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Transition from positive to negative indirect
CO2 effects on the vegetation carbon uptake

Zefeng Chen 1,2,3, Weiguang Wang 1,2,3 , Giovanni Forzieri4 &
Alessandro Cescatti5

Although elevated atmospheric CO2 concentration (eCO2) has substantial
indirect effects on vegetation carbon uptake via associated climate change,
their dynamics remain unclear. Here we investigate how the impacts of
eCO2-driven climate change on growing-season gross primary production
have changed globally during 1982–2014, using satellite observations and
Earth system models, and evaluate their evolution until the year 2100. We
show that the initial positive effect of eCO2-induced climate change on vege-
tation carbonuptakehasdeclined recently, shifting tonegative in the early 21st
century. Such emerging pattern appears prominent in high latitudes and
occurs in combination with a decrease of direct CO2 physiological effect,
ultimately resulting in a sharp reduction of the current growth benefits
induced by climate warming and CO2 fertilization. Such weakening of the
indirect CO2 effect can be partially attributed to the widespread land drying,
and it is expected to be further exacerbated under global warming.

Terrestrial ecosystems absorb ~30% of anthropogenic carbon dioxide
(CO2) emissions and thus play a fundamental role inmitigating climate
change1,2. Over the past five decades, the terrestrial carbon sink has
more than doubled at a pace that is consistent with the increase in
anthropogenic CO2 emissions2,3. Current evidence demonstrates that
the enhancement of the terrestrial carbon sink is partially attributable
to the increased carbon uptake by vegetation under elevated atmo-
spheric CO2 concentration (eCO2)

4–7. The eCO2-induced changes in
vegetation carbon uptake (represented by gross primary production
(GPP)) are governed by two different mechanisms. The first is the
direct effectof eCO2 through the stimulationof photosynthetic carbon
fixation and the enhancement of water-use efficiency (hereafter
eCO2(dir))

8,9. The second is the indirect effect of eCO2 through its
radiative forcing and the associated change in climate (e.g., tempera-
ture and water regime) and related environmental conditions (e.g.,
variation in nitrogen availability linked to temperature-driven changes
in the mineralization rate of soil organic matter) (hereafter
eCO2(ind))

10–12. Recently, data-driven assessments based on in-situ and
satellite observations have documented a declining trend in
eCO2(dir)

9,13. Given the dominant role of eCO2 in the recent increase in

GPP14, the sign and temporal variation in eCO2(ind) is expected to
increasingly control the future trajectory of the terrestrial carbon
budget15. However, the dynamics of such indirect CO2 effect on the
terrestrial carbon budget remain largely elusive. The relative impor-
tance of future indirect versus direct effects of eCO2 in regulating
vegetation carbon uptake has not yet been quantified, and the
underlying ecological mechanisms remain poorly understood. Such
knowledge gaps are reflected in substantial uncertainties in the
effectiveness of land-based climate mitigation policies.

eCO2(ind) originates from the strong and non-linear effects of
eCO2-induced climate change on terrestrial GPP, which involve multi-
ple pathways, including the plants’ response to changing temperature,
water supply, atmospheric dryness (expressed by vapor pressure
deficit, VPD) and their complex interactions16. In addition, these
pathways via which climate influences GPP also interact with the
eCO2(dir)

17,18. For example, the rising VPDwith eCO2 generally causes a
reduction in stomatal aperture, modulating the transpiration rate and
—at the same time—the positive effect of CO2 fertilization on
photosynthesis19. In view of the variety of interacting feedbacks that
regulate vegetation carbon uptake, it is challenging to quantitatively
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disentangle the total eCO2(ind), particularly at regional-to-global
scales, where local-scale findings of Free-air CO2 enrichment (FACE)
experiments may not be applicable20,21. Recent studies based on
satellite products andmodel simulations have reported theweakening
of the temperature-vegetation relationship in northern ecosystems
over the past 30 years22, the increasingly negative impact of VPD on
alpine grassland productivity23, and the increasing water constraint on
vegetation growth in many regions across the globe24,25 and the cor-
responding higher risk of droughts to the global carbon cycle26.
However, considering that changes in temperature, atmospheric dry-
ness, precipitation, and soil moisture are single components of the
climate response to the CO2 radiative forcing, findings of the above-
mentioned studies can only partially reflect the temporal variations in
eCO2(ind). eCO2 drives changes in various climatic factors, and their
effects on vegetation carbon uptake are covariant, can be additive or
offsetting, and may lead to nonlinearities due to different feedback
mechanisms27,28. Existing studies focusing on a single climate driver
(e.g., temperature22), generally assumed that the effects are indepen-
dent by neglecting the covariation and the interaction between dri-
vers. Therefore, the assessment of the variations in the total indirect
effect of eCO2 can only be partially represented.

To address these knowledge gaps, here we investigate the
dynamics in eCO2(ind) at the global scale for the period 1982–2014
using both satellite retrievals and an ensemble of Earth systemmodels
(ESMs) participating in the Coupled Model Intercomparison Project
Phase 6 (CMIP6)29 (Table 1), and project potential changes in eCO2(ind)
up to the year 2100 under the SSP5-8.5 scenario. Factorial simulations
derived from the fully coupled experiment and the biogeochemically
coupled experiment are used to disentangle the eCO2(ind) signal for
the historical and scenario periods30 (Table 2, details in Methods). To
further evaluate the robustness ofmodel-based results, we retrieve the
eCO2(ind) term from satellite observations (hereafter eCO2(ind)obs)
through a statistical methodology within the climate analog frame-
work (Methods). We complement the analyses by deriving eCO2(dir)
throughmultiple non-linear regression, incorporatingCO2 and climate
drivers, and exploring its relationship with eCO2(ind) across time and
space. Finally, we investigate the sensitivity of eCO2(ind) on land
aridity to elucidate the underlying eco-hydrological mechanisms.

Results
Temporal change in the indirect effect of eCO2

An ensemble of historical simulations from seven CMIP6 models
(CMIP6SMA, SMA: simple model averaging) shows that global eCO2(ind)
during the period 2000–2014 is significantly (p<0.05, t test) lower than
that during 1982–1996 (Fig. 1a, b). Averaged across the global vegetated
areas, eCO2(ind) simulated by CMIP6 models decreases from
0.24 ±0.32 gCm−2 ppm−1 (mean± s.e.) during 1982–1996 to
−0.04±0.24 gCm−2 ppm−1 during 2000–2014 (Fig. 1a, b). The emer-
gence of negative eCO2(ind) during 2000–2014 suggests the recent
upsurge of climate stresses on the global vegetation carbon uptake,
which is in agreement with the negative contribution of climate change
on global GPP trend after 2000s reported in previous literature31.

Remarkable differences in changes in eCO2(ind) emerge across geo-
graphic areas and climatological gradients. Cold and dry climate zones
experience a prominent decline in eCO2(ind). The statistically significant
decreasing signal is mostly in boreal regions (16.8% of global vegetated
land with p<0.05) with hot spots in eastern Canada, Scandinavia, and
south-central Siberia (Fig. 1c, d). Warm and wet climate zones show an
opposite tendencywithmore limited significant patterns (9.9% of global
vegetated land with p<0.05) (Fig. 1c, d).

