We implement and validate scCircle-seq in normal and cancer cell
lines, demonstrating that most eccDNAs vary largely between cells and are
stochastically inherited during cell division, although their genomic landscape
is cell type-specific and can be used to accurately cluster cells of the same
origin. eccDNAs are preferentially produced from chromatin regions enriched
in H3K9me3 and H3K27me3 histonemarks and are induced during replication
stress conditions. Concomitant sequencing of eccDNAs and RNA from the
same cell uncovers the absence of correlation between eccDNA copy number
and gene expression levels, except for a few oncogenes, including MYC, con-
tained within a large eccDNA in colorectal cancer cells. Lastly, we apply
scCircle-seq to one prostate cancer and two breast cancer specimens, reveal-
ing cancer-specific eccDNA landscapes and a higher propensity of eccDNAs to
form in amplified genomic regions. scCircle-seq is a scalable tool that can be
used to dissect the complexity of eccDNAs across different cell and tissue
types, and further expands the potential of eccDNAs for cancer diagnostics.

Extrachromosomal circular DNAs (eccDNAs) were originally identified
in the 60’s as so-called double-minute chromosomes visible in meta-
phase spreads prepared from childhood leukemia samples1, and the
circular nature of DNA in double-minute chromosomes was subse-
quently revealed2–4. Since then, eccDNAs have been detected in

multiple species5–8 and implicated in various processes, including
human tumorigenesis9–12. Currently, three main approaches are avail-
able to study eccDNAs: (1) DNA fluorescence in situ hybridization
(FISH), (2) bulk whole genome sequencing (WGS), and (3) Circle-Seq13.
DNA FISH has been used to visualize eccDNAs carrying highly
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expressed oncogenes, such as MYC and ERBB2, which are present in
abundant copy numbers in different cancer cell lines12. On the other
hand, bulk WGS combined with algorithms that try to distinguish
between linear genomic DNA (gDNA) and circular DNA has been used
to detect eccDNAs in different cancer types14. However, this bulk
approach can only detect abundant eccDNAs originating from rela-
tively large genomic regions typically characterized by high copy
number and structural complexity9, 11, missing shorter lowly abundant
eccDNAs. Circle-Seq13 identifies eccDNAs by first eliminating linear
gDNA via enzymatic digestion, and then enriching circular DNAs
through rolling circle amplification (RCA)15 followed by sequencing.
AlthoughCircle-Seqhasenabled the identification of a broadspectrum
of eccDNAs—including so-called microDNAs and large circular DNAs
encompassing well-known oncogenes such as MYC (also known as
ecDNAs12)—this method requires millions of cells as input and there-
fore averages the diversity and complexity of eccDNAs present in a
sample. Hence, developing versatile and scalable methods for
detecting eccDNAs in single cells or nuclei extracted from tissue
biopsies is needed to uncover the full biological complexity of eccD-
NAs and illuminate their heterogeneity in patient-derived tumor sam-
ples. This is especially relevant considering the ability of single-cell
sequencing technologies to unveil fundamental aspects of intratumor
heterogeneity that cannot be captured by bulk assays, as well as the
transformative impact that single-cell technologies are exerting on
both basic and translational cancer research16.

With this goal in mind, here we develop and validate a single-cell
adaptation of Circle-Seq – which we named scCircle-seq – that is
applicable to both unfixed and fixed cells or cell nuclei, including
nuclei extracted from tumor biopsies (Fig. 1a). We first apply scCircle-
seq to various cell lines, showing thatmost eccDNAs arehighly variable
between cells of the same type, although they tend to preferentially
arise from heterochromatic regions enriched in histone 3 methylated
on lysine 9 (H3K9me3). Integration of scCircle-seq with the scRNA-seq
method Smart-Seq217 reveals that the copy number of eccDNAs and
the expression of the genes contained within them are typically
uncorrelated, except for specific oncogenes, such as MYC, that are
enclosedwithin large eccDNAs.We find that the repertoire of eccDNAs
of a cell can be used to accurately distinguish between different cell
types and that eccDNAs are highly dynamic under replication stress
conditions and during cell division. Lastly, we apply scCircle-seq to
patient-derived tumor samples representing three different cancer
types (luminal B-like and triple-negative breast adenocarcinoma and
prostate adenocarcinoma), uncovering tumor-specific eccDNA land-
scapes and subclonal populations harboring distinct eccDNA genomic
patterns. scCircle-seq is an easily scalable, straightforward and versa-
tile method that could potentially be harnessed to unravel the biolo-
gical complexity and heterogeneity of eccDNAs in cancer.

Results
scCircle-seq implementation and technical validation
To develop scCircle-seq, we built on the Circle-Seq protocol13, 18 by
introducing an additional DNA nick repair step to increase the
eccDNA detection efficiency, and designed a versatile workflow
applicable to both live and fixed cells or nuclei sorted in multi-well
plates or single tubes (Fig. 1a and Methods). To analyze scCircle-seq
data, we adapted a bioinformatics pipeline previously developed
for analyzing bulk Circle-Seq data11. Briefly, the pipeline first sear-
ches for genomic regions with high sequencing coverage repre-
senting putative circle-producing regions (CPRs), and then
identifies so-called chimeric junctions inside each CPR by searching
over-represented pairs of discordant and split reads (chimeric
reads) mapping inside the CPRs (Fig. 1b, Supplementary Fig. 1a, and
Methods). A summary of all scCircle-seq experiments is available in
Supplementary Data 1. We first tested the specificity of scCircle-seq
by manually mixing linear gDNA with (circular) plasmid DNA at

different ratios, which yielded a strong enrichment of reads derived
from plasmid DNA and of chimeric junctions joining the extremities
of the linear plasmid sequence, as expected (Supplementary Fig. 1b,
c). Next, we applied scCircle-seq to five different cell lines (24–49
cells per cell line, 156 cells in total), including four cancer-derived
cell lines (HeLa, K562, Colo320DM, and PC3) and one immortalized
normal cell line (293T). The number of CPRs identified and the
corresponding genome coverage varied between individual cells as
well as between cell lines (1.5–8% of the genome depending on the
cell line), in agreement with published Circle-Seq data13 (Fig. 1c, d).
Of note, the average length of CPRs was 20 kilobases (kb), with K562
and 293T cells displaying, on average, larger regions (Fig. 1e). The
fraction of aligned reads labeled as circular DNA reads was con-
sistently high (70–80%) and usingmild lysing conditions or adding a
DNA nick repair step significantly increased the number of CPRs
detected and the corresponding genome coverage, compared to
the conditions used in the bulk Circle-Seq protocol (Supplementary
Fig. 1d–h). As a control, we tested a different amplification method
(multiple annealing and looping based amplification cycles or
MALBAC19), which yielded a higher genome coverage but resulted in
significantly lower eccDNA enrichment compared to RCA (Supple-
mentary Fig. 1i, j), likely due to amplification of residual linear gDNA
in MALBAC. Importantly, the number of chimeric junctions derived
from (circular) mitochondrial DNA was comparable between RCA
and MALBAC (Supplementary Fig. 1k), indicating that the RCA step
in scCircle-seq is not a major source of chimeric read artefacts.
However, we cannot completely rule out that some of the chimeric
junctions identified by scCircle-seq are false-positive events arising
during RCA.

To validate scCircle-seq, we merged single-cell circular DNA pro-
files from49Colo320DMhuman colon adenocarcinoma cells (pseudo-
bulk sample) and compared them to the profile obtained by per-
forming Circle-Seq on ~106 cells of the same type (Methods). In both
cases, the CPRs were enriched in chimeric reads (Supplementary
Fig. 2a, b), which are considered as circle-supporting reads in eccDNA
detection algorithms11, 14, 20. Typically, the CPRs identified in the
pseudo-bulk scCircle-seq sample overlapped with those identified by
Circle-Seq, although sometimes the patterns differed (Fig. 1f and
Supplementary Fig. 2c, d), possibly because of the relatively low
number of cells profiled by scCircle-seq (n = 49). The borders, cover-
age, and number of chimeric reads of the CPRs identified by scCircle-
seq varied considerably between individual cells (Fig. 1f and Supple-
mentary Fig. 2c, d), indicating that the same larger genomic region can
give rise to different eccDNAs in different cells. Visual inspection of
chimeric read patterns revealed two main types of CPRs: one is char-
acterized by relatively few chimeric reads mainly connecting the
extremities of the region (which we named simple CPRs), while the
other contains multiple chimeric reads aligned all along the region
(which we named complex CPRs) (Fig. 1g). The latter constitutes the
majority (58.3%) of all the CPRs identified in Colo320DM cells and
corresponds to regions that give rise to many eccDNAs of high struc-
tural complexity. Of note, the number of chimeric junctions increased
with the normalized eccDNA copy number (Supplementary Fig. 2e),
indicating that genomic regions from which many eccDNAs are pro-
duced tend to be associated with a higher complexity of the circles
formed, in line with previous findings21.

