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Robust temporal adiabatic passage with
perfect frequency conversion between
detuned acoustic cavities

Zhao-Xian Chen 1,4, Yu-Gui Peng 2,4, Ze-Guo Chen 3 , Yuan Liu1,
Peng Chen 1, Xue-Feng Zhu 2 & Yan-Qing Lu 1

For classical waves, phase matching is vital for enabling efficient energy
transfer in many scenarios, such as waveguide coupling and nonlinear optical
frequency conversion. Here, we propose a temporal quasi-phase matching
method and realize robust and complete acoustical energy transfer between
arbitrarily detuned cavities. In a set of three cavities, A, B, and C, the time-
varying coupling is established between adjacent elements. Analogy to the
concept of stimulated Raman adiabatic passage, amplitudes of the two cou-
plings are modulated as time-delayed Gaussian functions, and the couplings’
signs are periodically flipped to eliminate temporal phase mismatching. As a
result, robust and complete acoustic energy transfer from A to C is achieved.
The non-reciprocal frequency conversion properties of our design are
demonstrated. Our research takes a pivotal step towards expanding wave
steering through time-dependent modulations and is promising to extend the
frequency conversion based on state evolution in various linear Hermitian
systems to nonlinear and non-Hermitian regimes.

The past two decades have witnessed remarkable progress in wave
manipulation. In passive systems, by reinspecting the contributions
of symmetry, artificial gauge field, and topological charges, kalei-
doscopic structures have been designed to allow a wide range of
applications, including robust wave localization, transportation, and
mode conversion1–4. In terms of mode conversion, a well-known
manifestation of this concept can be seen in the quantum two-level
system, where the eigenmodes can be transformed into each other5.
Leveraging these insights from the quantum multi-level system,
exotic phenomena emerge, such as Landau-Zener tunneling6–10 and
rapid adiabatic passage11,12. Adiabatic passage processes have been
successfully applied for coherent control of multi-level systems13–15,
even beyond the realm of quantum systems. The coupled waveguide
system is a well-known platform for studying the evolution of multi-
level systems in which the propagation direction replaces the role of

time. In linear situations, since the wave equation is stationary, as a
corollary, modulation of the waveguide geometries only leads to the
redistribution of wave energy or adjustment of the phase, wherein
frequency conversion between the initial and final states accom-
panied by complete energy transfer is absent16–22. Frequency con-
version necessitates external-field-assisted temporal modulation to
provide the energy, while complete energy transfer requires addi-
tional sophisticated parameter design23,24. State transfer dynamics in
continuously and slowly evolving systems cannot realize unitary
transfer between eigenstates with different eigenfrequencies. This
can be seen from a general two-level model consisting of two
detuned cavities with eigenfrequency difference Δf and coupling
constant κ; the maximum energy transfer efficiency is limited to
4κ2=ð4κ2 +Δf 2Þ5,25–27, due to the phase mismatching between states
with distinct eigenfrequencies.
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To achieve complete energy transfer, pioneering theoretical work
proposes a time-switch method, in which the couplings among sites
exhibit well-defined fast sign switch series24. To date, the realization of
cavity state manipulation and effective coupling sign switching in the
time domain remains challenging. Thus, experimental demonstration
of complete energy transfer between two detuned cavities has not yet
been reported.

In this work, we propose a temporal quasi-phase matching
(TQPM) method to compensate for the phase mismatching
between detuned acoustic cavities and experimentally demon-
strate robust and complete acoustical energy transfer. TQPM is
performed by enforcing temporally switched couplings, accom-
plished by electrically controlled relays and time-varying cou-
plers. The results directly demonstrate complete energy transfer
between two cavities with different eigenfrequencies. Further-
more, to achieve robust energy transfer, we introduce an inter-
mediary cavity. Although counterintuitive, it effectively mimics
stimulated Raman adiabatic passage (STIRAP), where photon
frequencies are adjusted to guarantee energy conservation in the
robust population transfer between quantum states in atomic
physics13,14. As shown in Fig. 1a, two incident electromagnetic
waves (denoted as P(t) and S(t)) couple the states |1〉 and |3〉 via
the intermediate state |2〉. The scheme allows robust excitation
transfer through adiabatic evolution along the system’s zero-
energy eigenstate. Our results extend the scope of STIRAP to the
case of detuned acoustic cavities, as schematically shown in
Fig. 1b. In addition to the robust transfer channel from cavity A to
cavity C realized by simultaneously modulating the couplings’
amplitudes and signs, our system with an optimized delay Δt
functions as a circulator for transient sound waves and can be
used as a perfect unidirectional absorber when a proper loss is

introduced in cavity B. We anticipate that our approach will allow
implementation in various controllable multi-level systems and
thus open new ways for transient acoustic energy manipulation.

