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Elasticity-controlled jamming criticality
in soft composite solids

Yiqiu Zhao 1 , Haitao Hu1, Yulu Huang1, Hanqing Liu 2, Caishan Yan 1,
Chang Xu 1, Rui Zhang 1, Yifan Wang 3 & Qin Xu 1

Soft composite solids are made of inclusions dispersed within soft matrices.
They are ubiquitous in nature and form the basis of many biological tissues.
In the field of materials science, synthetic soft composites are promising can-
didates for building various engineering devices due to their highly program-
mable features. However, when the volume fraction of the inclusions increases,
predicting the mechanical properties of these materials poses a significant
challenge for the classical theories of compositemechanics. Thedifficulty arises
from the inherently disordered, multi-scale interactions between the inclusions
and the matrix. To address this challenge, we systematically investigated the
mechanics of densely filled soft elastomers containing stiff microspheres. We
experimentally demonstrate how the strain-stiffening response of the soft
composites is governedby the critical scalings in the vicinity of a shear-jamming
transition of the included particles. The proposed criticality framework quan-
titatively connects the overall mechanics of a soft composite with the elasticity
of the matrix and the particles, and captures the diverse mechanical responses
observed across a wide range of material parameters. The findings uncover a
novel design paradigm of composite mechanics that relies on engineering the
jamming properties of the embedded inclusions.

Dispersing nano-to-micron-sized particles within a soft polymeric gel
forms soft composite solids that are widely used in various engineering
materials, including synthetic tissue1, wearable biomedical devices2,3,
and soft robots4. In addition to reinforcing the polymer matrix5, the
dispersed particles can enable diverse functional features such as ani-
sotropic elasticity6, shape-memory effects7,8, and stimuli-responsive
behaviors9,10. Due to the great compliance of soft polymeric gels, the
embedded particles can undergo moderate displacement within the
matrix without causing internal fractures9. This particle rearrangement
may alter both the strain couplings among neighboring inclusions11 and
the stress fields over a large length scale9,12. Comparedwith classical stiff
composite materials13, the current understanding of the multi-scale
interactions within soft composites remains very limited.

The complexity of composite mechanics increases exponentially
with the volume fraction of the inclusions. In a dilute composite, the

mechanics are solely determined by the interactions between an iso-
lated inclusion and the surrounding matrix, which allows the effective
shear modulus to be described by the classical Eshelby theory14.
Further, modified effective medium theories have been extended to
systems with finite-density inclusions, where neighboring particles
interact via their induced strain fields11,15. However, this assumption of
matrix-mediated, short-range interactions breaks down in the dense
limit, where the overall stress responsemay involve networks of direct
contacts16,17 or long-range rearrangements of dispersed particles12. Due
to the inherently disordered and heterogeneous microstructures of
dense soft composites, predicting their mechanics is challenging for
classical composite theories.

To address these issues, we systematically investigated the strain
stiffening of soft elastomers containing a high volume fraction of stiff
microspheres. Inspired by the concepts of both granular jamming18–21
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and rigidity transitions in disordered systems22–24, wedemonstrate that
the mechanical responses of soft composites are governed by
elasticity-controlled scalings near a continuous phase transition. In the
absence of matrix elasticity, the transition coincides with the shear-
jamming of the included particles. This novel criticality framework
captures the stiffening responses for a variety of material parameters
where the classical theories break down. The results provide a new
approach to understand the nonlinear mechanical responses of var-
ious multi-phase soft materials.

Results
Strain-stiffening responses of soft composite solids
We prepared compliant polydimethylsiloxane (PDMS) elastomers fil-
led with stiff polystyrene (PS) microspheres having an average dia-
meter of 30μm (Fig. 1a and Supplementary Fig. 8). While the shear
modulus of the PS spheres is Gp = 1.6 GPa (Supplementary Fig. 1), the
shear modulus of the PDMS matrix was systematically varied from
Gm=0.04 to 4 kPa by tuning the crosslinking density (ref. 25 and
Supplementary Fig. 7). The mechanical properties of the soft compo-
sites were characterized using a rheometer equipped with a parallel-
plate shear cell (Fig. 1b). The top plate controls the gap size (d) and
applies axial compressive strains (ε) (Supplementary Fig. 9). Due to the
incompressibility of crosslinked PDMSgels26, the volumeof the sample
remains unchanged under axial compression (Supplementary Fig. 12
and Supplementary Movie 1), which gives rise to pure shear. At each
given ε, the rheological properties of the composites were measured
using an oscillatory shear with a small amplitude (δγa = 0.01 %). At an
angular frequency (ω =0.1 rad/s), the storage modulus has reached a
low-frequency plateau (Supplementary Fig. 11), which indicates the
shear modulus of soft composites (G). This resulting G(ε) represents
the linear elastic response of the soft composites in differently sheared
states (Supplementary Fig. 10).