Genomic landscape of eccDNAs in single cells
Next, we sought to investigate the genomic distribution of the eccD-
NAs detected by scCircle-seq. To this end, we first calculated the
autocorrelation of the CPR coverage as a function of genomic distance
to determine whether a pattern of eccDNAs exists or whether they
randomly formalong the genome (Fig. 2a). The autocorrelation rapidly
dropped in the caseof scCircle-seqdata, while the decaywasmuch less
pronounced for bulk Circle-Seq (Fig. 2b, c). This suggests that, while
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eccDNAs are extremely variable at the single-cell level, more defined
patterns might be detectable at the population level. To test this
possibility, we classified the eccDNAs identified by scCircle-seq in four
groups based on (i) the frequency of the correspondingCPRs across all
the single cells from the same cell line; and (ii) a so-called uniformity
score, which we introduced to measure the overlap of each CPR
between individual cells and the corresponding pseudo-bulk sample
(Fig. 2d and Methods). In all five cell lines analyzed, the vast majority
(88–99%) of eccDNAs detected by scCircle-seq were classified as low
frequency low uniformity (LFLU) (Fig. 2e), which correspond to the
microDNAspreviously identifiedbyCircle-Seq8.Wealsodetectedhigh-
frequency high uniformity (HFHU) eccDNAs corresponding to the
large, oncogene-containing ecDNAs previously identified by Circle-

Seq9,11 (Fig. 2e). HFHU eccDNAs were mainly detected in the
Colo320DM cell line (8.3% of the CPRs) and, to a lesser extent, in K562
(2.5%) and PC3 (0.4%) cells, in agreement with previous observations
based on DNA FISH9, 12 (Fig. 2e). High frequency low uniformity (HFLU)
eccDNAs were mainly found in Colo320DM (4% of the CPRs) and 293T
(3.5%) cells, whereas we detected only a few low frequency low uni-
formity (LFHU) eccDNAs (Fig. 2e). The coverage and chimeric read
patterns of the corresponding CPRs varied considerably between
individual cells, even in the case of HFHU eccDNAs (Supplementary
Fig. 3a), further highlighting their heterogeneous nature. However, for
the two cell lines (Colo320DM and PC3) for which we sequenced suf-
ficient HFHU and LFLU eccDNAs for robust statistics, we found that
HFHU CPRs were consistently longer than LFLU CPRs (Supplementary
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Fig. 1 | scCircle-seq implementation and validation. a scCircle-seq workflow.
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supporting reads for the indicated CPRs. Source data are provided as a Source
Data file.

Article https://doi.org/10.1038/s41467-024-45972-y

Nature Communications |         (2024) 15:1768 3



Fig. 3b, c). These results indicate that, although eccDNAs are highly
heterogeneous in nature, scCircle-seq is able to identify different
eccDNA types.

To validate some of the HFHU eccDNAs identified by scCircle-seq
with an orthogonal approach, we leveraged our previously described
iFISH pipeline22 to design and produce DNA FISH probes targeting 10
HFHU CPRs identified by scCircle-seq in Colo320DM cells and 3 HFHU
CPRs identified in PC3 cells (Supplementary Fig. 4a, Supplementary

Data 2, andMethods). Inmetaphase spreads, wedetectedmany signals
clearly outside of chromosomes (Supplementary Fig. 4b–f), demon-
strating the extrachromosomal nature of the eccDNAs detected by
scCircle-seq. For some probes (e.g., probes 7–10 in Colo320DM cells),
we detected a large number of extrachromosomal signals per cell,
whereas for other probes (probes 1–3 in PC3 cells and probes 1–6 in
Colo320DM cells) the number of extrachromosomal signals was sub-
stantially lower (Supplementary Fig. 4b–f). In the case of Colo320DM
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seq peaks. h Probability density distribution of the frequency of CPRs overlapping
with enhancers versus all other CPRs in Colo320DM cells. n, total number of CPRs.
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correlation is relatively strong (PCC >0.6). n, number of genes. Source data are
provided as a Source Data file.
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cells, we also detected signals inside metaphase chromosomes (Sup-
plementary Fig. 4d, e), whichmight reflect the integration of eccDNAs
into genomic DNA, as previously reported for this cell line23.

To further explore the genomic distribution of the eccDNAs
detected by scCircle-seq, we intersected the identified CPRs with var-
ious genome annotations. We found a sharp depletion of CPRs
immediately upstream of the transcription start site (TSS) of protein-
coding genes, whereas they were enriched along gene bodies (Fig. 2f).
Re-analysis of previously published datasets obtained from different
cell types13 revealed a similar trend of eccDNA depletion near TSSs
(Supplementary Fig. 5), corroborating our findings by scCircle-seq.
The observed lower density of CPRs around TSSs might be a con-
sequence of the lower DNA bendability previously measured in these
nucleosome-depleted regions24. To test this hypothesis, we examined
whether the local DNA GC-content—which has been associated with
DNA bendability25—is correlated with the distribution of CPRs along
the genome. In all cell lines analyzed except for 293T, the GC-content
was significantly lower within the CPRs compared to the rest of the
genome, although the difference was minor (Supplementary
Fig. 6a–e). This suggests that while DNA bendability might predispose
a region to form eccDNAs, this is unlikely a major driver of eccDNA
formation. We also did not find a strong correlation between the
number of transposon elements in a given CPR and the number of
eccDNAs produced from the same region (Supplementary Fig. 6f),
contrary to prior observations in normal cells13, 26. This could be due to
the different mechanisms of eccDNA formation in cancer versus nor-
mal cells, as recently proposed27, 28. Next, we intersected the CPRs
identified by scCircle-seq with chromatin immunoprecipitation and
sequencing (ChIP-seq) datasets for various histone modifications
available in the Encyclopedia of DNA Elements (ENCODE) (Methods).
In all the cell lines analyzed, CPRs were enriched in histone 3 tri-
methylated on lysine 9 (H3K9me3) marking constitutive hetero-
chromatin and, to a lesser extent, in histone H3K27me3 marking
facultative heterochromatin (Fig. 2g and Supplementary Fig. 6g),
indicating that eccDNA formation occurs more frequently in hetero-
chromatic regions.

It has been shown that eccDNAs are often associated with
enhancer hijacking events in cancer cells29, 30. We therefore examined
the relationship between the CPRs identified by scCircle-seq and
enhancer regions listed in the EnhancerAtlas31 (Methods). CPRs over-
lapping enhancer regions were significantly more frequent
(P < 2.2× 10–16, Wilcoxon test, two-sided) than CPRs not overlapping
enhancers (Fig. 2h). In Colo320DM cells, CPRs overlapping with
enhancers were enriched in sequence motifs recognized by tran-
scription factors previously implicated in colorectal cancer, including
MEIS232 and ZNF38433 (Supplementary Fig. 6h), further corroborating
the association between eccDNAs and enhancer hijacking.