In parallel, we used satellite retrievals of near-infrared reflectance
of vegetation (NIRv) as a proxy of observed GPP32 to further verify the
robustness of the signals derived from model simulations. The
satellite-observed eCO2(ind)obs was disentangled from the other con-
founding effects through a climate analog approach33, based on the
identification of years with similar climate and distinct atmospheric
CO2 concentration (details in Methods). Observation-based results
confirm a global weakening effect of eCO2-driven climate change on
GPP between the two periods (2000–2014 versus 1982–1996), with an
overall change in eCO2(ind)obs of −0.38 gCm−2 ppm−1. We also found a
good agreement between model-based and observation-based results
in terms of spatial patterns emerging across climatological and lati-
tudinal gradients (Fig. 1d–f).

A comprehensive set of experiments was additionally performed
to test whether our model-based results were potentially affected by
the data source, temporal window length, and the criteria used to
define the growing season (Supplementary Text 1 and 2; Supplemen-
tary Figs. 1 and 2, and Table 1). Meanwhile, analyses replicated by using
the kernel normalized difference vegetation index (kNDVI) as an
alternative satellite GPP proxy were also performed to further verify
the robustness of our results (Supplementary Text 3; Supplementary
Fig. 3). Altogether, these results univocally show a substantial reduc-
tion of the indirect effect of eCO2 at the global scale (Fig. 1a and
Supplementary Figs. 1–3) and particularly in the Northern Hemisphere
(Fig. 1d–f and Supplementary Fig. 3c). Such patterns agree with the
weakening temperature-vegetation relationship in northern ecosys-
tems documented in previous literature22, and appear plausibly influ-
enced by the increasing water limitation (Supplementary Fig. 4).

eCO2(ind) is expected to further decline in all investigated future
temporal periods under the SSP5-8.5 scenario to the point that
the global mean could persistently settle on negative values (Fig. 2a).
Five out of seven individual ESMs agree that eCO2-driven climate
change will exert a negative role on the global vegetation carbon
uptake for the period 2086–2100, albeit the inter-model spread is
considerable (Supplementary Fig. 5a). For the period 2086–2100, the
global eCO2(ind)—as estimated by CMIP6SMA—is projected to decrease
significantlyby0.36 gCm−2 ppm−1 compared to the analogous estimate
derived for the period 1982–1996 (p <0.01, t test) (Fig. 2a). Such
decreasing signal appears statistically significant (p <0.05) over 46.5%
of global vegetated land and prominently in the Northern Hemisphere
(Fig. 2b,c). The global declining signal is partially dampened by
opposite increasing patterns mainly occurring along the equatorial
belt, which, however manifest statistically significant over a smaller
extent (32.7%).

Table 1 | Information of CMIP6 ESMs used in this study

Model name Land surface component Modeling center Soil depth (m)

ACCESS-ESM1-5 CABLE2.4 with CASA-CNP Commonwealth Scientific and Industrial Research Organisation, Australia 2.872

CanESM5 CLASS-CTEM Canadian Center for Climate Modeling and Analysis 4.1

CNRM-ESM2-1 ISBA-CTRIP Center National de Recherches Meteorologiques, France 10

E3SM-1-1 ELM1.1 U.S. Department of Energy 35.18

MIROC-ES2L MATSIRO with VISIT-e Japan Agency for Marine-Earth Science and Technology 14

MRI-ESM2-0 HAL1.0 Meteorological Research Institute of the Japan Meteorological Agency 8.5

UKESM1-0-LL JULES-ES-1.0 U.K. Natural Environment Research Council and Met Office 2
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To derive a more comprehensive picture of the terrestrial eco-
system response to eCO2-driven climate change, we explored the
temporal change in the strength of indirect CO2 effect on carbon
release by respiration (Supplementary Fig. 6), and on the net ecosys-
tem carbon uptake (eCO2(ind)-NEP, Fig. 2d, e) through factorial
experiments of CMIP6 ESMs. We estimated a global eCO2(ind)-NEP of
−0.02 gCm−2 ppm−1 during the whole historical period (1982–2014),
which is consistent with previous findings about the negative carbon-
climate feedback from the land’s perspective (i.e., positive from the
atmosphere’s perspective)34. In pace with the attenuation of the
indirect effect on total vegetation carbon uptake (Fig. 2a), global
eCO2(ind)-NEP is projected to decrease from 0.05 ± 0.12 gCm−2 ppm−1

during 1982–1996 to −0.05 ±0.03 gCm−2 ppm−1 during 2086–2100
(inset box in Fig. 2d). The smaller decline in eCO2(ind)-NEP compared
to that in eCO2(ind) (−0.1 versus −0.36 gCm−2 ppm−1) suggests the
concurrently reduced influence on ecosystem respiration and its
consequent offsetting effect. The latitudinal gradient of the changes in
eCO2(ind)-NEP between the two periods is largely concordant with the
one derived from the changes in eCO2(ind), thus reflecting similar
spatial dependences on environmental factors (Fig. 2b–e).

Relationship between the indirect and direct effects of eCO2

To quantify the relative importance of indirect versus direct effects of
eCO2 in regulating vegetation carbon uptake, simulated and observed
eCO2(dir) was derived based on a multiple non-linear regression
(Methods) (i.e., CMIP6SMA and obs-RM in Fig. 3a). The analyses were
complemented by two additional independent estimates of eCO2(dir)
based on factorial experiments of CanESM5 (i.e., CanESM5-FE in
Fig. 3a), and on the climate analog approach applied to observational
datasets (i.e., obs in Fig. 3a) (details in Methods). We found that along
with the decrease in eCO2(ind), global eCO2(dir) has dropped aswell in
recent years and is expected to further decline in the coming decades
(Fig. 3a). Model results based on factorial experiments and non-linear
regression show a strong reduction in global eCO2(dir) between the
periods 2000–2014 and 1982–1996, largely in agreementwith satellite-
derived estimates (Fig. 3a). Nevertheless, themagnitude of the decline
simulated by CMIP6SMA (−0.44 gCm−2 ppm−1, or −22.8%) is clearly
lower than the analogous estimate derived from satellite product (obs:
−1.20 gCm−2 ppm−1 or −78.3%; obs-RM: −1.65 gCm−2 ppm−1 or −67.0%)
and from dedicated factorial experiments (CanESM5-FE:
−1.38 gCm−2 ppm−1 or −69.2%) (Fig. 3a). While we recognized the
intrinsic difficulties of disentangling drivers and producing robust
causal attribution in observation-based analysis, we argued the emer-
ging differences between models and observations could be partially
attributable to the simplifying assumptions of CMIP6 models.