The dense soft composites exhibit characteristic strain-stiffening
responses under the axial compressions (Fig. 1c). The stiffening degree
is determined by both the particle volume fraction ϕ and the shear

modulus of the elastomer matrix Gm. First, at a fixed Gm= 1.28 kPa, the
relative shear modulus, Gr =G/Gm, grows more rapidly with ε as ϕ
increases from 0.44 to 0.67. Second, at a fixed ϕ = 0.60, the strain
stiffening becomesmore pronounced while Gm decreases from 1.28 to
0.04 kPa.

We define Gr,max as the relative shear modulus at the maximally
stiffened states and Gr,0 as the relative shear modulus at ε =0. Within
experimental uncertainty, Gr,max appears at approximately ε =0.2
regardless of ϕ and Gm. Therefore, we estimated Gr,max for all the
samples using the values ofGr at ε =0.2. For ε >0.2,Gr decreaseswith ε,
and the composites were unable to fully recover their original shapes
after the compressions were removed. This plasticity is likely caused
by internal fractures between the elastomer and the particles27. Since
the adhesion energy at gel interfaces is approximately independent of
the crosslinking density28, the plasticity onset (ε ≈0.2) remains nearly
unchanged for various Gm. In contrast, the plots of Gr(ε) appear to be
highly reproducible when the compressions are released at ε <0.2.
In this study, we focus exclusively on the stiffening regime between
ε =0 and 0.2.

Figure 1d shows bothGr,max (solid points) andGr,0 (hollow points)
as a function of ϕ as Gm varies between 0.04 and 1.28 kPa. For ϕ < 0.4,
only Gr,0 was reported since no strain-stiffening was found. For com-
parisonwith the classical theories of compositemechanics, we plotted
the predictions from the Eshelby theory14 and the Mori–Tanaka
approximation scheme15, which alignwellwith theGr,0measured in the
dilute limit (ϕ < 0.2). However, for dense composites (ϕ >0.4), the
classical theories significantly deviate from the measured Gr,max and
Gr,0, and also fail to describe the strain-dependent shearmodulusGr(ε).
These mismatches suggest that potential mechanisms, such as direct
contact between inclusions16,17, were overlooked in the classical mod-
els of the mechanics of dense soft composites.

Signatures of jamming-controlled elasticity
We re-examine the super-exponential rise of Gr,max in Fig. 1d. As Gm

decreases, the growth of Gr,max becomes increasingly more divergent
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Fig. 1 | Strain-stiffening of PS-PDMS soft composites under volume-conserving
compressions. a Schematic of the cross-section of PS-PDMS composites. For a
predetermined volume fraction ϕ, polydisperse PS spheres with an average dia-
meter of approximately 30μm are well dispersed in a crosslinked PDMS matrix.
b Schematic of the experimental setup used to characterize the strain-stiffening of
the soft composites. The top plate moves down in a stepwise manner to apply an
axial strain ε. At each ε, the linear shear modulus G was measured through an
oscillatory shear with a strain amplitude of δγa = 10−4 and an angular frequency of
ω =0.1 rad/s. c Plots of the relative shear modulus, Gr =G/Gm, against ε for various
particle volume fractions ϕ and matrix shear moduli Gm. The blue hollow circles
indicate the results for a constant Gm= 1.28 kPa as ϕ increases from 0.44 to 0.67.

In addition, the hollow red squares and hollow yellow triangles represent the
results of Gr(ε) at the same ϕ =0.60 but for different matrix moduli, Gm=0.12 kPa
and Gm=0.04 kPa, respectively. d Comparison between the experimentally mea-
sured Gr and the predictions from the classical theories of composite mechanics.
The solid and hollow points indicate Gr,max and Gr,0, respectively, versus ϕ for
samples with varying Gm. The error bars represent the standard deviation from
measuring two tofive independently fabricated samples. The twodashedgray lines
represent the predictions from the Eshelby theory and the Mori–Tanaka approx-
imation. The pink area represents the range of the volume fraction where strain-
stiffening was observed.
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nearϕ ≈0.6. Since a soft composite solid will asymptotically become a
granular suspension as the matrix elasticity approaches zero, we
hypothesize an underlying connection between the shear-jamming of
dense suspensions and the strain-stiffening of soft composites in the
limit of Gm→0.