Previous application of Circle-Seq to profile eccDNAs in
Colo320DM cells has revealed the existence of a giant heterotypic
ecDNA molecule driving cooperative MYC over-expression, which
contains multiple enhancers from different chromosomes clustered
with a region on chromosome (chr) 8 encompassing the MYC onco-
gene (chr8: 126,424,717–127,997,899)34. To test whether scCircle-seq is
able to detect the same ecDNA, we computed the co-occurrence
between each of the CPRs identified by scCircle-seq and the MYC-
containing region, across all the 49 Colo320DM cells profiled by
scCircle-seq.We identified fourCPRs giving rise toHFHUeccDNAs that
frequently co-occurred with the MYC region (Pearson’s correlation
coefficient or PCC>0.5), including one enhancer-containing CPR on
chr6 (Supplementary Fig. 6i, j). Notably, heterotypic eccDNAs con-
taining both this enhancer sequence and theMYC region on chr8 were
detected by DNA FISH in Colo320DM cells (Supplementary Fig. 4e),
confirming the existence of the large MYC-containing ecDNA pre-
viously detected by Circle-Seq and further highlighting the sensitivity
of scCircle-seq. We also found three other enhancer-containing CPRs

that frequently co-occurred with the MYC region in the same
Colo320DM cells profiled by scCircle-seq (Supplementary Fig. 6i, j),
suggesting that the ecDNAs thatoriginate from these regionsmight act
as enhancers driving MYC overexpression cooperatively. Altogether,
these results confirm the previously reported association between
eccDNAs and enhancers implicated in oncogene activation and
tumorigenesis, further validating scCircle-seq.

Joint profiling of eccDNAs and mRNAs in the same cell
Next, we examined the relationship between the copy number of the
eccDNAs detected by scCircle-seq and the expression of the genes
containedwithin them. To this end, we combined scCircle-seqwith the
full-length scRNA-seq method Smart-seq217, by first separating the cell
nucleus from the cytoplasmand then using the former for scCircle-seq
and the latter for Smart-seq2 (Methods). We applied this multi-modal
approach to three cell lines (Colo320DM, HeLa, and PC3), generating
data comparable inboth quality and yield (onaverage, 4,000CPRs and
5,000 expressed genes detected per cell) to those typically obtained
when performing the same assays alone (Supplementary Fig. 7a–d).
The correlation between gene expression levels and eccDNA copy
number was typically low (PCC<0.6) for most genes contained within
CPRs (7,256 out of 7,284 genes, 99%), even in the case of highly
expressed genes (Fig. 2i). Among genes inside CPRs that give rise to
HFHU eccDNAs, the PCC was higher than 0.6 only for CDX2, LRAT2,
MYC, and PVT1, and only in Colo320DM cells (Fig. 2i and Supplemen-
tary Fig. 7e–h). These genes are contained within the large ecDNA
encompassing the MYC locus that was previously detected by Circle-
Seq in Colo320DMcells34 and confirmed by both scCircle-seq andDNA
FISH (see previous section). These results are in line with recent find-
ings based on a novel method (scEC&T-seq) for parallel sequencing of
ecDNAs and mRNAs in single cells, according to which the copy
number of large ecDNAs containing known oncogenes is positively
correlated with the expression levels of the same gene in single cells35.
In contrast, theMYC-encompassing large ecDNA found in Colo320DM
cells was not detected in PC3 cells, where instead scCircle-seq identi-
fied a highly heterogeneous repertoire of shorter eccDNAs for which
gene expression levels and eccDNA copy number were uncorrelated
(Supplementary Fig. 7i). These results suggest that, even though a
subset of oncogene-containing eccDNAs (so-called ecDNAs) that are
present in many copies per cell may drive high levels of expression of
those oncogenes in certain cell types, themajority of eccDNAs is highly
variable from cell to cell and exerts unpredictable effects on the
expression of genes contained in them.

eccDNA based cell type classification
Prompted by these observations, we then wondered whether the
eccDNA repertoire of a cell is stochastic or whether cell type-
specific eccDNA signatures can be identified using scCircle-seq. To
this end, we leveraged cisTopic36, a computational framework pre-
viously designed to analyze scATAC-seq data based on topic mod-
eling, a mathematical approach used in the field of natural language
processing37. We first represented the genomic distribution of the
CPRs detected by scCircle-seq as a cells × bins matrix, where cells is
the number of single cells profiled by scCircle-seq and bins are
contiguous genomic windows of defined length (Fig. 3a). We then
applied cisTopic to decompose the cells×bins matrix into two
matrices, cells × topics and topics×bins, and used the decomposed
matrices to cluster cells based on topics as well as to annotate each
topic using available genomic tracks (Fig. 3a and Methods). In this
application, topics can be intuitively thought of as sets of vectors
corresponding to different subsets of eccDNAs that can potentially
distinguish between different cell types. Indeed, application of
cisTopic to our scCircle-seq dataset managed to cluster all the cells
belonging to the same cell type together, with the only exception of
2 out of 27 (7.4%) 293T cells that were assigned to the PC3 cell
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cluster (Fig. 3b). 5 out of 14 topics identified by cisTopic were cell
type-specific, including one topic specific for Colo320DM cells
(topic 6), two for HeLa (topics 3 and 11), one for K562 (topic 14), and
one for PC3 (topic 7) (Fig. 3c, d). We did not uncover any topic
specific for 293T cells, possibly because this is not a cancer cell line
and it might therefore lack a distinctive eccDNA signature. Some
topics, including 3 (HeLa specific), 6 (Colo320DM specific), 8, 11
(HeLa specific), 12, and 14 (K562 specific), mark CPRs localized on a
few specific genomic regions on one or two chromosomes, whereas
the other topics correspond to eccDNAs originating all along the
genome (Fig. 3d). Topic 6 (Colo320DM specific) is the most loca-
lized topic (Fig. 3d) and corresponds to the region on chr8 that
produces the giant ecDNA encompassing the MYC oncogene
described above. These findings prompted us to assess whether

different topics correspond to specific linear genome features or
chromatin types. Indeed, we identified twomajor topic clusters: one
(topics 3, 5, 8, 10, 11, and 14) enriched in distal intergenic elements
and the other (topics 1, 2, 4, 6, 7, 9, 12, and 13) enriched in various
gene elements (Fig. 3e). Moreover, intersection of the topics with
ENCODE ChIP-seq tracks for various histonemarks revealed that the
cell type-specific topics were strongly enriched in H3K9me3 (topics
3, 11, 14) and H3K4me3 (topic 7) peaks from the corresponding cell
types (Fig. 3f, Supplementary Table 1, and Methods). More gen-
erally, the topics identified in each cell line were enriched in
H3K9me3 and H3K4me3 ChIP-seq peaks from the same cell line
(Supplementary Fig. 8a–h). Altogether, these results demonstrate
that, although the number and region of origin of eccDNAs widely
differ between cells of the same type, different cell types have
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specific eccDNA signatures (topics) that partially reflect their
epigenome.

Dynamics of eccDNAs during replication stress and cell division
To further characterize the heterogeneity of eccDNAs and demon-
strate the ability of scCircle-seq to capture different eccDNA land-
scapes, we first treated HeLa cells with the dihydrofolate reductase
(DHFR) inhibitor methotrexate (MTX), which has previously been
shown to lead to extrachromosomal amplification of the DHFR gene
driving progressive resistance to MTX4, 38, 39. Exposure of cells to MTX
for up to 17 days profoundly rewired the eccDNA landscape of HeLa
cells, leading to the formation of longer and more complex circles
characterized by a considerably higher fraction of chimeric junctions
connecting twodifferent chromosomes or distant regions on the same
chromosome (Fig. 3g, h and Supplementary Fig. 9a–c). MTX-induced
eccDNAs predominantly originated from constitutive hetero-
chromatinmarked by histone H3K9me3 (Supplementary Fig. 9d–h), in
line with our finding that CPR topics are enriched in this type of
chromatin already in unchallenged cells (see previous section).