Under the investigated SSP5-8.5 scenario, the relative importance
of eCO2(ind) and eCO2(dir) for the terrestrial carbon cycle is expected
to vary greatly. The relative contribution of eCO2(ind) to the net effect
of eCO2 (i.e., eCO2(net), the sumof eCO2(dir) and eCO2(ind)) will likely
decrease from 11.1% (1982–11996) to −22.6% (2086–12100) (Fig. 3b).On
the contrary, the relative contribution of eCO2(dir) is projected to
increase, mainly due to the higher relative decreasing rate of
eCO2(ind). However, in view of the expected progressive decline in
both eCO2(ind) and eCO2(dir), eCO2(net) could become negative, and
eCO2(ind) could emerge as the dominant driver of the future temporal
dynamic of GPP. Some regions of the globe, such as central Canada,
northern Amazon, and western and southern Africa, could exhibit a
dominant role of eCO2(ind) by the end of 21st century (Supplementary
Fig. 7). A detailed analysis suggests that the negative eCO2(ind) will
overcome the positive eCO2(dir) over 30.3% of global vegetated land
by2041–12055, andover 48.0%by2086–12100 (SupplementaryFig. 8).
These results agree with previous studies which have emphasized the
expected net negative role of eCO2 on the terrestrial carbon uptake as
a result of the increasing detrimental impacts of climate change on
vegetation and a saturating CO2 fertilization
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Results reveal that 66.9% of global vegetated land could experi-
ence the same direction of changes in eCO2(ind) and eCO2(dir) (i.e.,
“+ +” and “– –” in Fig. 3c) between the historical (1982–11996) and
future (2086–2100, SSP5-8.5) period, while the remaining 33.1% could
manifest reverse directions of changes (i.e., “+ –” and “– +”). The
concurrent decrease in eCO2(ind) and eCO2(dir) (“– –”) appears to be
the most pervasive case (48.5%), particularly over northern latitudes

(Fig. 3c). Averaged across regions with simultaneous reductions in
eCO2(ind) and eCO2(dir), changes in eCO2(ind) and eCO2(dir) explain
47.9% and 52.1% of reduction in net CO2 effect on growing-season GPP
(−4.87 gCm−2 ppm−1), respectively (Fig. 3d). Such concurrent decrease
in eCO2(ind) and eCO2(dir) is also reflected in the sharper decrease in
eCO2(net) in northern lands (−2.69 gCm−2 ppm−1, or −82.0%) between
the historical and future periods compared to the global mean

-6

-4

-2

0

2

4

6
0 2 4 6 8

-0.04

Frequency (%)

1982-1996
2000-2014

0.24

0 1000 2000 3000 4000

-10

0

10

20

30

P (mm yr-1)

T
(°
C

)

Change in eCO2(ind)

0 1000 2000 3000 4000

Change in eCO2(ind)obs

P (mm yr-1)

20

40

60

80

100

C
um
ul
at
iv
e
fre
qu
en
cy
(%
)

-60

-30

0

30

60

90

-4 -2 0 2 4 6

La
t(
°)

Change (gC m-2 ppm-1)

eCO2(ind)
eCO2(ind)obs

a b

fc

d e

1982-1996 2000-2014
-0.4

-0.2

0.0

0.2

0.4

0.6

eC
O
2(i
nd
)(
gC

m
-2
pp
m
-1
)

Δ=-0.28 (p<0.05)

Fig. 1 | Historical variations in the indirect effect of elevated atmospheric CO2

concentration (eCO2) on vegetation carbon uptake. a Mean indirect effect of
eCO2 on growing-season gross primary production (GPP) via associated climate
change (eCO2(ind)) during the periods 1982–1996 and 2000–2014, as derived from
the CMIP6 model ensemble (i.e., CMIP6SMA). Error bars represent the standard
error of effects derived from ensemble members (i.e., seven CMIP6 ESMs). Δ
expresses the mean of difference in eCO2(ind) between the two periods. The sta-
tistical significance of the difference is assessed by t test. b Frequency distribution
of eCO2(ind) at the global scale during the periods 1982–1996 and 2000–2014, as
estimated with CMIP6SMA. Distribution averages are shown as dotted horizontal
lines. c Spatial pattern of difference in eCO2(ind) between the two periods
(2000–2014 versus 1982–1996) derived from CMIP6SMA. Non-vegetated areas are
excluded from our analysis and are shown in gray. Regions labeled by black dots
indicate differences that are statistically significant (t test, p <0.05). Dots are

spaced 3° in both latitude and longitude, and statistics were computed over 9° × 9°
spatial moving windows. dMean difference in eCO2(ind) between the two periods
(2000–2014 versus 1982–1996) simulated by CMIP6SMA, binned as a function of
climatological mean precipitation (P) and air temperature (T). Black dots indicate
bins with differences that are statistically significant (t test, p <0.05). e Same as
d, but for eCO2(ind)obs whichwas estimated by the satellite-observedGPPobs within
a temporal climate analog framework. f (Cumulative frequency distribution of
difference in eCO2(ind), and eCO2(ind)obs between the two periods (2000–2014
versus 1982–1996). Distribution averages are shown as solid vertical lines. The
subplot below shows the zonal medians of difference in eCO2(ind), and
eCO2(ind)obs between the two periods (2000–2014 versus 1982–1996) at 5° latitu-
dinal resolution. Corresponding interquartile ranges of CMIP6SMA simulation are
shown as shaded bands. Source data are provided as a Source Data file.
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(−1.65 gCm−2 ppm−1, or −75.7%), as estimated by CMIP6SMA (Supple-
mentary Table 2).

Additional analyses based on model simulations from the idea-
lized 1%per year increasingCO2 experiments show spatial patterns and
trends in both indirect and direct CO2 effects at the global mean level
similar to those described above (Supplementary Text 4;

Supplementary Figs. 9–11). Meanwhile, under such idealized scenario
where radiatively-coupled mode is available, estimates of direct CO2

effect based on the non-linear regression framework and those based
on the climate analog approachwere carefully compared against those
obtained directly from factorial experiments (Supplementary Text 4).
The high agreement among the three sets of estimates further

Fig. 2 | Projectionof future variations in indirect effect of elevated atmospheric
CO2 concentration (eCO2) on vegetation carbon uptake. a Mean indirect effect
of eCO2 on growing-season gross primary production (GPP) via associated climate
change (eCO2(ind)) derived from CMIP6SMA during the six independent periods,
namely 2011–2025, 2026–2040, 2041–2055, 2056–2070, 2071–2085, and
2086–2100. Ensemblemean and standard error are shown by the diamond symbol
andwhiskers, both referring to the right orange y axis. Dottedhorizontal line and its
shaded band represent the eCO2(ind) during 1982–1996 and the corresponding
standard error, as estimated by CMIP6SMA. Interannual changes in anomalies of
growing-season GPP over 2011–2100 globally, simulated by CMIP6SMA under the
fully-coupled experiment (GPPFULL) and the biogeochemically-coupled experiment
(GPPBGC) are shown in blue and green lines, respectively. Numbers refer to the
trends of GPPFULL and GPPBGC (unit: gCm2 yr−2) over 2011–2100. The statistical sig-
nificance of trends is assessed byMann–Kendall test.b Spatial pattern of difference