Results
Dynamic coupling for temporal quasi-phase matching
We begin with a model consisting of two detuned acoustic cavities,
for which unitary wave transfer is realized by designing the time-
varying couplings with programmable electric elements. The
experimental setup for the gain-enhanced cavities and dynamic
couplings is schematically shown in Fig. 2a. The acoustic cavities
(labeled A and B) are precisely machined with stainless steel and
then sealed by acrylic boards. To implement dynamic couplingwith
different signs, we focus on the first-order resonant mode, which
has an antisymmetric dipole-like profile along the height and is
shown in Supplementary Section 1 with the sample photograph. By
tuning the cavities’ sizes and the feedback circuits (connection
shown as red lines), the two cavities resonate at f A = 1605Hz and
f B = 1655Hz, respectively, with the excitation spectra presented in
Supplementary Section 2. To observe sound energy transfer in the
time domain, the cavity mode lifetime must be long enough for
adiabatic evolution. Thus, we introduce gain with an in-phase
feedback electric system and decrease the cavity loss to Γ=0:8Hz.
The pressures in the two cavities decay as e�2πΓt (see Fig. S3 for the
fitting). The dynamic mutual coupling κABðtÞ between the two
acoustic cavities is realized through the double-channel circuits
with active electric elements (connection shown as blue lines),
including the voltage-controlled amplifiers (VCAs), phase shifters
(PSs) and double-pole, double-throw (DPDT) relays (with their
functions explained in the Methods). The feedback circuits also
include microphones and speakers, sealed inside the cavities to
detect and feed the sound. When both the VCAs and DPDTs are
fixed, the effective coupling κ0 is constant. Although active electric
elements are implemented in the circuit, our system is still dis-
sipative. Thus, the dynamic coupling here is Hermitian and is dis-
tinct from previous static implementation28,29.

Once the coupling is switched on, the initially excited sound
waves in the two cavities evolve as

dpA tð Þ
dt

= � 2πΓpA tð Þ � i2πκAB tð ÞpB tð Þei2π f A�f Bð Þt , ð1� aÞ

dpBðtÞ
dt

= � 2πΓpB tð Þ � i2πκABðtÞpAðtÞe�i2πðf A�f BÞt , ð1� bÞ

wherepA and pB are the complex-valued pressure amplitudes. Because
the two cavities are detuned by ΩAB = f A � f B

�� ��= 50Hz, the phase
difference of the sound pressure in the two cavities varies with time.
When the coupling is constant, the second terms in the right part of Eq.
(1) change sign with time, indicating temporal phase mismatch, which
leads to periodic interruption of the sound energy exchange. For
example, we initially excite cavityAwith f A for t <0, then switchon the
stationary coupling of κ0 =9:5Hz and observe the sound evolution.We
ignore the damping of the cavities and define the wave transfer
efficiency from cavity A to B as

jSBAðtÞj2 = pB tð Þ
�� ��2=X

j

jpjðtÞj2, ð2Þ

which is practically adopted for investigating state evolution in
mechanical systems30. By analyzing the temporally recorded

sound waves in Fig. 2b, the maximum of jSBAðtÞj2 is only 0.11,

consistent with the prediction of 4κ2
0=ðΩ2

AB + 4κ
2
0Þ. In addition, the

transfer efficiency varies with a period of T0 = 18:6ms, which is
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Fig. 1 | Robust and nonreciprocal adiabatic passage. a Stimulated Raman adia-
batic passage in a three-level system (left panel). With a counterintuitive electro-
magnetic pulse sequence that S(t) precedes P(t) with Δt (shown in the right panel
with the vertical coordinate for electric field E), the population in |1〉 can robustly
transfer to |3〉 without transient population in |2〉. b A schematic for the transient
acoustic adiabatic passages with three detuned cavities resonant at f A, f B and f C ,
respectively (left panel). In addition to the Gaussian-shaped envelops, the signs of
the couplings κABðtÞ and κBC ðtÞ are periodically flipped to realize temporal quasi-
phase mismatching between the waves in adjacent cavities (right panel). The
sequential dynamic couplings bring a robust transfer from cavity A to cavity C and
can enable our system to be a circulator or a unidirectional absorber for the tran-
sient waves, with the detailed results presented in the following sections.
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determined by the Rabi frequency5, namely T0 =0:5=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

AB + 4κ
2
0

q
.