To gain further insights into the dynamics of eccDNAs, we applied
scCircle-seq to multiple pairs of daughter cells originating from the
sameColo320DMparent cell, to examinehoweccDNAs arepartitioned
during cell division (Methods). The pattern of CPRs and chimeric
junctions identified by scCircle-seq clearly differed between corre-
sponding daughter cells, even in the case of CPRs giving rise to HFHU
eccDNAs (Supplementary Fig. 10a, b). For the latter, the normalized
eccDNA copy number typically varied up to 2-fold between daughter
cells, whereas in the case of LFLU eccDNAs the difference was much
more pronounced, up to 10-fold (Fig. 3i, j). Altogether, these results
demonstrate the ability of scCircle-seq to portray the dynamics of
eccDNAs, and reveal that the eccDNA repertoire of a cell rapidly
diverges after mitosis, in line with recent observations based on live
imaging40, 41.

scCircle-seq on patient-derived tumor samples
Lastly, we sought to demonstrate the applicability of scCircle-seq to
patient-derived tumor samples, which is essential to gain insights into
the heterogeneity and clinical implications of eccDNAs across the
spectrum of human cancers. As a proof-of-concept, we applied
scCircle-seq to nuclei extracted from three retrospectively collected
frozen tumor samples and individually sorted in 96-well plates using
fluorescent activated cell sorting (FACS) (one prostate adenocarci-
noma, PRAD; one triple-negative breast cancer, TNBC; one luminal
B-like breast cancer, LumB) (Methods). We obtained high-quality
sequencing data for 55 PRAD, 87 TNBC and 33 LumB nuclei, achieving
nearly 100% circular-to-linear spike-in DNA ratio in all the cells (range:
99.5–99.9%) and 50–80% of all the reads assigned to eccDNAs (Sup-
plementary Fig. 11a, b). The vast majority of the eccDNAs identified in
these tumor samples was classified as low frequency low uniformity
(LFLU) (Supplementary Fig 11c). These results are consistentwith those
obtained from immortal cell lines (Supplementary Fig. 1b, d), demon-
strating that scCircle-seq performs robustly even on nuclei extracted
from tumor biopsies. The largest number of CPRs was identified in
PRAD cells, followed by TNBC and LumB (Fig. 4a). Similarly, the frac-
tion of the genome covered by CPRs was the highest for PRAD, fol-
lowed by TNBC and LumB cells (Fig. 4b), suggesting that these tumors
harbor different eccDNA landscapes. Indeed, dimensionality reduction
of single-cell CPR genomic profiles using Uniform Manifold Approx-
imation and Projection (UMAP)42 revealed two distinct clusters clearly
separating PRAD fromTNBCand LumBcells (Fig. 4c). Differential topic
analysis identified multiple topics enriched either in TNBC and LumB
cells or in PRAD cells (Fig. 4d and Supplementary Fig. 11d), indicating
that these two groups of tumors carry different eccDNA repertoires, in
line with their different tissue of origin.

We then wondered whether, despite originating from the same
tissue, also TNBC and LumB cells have distinct eccDNA landscapes,
which might reflect the different biology and clinical behavior of the
corresponding tumors. UMAP analysis identified twomajor clusters (1
and 2) comprising both TNBC and LumB cells and harboring distinct
CPR landscapes, as well as two minor clusters containing only LumB
cells surrounded by cells assigned to Cluster 1 in the 2D UMAP repre-
sentation (Fig. 4e, f and Supplementary Fig. 11e). Differential topic
analysis pinpointedmultiple topics specific to either Cluster-1 TNBCor
Cluster-2 TNBC cells (Fig. 4g and Supplementary Fig. 11f), suggesting
that these two groups might represent two different cell populations
withdistinctmechanismsof eccDNA formationwithin the same tumor.

We hypothesized that the two major TNBC clusters identified
might correspond to cells harboring different levels of chromosomal
instability, which in turn might result in different eccDNA repertoires.
To test this hypothesis,wefirst intersected theCPRs identified in LumB
cells and TNBC cells assigned to either Cluster 1 or 2 with somatic copy
number alterations (SCNAs) identified in breast cancers sequenced as
part of The Cancer Genome Atlas (TCGA)43. We found that amplified
regions were significantly enriched in the CPRs of Cluster 1 TNBC and
LumB cells compared to the CPRs of TNBC Cluster 2 cells (Fig. 4h, i).
Next, we performed single-cell DNA sequencing by Acoustic Cell
Tagmentation (ACT)44 on 384 nuclei extracted from the same TNBC
sample to assess the relationship between eccDNAs and SCNAs in the
same sample (Supplementary Data 3 and Methods). Phylogenetic
analysis of 174 high-quality single-cell copy number profiles revealed
two major groups of cells: one group predominantly composed of
diploid cells or cells with sparse copy number alterations, and another
group composed of cells with multiple SCNAs, representing bona fide
tumor cells (Supplementary Fig. 12). As for TCGA SCNAs, amplified
regions identifiedbyACTwere significantly enriched in TNBCCluster-1
CPRs (Fig. 4j, k). Lastly, we examined whether the number of eccDNAs
identified scales with the copy number of a given genomic region. We
found that the number of CPRs did not significantly differ between
diploid and moderately amplified (3–4 copies) regions, whereas they
were significantly more abundant in regions with higher amplification
levels (5–6 copies) (Fig. 4l). Altogether, these results reveal that the
landscape of eccDNAs of tumor cells reflects their SCNA landscape,
and that highly amplified genomic regions are associatedwith a higher
number of eccDNAs produced.

Discussion
We have developed a single-cell version of Circle-Seq18 that allows
interrogating the diversity and complexity of eccDNAs at the single-
cell level, including in nuclei extracted from cryopreserved tumor
biopsies. scCircle-seq leverages the power of rolling circle amplifi-
cation (RCA) and a DNA nick repair step to achieve high detection
sensitivity, enabling the detection not only of abundant, oncogene-
encompassing ecDNAs, but also of rare eccDNAs. Recently, another
method for single-cell eccDNA profiling (scEC&T-seq) was developed
and applied to investigate the structural and functional hetero-
geneity of eccDNAs in neuroblastoma cell lines and primary tumor
samples35. While this represents a significant technological
advancement, the published scEC&T-seq protocol is difficult to scale
up as it entails multiple DNA purification steps before the eccDNAs
from each single cell are amplified by RCA and indexed prior to
sequencing. This can lead to loss or breakage of eccDNAs during the
procedure, while being significantly more time-consuming com-
pared to scCircle-seq (5 days of linear gDNA digestion plus 20 h of
RCA in scEC&T-seq, compared to 24 h of digestion and 5 h of RCA in
scCircle-seq, see Fig. 1a). Importantly, in scCircle-seq there is no
intermediate DNA purification before RCA and single-cell indexing,
which considerably simplifies the workflow and reduces the risk of
losing low-abundant eccDNAs.
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Amajor advantage of scCircle-seq compared to bulk Circle-Seq is
that it enables detecting low frequency circular DNAs that are only
present in a small fraction of the cells, but that, collectively, constitute
the vast majority of the eccDNA repertoire. By profiling eccDNAs

across five different cell lines, here we have shown that the vast
majority of eccDNAs detected can be classified as low frequency low
uniformity (LFLU) events that widely differ between individual cells,
both in terms of their genomic location and in their complexity.
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Fig. 4 | scCircle-seq detects eccDNAs in patient-derived tumor samples.
a Distributions of the number of circle-producing regions (CPRs) in nuclei extrac-
ted from three tumor samples. PRAD, prostate adenocarcinoma. LumB, Luminal
B-like breast cancer. TNBC, triple-negative breast cancer. n, number of cells ana-
lyzed. b As (a) but for the genome coverage of the CPRs identified. c Uniform
Manifold Approximation and Projection (UMAP) representation of all cells ana-
lyzed, after topicmodeling of the corresponding eccDNAs. Eachdot represents one
cell. d Volcano plot showing differentially expressed topics. –Log(p-adj), negative
logarithm of the adjusted P value calculated using the Benjamini–Hochberg
method (two-sided, pair-wise). Log2(fold change), base-2 logarithm of the fold
change. e, f UMAP representation of LumB and TNBC cells, after topic modeling of
the corresponding eccDNAs. Left, Cells colored by sample type.Right, Cells colored
by clusters identified by unsupervised clustering. g As (d) but comparing Cluster-1
and Cluster-2 from (f).h As (e) but with nuclei color-coded based on enrichment of
the corresponding eccDNAs inside genomic regions amplified in breast cancer

