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Efficient coding of natural images in the
mouse visual cortex

Federico Bolaños1, Javier G. Orlandi 2 , Ryo Aoki3, Akshay V. Jagadeesh4,
Justin L. Gardner 4 & Andrea Benucci 3,5

How the activity of neurons gives rise to natural vision remains a matter of
intense investigation. The mid-level visual areas along the ventral stream are
selective to a common class of natural images—textures—but a circuit-level
understanding of this selectivity and its link to perception remains unclear.We
addressed these questions in mice, first showing that they can perceptually
discriminate between textures and statistically simpler spectrally matched
stimuli, and between texture types. Then, at the neural level, we found that the
secondary visual area (LM) exhibited a higher degree of selectivity for textures
compared to the primary visual area (V1). Furthermore, textures were repre-
sented in distinct neural activity subspaces whose relative distances were
found to correlate with the statistical similarity of the images and the mice’s
ability to discriminate between them. Notably, these dependencies weremore
pronounced in LM, where the texture-related subspaces were smaller than in
V1, resulting in superior stimulus decoding capabilities. Together, our results
demonstrate texture vision in mice, finding a linking framework between sti-
mulus statistics, neural representations, and perceptual sensitivity—a distinct
hallmark of efficient coding computations.

Visual textures are broadly defined as “pictorial representations of
spatial correlations”1—images of materials with orderly structures and
characteristic statistical dependencies. They are pervasive in natural
environments, playing a fundamental role in the perceptual segmen-
tation of the visual scene1,2. For example, textures can emphasize
boundaries, curvatures3,4, 3D tilts, slants5,6 and distortions, support a
rapid “pop-out” of stimulus features7, and can form a basis set of visual
features necessary for object vision8.

Although texture images largely share the spectral complexity of
other natural images9–11, they can be more conveniently parametrized
and synthetized than other natural images. This has been explored via
diverse computational approaches: in the field of computer graphics12,
via entropy-based methods13–15, using wavelet approaches16,17, and,
more recently, in machine learning implementations based on deep
convolutional neural networks18–21.

In light of their rich statistics and convenient synthesis and
parametrization, texture images have been at the core of studies on
efficient coding principles of neural processing. According to one
interpretation of the efficient coding hypothesis22, the processing of
visual signals along hierarchically organized cortical visual areas
reflects the statistical characteristics of the visual inputs that these
neural circuits have learned to encode, both developmentally and
evolutionarily23–29. Accordingly, texture images have been extensively
used in experimental studies that have examined the contribution of
different visual areas to the processing of texture statistics.

In particular, studies in primates have revealed that the “mid-
level” ventral areas, V2–V4, are crucial for processing texture
images30–41, more so than the primary visual cortex, V1 (however, see
ref. 42). Furthermore, as revealed by psychophysical observations43

and neural measurements, area V2, in addition to being differentially
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modulated by the statistical dependencies of textures, correlates with
the perceptual sensitivity for these stimuli34,35,38. Notably, biology-
inspired computational studies using artificial neural networks have
similarly emphasized hierarchical coding principles, with V2-like layers
as the locus for representing texture images in classification tasks44,45.
Together, these observations suggest a general hierarchical coding
framework, where the extrastriate visual areas, in particular area V2,
define a neural substrate for representing texture stimuli, reflecting a
progressive elaboration of visual information from “lower” to “higher”
areas along the ventral visual stream.

This high-level view raises two fundamental questions: (1) whether
this coding framework applies, in all generality, to hierarchically
organized visual architectures as seen in several mammalian species
other than primates—as CNN simulations would suggest—and (2)
which functional principles at the circuit level give rise to texture
selectivity, especially in the secondary visual area V2. Both questions
hinge on the need to gain a computational and mechanistic under-
standing of how visual networks process naturalistic statistical
dependencies to enable the perception of scenes and objects1,2,46–48.