To validate this assumption, we first characterize the shear
rheology of a concentrated PS suspension in the PDMS base solution
without any crosslinkers. We define the relative viscosity (ηr) as the
ratio of the viscosity of the suspension (η) to that of the PDMS base
(ηs = 1.0 Pa s): ηr = η/ηs. The left panel in Fig. 2a shows ηr measured
within a Newtonian regime where the shear stress ranges from 1 to
10 Pa. This value effectively estimates the suspension viscosity in the
quasi-static limit. The details of the rheological measurements are
provided in Supplementary Fig. 2. The results are well described by

the Krieger–Dougherty relation29,30

ηrðϕÞ=
ηðϕÞ
ηs

= ð1� ϕ=ϕJÞ�γ, ðϕ<ϕJÞ ð1Þ

with a fixed exponent γ = 2 and a fitted jamming volume fraction
ϕJ = 0.594 ± 0.003. A similar scaling has been identified in the simu-
lations of over-dampedgranular systems near jamming18,31. Forϕ >ϕJ,
we did not observe homogeneous steady shear flow at any shear rate.
Instead, the suspensions were consistently jammed under contin-
uous shear (Supplementary Fig. 5). To quantify the mechanical
responses of these shear-jammed states, we initially prepared fully
relaxed suspensions without rigidity at ε = 0. Subsequently, we
applied an axial strain ε > 0 to induce jamming in the suspensions
and measure their shear moduli. The measurement protocol is
detailed in Supplementary Information Section I.A.3. The right panel
of Fig. 2a represents the nonzero shear moduli of the shear-jammed
PS-PDMS suspensions (Gs) measured at ε = 0.2 in the regime ofϕ >ϕJ.
Since no significant change in Gs was found when ε was further
increased (Supplementary Fig. 4), ϕJ = 0.594 represents the lowest
particle volume fraction required to achieve shear-jamming in the
PS-PDMS suspensions.

In Fig. 2b, we plot ηr(ϕ) from Eq. (1) together with Gr,maxðϕÞ of the
composites for a comparison. The traces ofGr,max gradually converge to
ηr asGmdecreases, suggesting thatGr,max ≈ ð1� ϕ=ϕJÞ�γ forϕ<ϕJ asGm

approaches zero, and the actual shearmodulusGmax scales linearly with
Gm in this limit. In contrast, forϕ >ϕJ,Gmax becomes independent ofGm

(Fig. 2c) and is close to the value of Gs measured independently from
the jammed suspensions (Fig. 2a), suggesting a particle-dominated
response. Considering the contrasting mechanical behaviors exhibited
for the ranges ϕ <ϕJ and ϕ >ϕJ, it is likely that the shear-jamming point
of the suspensions controls a crossover of themechanical properties of
the composites.

Elasticity-controlled criticality near jamming
Since the plots ofGmaxðϕÞ in Fig. 2c resemble the critical behaviorsnear
a continuous phase transition23,24,32,33, we next investigate the scalings
of the composite shearmodulus (Gmax) near (ϕ =ϕJ,Gm=0).Motivated
by theobservation thatGr,max approachesηr asGm→0 (Fig. 2b) and the
classical analogy between the effective shear modulus and the shear
viscosity in multi-phase systems34–36, we conjecture the scaling law

lim
Gm!0

GmaxðϕÞ
Gm

=
ηðϕÞ
ηs

= ð1� ϕ=ϕJÞ�γ, ðϕ<ϕJÞ ð2Þ

with γ = 2 and ϕJ = 0.594. To demonstrate the validity of this scaling
assumption, we plot Gr,max against ϕJ −ϕ in Fig. 3a with different Gm

values, where the results show the best agreement with Eq. (2) for the
softest matrix. We further consider how Gmax varies with Gm at ϕ =ϕJ.
In Fig. 3b,Gmax is plotted atϕ =0.59≈ϕJ againstGm,which canbefitted
to the power-law scaling

Gmax ∼G1=δ
m , ðϕ=ϕJÞ ð3Þ

with a fitted exponent 1/δ = 0.6 ±0.1.
Considering the scalings in Eqs. (2) and (3), we compare the soft

composites near ϕJ with a ferromagnetic system near the Curie tem-
perature (Tc). The material parameters of the soft composites
ðGmax,Gm,ϕ� ϕJÞ are directly analogous to (M,H, T−Tc) in the Ising
model. By assuming a scale-invariant free energy at the critical point
(ϕ =ϕJ,Gm=0), we propose a universal scaling form