samples in The Cancer Genome Atlas (TCGA)43. i Distributions of the enrichment
inside genomic regions amplified in TCGA breast cancers, for the eccDNAs iden-
tified in LumB and TNBC cells belonging to UMAP Cluster-1 and Cluster-2 in (f). n,
number of single cells analyzed. P, t-test, two-tailed. j, k Same as in (h) and (i),
respectively, but for genomic regions amplified in the TNBC sample based on
single-cell DNA sequencing using Acoustic Cell Tagmentation (ACT)44.
l Distributions of the normalized number of eccDNAs per 100 kilobases (kb) inside
genomic regions with different copy numbers determined by ACT. P, t-test, two-
sided. Genomic regions are grouped based on the corresponding copy number. In
all the boxplots, boxes extend from the 25th to the 75th percentile, horizontal bars
represent the median, and whiskers extend from –1.5 × IQR to +1.5 × IQR from the
closest quartile,where IQR is the inter-quartile range.Black dots, outliers.Minimum
and maximum are defined, respectively, by the uppermost and lowermost outlier
dot or extremity of the corresponding whisker. Source data are provided as a
Source Data file.
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Although we cannot completely rule out the possibility that some
chimeric junctions are artefacts of RCA, our data indicate thatmultiple
eccDNAs can arise from the same genomic region in a cell. Multiple
eccDNA molecules originating from the same region might also fuse
among themselves or with circles originating from other regions, in
line with prior observations21, contributing to the complexity of the
single-cell eccDNA landscape. Of note, LFLU eccDNAs were also
recently described by others under the name of stochastic eccDNAs35,
corroborating our findings. However, the validation of such low-
frequency eccDNAs with orthogonal approaches such as FISH remains
technically challenging, because of the high heterogeneity in the
length and sequence of the eccDNAmolecules that are produced from
the same genomic region across different cells. We anticipate that
emerging in situ sequencing approaches, such as in situ genome
sequencing (IGS)45, might be harnessed in the future to orthogonally
validate LFLUeccDNAsdetectedby single-cell sequencing approaches.

Although the eccDNA landscapes uncovered by scCircle-seq
mainly consist of low frequency and structurally diverse eccDNAs,
we have found that certain features of these eccDNAs (i.e., the topics
identified by cisTopic36) are cell type-specific and are strongly related
to the distribution of H3K9me3 (constitutive heterochromatin) and
H3K4me3 (active enhancer) histone marks in the same cells. This
indicates that the epigenomic landscape of a cell, which contributes to
define its identity, influences where and which type of eccDNAs are
produced along the genome. Notably, our observation that cell treat-
ment with methotrexate—which causes replication stress and conse-
quently DNA breaks—results in the formation of eccDNAs with higher
structural complexity preferentially inside constitutively heterochro-
matic regions marked by histone H3K9me3, suggests that increased
formation and/or slower repair of DNA breaks in these regions might
facilitate the formation of eccDNAs.

In addition to applying scCircle-seq to cultured cell lines, we have
demonstrated that our method can also be applied to nuclei extracted
from cryopreserved tumor biopsies and sorted in multi-well plates. By
profiling the eccDNAs in single nuclei from three different tumor
types, we have shown that different tumors harbor distinct eccDNA
landscapes that, at least in part, correlate with the DNA copy number
profile of the corresponding tumors. Indeed, in a triple-negative breast
cancer sample, which we profiled by both scCircle-seq and single-cell
DNA-seq, we found two clearly distinct cell subpopulations, one of
which was enriched in eccDNAs originating from amplified genomic
regions identified in the same tumor. Notably, the circle-producing
regions identified in the same subpopulation were also over-
represented inside genomic regions frequently amplified across
thousands of breast cancers sequenced in TCGA. Thus, scCircle-seq
can be used to dissect the heterogeneity of eccDNAs in tumor samples
and pinpoint different subpopulations of cells carrying distinct
eccDNA repertoires that likely reflect different underlying genome
instability processes.

In conclusion, we have developed a straightforward, sensitive,
and versatile method for dissecting the heterogeneity and struc-
tural complexity of eccDNAs in both cell and tissue samples,
including tumor biopsies. scCircle-seq can be used to explore the
diversity of eccDNAs in different cell and tissue types, contributing
to understanding the origin and functional implications of this
fascinating form of genetic information transfer. We anticipate that
future applications of scCircle-seq to large cohorts of tumor sam-
ples will further expand our knowledge on the heterogeneity of
cancer genomes and pave the way to the use of eccDNAs in cancer
diagnostics.

Methods
Ethical statement
The work described here complies with all ethical regulations relevant
to the committees approving the two respective permits

(Södersjukhuset hospital in Stockholm, Sweden for #2018/1003-31 and
Candiolo Cancer Institute FPO - IRCCS, Turin, Italy for 001-IRCC-00IIS-
10). The patient-derived tumor samples used in this study have been
collected and used in conformity to the permits. All donors analyzed
were of European ethnicity. None of the donors received compensa-
tion and written informed consent was obtained for all donors
involved in both cohorts. During clinical evaluation, the seven donors
available in the prostate cancer cohort reported male sex and ages
ranging from 43–65 years old. One sample was excluded due to low
sample quality, and one of the six remaining samples was used here.
For the breast cancer samples, both donors included here reported
female sex and they were 58 and 65 years of age at the time of sample
collection.

Experimental methods
Samples
Cell lines. We obtained all the cell lines used in the study from ATCC:
Colo320DM (cat. no. CCL-220), PCR3 (cat. no.CRL-1435),HeLa (cat. no.
CCL-2), HEK293T (cat. no. CRL-1573), K562 (cat. no. CCL-243). We
authenticated all cell lines by STR genotyping. We cultured
Colo320DM and PC3 cells in RPMI-1640 medium (Gibco, cat. no.
C11875500BT) supplemented with 15% fetal bovine serum (Gibco, cat.
no. 10091148) and 1% penicillin–streptomycin (Gibco, cat. no.
15140122); HeLa and HEK293T cells in DMEM medium (Gibco, cat. no.
C11995500BT) supplemented with 10% fetal bovine serum; and K562
cells in IMDM medium (Gibco, cat. no. C12440500BT) supplemented
with 15% fetal bovine serum. Colo320DM and K562 cells were cultured
at 37 °C with 10% CO2 while PC3, HeLa, and HEK293T cells were cul-
tured at 37 °C with 5% CO2.

Patient-derived tumor samples. For scCircle-seq on prostate cancer,
we extracted nuclei from one frozen tissue block excised from one of
six prostatectomy samples that we previously collected at the
Södersjukhuset hospital in Stockholm, Sweden for single-cell spatially
resolvedprofilingDNAcopynumber alterations (ethical permit #2018/
1003-31). For scCircle-seq on breast cancer, we extracted nuclei from
two frozen breast cancer specimens (one classified as Luminal B-like
[herein labeled LumB] and the other as triple-negative [herein labeled
TNBC]) previously collected and stored at the Pathology Unit of the
Candiolo Cancer Institute FPO - IRCCS, Turin, Italy (ethical permit
“Profiling”, 001-IRCC-00IIS-10). All the patient-derived samples
described in this study are unique biological samples that cannot be
distributed to other researchers.

scCircle-seq. A step-by-step scCircle-seq protocol is available in
Protocol Exchange at the following https://protocolexchange.
researchsquare.com/article/pex-2385/v1.

scCircle-seq on cell lines. We mouth pipetted single cells into PCR
tubes containing 0.25 µL of Dynabeads MyOne Silane beads (Invitro-
gen, cat. no. 37002D) diluted in 6.75 µL of nucleus isolation buffer
containing 10mM Tris-HCl pH 7.5, 10mM NaCl, 3mM MgCl2, 0.1%
Tween-20 (Invitrogen, cat. no. 003005), IGEPAL CA-630 0.3% (Sigma-
Aldrich, cat. no. 18896), 0.1% bovine serum albumin (Sigma-Aldrich,
cat. no. A2934), and 2mM dithiothreitol. After incubation on ice for
30min we gently vortexed the tubes for 1min, followed by cen-
trifugation at 500 × g for 5min at 4 °C. Afterwards, we transferred
5.4 µL of supernatant containing cytoplasmic RNA into a new 0.2mL
tube for scRNA-seq using the Smart-seq2 library preparation approach
(see below), leaving the bead pellet containing the nuclei undisturbed.
After nucleus isolation, we added 0.4 µL of NEBNext FFPE DNA Repair
Mix (New England Biolabs, cat. no. M6630S) containing 0.25 ng/mL
linear spike-in DNA, 0.25 ng/mL circular spike-in DNA, 5X NEBNext
FFPE DNA Repair Buffer, and 0.1225X NEBNext FFPE DNA Repair Mix
into each tube containing a bead pellet, gently vortexed the samples,