Addressing these questions in the mouse model organism would
be particularly advantageous49. Although the rodent visual system is
much simpler than that of primates50, mice and rats have a large sec-
ondary visual cortex (area LM) homologous to primate V251,52,
belonging to a set of lateral visual areas forming a ventral stream of
visual processing53,54. As recordings from these areas have revealed,
there is increased selectivity for complex stimulus statistics in both
rats55,56 and mice57,58. Therefore, we studied the processing of texture
images in mice with an emphasis on the interrelationship between
behavioral, neural, and stimulus-statistic representations. Using a
CNN-based algorithm for texture synthesis59, we generated an arbi-
trary number of naturalistic texture exemplars and “scrambles”—
spectrally matched images lacking the higher-order statistical com-
plexity of textures48,60–63—by precisely controlling the statistical prop-
erties of all the images. Using these images, we demonstrated that
mice can perceptually detect higher-order statistical dependences in
textures, distinguishing them from scrambles, and discriminating
among the different types of naturalistic textures (“families” here-
after). At the neural level, using mesoscopic and two-photon GCaMP
imaging, we found that the area LM was differentially modulated by
texture statistics,more so thanV1 andother higher visual areas (HVAs).
Examining the representational geometryof thepopulation responses,
we found that when the statistical properties of a texture were most
similar to those of scrambles, the corresponding neural activity was
also more difficult to decode, and the animal’s performance
decreased. These dependencieswere particularly prominent in LMand
when considering the higher-order statistical properties of the images.
Notably, LM encoded different texture families in neural subspaces
that were more compact than in V1, thus enabling better stimulus
decoding in this area.

Results
Training mice to detect and discriminate between texture
statistics
To examine the ability of mice to use visual–texture information dur-
ing perceptual behaviors, we designed two go/no go tasks. In the first
task, mice had to detect the texture images interleaved with scramble
stimuli. In the second task,mice had todiscriminate between two types
of texture images from different texture families.

Synthesis of textures and scrambles. We generated synthetic tex-
tures using an iterativemodel that uses a convolutional neural network
(VGG16) to extract a compact multi-scale representation of texture
images59 (Fig. 1a). To disentangle the contribution of higher-order
image statistics from lower-order ones, for each texture exemplar we
synthesized a spectrally matched image (scramble, Fig. 1b) having the

same mean luminance, contrast, average spatial frequency, and
orientation content (Supplementary Fig. 1a–c, Methods) but lacking
the higher-order statistical features characteristic of texture images.
This produced image pairs for which the main axis of variation was
higher-order statistics (textural information). In total, we synthesized
images belonging to four texture families and four associated scram-
ble families, each with 20 exemplars.

Behavioral detectionof texture statistics. To train themice in the two
go/no go tasks, we employed an automated training setup64,65, wherein
the mice were asked to self-head fix and respond to the visual stimuli
displayed on a computer screen located in front of them (Fig. 1c). Mice
were trained to respond to the target stimuli by rotating a toy wheel,
and contingent on a correct response, they were rewarded with water.
For the texture/scramble go/no go task, the “go” stimuli were texture
images, while the “no go” stimuli were image scrambles (Fig. 1d). For
responses to a no-go stimulus (false alarms), a checkerboard pattern
was displayed on the screen for 10 s before a new trial began. All mice
(n = 19) learned the task in approximately 25 days (i.e., the time needed
for d-prime > 1 in at 50% of themice, Fig. 1e-g). Mice could significantly
discriminate between all four texture/scramble pairs (Fig. 1f, d’ > 1,
p <0.05 for all families, one sample t-test with Holm-Bonferroni cor-
rection for multiple comparisons; Supplementary Table 1) with an
average discriminability value of d’ = 2.1 ± 0.15 (s.e.), and with the
“rocks” family having a significantly lower performance than all other
families, both within and across mice. Dissecting the animals’ perfor-
mance, we found that, on average, mice had a high proportion of hits
(Supplementary Fig. 2a), as expected given that the training procedure
encouraged “go” behaviors66, with the lowest performance for rocks
associated with a higher proportion of false alarms (Supplementary
Fig. 2b). Additionally, to ensure that the mice were not adopting a
strategy based on “brute force” memorization (e.g., of pixel-level
luminance features67), we synthesized a novel image set consisting of
20 new exemplars for each of the four families, together with corre-
sponding scramble images. Then, in a subset of the mice (n = 4 for
scales; n = 3, rocks; n = 11, honeycomb; n = 8, plants), we switched the
original set of images with the novel set and compared behavioral
performance between the last five sessions prior to the switch and the
five sessions after the switch, finding no significant difference (Sup-
plementary Fig. 2c).

Behavioral discrimination between texture families. Mice not only
could detect higher-order statistical features in texture images that
were missing in the scrambles, but they could also discriminate
between different texture statistics. We trained mice already expert in
texture–scramble discrimination, as well as a new cohort of naïvemice
(n = 2), in a second go/no go task (Supplementary Table 2). Mice were
shown exemplars (n = 20) from two texture families, randomly chosen
but fixed across sessions, with only one of the two families associated
with a water reward for a correct “go” response. In addition, all 40
exemplars were randomly rotated to prevent mice from solving this
task using orientation information thatmay have been different across
families (Supplementary Fig. 2d). Mice could discriminate between
texture families, with a significantly positive d’ for all six texture pairs
(Fig. 1h, d’ > 0, p <0.019 for all pairs, one sample t-test with Holm-
Bonferroni correction at α = 0.05).