Gmax = j1� ϕ=ϕJjβf ±
Gm

j1� ϕ=ϕJjΔ

 !
ð4Þ

Flowing 
states

Jammed 
states

Fig. 2 | Signatures of jamming-controlled elasticity. a Rigidity transition of PS
particles suspended in un-crosslinked silicone oil. The black triangles show the
relative viscosity ηr = η/ηs in the low-stress Newtonian regime for different particle
volume fractions ϕ =0.45, 0.49, 0.53, 0.55. The dashed black curve indicates the
best fit of the experimental results to Eq. (1) where ϕJ = 0.594. In the regime of
ϕ >ϕJ, the suspensions were initially unjammed at ε =0, and then shear jammed at
ε =0.2. The red crosses represent their shear moduli (Gs) in the shear-jammed
states (ε =0.2). The error bars represent the standard deviation from five inde-
pendent measurements. b Plots of Gr,max against ϕ for different Gm values. To
compare the absolute values ofGr,max with ηr, the fit to Eq. (1) obtained in panel a is
also shown by the dashed gray line in the same plot. c The actual shear modulus
Gmax is plotted against ϕ for different Gm values based on the results in (b). The
solid lines in both panels b and c are predictions from the scaling model based on
jamming criticality (Eqs. (4) and (5)). The error bars in b and c represent the stan-
dard deviation from measuring two to five independently fabricated samples.
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where β = γ/(δ − 1) = 3.0 ±0.7 and Δ = δβ = 5.0 ± 1.1, and the crossover
scaling functions f+ and f− apply to the regimes of ϕ >ϕJ and ϕ <ϕJ,
respectively. The derivations of Eq. (4) and the relationships between
the exponents aredescribed in the “Methods” section. A similar scaling
was previously applied to study fibrous networks near central force
rigidity transitions,where thebending rigidity plays a similar role asGm

in soft composites23,33.
To test our scaling ansatz (Eq. (4)), the mechanical responses

(Gmax) measured for different Gm and ϕ are plotted in Fig. 3c using the
rescaled variables Gmax=j1� ϕ=ϕJjβ and Gm /∣1−ϕ/ϕJ∣Δ. The range of Gm

spans twoordersofmagnitude, from0.04 to 4.0 kPa,whileϕ increases
from 0.45 to 0.67 around ϕJ = 0.594. Consistent with Eq. (4), the data
points for ϕ >ϕJ and ϕ <ϕJ are nicely collapsed onto two distinct
branches. The ϕ <ϕJ branch exhibits a slope close to 1, indicating that
Gmax ∼Gm. The ϕ >ϕJ branch reaches a plateau independent of Gm,
suggesting that Gmax is dominated by the particle phase. In the limit of
ϕ ≈ϕJ, a critical regime emerges where the two branches become
indistinguishable and both follow the same scaling,Gmax ∼G β=Δ

m ∼G0:6
m .

To model Gmax analytically, we derived an explicit form of the
equations of state

~h= g ± ð ~mÞ= c1 ~mΔ=β∓c2 ~m
ðΔ�1Þ=β∓ ~m ð5Þ

where g± are the inverse functions of f±. The reduced variables
~h � GmG

�1
p j1� ϕ=ϕJj�Δ and ~m � GmaxG

�1
p j1� ϕ=ϕJj�β were used to

simplify the notation. The derivation is detailed in the “Methods”
section. By fitting the data in Fig. 3c to Eq. (5), we obtain the

material constants c1 = 1.4 and c2 = 1.3 for the PS–PDMS composites.
With all the essential parameters (ϕJ, β, Δ, c1, and c2), we can cal-
culate Gmax for a given ϕ and Gm. For instance, the colored solid
lines in Fig. 2b and c represent the theoretical predictions from
Eqs. (4) and (5).

Criticality near a strain-dependent jamming transition
To describe the entire strain-stiffening regime, it is necessary to
expand the scaling analysis to include the axial strains ranging from
ε =0 to 0.2. Since the shear-jamming point of granular materials
depends on strain37–45, we next explore an extension to our model
by incorporating a strain-dependent jamming volume fraction ϕJ(ε)
for 0 ≤ ε ≤0.2.