To achieve complete wave oscillation and unitary energy reloca-
tion, we propose the TQPM method, which eliminates the con-
sequences of phase mismatch. Specifically, we use square wave
voltage variation to control the DPDT relays in the circuit so that
the coupling is temporally modulated as

κAB tð Þ= κ0sign½cosð2πΩABtÞ�, ð3Þ

meaning the sign of the coupling periodically flips with the detuning
frequency ofΩAB = 50Hz. Considering the Fourier expansion of κAB tð Þ,
namely κAB tð Þ= P

κ0ne
in2πΩABt , where n is anodd integer, it is apparent

that the ±1 order components have the largest amplitude (i.e., eκ0) and
caneffectively compensate for thebeat frequency in the coupling term
in Eq. (1). Significantly, this approach may be considered as the tem-
poral analog to the spatial quasi-phase matching strategy extensively
employed in nonlinear optics. This strategy involves meticulously
poling nonlinear crystals to counteract phase mismatches among
various harmonics31–33. By leveraging this technique, one can achieve a
broad-spectrum effect, further enhanced through the application of
adiabatic passage34–37. Under theweak coupling condition, i.e., when κ0

is much smaller than ΩAB, retaining the ±1 order Fourier components
andneglectingother higher-order series allowsEq. (1) to bewritten as a
Schrödinger-type equation

i
d ψðtÞ
�� �
dt

=HTQPM ψ tð Þ
�� �

, ð4Þ

where ψ tð Þ
�� �

represents the pressures of the system and the 2×2
Hamiltonian is

HTQPM = 2π
�iΓ eκ0eκ0 �iΓ

� �
: ð5Þ

Apparently, following our design principle, now the two cavities
can be effectively coupled like two identical ones with coupling con-
stant eκ0. When cavity A is excited, indicating an initial condition to be
described as a superposition of two eigenstates of HTQPM, the ampli-
tude of the sound waves in the two cavities is determined by adiabatic
evolution (see theMethods for details). The simulated transient sound
pressures are given in the left panel of Fig. 2c, showing that the sound
wave energy completely oscillates between the two cavities, viz., jSBAj2
can be unity at some discrete time points. To verify our TQPM theory,
we use step variation of the voltage to control the DPDT relays to
modulate the coupling according to Eq. (3) after switching off the
sound source in cavity A. Consistent with the theoretical prediction,
we observe complete sound wave oscillation, as shown in the right
panel of Fig. 2c. The measured oscillation period is 81ms, from which
we can determine the strength of the effective coupling as eκ0 = 6:1Hz,
consistent with the value extracted from the measured spectrum.
Compared to the theoretical results obtained by neglecting higher-
order terms in the Fourier series, the experimental values vary less
smoothly.

The effective coupling eκ0 does not necessarily need to be con-
stant to realize unitary wave transfer. To mold the two-cavity system
into the building block for transient adiabatic passage, the variation of

0 0.05 0.10 0.15 0.20
  (s)
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A
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B

Fig. 2 | Temporal quasi-phase matching with the periodically changed cou-
plings. a Simplified experimental setting for two acoustic cavities with
dynamic coupling, which is realized by detecting the sound in cavity A (B) and
then feeding it to cavity B (A) through the power amplifier (connection shown
as blue lines). VCAs, PSs, and DPDTs are introduced to modulate the coupling
amplitude and sign. Two further amplifiers (connection shown as red lines) are
employed to balance the cavity loss and to support a long-lifetime cavity

mode. b Recorded transient sound waves in two detuned cavities A (blue) and
B (orange) with a constant coupling κ0 (cyan line). Due to the phase mis-
matching, only a small portion of the sound energy in cavity A can periodically
transfer to cavity B. c–d Simulated (left panels) and measured (right panels)
complete sound wave oscillation between the two cavities with temporal
quasi-phase matching condition. The variation of the coupling’s amplitude in
(d) is Gaussian. Source data are provided as a Source Data file.
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the coupling’s amplitude and sign need to be simultaneously pro-
grammed. In addition to flipping the coupling sign with the DPDT
relays, we program the VCAs to modulate the coupling strength as a
time-dependent Gaussian function (details are presented in Supple-
mentary Section 3). Thus, the dynamic coupling is expressed as