Article https://doi.org/10.1038/s41467-024-45972-y

Nature Communications |         (2024) 15:1768 9

https://protocolexchange.researchsquare.com/article/pex-2385/v1
https://protocolexchange.researchsquare.com/article/pex-2385/v1


and incubated them at 20 °C for 1 h. After nick repair, we added 1.54 µL
of nuclear lysis mix containing 40mM Tris-HCl, 40mM NaCl, 0.2%
TritonX-100 (Sigma-Aldrich, cat. no. T9284), 30mM dithiothreitol,
2mMEDTA, and 1.6 µg/µLQiagen Protease (Qiagen, cat. no. 19157) into
each tube, gently vortexed the samples, and incubated them at 50 °C
for 30min followed by holding at 4 °C. Next, we added 0.05 µL of
Protease Inhibitor cocktail (Sigma-Aldrich, cat. no. 8340) and 0.45 µL
of water to each tube and incubated the samples at 37 °C for 1 h. After
nuclear lysis, we performed linear DNA digestion by adding 1.2 µL of
digestion mix containing 8.3mM ATP, 4.16X Plasmid-Safe Reaction
Buffer (Lucigen, cat. no. E3101K), 0.83–2.49U/µL Plasmid-Safe ATP-
Dependent DNase (Lucigen, cat. no. E3101K) depending on the ploidy
of the cells (for diploid cells: 0.83U/µL, for tetraploid: 2.49U/µL), and
2.08mM dithiothreitol into each tube, and incubated the samples at
37 °C for 20 h, followed by 70 °C for 10min and holding at 4 °C. Next,
we added 5 µL of amplification mix containing 2X phi29 buffer (New
England Biolabs, cat. no. M0269), 2mM dNTPs (Thermo Fisher Scien-
tific, cat. no. R0192), 100 µM Exo-Resistant Random Primer
(Thermo Fisher Scientific, cat. no. SO181), 0.002 U/µL Pyropho-
sphatase inorganic (Therm-Fisher Scientific, cat. no. EF0221), and
1.6 U/µL Phi29 DNA Polymerase (New England Biolabs, cat. no. M0269)
into each tube, and incubated the samples at 30 °C for 2 h followed by
65 °C for 10min and holding at 4 °C. We purified the amplified circular
DNA on DNA Clean & Concentrator-5 columns (Zymo Research, cat.
no. D4014), after whichwe used 10 ng of purified circular DNA as input
for the Nextera XT DNA Library Preparation Kit (Illumina, cat. no. FC-
131-1024).

scCircle-seq on nuclei from tumor biopsies. We first isolated nuclei
from the prostate cancer (PRAD), luminal B (LumB) and triple-
negative breast cancer (TNBC) samples described above, using an ad
hoc modified version of the Nuclei extraction from frozen tissue for
single-nuclei sequencing protocol from Mission Bio (https://support.
missionbio.com/hc/en-us/articles/360042902014-Nuclei-Extraction-
From-Frozen-Tissue-User-Guide). Briefly, we first prepared a tissue
lysis solution (TLS) containing 0.03mg/mL Trypsin-EDTA (0.25%),
phenol red (Thermo Fischer Scientific, cat. no. 25200072), 0.1mg/mL
Collagenase type7 (Worthington, cat. no. CLS-7 LS005332) and
0.1mg/mLDispase II (Gibco, cat. no. 17105-041) in a spermine solution
(pH 7.6) containing 3.4mM sodium citrate tribasic dihydrate (Sigma-
Aldrich, cat. no. C8532), 1.5mM spermine tetrahydrochloride (Sigma-
Aldrich, cat. no. S1141), 0.5mM tris (hydroxymethyl) aminomethane
(Sigma-Aldrich, cat. no. 252859), and 0.1% v/v IGEPAL CA-630 (Sigma-
Aldrich, cat. no. I8896) in molecular biology grade water. We then
added 200 μl of ice-cold TLS onto each tissue block kept into a pre-
chilled Petri dish on dry ice and incubated the samples until the TLS
had frozen (~3min). After initial mincing on dry ice using a pair of pre-
chilled sterile scalpels, we transferred the tissue to room temperature
and continued mincing until the tissue was dissociated into small
fragments that could flow through a 1mL pipette tip. We then added
1.8mL of TLS and transferred the whole volume of TLS solution with
the tissue fragments into a 5mL low-binding tube (Sigma-Aldrich, cat.
no. EP0030108310-200EA). We incubated the samples for 15min at
room temperature on a device rotating at 20 rpm, after which we
added 2mL per sample of a stop solution containing 25mg of Trypsin
inhibitor from chicken egg white, Type II-O (Sigma-Aldrich, cat. no.
T9253), and 5mg Ribonuclease A from bovine pancreas, Type I-A
(Sigma-Aldrich, cat. no. R4875) dissolved in 49.8mL of spermine
solution. We gently inverted each tube 15 times, after which we fil-
tered the tissue suspension through a 50 μm CellTrics cell strainer
(Sysmex, cat. no. 04-004-2327) and centrifuged the flowthrough at
300 × g for 5min at roomtemperature.Wediscarded the supernatant,
resuspended the pellet containing the nuclei in 400μL of nuclei
fixation solution (66% Methanol, 33% Acetic acid) and incubated the
samples on ice for 15min. Following centrifugation at 300 × g for

5min at room temperature, we discarded the supernatant, resus-
pended the nuclei pellet in 1mL of 1X PBS with 5mM EDTA, and
filtered the nuclei suspension again through a 10μm CellTrics cell
strainer (Sysmex, cat. no. 04-004-2324). We stored the nuclei sus-
pension at 4 °C until sorting.

For single-nucleus sorting, we first added propidium iodide (PI,
Thermo Fisher Scientific, cat. no. P3566) to the fixed nuclei suspen-
sions to reach 1mg/mL final concentration. We sorted PI+ nuclei into
low DNA binding 96-well plates (Eppendorf, cat. no. 0030129504) pre-
filled with 1.4mL/well of nucleus isolation buffer, using the MoFlo
Astrios EQs (Beckman Coulter) FACS system, excluding the doublets.
Immediately after sorting, we quickly centrifuged the nuclei at 300 × g
for 3min at +4 °C and then stored the plates at –20 °C before pro-
ceeding to scCircle-seq using the same procedure as described above
for cell lines.

For preparing libraries,wediluted theRCAproducts 20 timeswith
nuclease-free water and transferred 1 µL of each RCA product (corre-
sponding to one nucleus) into a new 96-well plate as input for tag-
mentation using the Nextera XTDNA Library Preparation Kit (Illumina,
cat. no. FC-131-1024).

Sequencing. For scCircle-seq on cultured cells, we pooled all the
libraries in paired-end mode on a HiSeq X Ten (Illumina) machine. For
scCircle-seq on prostate cancer nuclei, we sequenced all the cells in
paired-end mode on a NextSeq 2000 (Illumina) machine using the
NextSeq 1000/2000 P2 Reagents (300 Cycles) v3 (Illumina, cat. no.
20046813). For scCircle-seq on breast cancer nuclei, we pooled the
LumB and TNBC samples and sequenced them in paired-end mode on
a NovaSeq 6000 (Illumina) machine using the NovaSeq 6000 SP
Reagent Kit v1.5 (300 cycles) (Illumina, cat. no. 20028400).

scCircle-seq in daughter cells. To study how eccDNAs are passed to
daughter cells duringmitosis, we cultured Colo320DM cells in a 10 cm
Petri dish at lowdensity (1000 cells per plate) to ensure that each cell is
separated from its neighbors. After most cells underwent one mitosis
(~10 h), we gently discarded the medium, added 4mL trypsin (Gibco,
cat. no. 25200056) onto the cells and incubated for 1min at room
temperature. Using a mouth pipette, we isolated several pairs of
daughter cells and placed each daughter cell into a separate tube for
scCircle-seq.