Finally, we controlled that in both tasks mice were not relying on
“simple” statistics, such as the skewness and kurtosis of the luminance
histogram, with skewness having been previously related to texture
perception (e.g., the blackshot mechanism61). For this, we created a
new set of textures and scrambles in which skewness and kurtosis
values were randomly mixed between textures and scrambles, thus
uninformative of the texture family and texture-scramble identity
(Supplementary Fig. 3a), finding that behavioral performance was
unaffected by this manipulation (Supplementary Fig. 3b). This result
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shows that the heuristic68 employed by the mice was not based on
these simple statistics, supporting the interpretation that mice relied
on the high-order spatial correlation properties of texture images.

Widefield responses to textures and scrambles
To examine the neural activity underlying the mice’s ability to detect
and discriminate between texture statistics, we imaged multi-area
responses from the posterior cortex of untrained animals whose
neural dynamicswere unaffected by procedural or perceptual learning
processes. This choice assumes that texture processing in visual

cortical networks is likely not the outcome of our behavioral training
(see also Discussion).

We performed widefield calcium imaging during the passive
viewing of textures and scrambles.Mice (n = 11) were placed in front of
a computer screen that displayed either an exemplar of a texture or a
scramble (Fig. 2a). The stimuli, 100 degrees in size, were presented in
front of the mice, centered on the mouse’s body midline, as was done
for behavioral training. While mice passively viewed the stimuli, we
recorded both calcium-dependent and calcium-independent GCaMP
responses using a dual wavelength imaging setup. We then used the
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calcium-independent GCaMP response to correct for the hemody-
namic component of the calcium-dependent GCaMP responses69. We
recorded from the right posterior cortex, which gave us access to ~5–6
HVAs (Fig. 2a). All the reliably segmented HVAs retinotopically repre-
sented the stimulus position in visual space (Supplementary Fig. 1d).

The peak-response maps to the textures and scrambles showed
activations almost exclusively in V1 and LM (Fig. 2b). When averaging
within the ROIs retinotopically matching the visual stimuli (example
blue contours in Fig. 2b), the responses were larger for textures than
scrambles both inV1 and LM (Fig. 2c, d) and accordingly, thedifference
in the peak-response maps resulted in a differential modulation loca-
lized primarily in V1 and LM (Fig. 2e). To establish statistical sig-
nificance, we tested the modulation of each pixel against a null
distribution derived from the pre-stimulus period (Fig. 2f), and to
determine the significance of an entire visual area, we computed the
proportion of significantly modulated pixels in each area within reti-
notopic ROIs, demonstrating that areas V1 and LM were those most
prominently modulated by textures relative to scrambles (Fig. 2g). To
compare response modulations between V1 and LM, we computed a
texture discriminability measure (d’) in retinotopically matched ROIs
and found that d’ values in LMwere significantlyhigher than those inV1
(Fig. 2h. V1: 0.41 ± 0.05, s.e.; LM: 0.79 ± 0.05; difference, p = 3 × 10−6,
paired t test, n = 11 mice).

Finally, weobserved that, despite the stimuli being retinotopically
mapped onto the central-lateral portion of V1 (Fig. 2b, blue contours),
significant texture-scramble modulations were most prominent in the

posterior-lateral region of V1 (example in Fig. 2f). To test for a possible
representational gradient or asymmetry in spatial representations70–72,
we performed experiments with full-field texture and scramble images
presented monocularly on a monitor sufficiently large as to activate
the entire V1 (azimuth, [−62.4°, +62.4°]; elevation [−48.5°, +48.5°]).
Based on maps of elevation and azimuth, we then divided V1 into four
quadrants representing the left-right upper and lower visual fields,
finding that texture discriminability (d’) was consistently higher in the
upper visual field (Supplementary Fig. 4).

Together, these results indicate that, at the mesoscopic level,
texture selectivity in V1 is biased toward the upper visual field, and
when considering a constellation of HVAs surrounding the primary
visual cortex, LM is the area with the most significant selectivity to
higher-order texture statistics.