κAB tð Þ= κ0sign cos 2πΩABt
� �	 


e�
t�t0ð Þ2
σ2 : ð6Þ

Here, we set t0 =0:185s and σ =0:1s (see Supplementary Section 4 for
the parameter selection). With these initial conditions, both the the-
oretical and experimental results in Fig. 2d show a complete energy
exchange between the two cavities. Obviously, the simultaneous
modulation of the effective coupling’s amplitude and phase is a pow-
erful tool for achieving temporal adiabatic passages.

Robust temporal adiabatic passage for sound
Utilizing the TQPM theory, unitary sound energy transfer between
detuned cavities becomes achievable. However, the process lacks
robustness and is sensitive to the system parameters. An essential step
towards achieving robustness is the introduction of an intermediate
cavity as a bridge to mediate the wave energy from cavity A to the
target cavityC. In the three-cavity system shown in Fig. 1b, dynamically
modulated coupling κBC tð Þ and κAB tð Þ are employed to drive the initial
state and to realize robust and nonreciprocal adiabatic passage. For
generality, we set the first-order resonant frequency of cavity C as
f C = 1585Hz so that all three cavities have different resonant fre-
quencies. We modulate the sign of the dynamic coupling κBC tð Þ with
frequencyΩBC = 70Hz according to the TQPMmethod proposed here.
The three-cavity system with dynamic couplings is described by the

simplified Hamiltonian

HTQPMðtÞ=2π
�iΓ eκABðtÞ 0eκABðtÞ �iΓ eκBCðtÞ
0 eκBCðtÞ �iΓ

2
64

3
75, ð7Þ

where ekABðtÞ (ekBCðtÞ) is the effective temporal coupling between cav-
ities A and B (B and C). We judiciously program the VCAs and the
corresponding amplitudes of the couplings obtain Gaussian modula-

tions as ekAB tð Þ= ek0e
� t�t0�Δtð Þ2=σ2

and ekBC tð Þ= ek0e
� t�t0ð Þ2=σ2

, respec-

tively. Apparently, we have ekAB tð Þ=ekBC tð Þ !t!0
0 and ekAB tð Þ=ekBC tð Þ !t!+1

+1whenwe setΔt >0, namely κAB tð Þ lags behind κBC tð Þ. According to

Eq. (7), the mixing angle, defined as θ tð Þ= arctan½ekAB tð Þ=ekBC tð Þ�, chan-
ges continuously from 0 to π=2, which determines the mode fields of
the eigenstates jψ0ðtÞ〉 and jψ± ðtÞi (see Eq. (11) in the Methods).

Specifically, for the case with cavityA being initially prepared, the
wave dynamic follows the zero-energy state ψ0ðtÞ

�� �
. The soundwave in

cavity A can robustly and thoroughly transfer to cavity C with fre-
quency conversion from f A to f C . Similar to the definition in Eq. (2),
we get the forward wave transfer efficiency as jSCAj2 =
pC tend

� ��� ��2=P
j
jpjðtendÞj2 at tend = t0 + 2σ +Δt. Obviously, jSCAj2

denotes the fidelity of the zero-energy mode after the evolution. By
taking Eq. (7) into the wave coupling equations, we simulate SCA

�� ��2 as a
function ofΔt and eκ0. As shown in Fig. 3a, a unitary transfer is achievable
in an ample parameter space, demonstrating that the transfer channel is
robust because the adiabaticity is well satisfied. For demonstration, we
set eκ0 =6:1Hz and measure the sound wave transfer from cavity A–C
whenΔt varies from0 to 150ms. As shown in Fig. 3b, the energy transfer
efficiency (circles) is close to complete, matching the simulated results
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Fig. 3 | Robust transfer channel based on adiabatic passage. a Numerically
simulated transfer efficiency SCA