Motivated by the previous simulation showing the similar sym-
metry between shear-jamming and isotropic jamming transitons40, we
assume that the critical exponents (β = 3 and Δ = 5) and the material
parameters (c1 = 1.4 and c2 = 1.3) of dense composites remain constant
for different ε. Therefore, Eq. (5) is rewritten as

~hε = g ± ð ~mεÞ= c1 ~mΔ=β
ε ∓c2 ~m

ðΔ�1Þ=β
ε ∓ ~mε, ð6Þ

where ~hε � GmG
�1
p j1� ϕ=ϕJðεÞj�Δ and ~mε � GðεÞG�1

p j1� ϕ=ϕJðεÞj�β.
For each ε, we search for an optimal ϕJ(ε) that allows the composite
shear modulus G(ε) measured with different Gm and ϕ to be collapsed
onto Eq. (6) (the dashed gray line in Fig. 4a). As a consequence, we are
able to overlayG(ε)measuredwithin the rangeof0 ≤ ε ≤0.2byplotting
G(ε)/(Gp∣1 −ϕ/ϕJ(ε)∣β) versus Gm/(Gp∣1−ϕ/ϕJ(ε)∣Δ). The resulting ϕJ(ε) in
Fig. 4b can be fitted to a form that describes the shear-jamming phase
boundary of granular materials39,42,46

ϕJðεÞ=ϕm + ðϕ0 � ϕmÞe�ε=ε* ð7Þ

with ϕ0 = 0.688 ±0.004, ϕm=0.594 ±0.002, and a characteristic
strain scale ε* = 0.035 ± 0.003. While ϕm agrees with ϕJ = 0.594 mea-
sured under the steady-state rheology of the PS-PDMS suspensions
shown in Fig. 2a, ϕ0 is consistent with the simulated random close
packing of spheres having the same size distribution as our samples
(Supplementary Fig. 6). Although Eq. (7) was obtained from the scaling
behaviors of soft composites, it effectively predicts the line of rigidity
transitions for the PS-PDMS suspensions in our experiments (Supple-
mentary Fig. 4).

To test the universality of the scalingmodel, we further examined
a different composite systemmade by dispersing glass beads in PDMS
matrices. The size of these glass beads is similar to that of the
PS particles but their shear modulus is ten times higher; that is,
Gp = 15.8 GPa. The results of the glass–PDMS composites are collapsed
onto the same plot in Fig. 4a with the same critical exponents β = 3
and Δ = 5 but different material constants c1 = 0.9 and c2 = 0.8.
The difference in c1 and c2 is likely due to the high bonding energy
between glass and PDMS. The resulting ϕJ(ε) was also fitted to Eq. (7)
with ϕ0 = 0.676 ±0.003, ϕm=0.613 ± 0.003, and ε* = 0.040 ±0.007.
We again found that ϕm=0.613 is consistent with the shear-jamming
point of the glass–PDMS suspensions and thatϕ0 = 0.676 is consistent
with the predicted random close packing. The variation in ϕm may
stem from the difference in frictional coefficients and polydispersities
between the PS and glass particles.

With the given parametersGm,ϕ and ε, we can calculate the shear
modulus of soft composites as

Gðε,ϕ,GmÞ=Gpj1� ϕ=ϕJðεÞjβf ±

Gm=Gp

j1� ϕ=ϕJðεÞjΔ

 !
, ð8Þ

whereϕJ(ε) is given by Eq. (7), and the functions f± can be evaluated by
numerically solving the inverse functions g± in Eq. (6). In Fig. 4c, we
compared themeasured shearmoduli of two sets of PS-PDMS samples

Fig. 3 | Elasticity-controlled criticality near jamming. a Plots of Gr,max against
ϕJ−ϕ for Gm=0.12, 0.36, and 1.28 kPa, respectively. The dashed gray line indicates
the scaling law of Eq. (2). b Plots of Gmax versus Gm for composites with
ϕ =0.59≈ϕJ, where the dashed black line represents the scaling law of Eq. (3).
c Scaling collapse of Gmax, normalized by ∣1−ϕ/ϕJ∣β, as a function of Gm/∣1−ϕ/ϕJ∣Δ

with ϕJ = 0.594, β = 3, and Δ = 5. The solid markers represent the experimental
results obtained forϕ >ϕJ, and the openmarkers represent the results obtained for
ϕ <ϕJ. The data points are labeledwith different colors based onϕ. The dashed red
and blue curves are the best fits to the equations of state (Eq. (5)) for the experi-
mental results within ϕ >ϕJ and ϕ <ϕJ, respectively. All error bars represent stan-
dard deviations from measuring two to five independently fabricated samples.
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withGm=0.12 and 1.28 kPa, respectively, to the theoretical predictions
from Eq. (8).