Single-cell responses to texture and scrambles
Proportion of cells responding to textures in V1 and LM. We exam-
ined the circuit-level representations underlying this mesoscale
selectivity using two-photon GCaMP recordings in areas V1 and LM
(Fig. 3a). Imaging ROIs (approximately 530 µm x 530 µm) in V1 and LM
were selected based on the retinotopic coordinates of the visual sti-
muli, andneural activitywas recordedwhile presenting three classes of
visual stimuli: static gratings of different orientations and spatial fre-
quencies (sf; four orientations spaced every 45 degrees, 100° in size,
full contrast, sf = [0.02, 0.04, 0.1, 0.2, 0.5] cpd), scrambles and texture
images matching the properties of the stimuli used in behavioral
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(ROIs) retinotopically matching the visual stimuli in V1 and LM. c Average GCaMP
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experiments (four families for scrambles and textures, each with 20
exemplars rotated either by0or 90degrees, andwith eight repetitions
of each image).

The single-cell responses to oriented gratings agreed with what is
typically reported in the literature (e.g. refs. 73,74), with approximately
25–30% of the segmented cells being visually responsive (Fig. 3c). The
responses to textures and scrambles were rather heterogenous, with
some cells strongly responding to textures, others to scrambles, and
several showing mixed selectivity (Fig. 3b). In both V1 and LM, there
was a significantly larger proportion of cells responding to textures or
scrambles relative to gratings (Fig. 3c, V1, textures or scrambles: 61% ±
6%; LM: 55% ± 6%, s.e.). Despite the significant heterogeneity, respon-
ses averaged across cells were significantly larger in LM than in V1 for
all texture families (Supplementary Fig. 5a, b). We then quantified the

texture–scramble response modulation of the individual cells using a
discriminability measure (d’), similar to what was done in mesoscale
analyses (Fig. 3d, e), and found that (i) the proportion of cells with
significantly positive d’ values (i.e., with larger values in response to
textures) were higher in LM than in V1 for all families (Supplementary
Fig. 6c); (ii) the average d’ valuewashigher in LM than V1 for all families
(Fig. 3f, V1: average d’ = 0.24 ±0.01, LM: average d’ = 0.54 ±0.01, p = 2 ×
10−4, paired t-test, n = 10; Supplementary Fig. 6a,b), which reflected
larger response amplitudes to textures than scrambles (Supplemen-
tary Fig. 6d).

Together, these results indicate that underlying the increased
widefield texture selectivity in LM is both an increase in the proportion
of texture-selective cells as well a larger texture–scramble modulation
of individual cells.
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Encoding linear model of neural responses. To isolate the set of
statistical features that most prominently drove the texture–scramble
selectivity in V1 and LM, we used a previously described mathematical
model to parametrize image statistics: the Portilla–Simoncelli statis-
ticalmodel (henceforth, PSmodel and statistics15). Thismodel employs
a set of analytical equations to compute the correlations across a set of
filters tuned to different image scales and orientations. These statistics
can be divided into fourmain groups:marginal (skewness and kurtosis
of the pixel histogram), spectral, linear cross-correlation, and energy
cross-correlation statistics. In its complete formulation, the model
provides a very high dimensional parametrization of the stimuli (740
parameters), resulting in more parameters than the total number of
images (320). Therefore, dimensionality reduction of each PS group of
statistics can provide a reduced representationwithout significant loss
in parametrization power (Supplementary Fig. 8, 9). We used Principal
Component Analysis (PCA), finding that with even the first two prin-
cipal components, the energy statistics are best at separating textures
from scrambles and between texture types (Fig. 3g–j, Supplementary
Fig. 7, 9), as also reported in human psychophysical studies34.

Using PS statistics as features, we created an encoding linear
model for single-cell responses in V1 and LM. The model’s task was to
predict the response of a particular neuron to all texture and scramble
exemplars as a weighted linear sum of PS coefficients. When con-
sidering the cells for which the model could explain at least 1% of the
response variance—that is, a threshold value for the significance of the
model’s fits derived from apermutation test (Methods)—we found that
the proportion of these cells was higher in LM than in V1 (V1: 58% ± 8%
s.e., LM: 78% ± 3%, p = 1.0 × 10−4, paired t-test, n = 10), with a higher
average explained variance in LM (Fig. 3k; Supplementary Fig. 6e). The
energy cross-correlation statistics had the largest contribution to the
explained variance (Fig. 3l), which was also confirmed by an analysis of
“unique” variance explained75 (withholding a particular group of PS
statistics), and it was found that the energy cross-correlation statistics
was again the main contributor (Fig. 3m).

As these results show, underlying the increased selectivity for
textures in area LM and a larger proportion of cells having such
selectivity is a stronger responsiveness to statistical features that are
texture-defining—that is, those quantified by the energy cross-
correlation PS statistics.