�� ��2 as a function of Δt and eκ0. b Simulated (curve)
and measured (circles) transfer efficiency SCA

�� ��2 with eκ0 = 6:1Hz, which is denoted
in (a) with the dashed line. The inset shows the dynamic couplings κAB tð Þ and κBC tð Þ
with parameters eκ0 and Δt. The red star denotes the case shown in (c–d) with

Δt = 90ms. cRecorded soundwaves in the three cavities. Cavity a is initially excited
at f A for t <0, as denoted with the white arrow. d Fourier spectra of the transient
acoustic pressures in (c) with t >0:45s, demonstrating the complete frequency
conversion of the initial sound wave from f A to f C after the evolution. Source data
are provided as a Source Data file.
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(solid curves) well. As an example, we choose Δt =90ms and record the
transient evolutions of sound waves in Fig. 3c, the corresponding
Fourier spectra of the waveform after the transfer (t >0:45s) are plotted
in Fig. 3d. The results show that the sound wave transfers from cavity
A–C alongwith the frequency conversion from f A to f C . As predicted by
the time evolution of the zero-energy state ψ0ðtÞ

�� �
, only a negligible

sound amplitude is observed in cavity B (see the Methods and Supple-
mentary Section 5 for the adiabaticity analysis). Notably, the robust
sound energy transfer results from the adiabatic evolution of the initially
prepared eigenstate ψ0

�� �
. Thus, the sound source must be turned off

before dynamic coupling takes place. In addition, though the para-
meters realized here are suitable for the demonstration purposes, the
damping of cavities can be further precisely reduced to increase the
transferred sound energy (see Supplementary Section 2 and 4 for the
experiment and simulation results).

Frequency-converting circulator and unidirectional absorber
In addition to the robust transfer channel from cavity A–C, our three-
cavity system can exhibit strong nonreciprocity since the sequential
dynamic couplings break the time-reversal symmetry. As shown in
Fig. 4a, the theoretically simulated backward transfer efficiency SAC

�� ��2
varies strongly with variation of both Δt and eκ0. Meanwhile, we note
SAC
�� ��2 = SCB

�� ��2, whichmeans these two transfer channels share identical
dynamic features. For the casewith cavityCorBbeing initially excited,
theoretically, the final energy distributions also relate to
α tð Þ= R t

0real½ε+ ðt0Þ�dt0, where ε+ is the positive eigenvalue of Eq. (7)
(see the Methods for details). As a result, the evolution of the wave is
determined by both Δt and eκ0, making them distinct from the forward
ones (see Fig. 3a).

We measure the transfer efficiency SBC
�� ��2 ( SAB

�� ��2) by initially
exciting cavity C (B) with f C (f B). As presented in Fig. 4b, the mea-
surements (circles) are consistent with the simulations (curves). In
particular, when we set Δt =90ms, the two transfer efficiencies also
approach unity, rendering our three-cavity system a counterclockwise
sound circulator, which is schematically shown in the inset. In contrast
to traditional circulators based on the Faraday effect, the energy cir-
culations in our system are accompanied by unidirectional frequency
conversions. In Fig. 4c–f, we present the measured sound wave
transfer features and the corresponding spectra with our specified
dynamic couplings. Distinct from the forward transfer in Fig. 3c, d,
here, all three cavities show oscillations of the energy content before
reaching thefinal localizations. The corresponding spectra in the lower
panels show a high frequency-conversion efficiency. Comparatively,
without any biased fluid flow or synthetic angular momentum, the
adiabatic acoustic passages with dynamic couplings provide a distinct
mechanism to realize circulators, particularly for transient sound
waves38–42. In addition, we can freely tailor the sound frequencies by
utilizing the coupling modulation, making our system work as a
compact and nonreciprocal sound device.