in eCO2(ind) between the historical and future periods (2086–2100 versus
1982–1996) derived from CMIP6SMA. Regions labeled by black dots indicate dif-
ferences that are statistically significant (t test, p <0.05). Dots are spaced 3° in both
latitude and longitude, and statistics were computed over 9°×9° spatial moving
windows. c Zonal medians of difference in eCO2(ind) between the historical and
future periods (2086–2100 versus 1982–1996) simulated by CMIP6SMA at 5° lati-
tudinal resolution. Corresponding interquartile ranges of CMIP6SMA simulation are
shown as shaded band. d, e Same as b, c but for the indirect effect of eCO2 on
growing-season net ecosystem production (NEP) via associated climate change
(eCO2(ind)-NEP) derived fromCMIP6SMA. The inset in d shows themean eCO2(ind)-
NEP during the periods 1982–2014, 1982–1996, and 2086–2100, respectively. Error
bars represent the standard error of effects derived from ensemble members.
Source data are provided as a Source Data file.
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supports the validity of our multiple non-linear regression framework
and of the climate analog approach (Supplementary Figs. 12 and 13).

GPP in theNorthernHemispherehas increased steadily during the
past decades35 in response to the large and positive eCO2(ind) and
eCO2(dir) (Supplementary Fig. 14), thus playing a critical contribution
to the global terrestrial carbon sink36,37. Therefore, the widespread and
strong decrease in both indirect and direct effects of eCO2 in the
Northern Hemisphere resulting from our analyses rises concern about
the future dynamic of the regional carbon sink and its capacity to keep
the pace of anthropogenic emissions.

Mechanisms behind the decline in the indirect effect of eCO2

To disentangle the possible mechanisms responsible for the declining
eCO2(ind), we explored its relationship with the expected changes in
terrestrial water availability. To this aim, we first exploited the
CMIP6 simulations to quantify the spatiotemporal variations in aridity
conditions, here expressed in terms of surface (0–10 cm) soilmoisture
(SMsurf). Results indicate a projected widespread decline in terrestrial
water availability by the end of the century compared to the current
conditions (82.6% of global vegetated land exposed to a reduction in
SMsurf, Fig. 4a). At the global level and based on multi-model means
(i.e., CMIP6SMA), we estimated a significant decrease in SMsurf during
2086–2100 by 7.3% (p <0.01, t-test) compared to analogous estimates
obtained for the period 1982–1996 (Fig. 4b). Similar drying patterns
emerge for individualmodel runs (Supplementary Fig. 15), for total soil
moisture (SMtotal), for a widely used aridity index (defined as the ratio

of annual precipitation to potential evapotranspiration, P/PET) (Sup-
plementary Figs. 16 and 17). Previous studies focusing on dryness
indices38 and hydrological regimes39,40 further corroborate such drying
trends.

To investigate the relationship between change in eCO2(ind) and
land surface drying/wetting, we averaged the change in eCO2(ind)
across gradients of mean annual SMsurf during 1982–1996 and the
corresponding change in SMsurf (i.e., 2000–2014 versus 1982–1996,
and 2086–2100 versus 1982–1996). SMsurf = 0.26m3m−3 generally
corresponds to P/PET = 1 at the mean annual scale (Supplementary
Fig. 17b), which is widely treated as the threshold between non-humid
and humid regions41,42. We found that eCO2(ind) generally declines
(enhances) with the land drying (wetting) in humid regions
(SMsurf > 0.26m3m−3, Supplementary Fig. 4a) in both historical and
scenario simulations (Fig. 4c, d). However, in water-limited conditions
(SMsurf < 0.26m3m−3), theweakenednegative eCO2(ind) alongwith the
land drying results in a negative relationship between changes in
eCO2(ind) and SMsurf (Fig. 4c, d and Supplementary Fig. 7). CO2 and
drought-related enhancement in growing-season water-use efficiency
(WUE) (Supplementary Fig. 18), relax thewater limitation to vegetation
growth, especially over semi-arid climate zones24,43–45, and may con-
sequently limit the negative trend in eCO2(ind) (Fig. 4d). In addition,
for water-limited environments, a decrease in eCO2(ind) occurs con-
sistently under both land drying and wetting, indicating the possible
importance of other factors, such as vegetation type and species
diversity, in modulating the vegetation response to climate change.
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Fig. 3 | Relationship between direct and indirect effects of elevated atmo-
spheric CO2 concentration (eCO2) on vegetation carbon uptake. a Mean direct
physiological effect of eCO2 on growing-season gross primary production (GPP)
(eCO2(dir)) during periods 1982–1996 and 2000–2014, simulated by CanESM5
factorial experiments (i.e., CanESM5-FE), and estimated by observed GPP under the
temporal climate analog framework (i.e., obs), estimated by observed GPP in
combination with the non-linear regression model (i.e., obs-RM), and estimated by
CMIP6SMA-simulatedGPP in combinationwith the non-linear regressionmodel (i.e.,
CMIP6SMA). Mean eCO2(dir) during the period 2086–2100 under SSP5-8.5 pro-
jected by CMIP6SMA is also provided. Error bars represent the standard error of
effects derived from ensemble members (i.e., seven CMIP6 ESMs). b Mean
eCO2(dir) derived fromCMIP6SMA and its standard error during seven independent
periods, namely 1982–1996, 2011–2025, 2026–2040, 2041–2055, 2056–2070,
2071–2085, and 2086–2100, shownbydiamond symbol andwhiskers. Bars in green

and orange represent the relative contributions of the indirect effect of eCO2

(eCO2(ind)) and eCO2(dir) to the net effect of eCO2 (eCO2(net)) during corre-
sponding periods and derived from CMIP6SMA. c Spatial pattern of relationship
between changes in eCO2(ind) and eCO2(dir) between historical and future periods
(2086–2100 versus 1982–1996), where “– –” represents decrease in eCO2(ind) and
decrease in eCO2(dir), “– +” represents decrease in eCO2(ind) and increase in
eCO2(dir) and so on. The legend shows the fraction of vegetated areas for each
thematic class (i.e., “– –”, “– +”, “+ –”, and “+ +”). d Boxplot of changes in eCO2(ind),
eCO2(dir), and eCO2(net) between historical and future periods (2086–2100 versus
1982–1996) for different thematic classes mentioned in c and for the globe
(rightmost). Boxplot elements: box = values of 25th and75thpercentiles; horizontal
line = median; rectangle = mean; whiskers = values of 10th and 90th percentiles.
Source data are provided as a Source Data file.
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Similar sensitivities to increasing water limitation have been
obtained using SMtotal and P/PET in place of SMsurf and referring to
different temporal window lengths (Supplementary Figs. 16, 17, and
19). Such high consistencydemonstrates the substantial independence
of our results on the proxy of terrestrial water availability and the
selection of time-window length.