Population responses to texture images
Next, we examined whether we could identify signatures of texture
selectivity, more significantly so in LM than in V1 at the level of
population encoding. To discriminate the activity of the
texture–scramble pairs in V1 and LM, we trained a binary logistic
classifier. The decoder was largely above the chance level (50%) for all
pairs (Fig. 4a), with significantly larger performance in LM than in V1
when grouping all the texture families (V1, 77% ± 1% (s.e.); LM, 81% ± 2%,
p =0.007, paired t-test, n = 10 mice). In both V1 and LM, the rocks
familywas the onewith the lowest classification accuracy (Fig. 4a,p = 4
× 10−7, one-way ANOVA; performance of rocks different from all pairs,
repeated measures correction, p < 0.035, post-hoc Tukey HSD test,
n = 10).Notably, a similardrop inperformancewas also observed in the
d’measures of behavioral performance, where the lowest performance
was observed for this texture–scramble pair consistently in individual
mice trained across all four texture–scramble pairs, and across animals
(Fig. 4b, p = 3 × 10−5, one-way ANOVA; repeated measures correction,
p <0.03, post-hoc Tukey HSD test, n = 16).

Linking image statistics to neural and behavioral representations.
Next, we examined whether the correlation in neural and behavioral
discriminability could be related to the statistics of the images. For
instance, if the statistics of the rock exemplarswere particularly similar
to those of their scrambles compared to other families, then this
reduced statistical discriminability may explain the drop in both
behavioral and neural discriminability. We thus defined a distance
metric in a statistical stimulus space based on a reduced set of PS
statistics (Fig. 3g). In each subspace, we measured the inter-cluster
distances (normalized by the clusters’ spread) between the textures
and the corresponding scrambles, finding that the rocks family had a
significantly smaller texture–scramble distance than the other families
in the energy statistics subspace (Fig. 4c, e). For the other statistical
subspaces, although the texture–scramble distances of rocks were still
the shortest compared to the other families, they overlapped with at
least one other family (Supplementary Fig. 10).

Together, the correlation between the PS-distance metric in the
energy subspace, which best captures texture-defining statistics, and
the drop in neural decoding and behavioral performance associated
with the rocks family, suggest a tight linking framework between high-

Fig. 3 | Single-cell responses in LMbetterdiscriminate textures fromscrambles.
aMulti-area imaging, as in Fig. 2a, with inset showing a representative ROI for two-
photon recordings; colored dots indicate the segmented cells responsive to tex-
tures and/or scrambles (“stim”, top). b Top panels: two example cells responding
more strongly to a texture family (red) than scrambles (blue); bottom panels, two
example cells for the opposite selectivity. Shaded bands are 95% CIs; center is the
mean across 80 texture samples (20 samples per family); vertical broken line
indicates the time of stimulus onset, and the green rectangles show the stimulus
duration (250ms). c The proportion of cells that significantly responded to
oriented gratings in V1 and LM (V1: 25% ± 3% s.e., n = 6 mice; LM: 28% ± 3%, n = 7;
average no. of segmented cells = 381 ± 44 in V1 and 344 ± 46 in LM) was lower that
theproportionof cells responding to either textures or scrambles (Tex/Sc; V1: 61%±
6% s.e., LM: 55% ± 6%). Gratings vs. Tex/Sc in V1: p =0.002, LM: p =0.015, two-sided
paired t-test. Box plots indicate the median with a horizontal bar; the box height
denotes the inter-quartile range (IQR, 1st and 3rd quartile) and the whiskers extend
by 1.5 x IQR. Distributions of the texture–scramble discriminability values (d’)
computed for each cell. Rows are for texture families;d for V1, e for LM: colors as in
c. Data from a representative experiment. f The mean d’ values for all the experi-
ments in V1 and LM (n = 10 mice, open dots); connecting lines for the same-mouse
data; V1 d’: scales = 0.02 ± 0.04 s.e., rocks = 0.21 ± 0.03, honeycomb = 0.37 ± 0.08,
plants = 0.35 ± 0.05, LM d’: scales = 0.43 ± 0.05, rocks = 0.50± 0.05, honeycomb =
0.67 ± 0.08, plants = 0.56 ±0.04; p-values from two-sided paired t-tests with Holm-
Bonferroni correction: scales, p = 7 × 10−5; rocks, p = 6 × 10−4; honeycomb, p = 2
× 10−2; plants, p = 4 × 10−3 (n = 10). Box plots as in c. g–j Two-dimensional PCA
embedding of each of the four groups of image statistics (titles). The dots indicate
texture exemplars (20), and the squares scramble exemplars (20). Color code for