Bulk Circle-Seq. We performed bulk Circle-Seq according to the
previously described protocol7, 10, including the following modifica-
tions. In brief, we harvested 1 million cells during the exponential
growth phase and extracted highmolecular weight genomic DNAwith
the MagAttract HMW DNA Kit (Qiagen, cat. no. 67563). Next, we
digested 1 µg of DNA in 100 µL of digestion mix containing 20 U of
Plasmid-Safe ATP-Dependent DNase (Lucigen, cat. no. E3101K), 25mM
ATP (Lucigen, cat. no. E3101K), 1X Plasmid-Safe Reaction Buffer (Luci-
gen, cat. no. E3101K) for 6 days at 37 °C. Every 24 h we replenished the
enzymes in the digestionmix by adding 2 µL of fresh Plasmid-Safe ATP-
Dependent DNase, 4 µL of ATP, and 0.6 µL of Plasmid-Safe 10X Reac-
tion Buffer. After 6 days, we purified circular DNA with 1X AMPure XP
beads (Beckman Coulter, cat. no. A63881) following the manu-
facturer’s instructions. Lastly,weused20 ngofpurified circularDNAas
input for the Nextera XTDNA Library Preparation Kit (Illumina, cat. no.
FC-131-1024) and sequenced the libraries on a HiSeq X Ten (Illumina)
machine, aiming at generating around 10 million reads per sample.

Smart-seq2. We performed Smart-seq2 following the previously
published protocol17. Briefly, we mixed 5.4 µL of supernatant contain-
ing cytoplasmic RNA obtained from the nucleus isolation step in
scCircle-seqwith 1.27 µL of oligo-dTmix containing 1 µMoligo-dT30VN
(5′–AAGCAGTGGTATCAACGCAGAGTACT30VN-3′) and 1mM (each)
dNTPs and incubated the mix for 5min at 72 °C followed by 5min on
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ice. Next, we added 7.2 µL of a reverse transcription mix containing
10U/µL SuperScript II reverse transcriptase (Invitrogen, cat. no.
18064071), 1 U/µL SUPERase (Invitrogen, cat. no. AM2696), 1X Super-
script II first-strand buffer (Invitrogen, cat. no. 18064071), 1mM GTP,
5mMdithiothreitol, 1M betaine (Sigma-Aldrich, cat. no. B0300), 1mM
MgCl2, and 1 µM template-switching oligo (5′-AAGCAGTGGTAT-
CAACGCAGAGTACATrGrG+G-3′) to each sample and incubated the
samples for 90min at 42 °C, followed by 11 cycles of: 50 °C for 2min,
42 °C for 2min, 70 °C for 5min. Lastly, we added 14.52 µL of amplifi-
cationmix containing 1XKAPAHiFi HotStart ReadyMix (Roche, cat. no.
KK2602) and 0.1 µM ISPCR oligo (5’-AAGCAGTGGTATCAACGCAGAGT-
3’) to each sample and performed PCR with the following settings:
98 °C for 3min; 21 cycles of: 98 °C for 20 s, 65 °C for 30 s, 72 °C for
4min; 72 °C for 15min; 4 °C on hold. We purchased all the primers
from IDT as standard desalted primers.

Induction of eccDNAs with methotrexate
To induce the production of eccDNAs, we used an approach based on
cell treatment with the chemotherapeutic agent, methotrexate, as
previously described39. Briefly, we grew HeLa cells into 6-well plates
containing medium supplemented with 100nMmethotrexate (Sigma-
Aldrich, cat. no. 1414003), replacing the medium with fresh one every
2 days. Wemouth pipetted single cells for scCircle-seq at day 7 and 17.

DNA fluorescence in situ hybridization (FISH)
To demonstrate the extra-chromosomal nature of eccDNAs, we
performed DNA FISH on metaphase spreads of Colo320DM, K562,
and PC3 cells, targeting some of the high frequency high uni-
formity (HFHU) eccDNAs identified by scCircle-seq in these cells
(see Supplementary Fig. 4). To preparemetaphase spreads, we grew
Colo320DM, K562 and PC3 cells for 24 hours in their culture med-
ium supplemented with colcemid (KaryoMax, Thermo Fisher Sci-
entific, cat. no. 15210040) at a concentration of 2 µg/mL, 0.2 µg/mL
and 0.1 µg/mL, respectively. Afterwards, we collected the cells,
permeabilized them with 0.075M KCl hypotonic solution for 15 min
at 37 °C and fixed them with Carnoy’s fixative (methanol:acetic acid
3:1, v/v) for 10min at room temperature. To obtain metaphase
spreads, we gently dropped the fixed cells onto cold, pre-humidified
coverslips from a height of ~1 m above, and left the coverslips air-
dry. We designed and produced oligonucleotide DNA FISH probes
using our previously described iFISH pipeline22. The sequences of all
the oligos composing the probes used are available in Supplemen-
tary Data 2. To perform DNA FISH, we followed the step-by-step
protocol for oligo-based DNA FISH that we previously described22.
We imaged the samples on ×100 1.45 NA objective mounted on a
custom-built Eclipse Ti-E inverted microscope system (Nikon)
controlled by the NIS Elements software (Nikon) and equipped with
an iXON Ultra 888 ECCD camera (Andor Technology), selecting
6–10 fields of view (FOVs) per sample containing metaphase
spreads. In these FOVs, eccDNAs appear as individual fluorescence
spots clearly separated from metaphase chromosomes and inter-
phase nuclei, and not overlapping with the DNA signal.

Single-cell DNA-seq by Acoustic Cell Tagmentation (ACT)
To study the relationship between eccDNA production and DNA copy
number alterations, we adapted the protocol for Acoustic Cell Tag-
mentation (ACT)44 on a non-acoustic based nanodispensing device
(I.DOT, Dispendix GmbH). Briefly, we FACS-sorted single nuclei in 384-
well plates prefilled with 5μL of Vapor-Lock (Qiagen, cat. no. 981611)
per well. For cell lysis, we lysed each nucleus in 150 nL of lysis buffer
containing 20mM Tris pH8, 20mM NaCl, 25mM DTT, 0.15% Triton X-
100, 1mM EDTA, and 25 µg/mL Qiagen Protease (Qiagen, cat. no.
19157). After dispensing,we centrifuged the plate at 3000 × g for 3min,
vortexed it at 1000 rpm for 1min, and then again centrifuged it at
3220 × g for 3min. This was done after every dispensing step with

I.DOT. For lysis,we incubated the plate at 50 °C for 1 h followedby heat
inactivation at 70 °C for 15min. To neutralize EDTA in the lysis buffer,
we dispensed 50 nL of 4mM MgCl2 into each well and then vortexed
and centrifuged the plate. For tagmentation, we dispensed 600nL of
tagmentation reaction mix containing Tagmentation DNA buffer (TD)
andAmpliconTagmentMix (ATM)at 2:1 v/v ratio (Nextera kit, Illumina,
cat. no. FC-131-1096) into each well and performed tagmentation at
55 °C for 5min followed by hold at 4 °C in a PCR thermocycler. To stop
the reaction, we dispensed 200nL of neutralization (NT) buffer into
each well and incubated the plate for 5min at room temperature.
Lastly, we performed single-nucleus indexing by dispensing 1.35μL of
PCR master mix containing 1.3μL of 2X Q5 Master Mix (New England
Biolabs, cat. no.M0492L) and 50 nL of 100mMMgCl2, and then 100 nL
each of P5 and P7 Nextera index primers (Illumina, cat. no. 20027213,
20027214, 20042666, 20042667) into each well. PCR settings were as
following: 72 °C for 3min; 98 °C for 20 s; 16 cycles of: 98 °C for 10 s,
62 °C for 1min, 72 °C for 2min; 72 °C 5min; hold +4 °C. Subsequently,
we pooled the contents of all the wells of a 384-well plate together and
purified the resulting library using AMPure XP beads (Beckman Coul-
ter, cat. no. A63881) at 0.8 v/v ratio. We sequenced all the libraries in
paired-end mode on a NovaSeq 6000 machine using the NovaSeq
6000 SP Reagent Kit v1.5 (300 cycles) (Illumina, cat. no. 20028400).
See Supplementary Data 3 for a summary of sequencing statistics.