The transfer details imply one notable feature: adding cavity B
leads to forming a dark state with no field distribution in B. A con-
sequence is that cavityBdoes not even transiently accept energy in the
forward transfer process from cavity A to C, but it does get (and
possibly dissipate) power in the backward transfer from cavity C to A.
Taking advantage of this merit, we can build a unidirectional acoustic
absorber by introducing loss to the intermediate cavity B. With other
parameters unchanged, we theoretically simulate the forward transfer
efficiency SCA

�� ��2 as a function of the timedelayΔt and cavityB’s loss ΓB.
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Fig. 4 | A frequency-converting circulator based on temporal adiabatic pas-
sage. a Numerically simulated wave transfer efficiencies SAC

�� ��2 and SCB
�� ��2 as a

function of Δt and eκ0. The black dashed line denotes the parameter space used in
(b). b Simulated (curves) and measured (circles) transfer efficiencies SBC

�� ��2 and
SAB
�� ��2 with eκ0 = 6:1Hz. The inset shows the sound circulations with Δt =90ms,
which are given in the following c–f together with c-d in Fig. 3. The gradient colors
denote the one-way frequency conversions. c Recorded sound waves in three

cavities. Cavity C is initially excited at f C for t <0, as denoted by the white arrow.
d Fourier spectra of the transient pressures in (c) with t >0:45s, showing the fre-
quency conversion effect from f C to f B. e and f are similar as (c) and (d) but with
cavity B being initially excited at f B, showing the wave transfer from cavity B to
A with frequency conversion from f B to f A. Source data are provided as a Source
Data file.
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Here the total energy (the denominator for SCA
�� ��2) is normalized with

the case with ΓB = 1Hz, and the results are shown in Fig. 5a. Though
extra loss is introduced to cavity B, we note the forward transfer effi-
ciency SCA

�� ��2 preserves. However, if the sound energy is initially laun-
ched in cavity C, it will dissipate in B. The experimental results shown
in Fig. 5b, obtained by increasing the damping of cavity B to be
ΓB = 4Hz, nicely match the theoretical predictions. Distinct from the
sound circulator with limited Δt selections (see Fig. 4), here, the uni-
directional absorber is robust and is almost insensitive to Δt. In Fig. 5c-
f, we provide themeasured soundwave evolutions withΔt =90ms and
the corresponding spectra analysis. For the case with initial excitation
in cavity A, the relatively large damping of cavity B has a negligible
influence on the sound transfer, and the normalized SCA

�� ��2 is up to 0.8.
By contrast, when cavity C is initially excited, the coupling system
absorbs and consumes all the energy during the transient coupling.

Discussion
To conclude, in this work, we have developed a powerful strategy for
realizing robust and complete sound wave transfer and efficient fre-
quency conversion between detuned cavities. Notably, such complete
energy transfer is achieved by combining the STIRAP concept and
TQPM technology, i.e., simultaneously modulating the couplings’
amplitudes and signs to realize the transient adiabatic passages of
wave energy. Through the external electronically controlled dynamic
couplings, the sound state is adiabatically driven in the eigenstate
space. Thus, our study provides a versatile and easy-to-implement
platform for investigating state evolutions in the time domain. Taking
the realization of the frequency-converting sound circulator and uni-
directional absorber as examples, we anticipate that our work will
bridge the gap between complex state evolution based on the

Schrödinger equation and various wave phenomena based on the
Helmholtz equation. When considering the scenario with identical
cavities, complete wave oscillation between coupled cavities is natu-
rally satisfied, and the adiabatic passages can be achieved by merely
modulating the couplings’ amplitudes, presented in Supplementary
Section 6. By mimicking the lambda- or ladder-type three-level sys-
tems, robust transfer passages between two cavities with arbitrary
detuning are achievable (see Supplementary Section 7 for simula-
tions). The generalized adiabatic passages can pave the way for tran-
sient sound wave steering43–46 and can enrich the toolbox of
nonreciprocal sound devices47,48. In addition, the developed TQPM
theory and the generalized STIRAP methodology also shed lights on
state manipulation in nano-electromechanical as well as optomecha-
nical systems, which can support multiple mechanical resonances and
findmore applications in both the classical and quantum realms30,49,50.