texture families in the legend. The same images were used for both behavioral and
imaging experiments. k The explained variance (EV, %) by the encoding linear
model based on PS image statistics, comparing V1 to LM; only cells for which
EV≥ 1% have been included in the analysis (permutation test, Methods); each dot is
a mouse; connecting lines for the same-mouse data; V1: 5.3% ± 0.6% s.e., LM: 8.2% ±
0.7%, cross-validated,n = 10, V1– LMdifference, p = 7 × 10−4, two-sidedpaired t-test.
Box plots as in c. lThe sumofweight values for eachof the PS statistic groups of the
fitted regressive model; each dot is an average across cells for a given mouse. The
energy statistics are significantly higher than all others, both in V1 and in LM:
p <0.001 for energy compared to all other statisticsV1 comparisons: energy vs.
linear: 5 × 10−8; energy vs. marginal: 1 × 10−6; energy vs. spectral: 1 × 10−6; linear vs.
marginal: 0.7; linear vs. spectral: 0.7; marginal vs. spectral: 0.9. LM comparisons:
energy vs. linear: 1 × 10−12; energy vs. marginal: 2 × 10−13; energy vs. spectral: 3 × 10−6;
linear vs. marginal: 0.8; linear vs. spectral: 5 × 10−5; marginal vs. spectral: 4 × 10−6.:
one-way ANOVA with post-hoc analysis (Tukey HSD). Colors and box plots as in c.
m The “unique” EV (%ΔEVu) for all four PS statistics groups. The cells with a high
explained variance by the full model (EV ≥ 10%) were included in the analysis. Each
dot is the change in explained variance for a cell when using the “full” model or a
modelmissing a givenPS statistic. The energy statistics are significantly higher than
all others, both in V1 and LM: p <0.001 for energy larger than all other statistics; V1
comparisons: energy vs. linear: <10−12; energy vs. marginal: 7 × 10−12; energy vs.
spectral: <10−12; linear vs. marginal: 1 × 10−4; linear vs. spectral: 0.9; marginal vs.
spectral: 1 × 10−4. LM comparisons: energy vs. linear: 5 × 10−15; energy vs. marginal:
5 × 10−15; energy vs. spectral: 8 × 10−8; linear vs. marginal: 0.04; linear vs. spectral:
3 × 10−11; marginal vs. spectral: 6 × 10−5; one-way ANOVA with post-hoc analysis
(Tukey HSD). Box plots as in c. Source data are provided as a Source Data file.
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Fig. 4 | Statistical, behavioral, and neural discriminability correlate with the
geometry of texture representations in LM. a Accuracy of a linear classifier
trained to discriminate textures from the scrambles for all four families using the
neural responses from LM-ROI and V1-ROI. Each dot indicates a mouse. The
decoder accuracy is above 50%chance level for all pairs (V1: scales 75%±2%s.e.p = 1
× 10−6, V1: rocks 65% ± 3%, p = 3.5 × 10−4, V1: honeycomb 88% ± 2%. p = 2 × 10−8, V1:
plants 79% ± 2%. p = 1.1 × 10−6, LM: scales 82% ± 2%. p = 2 × 10−7, LM: rocks 72% ± 2%.
p = 1.9 × 10−6, LM: honeycomb 89% ± 2%. p = 3.0 × 10−9, LM: plants 81% ± 2%. p = 1.5 ×
10−7; one-sample t-test, n = 10mice; ANOVA values reported in d) Box plots indicate
the median with a horizontal bar; the box height denotes the inter-quartile range
(IQR, 1st and 3rd quartile) and the whiskers extend by 1.5 x IQR. b Behavioral dis-
criminability (d’), as in Fig. 1f, but for a subset of the mice that completed the
texture–scramble tasks for all four families (n = 16, open dots; p = 2.0 × 10−5, one-
way ANOVA across families; post-hoc analysis (Tukey HSD): rocks vs. honeycomb:
p <0.0001, rocks vs. plants: p =0.04, rocks vs. scales: p =0.0002). Box plots as ina.
c Normalized distances for each texture/scramble family pair for the energy cross-
correlation statistics of the images; graydots indicate outliers fromabootstrapping
procedure (Methods). Box plots as in a. d The combined 2D plot from the data in
a and b; the error bars are s.e.; colors as in f; reference gray horizontal broken lines
for pairwise statistical comparisons for area LM (filled dots), one-way ANOVA for
texture families: p = 3.7 × 10−5; post-hoc analysis (Tukey-HSD): honeycomb-plants:
p =0.04; honeycomb-rocks: p = 1.2 × 10−5; plants-rocks: p =0.03; rocks-scales:
p =0.016. V1 classifier, one-way ANOVA for texture families (asterisks not shown):
p = 1.7 × 10−6; post-hoc analysis: honeycomb-rocks: p = 6 × 10−7; honeycomb-scales:
p =0.005; plants-rocks: p =0.0013; rocks-scales: p =0.009; n = 10, mean accuracy
for each mouse. e Behavioral discriminability as in b plotted against the inter-
cluster distances (c) for each texture/scramble family pair and for the energy cross-