The phase diagram in Fig. 5 summarizes the fundamental aspects
of our criticality framework. The Gm=0 plane represents the granular
suspensions consisting of particles in uncrosslinked polymers. The
solid red curve within the plane,ϕ =ϕJ(ε), denotes the boundary of the
shear-jamming transition21,37. Soft composites exist in the 3D space
characterized by Gm>0, and the vertical planes in Fig. 5 represent the
cross sections of this space at different strains. While there is no
rigidity transition in this space with Gm>0, the mechanics are deter-
mined by the critical scalings near ϕJ(ε). When Gm /Gp≪ ∣1−ϕ/ϕJ(ε)∣Δ, a
soft composite resides either in amatrix-dominated regime ifϕ <ϕJ or
in a particle-dominant regime if ϕ >ϕJ. As Gm approaches zero,
Gðε,ϕÞ=Gmð1� ϕ=ϕJðεÞÞ�γ for ϕ <ϕJ, or Gðε,ϕÞ= CGpj1� ϕ=ϕJðεÞjβ for
ϕ >ϕJ, where C is a prefactor depending on the material parameters c1
and c2. When 1≫Gm/Gp≫ ∣1−ϕ/ϕJ(ε)∣Δ, a soft composite is anticipated
to be in the critical regime, where G= c�β=Δ

1 G β=Δ
m G1�β=Δ

p .

Discussion
The study reveals the essential role of shear-jamming in themechanics
of soft composites in the dense limit, a regime where the system
becomes highly responsive and promises wide-ranging applications,
yet remains challenging to model using conventional tools from con-
tinuous mechanics. We show that the strain-stiffening of soft compo-
sites can be interpreted as a manifestation of the criticality near a
strain-dependent jamming point of dense suspensions (Fig. 5). The
efficacy of our scalingmodel reveals the uniquemechanical features of
soft composites. As Gm decreases to the order of 101–102 Pa, the PDMS
matrix consists of both a weakly crosslinked network and a substantial
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Fig. 4 | Criticality near a strain-dependent jamming transition. a Collapse of the
rescaled composite shear modulus G(ε)/(Gp∣1−ϕ/ϕJ(ε)∣β) as a function of the
rescaledmatrix shear modulus Gm/(Gp∣1−ϕ/ϕJ(ε)∣Δ) at different axial strains (ε) with
two fixed critical exponents β = 3 and Δ = 5. The data points include the experi-
mental results obtained for two composite systems: PS-PDMS and glass-PDMS soft
composites. The dotted gray (and pink) curves represent the best fit to Eq. (6) for
the PS-PDMS (and glass-PDMS) composites. The vertical dashed line (Gm/
Gp = ∣1−ϕ/ϕJ(ε)∣Δ) approximates the crossover boundary from the critical regime to
the particle- or matrix-dominated regime. b Plots of the fitted ϕJ(ε) for PS-PDMS

(open black circles) and glass-PDMS systems (gray uptriangles). The error bars
indicate the fitting uncertainties. The solid black and gray curves represent the best
fits of ϕJ(ε) to Eq. (7) for these two material systems, respectively. The pink area
indicates the shear-jammed phase of the PS-PDMS suspensions. c Plots of the shear
modulus of PS-PDMS composites (G) as a function of both ε and ϕ. The blue and
pink connected points represent the experimental results for Gm= 1.28 and
0.12 kPa, respectively. The blue and pink surfaces represent the theoretical pre-
dictions from Eq. (8) for these two Gm values.

Fig. 5 | Phase diagramof themechanical responses of soft composite solids and
granular suspensions. The Gm=0 plane represents the suspensions consisting of
particles dispersing in uncrosslinked polymers. The solid red line in the Gm=0
plane signifies the shear-jamming transition (ϕJ(ε)) of dense suspensions37. The 3D
space defined by Gm>0 represents soft composites consisting of particles dis-
persing in crosslinked polymeric elastomers. The mechanical properties of dense
soft compositesunderdifferent strains ε are controlledby the scalings (Eq. (8)) near
the critical line ϕJ(ε). The dashed red lines Gm/Gp = ∣1−ϕ/ϕJ(ε)∣Δ indicate the cross-
over boundary from the matrix- or particle-dominated regime to the critical
regime. The solid arrow (A→B→C) illustrates a representative strain-stiffening
process of soft composites with a particle volume fraction ϕm<ϕ <ϕ0. With the
increase in the applied strain ε, the mechanical response of the composites crosses
over from the matrix-dominated regime (ε =0) to the critical regime (ε = ε1), and
finally to the particle-dominated regime (ε = ε2).
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amount of uncrosslinked free chains. The characteristic pore size of
the network can be estimated as a∼ ðkBT=GÞ1=3 ∼ 50 nm47. Therefore,
the particles included in the PDMS matrix can potentially move to
create direct contacts without causing fractures in the network. Con-
sequently, the contact network within soft composites may resemble
that in shear-jammed granular systems as Gm approaches zero.