Discussion
Our study provides multiple and coherent evidence that the indirect
effect of eCO2 on global vegetation carbon uptake via associated cli-
mate change has declined over the last three decades (Fig. 1 and
Supplementary Fig. 3). The signal of the ongoing trends has been
derived both from Earth systemmodels’ simulations and from satellite
observations using a statistical approach to disentangle direct and
indirect CO2 effects from time series analysis. In addition, results show
that the positive indirect effect of eCO2 that has stimulated the global
GPP in recent years will most likely continue to decline in the future,
particularly in northern high latitudes, and turn into negative values
firmly under the high CO2 emission scenario (Fig. 2). This epochal
change in the sign of the indirect CO2 effectmay lead to a positive land
carbon-climate feedback from the atmosphere’s perspective34,46.

The interpretation of the CO2 effects mediated by climate
change is intrinsically complex because primary productivity is
controlled by different environmental drivers in the different
biomes, like low temperature in the boreal regions, incoming
radiation in the humid tropics, or water availability in the arid
regions27. For this reason, analyses have to address multiple fac-
tors and their interactions at once28,47. However, previous
assessments were largely based on the analysis of a single climatic
factor (e.g., temperature22, water availability48, and VPD23), while
our study presents an attempt to integrate multiple drivers across
the different World regions. For instance, the strong signal
emerging in the boreal regions (Figs. 1f and 2c) can be partially
attributable to the weakening temperature-vegetation relation-
ship in northern ecosystems22, which may be related to the non-
linear response of photosynthesis to temperature, increased
extreme heat, increasing water limitation driven by the anticipa-
tion of phenology49 and expansion of woody shrubs50,51.

Our assessment shows that the increasing water limitation is a
critical driver of the weakened indirect effect of eCO2 on the global
vegetation carbon uptake (Fig. 4 and Supplementary Figs. 16, 17 and
19). This phenomena may be driven by the detrimental effect of water

Fig. 4 | Sensitivity of indirect CO2 effect on terrestrial water availability.
a Spatial pattern of relative change in surface soil moisture (SMsurf) between the
historical and future periods (2086–2100 versus 1982–1996) derived from
CMIP6SMA. Regions labeled by black dots indicate changes that are statistically
significant (t test, p <0.05). Dots are spaced 3° in both latitude and longitude, and
statistics were computed over 9° × 9° spatial moving windows. b Global mean
SMsurf derived from CMIP6SMA during the period 1982–1996, 2000–2014, and
2086–2100, respectively. Numbers refer to change in SMsurf relative to 1982–2016.
cDifference in indirect effect of elevated atmosphericCO2 concentration (eCO2) on
growing-season gross primary production (GPP) via associated climate change

(eCO2(ind)) between the periods 1982–1996 and 2000–2014 derived from
CMIP6SMA, binned as a function of corresponding changes in SMsurf and mean
annual SMsurf (Supplementary Fig. 4a). SMsurf = 0.26m3m−3 (i.e., the green solid
line) overall corresponds to the ratio of annual precipitation to potential evapo-
transpiration (P/PET) = 1 at the mean annual scale, that is the threshold between
non-humid and humid regions (Supplementary Fig. 17b). Black dots indicate bins
with differences that are statistically significant (t test,p <0.05).d Sameas c, but for
the difference between the periods 1982–1996 and 2086−2100. Source data are
provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-45957-x

Nature Communications |         (2024) 15:1500 7



scarcity on the resilience of global vegetation to climate variability and
extremes52. An exception to this pattern occurs in water-limited
environments, where the negative indirect effect of eCO2 seems to
weaken with the land drying (Fig. 4c, d), probably due to the
enhancement of direct CO2 effect onWUE and the resultingmitigating
effect on water constraints24 (Supplementary Fig. 18). A recent analysis
focusing on global forests suggests that WUE and aridity index are
closely and negatively related below a threshold value of aridity
index≈153, partly supporting our finding.

The complex interplay between the rapid changes in climate
conditions and the increasing risks of natural disturbances may also
contribute to the transition from positive to negative indirect CO2

effects. For example, warmer and drier conditions facilitate insect
outbreaks, while warmer and wetter conditions increase disturbance
from pathogens54. The expected intensification of disturbances may
amplify the negative effect of climate change on primary productivity
by enhancing plant vulnerability and mortality rates55. However, the
abovementionedprocesses have not yet been fully considered in state-
of-the-art dynamic vegetationmodels and ESMs that are used inmajor
climate assessments like the Intergovernmental Panel on Climate
Change (IPCC) Assessment Reports56,57. The simplified representation
of disturbances and mortality in these models may ultimately hamper
our full understanding of the ongoing and future variations in carbon-
climate feedback, and in turn, lead to the overestimation of the future
terrestrial carbon sinkdue to themisestimationof the indirect effectof
eCO2. In fact, our study shows that CMIP6 model simulations clearly
report a lower magnitude of the decline in global indirect CO2 effect
during the historical period compared with observation-based esti-
mates (Fig. 1f). This could be attributable to the poor representation of
water limitation and natural disturbances in current ESMs, the limited
consideration of vegetation mortality associated with biotic agents
and the non-linearity of the processes behind57,58. Considering that
disturbance regimes are expected to intensify in many parts of the
globe because of climate change54,58,59, the enhanced representation of
the phenomena in ESMs would plausibly produce an even stronger
decline in the global projection of the indirect CO2 effect.

The weakened indirect effect of eCO2 reported here, in addi-
tion to the concurrent decline in direct physiological effect, con-
firms the transitory nature of the strong growth benefits induced by
climate warming and CO2 fertilization, especially in the boreal
regions9,60. These findings are in accordance with the expectation
about the future saturation of CO2 fertilization effect and the
increasingly negative effect of climate change on vegetation13. More
importantly, the simultaneous reductions in indirect and direct
effects of eCO2 imply that eCO2 may exert a less positive up to
negative role on the terrestrial carbon uptake in the future (Fig. 3),
consequently reducing the ecosystems’ capacity to sequester
atmospheric CO2. These phenomena may ultimately lead to an
acceleration of climate change in the second part of the century,
further challenging the efforts of humanity toward carbon neu-
trality. In addition, more frequent and severe climate extremes in a
warming climate61,62, e.g., increasing drought conditions, may fur-
ther aggravate the decline in the indirect effect of eCO2 (Fig. 4) as
well as that in direct CO2 fertilization63. The intensification of a
positive feedback loop between climate change and land CO2

emission undoubtedly would limit the potential of terrestrial eco-
systems to serve as carbon sinks and have great implications for the
efficacy of land-basedmitigation policies and for the societal efforts
required for meeting climate mitigation targets. In this respect, our
results contribute to a better understanding of global change
impacts on terrestrial ecosystems under current and future condi-
tions, and meanwhile, may help the development of more inte-
grated and realistic mitigation strategies, by informing climate
policies on the weakening of the fertilization effects of eCO2 and
associated amplification of climate warming.