correlation statistics. The error bars are s.e. for the behavioral data and bootstrap
confidence intervals with Šidák correction for multiple comparisons (α =0.05) for
statistical distance: CIs = 99.15, pboot < 0.05, for all pairwise comparisonswith rocks;
n = 1000 bootstraps. f Neural classifier accuracy, as in a, against the inter-cluster
distances for the energy cross-correlation statistics (c); n = 10 mice. g 2D scatter
plot for the first two PCA components of the neural responses from LM-ROI for one
example animal; each dot is an exemplar (averaged across repeats, image rotations,
and time frames around the peak response); filled circles for textures and empty
squares for scrambles; colors as in f. h Accuracy of a multinomial classifier (n = 10
mice) discriminating between the texture families as a function of the number of
components, separately in V1 and LM PCA spaces. The shaded regions correspond
to the 95% confidence intervals across all mice; the center is the mean accuracy of
the classifier (i.e., the mean of the 5-fold cross validation procedure) across all 10
mice. The black horizontal bars indicate the range of PCA components for which
the classifier accuracy is statistically different between V1 and LM (paired t-test,
p-values < 0.05). i Top: schematic plot illustrating the metrics used in the neural
PCA space. For every cloud of points in the PCA space, we measure its radius (e.g.,
r1, r2) and its distance with respect to another cloud (e.g., d1, d2). The clouds on the
left show larger radii and inter-cluster distancecompared to the cloudson the right.
Bottom: scatter plot of the cluster radii in V1 (x-axis) and LM (y-axis) for all mice
(n = 10). Each dot is a cluster radius for a given texture family and mouse; colors as
in f. The black dotted line is the diagonal. j Radius values in V1 and LM; each dot
corresponds to a particularmouse and eachpanel a different texture family (n = 40,
10mice x 4 families), gray lines are paired animals and families between V1 and LM;
p =0.04, repeated-measures ANOVA brain-area effect; p = 6.0 × 10−6 family effect,
p =0.002 interaction effect. Box plots as in a. Source data are provided as a Source
Data file.
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order image statistics, population encoding in V1 and LM, and beha-
vioral performance (Fig. 4d–f).

V1 and LM differences in the representational geometry of texture
families. The results from the binary logistic classifier trained to
discriminate between the texture–scramble pairs suggest repre-
sentational differences betweenV1 and LM. For instance, significantly
fewer principal components (PCs) were needed in LM to attain
maximum performance (two to four dimensions) whereas V1
required thrice as many, between four and 12 PCs (Supplementary
Fig. 11). Further evidence for representational differences between V1
and LM was provided by a decoding analysis attempting to dis-
criminate between texture families from the neural activity in V1 and
LM.Weused amultinomial logistic classifier trained to categorize the
four texture families across each of the 40 exemplar images for each
family. Since the number of cells differed across experiments, we
used PCA to fix the representational dimensionality of the activity
space. Evenwithonly twoPCAcomponents, the collective activations
of the visually responsive cells across all texture and scramble stimuli
already formed separate activity subspaces (or “clusters”, Fig. 4g)
with an average explained variance above 15% (V1: 15.5% ± 1.4% s.e.
LM: 19.1% ± 1.2%). The cross-validated classifier performed sig-
nificantly above chance level in both areas, plateauing at approxi-
mately 60% performance with ~10 PCA components (Fig. 4h). The LM
decoder outperformed the V1 decoder, with significant differences
observed reliably in the range between two and sixteen PCA com-
ponents (Fig. 4h).

To highlight the properties of the population encoding that could
explain the increased classification performance in LM, we studied the
geometry of texture representations in a shared 16-dimensional PCA
space of V1 and LM activations, in which the texture-texture decoder
had the largest (significant) discriminability power (Fig. 4h). Eachpoint
in this space corresponded to a texture exemplar (averaged across
repeats) labeled according to the corresponding texture family (2D
schematic of the 16D representations in Fig. 4i). For every family pair
(40 exemplars per family) we computed a Mahalanobis distance
measure, which demonstrated an overall increase in distance in LM
compared to V1, in agreement with the performance of the multi-
nomial classifier (24 ± 5% distance increase in LM vs. V1, p =0.002
paired t-test, n = 60, 10 mice x 6 pairs). Both the classifier and the
Mahalanobis distancemeasure are sensitive to the relative “shapes” of
the underlying distributions. To test for simple geometrical changes
from V1 to LM, for every family we computed the spread of the acti-
vations associated with the 40 exemplars—that is, the radii of the
activity subspaces and their pairwise distances (“inter-cluster” Eucli-
dean distances). In LM, we found that the cluster radii were sig-
nificantly smaller than in V1 (Fig. 4i,j; repeated-measures ANOVA:
interaction effect, p =0.002; brain-area effect, p = 0.04; family effect,
p = 6.0 × 10−6), with no evidence for smaller inter-cluster distances in
LM compared to V1.