Methods
Experimental setup
As schematically shown in Fig. 2a, the effective andmutual coupling is
realized by detecting the sound in A(B) with the microphone and then
feeding it to the speaker inB(A) after amplification (connection shown
as blue lines). Here, the VCAs are utilized in the coupling circuit as
gates, with which the coupling strength can be freely and temporally
programmed through the gate voltage. PSs are adopted to compen-
sate for the phase changes introduced by the VCAs and to achieve real-
valued couplings. After the amplifiers, there areDPDT relays, whichflip
the coupling sign by switching the circuit connection between in-
phase and out-of-phase. Two photographs in Supplementary Section 1
show the cavity details and the electric connections for the gain and
coupling between two cavities.
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Fig. 5 | Compact one-way sound absorber. a Normalized simulated forward
transfer efficiency SCA

�� ��2 versus Δt and ΓB. The black dashed line denotes the
parameter range in (b). b Simulated (curves) and measured (circles) transfer effi-
ciencies SCA

�� ��2 (yellow) and SBC
�� ��2 (red) with the damping rate ΓB = 4Hz. The stars

represent the cases with Δt =90ms in c–f. c–d Recorded forward sound wave
transfer with cavity A being initially excited (c) and the corresponding Fourier

spectra for the soundwaveswith t >0:45s (d), showing the efficient forward energy
transfer and frequency conversion. e and f are similar to (c) and (d) but with cavity
C being initially excited at f C , showing the backward absorption. Here, the transfer
efficiencies and spectra are normalized with the forward transfer with ΓB = 1Hz and
Δt = 90ms. Source data are provided as a Source Data file.
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For the measurement, 1/4-inch-diameter microphones (Brüel and
Kjaer Type 4961) connected to a multichannel analyzer (Brüel and
Kjaer Pulse Type 3160) are used to detect the sound pressure in the
cavities. The control signals and sound source signals are generated
with FeelElec FY8300.

Adiabatic passages
When the adiabatic condition is satisfied, the sound waves in the
coupled cavity system evolve as superpositions of the system’s
eigenstates, namely

ψ tð Þ
�� �

=
X
n

an 0ð Þe�iαnðtÞ ψnðtÞ
�� �

, ð8Þ

where n indexes the eigenstate, an 0ð Þ is the initial amplitude of the
eigenmode ψn

�� �
at t =0, and αn tð Þ is the phase angle which is calcu-

lated by integrating the corresponding eigenvalues εn,
viz., αn tð Þ= R t

0εn t0ð Þdt0.
For the two-cavity system described by the simplified

Hamiltonian in Eq. (5), we get the eigenvalues ε± = � iΓ ± eκ0 and
the corresponding eigenvectors ψ±

�� �
= ð φA

�� �
± φB

�� �Þ ffiffiffi
2

p
=2, where

φi

�� �
denotes the state with complete acoustic energy in cavity i.

When cavity A is initially excited, the two coupled modes are
equally excited, namely a ± 0ð Þ=

ffiffiffi
2

p
=2. According to Eq. (8), we can

directly deduce the transient sound amplitudes of the two cav-
ities as

ψ tð Þ
�� �

= cos 2πeκ0t
� �

e�2πΓt φA

�� �� i sin 2πeκ0t
� �

e�2πΓt φB

�� �
: ð9Þ

It is clear that there is complete energy oscillation between the
two cavities.

For the three-cavity system with the simplified Hamiltonian in Eq.
(7), we get the three eigenvalues

ε+ tð Þ= � iΓ+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffieκ2
AB tð Þ+ eκ2

BC tð Þ
q

, ð10� aÞ

ε0 tð Þ= � iΓ, ð10� bÞ

ε� tð Þ= � iΓ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffieκ2
ABðtÞ+ eκ2

BCðtÞ
q

, ð10� cÞ

and the corresponding eigenvectors

ψ+ tð Þ
�� �

=
sinθ tð Þffiffiffi

2
p φA

�� �
+

1ffiffiffi
2

p φB

�� �
+
cos θ tð Þffiffiffi

2
p φC

�� �
, ð11� aÞ

ψ0 tð Þ
�� �

= cosθ tð Þ φA

�� �� sinθ tð Þ φC

�� �
, ð11� bÞ

ψ� tð Þ
�� �

=
sinθ tð Þffiffiffi

2
p φA

�� �� 1ffiffiffi
2

p φB

�� �
+
cosθ tð Þffiffiffi

2
p φC

�� �
, ð11� cÞ

where the mixing angle θ(t), defined as θ tð Þ= arctan½eκAB tð Þ=eκBC tð Þ�,
determines the field distributions among the cavities. When the time
variation of the amplitudes of the two couplings follows Gaussian

shape eκAB tð Þ= eκ0e
� t�t0�Δtð Þ2=σ2

and eκBC tð Þ= eκ0e
� t�t0ð Þ2=σ2

with Δt >0,

the sequential coupling satisfy eκAB tð Þ=eκBC tð Þ !t!0
0 and

eκAB tð Þ=eκBC tð Þ !t!+1
+1, meaning that θ(t) smoothly changes from0 to

π/2 through the modulation.