Computational methods
scCircle-seq data processing. We trimmed the sequencing reads by
removing Nextera adapter sequences and overlapping R1-R2 read
pairs. We then mapped the filtered reads to the human reference
genome (GRCh38.p13) using the Burrows–Wheeler Aligner MEM
(v0.7.17-r1188)46 with -p flag. We removed duplicates with the Mark-
Duplicates module in Picard Tools (v2.25.5-2)47. We calculated the
mapping rate using the flagstat option in SAMtools (1.13-5)48. To cal-
culate the enrichment of circular over linear DNA, we divided the
number of reads mapped to the circular spike-in DNA by the total
number of reads mapped to all spike-in DNA (circular and linear
references). If the mapping rate of a sample was less than 90% and the
enrichment of circular spike-in DNA was less than 80%, we discarded
the sample from downstream analyses. The success rate is above 90%
for all cell lines tested in this work.

CPR identification and classification. To identify circle-producing
regions (CPRs), we used the same approach previously described for
Circle-Seq13. Briefly, we first identified genomic regions enriched in raw
reads using the findPeaks option in Homer49. We then merged the
regions in the raw circle BED file to obtain the merged circle BED file.
Next, we refined the borders of the CPRs using the closest option in
BEDtools (v2.30.0)50 with the coverage calculated from the BAM file to
get the final circle BED file. We extracted circle-supporting reads (i.e.,
discordant reads and split reads) from the called CPRs and filtered
them with a threshold of mapQ> 20, while we removed R2R1 reads.
Next, we identified chimeric junctions by extracting both ends of split
reads and retained chimeric junctions with at least 2 recurrent reads
within 500base-pairs (bp) fromeach endof aCPR for visualization and
downstream analysis. In parallel, we extracted circle-supporting reads
overlapping the edge of CPRs. We calculated the circle read enrich-
ment by dividing the number of readsmapped inside CPRs by the total
number of reads.

To classify the identifiedCPRs,wefirstmerged the single-cell BAM
files into apseudo-bulk BAMfile for eachcell type. For everyCPRcalled
in the pseudo-bulk sample, j, we calculated the raw frequency of
occurrence for this CPR as:

f j�raw =
Npos

Ntot
ð1Þ

Article https://doi.org/10.1038/s41467-024-45972-y

Nature Communications |         (2024) 15:1768 11



whereNpos is the number of cells containing circular DNAs that overlap
at least 10% of the corresponding CPRs, andNtot is the total number of
cells profiled by scCircle-seq for the same cell line. For each single cell,
i, we calculated the Jaccard index Jij between the CPR j in the pseudo-
bulk sample and the corresponding overlapping circles in the single
cell.We then calculated themean Jaccard index Jj�raw by averaging the
Jij over all the cells. Next, we normalized f j�raw and Jj�raw to the
frequency of occurrence of mitochondria DNA, f mt and the Jaccard
index of mitochondria DNA, Jmt as following:

f j�norm =
f j�raw

f mt
ð2Þ

Jj�norm =
Jj�raw

Jmt
ð3Þ

and set values larger than 1 to 1. For each CPR, j, we calculated a
uniformity score, Uj as:

Uj = f j � Jj ð4Þ

We classified CPRs as high-frequency high uniformity (HFHU)
when f >0:65 and U >0:3.

Intersection of CPRs with enhancers
For each cell line, we downloaded the files with genomic regions
containing enhancers from EnhancerAtlas 2.031. We then intersected
the CPRs called in single cells with the list of enhancer regions using
BEDtools (v2.26.0)50 to identify enhancer-containing circles in each
cell. Next, we computed the enhancer fraction as the normalized read
count from the enhancer-containing circles. Lastly, we performed
motif enrichment analysis on the CPRs overlapping with enhancers
using the findMotifsGenome.pl tool with a background file with com-
parable GC-content and genomic size.

Topic modeling and dimensionality reduction
First, we filtered reads in the single-cell BAM files out using SAMtools48

if theymapped outside the CPRs called in each single-cell BAM sample.
Then, we counted the number of filtered reads in 2 kilobase (kb)
genomic bins along the genome and merged the counts into a single
matrix. After normalizing based on the total number of reads in each
sample (single cell) and filtering out bins without any read counts, we
thenused thematrix as input for cisTopic36with default parameters for
model training. We selected the best model based on the log like-
lihood, the second derivative of the likelihood curve, and the per-
plexity. Next, we subjected the topics obtained from cisTopic to
dimensionality reduction and visualization using Uniform Manifold
Approximation and Projection (UMAP)42. We annotated selected
topics using the getSignatureRegions command in cisTopic with min-
Overlap set to 0.4. Lastly, we calculated the enrichment of genomic
features across all single cells using the AUCell_buildRankings and sig-
natureCellEnrichment commands in cisTopic. For differential topic
analysis, we extracted the topic-cells matrix and used it as input for
DESeq251. Then we selected the topic pairs with adjusted P value lower
than 0.5 and fold-change greater than 2.

SMART-seq2 data analysis
We first mapped the reads to the human reference transcriptome
(GRCh38) using HISAT2 (v2.1.0)52 and quantified and merged the
single-cell RNA counts with RSEM53. We then used the merged matrix
as input for Seurat (v4.0)54 for all subsequent analyses.

ChIP-seq data analysis
Wedownloaded ChIP-seq data for various histonemodifications in the
cell lines used in this study from the Encyclopedia of DNA Elements

(ENCODE) (www.encodeproject.org) and the National Institutes of
Health (NIH) Sequence Read Archive (SRA) portal (https://www.ncbi.
nlm.nih.gov/sra). To calculate the enrichment of eccDNAs over specific
genomic features we used the computeMatrix tool in deepTools
(v3.5.0)55 with the scale-regions flag and visualized them with the
plotProfile tool in deepTools.

ACT data pre-processing and copy number calling
We demultiplexed raw sequence reads to fastq files using the
BaseSpace Sequence Hub cloud service of Illumina. Following this,
we aligned the reads to the Hg38 reference genome using bwa-mem
(version 0.7.17-r1188)46. Next, we deduplicated reads using gatk
MarkDuplicates (version 4.2.5.0)56. To call absolute copy numbers in
single cells we used ASCAT.sc (https://github.com/VanLoo-lab/
ASCAT.sc). Briefly, we binned the genome in 240 kilobase (kb)
bins and counted the number of reads in each bin, discarding cells
with fewer than 300,000 reads. We then normalized binned read
counts for GC-content using LOESS smoothing. We segmented GC-
corrected read counts using the multipcf function from the Copy-
number package (version 1.29.0.9)57 with a penalty of 6. Finally, we
inferred integer copy numbers using a grid search between differ-
ent purity and ploidy values (purity being set to 1 due to single-cell
data) and selecting the best goodness-of-fit. A small proportion of
copy number profiles had extremely high and inconsistent absolute
copy numbers and were filtered out by calculating the average copy
number for all cells and removing cells with an average copy num-
ber >2.8.

Statistics & reproducibility
No statistical method was used to predetermine sample size. The
experiments were not randomized. The Investigators were not blinded
to allocation during experiments and outcome assessment. We
excluded cells yielding low-quality sequencing data from the analyses,
where low quality was defined as cells for which fewer than 100 circle-
producing regions (CPRs) were found and sequence data mappability
was below 70%.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All scCircle-seq data described in this study are summarized in Sup-
plementary Data 1. Sequencing data obtained from cell lines are pub-
lically available on the GEO database under accession code
“GSE221884”. Raw sequencing data from the patient samples are
available on the ENAdatabaseunder accession code “PRJEB71652”. Pre-
processed sequencing data from patient samples are available on
figshare58–60. Previously published datasets that were used for data
integration in this study are listed in Supplementary Table 1. A sum-
mary statistics of ACT data described in this study is available in Sup-
plementary Data 3. Source data are provided with this paper.

Code availability
All the scripts used to process and analyze the scCircle-seq data
described in this study are available on github (https://github.com/
BiCroLab/scCircle-seq/tree/v0.12) and zenodo61.
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