Methods
CMIP6 simulations
To explore the indirect effect of eCO2 on vegetation carbon uptake, we
used outputs from an ensemble of seven Earth system models (ESMs)
that participate in the carbon-climate feedback experiment (C4MIP)
within the framework of the Coupled Model Intercomparison Project
Phase 6 (CMIP6)30 (https://esgf-node.llnl.gov/search/cmip6/): ACCESS-
ESM1-5, CanESM5, CNRM-ESM2-1, E3SM-1-1, MIROC-ES2L,MRI-ESM2-0,
and UKESM1-0-LL (Table 1). These models were selected because they
provide simulations under different coupling modes required to dis-
entangle the effects of eCO2. We focused on the SSP5-8.5 scenario
because C4MIP simulations are available only for the highest emission
trajectory (CO2 concentration is projected to reach 1135 ppm in
210064). The ESMs have full carbon cycles, which include carbon
uptakeby vegetation that varies in response to changes in atmospheric
CO2 concentration and climate46. For eachESM,onebiogeochemically-
coupled experiment and one fully-coupled experiment in both his-
torical (1982–2014) and future scenario (2015–2100) periods were
analyzed within a factorial simulation framework (Table 2). In bio-
geochemically coupled experiments (“hist-bgc” and “ssp585-bgc” in
the CMIP6 terminology), biogeochemical processes over land respond
to eCO2, whereas the radiative code experiences fixedCO2. In the fully-
coupled experiment (“historical” and “ssp585” in the CMIP6 termi-
nology), both radiative and biogeochemical processes respond to
eCO2 (consistent with observations in the historical period). All other
forcings (e.g., non-CO2 greenhouse gases, aerosols, and land use) are
identical for these two sets of experiments, i.e., time-varying in both
radiative and biogeochemical processes. Furthermore, we used out-
puts from CO2 individual forcing experiment (“hist-CO2” in the CMIP6
terminology) conducted by the Detection and Attribution Model
Intercomparison Project (DAMIP)65 (Table 2). “hist-CO2” experiment
refers to the historical simulation driven only by observed changes in
CO2 concentration, with other forcings keeping temporally constant
(e.g., non-CO2 greenhouses gases, aerosols, and land use). Combining
“hist-CO2” with “historical” and “hist-bgc” enables to quantify the his-
torical eCO2(dir) through factorial simulations of CMIP6 runs. Unfor-
tunately, CO2 individual forcing experiment has not yet been extended
to the future period, and only one ESM (i.e., CanESM5) took part in all
three experiments. Because of these disadvantages, the above-
mentioned analysis applied for the estimation of global direct effects
of eCO2 was complemented by a more general regression framework
extendible to the full ESM ensemble and to the different temporal
periods (details in section “Quantifying indirect and direct effects of
eCO2 by model outputs”). Factorial simulations based on the above-
mentioned experiments (“hist-bgc”, “historical”, and “hist-CO2”) were
elaborated in the following sections.

A set of variables generated by ESM simulations were used for the
following analyses, including: monthly scale gross primary production
(GPP), net primary production (NPP), autotrophic respiration (Ra),
heterotrophic respiration (Rh), evapotranspiration (ET), maximum,
minimum and mean air temperature (Tmax, Tmin, and T), precipitation
(P), cloud cover (CL), relative humidity (RH), surface (0–10 cm) soil
moisture (SMsurf, 0–10 cm), and total soil moisture (SMtotal, depth
depending on models, see Table 1). Considering that the hydro-
logically active soil depth varies greatly among themodels (from2m in
UKESM1-0-LL to 35.18m in E3SM-1-1), SMtotal as well as SMsurf was
converted from the original gravimetric unit (kgm−2) to volumetric
unit (m3m−3) by dividing the gravimetric soil water content by the
corresponding soil depth, Such conversion allows for the comparison
of results obtained from different models and the development of
more robust multi-model ensembles of soil moisture. Variations in
SMtotal and SMsurf were expressed in relative terms (%) with respect to
their average values computed for the baseline period (e.g.,
1982–1996)39 (Fig. 4 and Supplementary Figs. 4, 15 and 16). Only for the
ES3M-1-1 model, some of the abovementioned variables were not
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provided (NPP, Tmax, Tmin, and RH), and therefore they were retrieved
by empirical formula and statistical approach (additional details
reported in SupplementaryText 5).We additionally derived ecosystem
respiration (Reco) as the sum of Ra and Rh, and the net ecosystem
production (NEP) was calculated as the difference between GPP and
Reco

66. Vapor pressure deficit (VPD), which directly relates to atmo-
spheric water demand19,67, was calculated based on Abbott and
Tabony68 for each grid-cell as follows:

VPD=0:6108e
17:27T

T+237:3 1� RH
100

� �
ð1Þ

where T is given in °C, and the resulting VPD is in kPa. Furthermore, we
used the ratio of mean annual P to potential evapotranspiration (PET)
as the aridity index retrieved from the FAO Penman-Monteith
algorithm69. Details on the PET estimation are reported in Supplemen-
tary Text 6.

CMIP6 outputs were resampled to a common 0.5° × 0.5° global
grid-cell using thebilinearmethodof interpolation.Moreover, for each
temporal window (e.g., 1982–1996, 2000–2014, 2086–2100, and
1982–2014), we computed the associated multi-year mean growing
season at the grid-cell scale. The growing season was defined as the
period spanning months with average T >0°C14 and—limitedly to arid
and semi-arid ecosystems—cumulative P between 10% and 90% of the
annual total P (Supplementary Fig. 20). The integration of a P threshold
in the definition of the growing season for water-limited environments
enables to account for possible inactive vegetation phase at T > 0 °C
due to water deficit conditions70. Areas characterized by an aridity
index, quantified in terms of P/PET, <1 were labeled as arid and semi-
arid ecosystems9. For arid and semi-arid grid cells located in the
Southern Hemisphere, P accumulation was set to start in July and end
in June of the next year. The resulting growing season was used as a
reference period to aggregate the original monthly variables provided
by CMIP6 to the growing-season scale. The robustness of our results is
testedwith respect to two alternativedefinitions of the growing season
period: (1) T > 5 °C and cumulative P between 10% and 90% of the
annual total P; (2) T > 5°C and cumulative P between 20% and 80% of
the annual totalP (Supplementary Fig. 2). Inboth cases, the P threshold
is applied to arid and semi-arid regions only.

Observation-based products
We exploited the long-term GPP dataset (hereafter GPPobs) based on
near-infrared reflectance of vegetation (NIRv) retrieved from the
Advanced Very High Resolution Radiometer (AVHRR) reflectance
observations32,71 (https://data.tpdc.ac.cn/en/data/d6dff40f-5dbd-4f2d-
ac96-55827ab93cc5/). The satellite GPP dataset, provided at monthly
temporal resolution and at 0.05° spatial resolution, has global cover-
age and spans the period 1982–2014 (Supplementary Fig. 21a). It has
been largely validated in previous studies against ground measure-
ments and compared with estimates derived from machine-learning
upscaling approaches, light-use-efficiency models and processed-
based models32,72. To match the spatial and temporal resolution of
ESMs output, satellite GPP data were resampled to 0.5° and integrated
over the growing season derived from the CMIP6 simulations in the
fully-coupled experiment, as described above, to increase consistency
in the data-model comparison (Supplementary Fig. 20). The obtained
satellite-based growing season GPP data were used to evaluate the
ESMs performance in capturing global GPP dynamics (Supplementary
Figs. 22 and 23).