From the perspective of materials science, the study will benefit
materials design in tissue engineering. Strain-stiffening has been
widely observed in both biological48 and synthetic tissues10,16, with the
prevailing interpretations attributing them to the nonlinearmechanics
of the fibrous networks in the matrix. The significance of direct con-
tacts between inclusions and the associated jamming transition in soft
matrices began attracting attention only recently16,49. A key difference
between our experiments and previous studies10,48,49 is that the strain
stiffening in our study occurs without increasing the volume fraction
and thus cannot be explained by the model in ref. 16. The connection
between strain-stiffening in incompressible soft composites and shear-
jamming in dense suspensions offers a new scheme for designing the
tissue-like mechanics of soft composites.

Methods
Material preparation
Both the PS and glass particles are micron-sized spheres with size
distributions that can be described by the log-normal function

f ðrÞ= 1ffiffiffiffiffi
2π

p
σr
exp � 1

2
lnðr=r0Þ

σ

� �2� �
. For the PS particles, r0 = 12μm and

σ = 0.6. For the glass particles, r0 = 20μm and σ =0.5. The shear
modulus of the particles,Gp, was measured by compressing individual
beads between two flat substrates using a nanoindenter (Bruker,
Hysitron TI-980). The resulting force-displacement curves were fitted
to the Hertzian contactmodel (see Supplementary Fig. 1b). The results
showed that Gp = 1.6 and 15.8 GPa for the PS and the glass particles,
respectively.

The PDMS matrix was made by mixing a silicone base vinyl-
terminated polydimethylsiloxane (DMS-V31, Gelest Inc) with copoly-
mer crosslinkers (HMS-301, Gelest Inc) and a catalyst complex in
xylene (SIP6831.2, Gelest Inc.). We prepared two mixture solutions,
Gelest Part A and Gelest Part B, before curing. In particular, Part A
consisted of a silicone base with 0.005wt% catalyst, and Part B con-
sisted of a silicone base with 10wt% crosslinkers. By changing the
weight ratio of A to B from 14.5:1 to 8:1, we varied Gm from 0.04
to 4 kPa.

We prepared disk-shaped composite samples with 10mm radius
and 10mm height in an acrylic mold covered with a para-film. To fully
relax the internal structures, we used a vortex mixer (BV1000,
Benchmark Scientific Inc.) to vibrate the samples immediately after
mixing all the components. For ϕ >0.5, we compressed the samples
using a glass plate to flatten the top surface. Each sample was then left
to cure at room temperature for at least 48 h.

Criticality analysis
We first show how the scaling form of the equations of the state shown
in themain text Eq. (4) can be obtained byminimizing a scale-invariant
phenomenological free energy. Denote the singular part of the free
energy of a dense granular suspension (Gm=0) under a given axial
strain ε as FðΦ,GÞ, whereG � G=Gp is thedimensionless shearmodulus,
and Φ ≡ϕ/ϕJ(ε)−1 is the reduced volume fraction. For a given length
scale l, we assume that the free energy is self-similar near the critical
point Φ =0,

FðΦ,GÞ= l�dFðlyΦΦ, lyGGÞ, ð9Þ

where d = 3 is the space dimension, and yΦ and yG are the scaling
dimensions ofΦ and G, respectively. Considering l = jΦj� 1

yΦ , Eq. (9) can

be expressed as

FðΦ,GÞ= jΦj d
yΦ ~F ± ðjΦj�

yG
yΦGÞ: ð10Þ

where ~F + and ~F� are different forms of the free energy in the regimes
of Φ > 0 and Φ <0, respectively.