For the initial condition of ψ 0ð Þ
�� �

= φA

�� �
, according to the eigen-

vectors in Eq. (11), we obtaina0 0ð Þ= 1 and a ± 0ð Þ=0,meaning that only
the zero-energy state is excited. In this case, the transient state

function ψ tð Þ
�� �

evolves as the adiabatic evolution of ψ0 tð Þ
�� �

. Ignoring
the system’s dissipation, the sound intensities in the cavities with t can
be given as

IA tð Þ= j cosθ tð Þj2, ð12� aÞ

IB tð Þ=0, ð12� bÞ

IC tð Þ= j sin θ tð Þj2: ð12� cÞ

As long as the adiabatic condition is well satisfied, the initial
excitation in cavityA can robustly transfer toCwithout establishing an
appreciable intermediate amplitude in cavity B.

By contrast, for the initial condition with ψ 0ð Þ
�� �

= φC

�� �
, according

to Eq. (11), the coefficients for the eigenstates are a0 0ð Þ=0 and
a± 0ð Þ=

ffiffiffi
2

p
=2, meaning the state function evolves as the in-phase

superposition of ψ+ tð Þ
�� �

and ψ� tð Þ
�� �

. By defining α tð Þ= R t
0ε+ t0ð Þdt0 and

ignoring the dissipation of the system, the transient state function can
be written as

ψ tð Þ
�� �

= sinθ tð Þ cosα tð Þ φA

�� �� i sinα tð Þ φB

�� �
+ cosθ tð Þ cosα tð Þ φC

�� �
:

ð13Þ

Thus, the sound intensities in the cavities with time t are

IA tð Þ= j sinθ tð Þj2j cosα tð Þj2, ð14� aÞ

IB tð Þ= j sinα tð Þj2, ð14� bÞ

IC tð Þ= j cosθ tð Þj2j cosα tð Þj2: ð14� cÞ

In addition to θ(t), according to Eq. (14), we know the final sound
distributions in the three cavities relate to α(t). Specifically, when
α t ! +1ð Þ= ðn+ 1=2Þπ with n being the integer, we have
IB t ! 1ð Þ= 1 after the modulation, meaning the sound wave initially
excited in C finally transfers to B, rather than A.

For the initial condition with ψ 0ð Þ
�� �

= φB

�� �
, with the similar ana-

lysis as used above, we find the coefficients for the three eigenstates
a0 0ð Þ=0 and a ± 0ð Þ= ±

ffiffiffi
2

p
=2, meaning that, in the adiabatic limit, the

state function evolves as the out-of-phase superposition of ψ+ tð Þ
�� �

and
ψ� tð Þ
�� �

. Thus, we get the transient state function

ψ tð Þ
�� �

= � i sinθ tð Þ sinα tð Þ φA

�� �
+ cosα tð Þ φB

�� �� i cosθ tð Þ sinα tð Þ φC

�� �
,

ð15Þ

and the sound intensities in the cavities with time t is

IA tð Þ= j sinθ tð Þj2j sinα tð Þj2, ð16� aÞ

IB tð Þ= j cosα tð Þj2, ð16� bÞ

IC tð Þ= j cos θ tð Þj2j sinα tð Þj2: ð16� cÞ

With the same condition α t ! +1ð Þ= ðn+ 1=2Þπ, apparently, the
initially excited sound wave in cavity B transfers to A.

Data availability
The main data supporting the findings of this study are available
within this letter and its supplementary information. The source data
generated in this study have been deposited in Figshare repository
https://doi.org/10.6084/m9.figshare.25157849. Source data are pro-
vided in this paper. Source data are provided with this paper.
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Code availability
The code used to analyze the data and generate the plots for this paper
is available from the corresponding author upon request.
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