Furthermore, to explore the observed impact of eCO2 on vege-
tation carbon uptake (details in the following sections), we used
monthly Tmax, Tmin, T, P, CL, actual water vapor (VP), and PET retrieved
from the Climatic Research Unit (CRU v4.05) climate dataset73 (https://
catalogue.ceda.ac.uk/) delivered for the whole globe at 0.5° spatial
resolution and covering the period 1982–2014.

We additionally derived monthly VPD values as the difference
between the saturated vapor pressure (SVP) and VP for each grid-cell
based on the following formulation:

VPD=0:6108e
17:27T

T+237:3 � VP ð2Þ

where T is given in °C, VP and VPD are in kPa. Here we applied Eq. (2)
instead of Eq. (1) to estimate VPD because RH is not available from the
CRU dataset. All climatic factors were then aggregated at the growing-
season temporal resolution.

We derived a global vegetated land mask from the annual land
cover maps of the European Space Agency’s Climate Change
Initiative74 (https://www.esa-landcover-cci.org) acquired for the period
1992–2014 at 300m spatial resolution, referring to a simplified
aggregation scheme based on physiognomy alone. Land cover maps
were resampled to 0.5° using the majority method to match the
common spatial resolution. All grid cells (0.5 × 0.5° resolution) classi-
fied as vegetation class (including forest, grassland, shrubland, crop-
land, and wetland) throughout the 23 years were defined as vegetated
areas and included in our analyses (Supplementary Fig. 24).

Assessing indirect/direct effects of eCO2 from model outputs
Following similar approaches reported in literature10,16,75,76, the effectof
eCO2-induced climate change on growing-seasonGPP (i.e., the indirect
effect of eCO2, expressed as eCO2(ind)) was derived from factorial
simulations of multiple CMIP6 experiments by calculating the differ-
ence between the trend in growing-season GPP generated in the fully-
coupled mode and that in the biogeochemically-coupled mode nor-
malized by the increase rate of atmospheric CO2 concentration:

eCO2ðindÞ=
δGPPFULL � δGPPBGC

δCO2

ð3Þ

where δGPPFULL and δGPPBGC are the trends in growing-season GPP in
the fully-coupled experiment (i.e., “historical” and “ssp585”) and the
biogeochemically-coupled experiment (i.e., “hist-bgc” and “ssp585-
bgc”), respectively; δCO2 represents the trend in atmospheric CO2

concentration and is prescribed by CMIP664,77. The statistical signifi-
cance of the trends was evaluated using the nonparametric
Mann–Kendall test. The absolute signal (term δGPPFULL � δGPPBGC)
was normalized to the unit of gCm−2 ppm−1, to eliminate the impact of
the difference in increasing rate of atmospheric CO2 concentration in
various periods (e.g., 1982–1996, 2000−2014, and 2086–2100). The
term eCO2(ind) excludes the direct physiological effect of eCO2 and
the effects of non-CO2 forcing agents on GPP, as these components
have been removed from the factorial simulations (Eq. (3)). The
approach enabled us to separately quantify the eCO2(ind) for different
reference temporal period (e.g., 1982−1996, 2000–2014, and
2086–2100) at grid-cell level. For global-scale eCO2(ind) estimates,
the GPP terms reported in (Eq. (3)) were obtained by spatial average
weighting each grid-cell value based on its area (Fig. 1a). The same
methodology is applied consistently for all global-scale and regional-
scale aggregated metrics described in the following sections. The
analyses were complemented by applying Eq. (3) to NPP, Ra, Rh, Reco,
andNEP (in place of GPP) to comprehensively evaluate the response of
distinct carbon fluxes to CO2 radiative forcing (Fig. 2d, e and
Supplementary Fig. 6).

We quantified the direct effect of eCO2 on growing-season GPP
(i.e., eCO2(dir)) within a multiple non-linear regression framework
applied to simulations obtained from the CMIP6 fully-coupled
experiment. Such approach was specifically designed since
radiatively-coupled experiments ideally required to derived eCO2(dir)
from factorial simulations were not available. To derive robust fitting
functions, we first performed a collinearity test based on the variance
inflation factor (VIF), to preliminary select what drivers to include in
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the multiple regression. Results show that CO2, Tmin, P, VPD, and CL,
show no/weak collinearity (VIF < 10) in most parts of the globe (CRU:
97.0 ~ 100%; CMIPSMA: 86.7 ~ 100%) and thus were all retained in the
predictor set (Supplementary Fig. 25). Considering that climate exerts
non-linear control on terrestrial carbon uptake78,79, non-linear terms
(e.g., interaction and quadratic terms) were incorporated into the
regression model in addition to linear terms. Following the modeling
framework described in Chen et al.80, we used stepwise regression at
the grid-cell scale to reduce redundant predictors. The model form
most often identified across all grid cells was ultimately adopted to
each grid-cell, enabling a consistent analysis at the global scale. The
adopted model is described by the following equation:

GPP=β CO2

� �
+C1 Pð Þ+C2 VPDð Þ+C3 Tmin � VPD

� �
+C4 P � CLð Þ+C5 + ε ð4Þ

where β, C1, C2, C3, C4, and C5 represent the regression coefficients, and
ε is the residual error term. Therein, β (gCm−2 ppm−1) refers to the
sensitivity of GPP to CO2, and thus reflects the term eCO2(dir). Such an
approach enabled us to disentangle the direct physiological effect of
eCO2 on GPP by factoring out the potentially confounding effects of
climatic factors. All variables in Eq. (4) were taken from CMIP6 model
simulations under “historical” and “ssp585” experiments. Regressions
were estimated on annual anomalies (i.e., annual values minus the
mean signal for a given period) for all variables, thus removing the
background effects on vegetation but preserving those originating
from interannual variations9. We performed an additional set of
modeling experiments to test the model sensitivity on different
hydrological variables. To this aim, we expressed the interannual var-
iations in GPP within a non-linear regression that incorporates soil
moisture in place of P (details in Supplementary Text 7). Test results
based on the Akaike Information Criterion (AIC), the corrected Akaike
Information Criterion (AICc), and the Bayesian Information Criterion
(BIC) suggest that non-linear regression based on soil moisture has no
substantial improvement in model performance (Supplementary
Fig. 26) and leads to larger inter-model spread compared to the
original one (i.e., Eq. (4)) (Supplementary Fig. 27 and Table 3). We
therefore retained the regression framework based on P as defined in
Eq. (4) for subsequent analyses.

For CanESM5, we estimated eCO2(dir) by the use of an alternative
method based on the outputs from three sets of factorial experiments
available for the historical period as follows:

eCO2ðdirÞ=
δGPPCO2 � ðδGPPFULL � δGPPBGCÞ

δCO2

ð5Þ

where δGPPCO2 is the trend in growing-season GPP in the CO2

individual forcing experiment (“hist-CO2”). Estimates based on this
approach were compared against those generated by the above-
mentioned regression model to test the robustness of Eq. (4) in
quantifying global mean eCO2(dir) and its change (Fig. 3a).