For a composite with Gm>0, the parameters fG,Gmg are analo-
gous to {M,H} in the Ising model. We define Gm � Gm=Gp as the
dimensionless shear modulus of the elastomer matrix. To transform
the variable by substituting fΦ,Gg with fΦ,Gmg, we minimize the fol-
lowing Legendre transformation function:

LðΦ,GmÞ= min
G

fFðΦ,GÞ � GmGg: ð11Þ

In soft composites, FðΦ,GÞ and LðΦ,GmÞ are in direct analogy to
the Helmholtz free energy and Gibbs free energy in thermodynamic
systems. The explicit evaluation of Eq. (11) leads to

Gm = jΦjΔ~F 0
± ðjΦj�βGÞ, ð12Þ

where Δ ≡ (d − yG)/yΦ, and β ≡ yG/yΦ. By defining f± as the inverse
functions of ~F

0
± , we obtain the scaling form of the equations of state

shown in Eq. (5) of the main text:

G = jΦjβf ± ðGmjΦj�ΔÞ: ð13Þ

For Φ <0, we have

lim
Gm!0

G
Gm

∼
∂G
∂Gm

= jΦjβ�Δf 0± ðjΦj�ΔGmÞ∼ jΦjβ�Δ: ð14Þ

Compared with Eq. (2) in the main text, we have γ =Δ − β.
In addition, Eq. (13) suggests that f ± ðGmjΦj�ΔÞ / ðGmjΦj�ΔÞβ=Δ at

the critical point Φ =0 to prevent the divergence of free energy.
Therefore, we have

GðΦ=0Þ∼Gβ=Δ
m : ð15Þ

Compared with Eq. (3) in the main text, we obtain δ =Δ/β.
We next derive the explicit formof the equation of states in Eq. (5)

in the main text. Based on the scale-invariant expression of Eq. (9), the
expansion of FðΦ,GÞ should comprise terms ΦaGb with ayΦ +byG =d.
Therefore, F can be expressed as

FðΦ,GÞ=
X
i

μi, ± jΦjaiG
d�aiyΦ

yG =
X
i

μi, ± jΦjaiG
Δ�ai
β + 1, ð16Þ

whereai > 0, andμi,± are the expansion coefficients forΦ >0 andΦ <0.
By evaluating the variation in Eq. (11), we obtain

Gm =
X
i

μi, ±
Δ� ai +β

β
jΦjaiG

Δ�ai
β : ð17Þ

The above equation can be further simplified by including only
three terms to describe the key experimental observations. First,
λ = μ0(Δ + β)/β > 0 when a0 = 0 to ensure that the free energy is mini-
mum at G=0 while Φ =0. Second, μ0

1, ± =μ1, ± ðΔ+ β� 1Þ=β≠0 when
a1 = 1 to ensure that ∂GðΦÞ=∂Φ≠0 at Φ = 0. Finally, because G / Gm

in the matrix-dominated regime, we have μ0
2, ± = 2μ2, ± ≠0 when

a2 =Δ − β. As a consequence, Gm can be simplified as

Gm = λG Δ
β +μ0

1, ± jΦjGΔ�1
β +μ0

2, ± jΦjΔ�βG: ð18Þ

Due to the intrinsic nature of a continuous phase transition at
Φ =0, we have μ0

i, ± =∓μ0
i with μ0

i >0 for both i = 1 and 2. By defining
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the reduced variables ~m � G=jΦjβ and ~h � Gm=jΦjΔ, Eq. (18) can be
rewritten as

~h= c1 ~m
Δ
β∓c2 ~m

Δ�1
β ∓c3 ~m, ð19Þ

where c1 = λ, c2 =μ
0
1, and c3 =μ

0
2. In the regime of Φ <0, we experi-

mentally observed ~h= ~m= 1 as ~m ! 0, suggesting that c3 = 1. Therefore,
we finally obtain

~h = c1 ~m
Δ
β∓c2 ~m

Δ�1
β ∓ ~m, ð20Þ

which is Eq. (5) in the main text.
In the particle-dominated regime, when Φ > 0 and ~h =0, the

nonzero solution of ~m from Eq. (20) gives the prefactor C in the scaling
of the shear modulus G= CGpj1� ϕ=ϕJjβ. The value C can be obtained
by solving

c1C
Δ
β�1 � c2C

Δ�1
β �1 � 1 = 0, ð21Þ

and is thus determined by both c1 and c2.
In the critical regime, as Φ =0 and both ~m ! 1 and ~h ! 1,

Eq. (20) reduces to ~h= c1 ~m
Δ=β, which gives G= c�β=Δ

1 G β=Δ
m G1�β=Δ

p .

Data availability
All the data supporting the findings of this study are available within
the main text and the Supplementary Information. The source data
used in generating all the figures are provided in the Source Data
file. Source data are provided with this paper.
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