Deriving indirect effect of eCO2 from observations
To further corroborate our model-based findings, we investigated the
direct and indirect components of eCO2 and their changes through an
observation-based approach. The method is based on the pixel-level
assessment of the changes in GPP under similar climate conditions but
different atmospheric CO2 concentrations. For this purpose, we used
the climate analog approach33 to identify couples of years with dif-
ferent atmospheric CO2 concentrations but similar climate conditions
(i.e., climate analogous (CA) years) in each time period (e.g.,
1982–1996, and 2000−2014) based on the CRU v4.05 climate dataset.
Temporal climate analogs are derived from the Mahalanobis distance,
which is amultivariate distance independent of the scale of the climate
variables81. For the period 1982−1996, as an example, we first identified
the two sub-periods 1982–1988 and 1989–1996, and then identified for

each grid-cell the years in which the climate condition is most similar
between the two sub-periods. We calculated theMahalanobis distance
based on eleven climate variables derived from the CRU v4.05 dataset
and identified as key determinants for climate analog analysis in pre-
vious studies33,81–83. The selected variables include: mean annual CL,
meanannual VPD,mean annualT, total annualP, annual P/PET,meanT,
and total P for December–February (DJF) and June-August (JJA), T
seasonality (represented by the standard deviation of monthly T), and
P seasonality (represented by the coefficient of variation inmonthly P).
In order to reduce the dimensionality of the data space, we applied a
principal component analysis to all climate variables and discarded the
principal componentswith variance <0.0133. TheMahalanobis distance
was then computed between all the possible 56-member couples of
years at the grid-cell scale based on the following equation:

MDij =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

k = 1

xjk � xik
� �2

σ2
k

vuuut ð6Þ

where j and i belong to the first and second sub-period, respectively;
xjm and xim are the values of the principal component k in the year j and
i, N represents the number of retained principal components, and σk

2

refers to the standard deviation of the principal component k. LowMD
scores represent similar climate conditions between the two sub-per-
iods, high MD scores the opposite. For each grid-cell, the minimum
Mahalanobis distance (MDmin) was then selected, and its correspond-
ing couple of years were identified as potential CA years.

We assessed the statistical significance of the obtained MDmin.
Considering that the chi distribution provides a null distribution for
(non-squared) Mahalanobis distances, the obtained MDmin can be
expressed probabilistically as percentiles of a chi distribution with
degrees of freedom corresponding to the number of dimensions in
which MDmin was measured (i.e., N in Eq. (6)). Following Mahony
et al.33, we considered the 95th percentile of the associated chi dis-
tribution to identify the upper threshold of the representative analog.
MDmin whose corresponding percentile is lower than the above-
mentioned threshold, indicates a statistically similar climate between
those two years (i.e., CA years).

Climate analogs were found not significant for a minority of grid
cells (4.2%), and these areas were therefore excluded from the fol-
lowing analyses. For the remaining grid cells, we estimated the direct
physiological effect of eCO2 on GPP as follows:

eCO2ðdirÞobs =
ΔGPPCA

obs

ΔCOCA
2

ð7Þ

where ΔGPPCA
obs is the change in growing-season GPPobs computed

between CA years, and ΔCOCA
2 is the corresponding variation in

atmospheric CO2 concentration acquired from the Earth System
Research Laboratory of NOAA84 (https://www.esrl.noaa.gov/gmd/
ccgg/trends/). The analysis was complemented by the estimation of
the combined direct and indirect effect of eCO2 on GPP quantified as:

eCO2ðnetÞobs =
ΔGPPobs

ΔCO2
ð8Þ

where ΔGPPobs and ΔCO2 represent the change in the mean growing-
season GPPobs and CO2 concentration, respectively, computed
between the two sub-periods. We finally derived the observed indirect
effect of eCO2 on vegetation photosynthesis via associated climate
change in a given period by combining Eq. (7) and Eq. (8) as follows:

eCO2ðindÞobs =
ΔGPPobs

ΔCO2
� ΔGPPCA

obs

ΔCOCA
2

ð9Þ
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The approach assumes that both direct and indirect eCO2

effects on GPP are annual and do not have legacy effects, and that
eCO2 is the dominant factor of climate change in the short-term.
The above-described analyses were carried out at the grid-cell
scale and separately for the periods 1982–1996 and 2000–2014.
Changes between the two periods were then used to quantify the
historical variations in the indirect effect of eCO2 from observa-
tions (Fig. 1e, f).

To further test the robustness of our methods, a set of additional
experiments were produced. First, the observed direct effect of eCO2

was estimated using an alternative approach based on multiple non-
linear regression model (i.e., Eq. (4)) in combination with CRU v4.05
climate dataset and GPPobs. The obtained results, expressed as
eCO2(dir)obs-RM, were confronted with climate analog-derived
eCO2(dir)obs estimates (i.e., obs-RM and obs in Fig. 3a). Second, the
climate analog approach presented above and applied to observations
was also implemented with CMIP6 model outputs in fully-coupled
experiments to verify the consistency with results obtained from fac-
torial simulations described in Eq. (3) (Supplementary Fig. 28).

Statistical analysis
To explore the dynamics of the indirect effect of eCO2 on vege-
tation carbon uptake during the historical period, we quantified
the temporal changes in model-based eCO2(ind) and observation-
based eCO2(ind)obs retrieved for the two independent periods
1982–1996 and 2000–2014. The significance of the emerging
changes was assessed through t test. Results presented in the
main text refer to analyses conducted over 15-year time windows.
Results obtained for different temporal window lengths (12 and
16 years) are quantified as well to verify the robustness of our
results (Fig. 1a and Supplementary Fig. 1).

In exploring the projected changes in eCO2(ind) from CMIP6
model simulations, we refer to six 15-year consecutive and indepen-
dent periods, namely 2011–2025, 2026–2040, 2041–2055, 2056–2070,
2071–2085, 2086–2100 (Fig. 2a). We considered a series of not over-
lapped temporal windows to eliminate the possible impact of auto-
correlation. To better disentangle the signal of future variation in
eCO2(ind), we compared the eCO2(ind) during the last 15 years
(2086–2100) against that one originating from the first 15 years of the
historical period investigated here (1982–1996) and assessed the sta-
tistical significance of the change through t test.

Furthermore, to properly represent the generality of the rela-
tionships between the direction and extent of changes in eCO2(ind)
and local aridity conditions, we performed binned average analysis
across environmental gradients. Such spatial averaging minimizes the
uncertainty originating from spatial heterogeneity (e.g., the difference
in topography and vegetation type) that may randomly affect the
control of climate change on vegetation carbon uptake (Figs. 1d and
4c, d).

Data availability
All datasets used in this study are publicly available as referenced in
Methods. Source data are provided with this paper.

Code availability
The customMATLAB (R2023a) codes written to read and analyze data
and generated figures are publicly available at https://doi.org/10.5281/
zenodo.10451254.
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