In conclusion, a population-level signature of the increased
selectivity for energy cross-correlation statistics in LM is a change in
the representational geometry of the texture stimuli with LM having
more “compact” representations than V1, as evidenced by the smaller
subspace radii. These findings suggest that the more compact repre-
sentations in LM contribute to the increased classification perfor-
mance observed in this area.

Discussion
We found that mice can perceptually detect higher-order statistical
dependencies in texture images, discriminating between textures and
scrambles and between different texture families. Across visual areas,
V1 and LM were those most prominently selective to texture statistics,
with LM more so than V1, significantly driven by the energy cross-
correlation image statistics. The representational geometry of

population responses demonstrated subspaces for each
texture–scramble pair, with better stimulus decoding in LM than in V1.
The distances between the texture–scramble subspaces changed
according to the stimulus statistical dependencies, more significantly
in the energy cross-correlation statistical components. The textures
statistically most similar to scrambles (i.e., exemplars from the rocks
family) had the shortest distances between the corresponding neural
subspaces, with the worst perceptual discriminability by the animals
and by a decoder trained on the neural representations. This was
observed consistently in the animals trained on various
texture–scramble pairs as well as across animals for this specific pair.
Finally, the neural representations for different texture families were
also easier to discriminate in LM than in V1, with LM having more
compact subspaces (smaller radii) for individual textures.

Efficiency, in reference to the efficient coding hypothesis22, high-
lights a correspondence between input statistics, perceptual sensitiv-
ity, and the allocation of computational (and metabolic) resources. A
neural code is efficient if it can reflect environmental statistics; such a
code will favor basic visual features that are more common, relying on
non-uniform neural representations and percentual sensitivity23,24,26,27.
This implies a close correspondence between neural, perceptual, and
statistical representations. We studied this correspondence by exam-
ining the geometry of such representations in V1 and LM and identi-
fying “rocks” as the familymost similar to its scramble exemplars, with
neural-distance representations and behavioral performance also
being the smallest for this family. This was reliably observed in animals
(tested across various texture–scramble pairs) and across animals for
this pair. The selected texture families were chosen because of their
likely ethological relevance to mice (e.g., rocks and plants) and their
extensive use and characterization in the texture literature38,59. They
also hadsufficiently diverse statistical dependencies topermit a simple
statistical similarity ranking between the texture–scramble pairs.
However, future work could adopt a more principled approach in
selecting texture families based on the statistical distance measure, as
adopted in this study. This would allow us to define a psychometric
difficulty axis in the stimulus-statistics space to be explored para-
metrically, both for texture–scramble and texture–texture dis-
crimination. For the latter in particular, this approach could overcome
a current statistical limitation: the six texture–family pairs span a
relatively narrow range of distances in stimulus statistics, requiring an
extremely large number of trials to test for differences in behavioral
performance and neural representations, both within and acrossmice.
Texture synthesis guided by a predetermined sampling of the relevant
distances along a psychometric difficulty axis could ease the burden of
collecting an exceedingly large dataset.

To examine the perceptual ability of mice to discriminate tex-
tures, we carefully controlled the stimulus statistics of each exemplar.
We customized aCNN-based approach for texture synthesis to achieve
the equalization of lower (e.g., luminance, contrast, and marginal PS
statistics) and higher statistical dependencies (e.g., linear and energy
cross-features PS statistics). Further, we normalized the power spec-
trum in a frequency band of high perceptual sensitivity for mice and
generated several metameric exemplars43 differing in pixel-level
representations but otherwise having identical statistical dependen-
cies. We also introduced image rotations to ensure that the animals
could generalize along this stimulus dimension. Finally, we tested the
trained animalswith new sets ofmetameric exemplars, confirming that
“brute force” memorization of low-level features was not used in the
task67. This approach gave us control overwhich statistical features the
mice could use in the task and which component is critical when
linking the statistical dependencies of the visual stimuli to neural and
perceptual representations. In this respect, our approach may be
preferable to using synthetic textures, inwhich typically only a reduced
set of statistics of interest is under parametric control, while others are
left free to (co)vary13,14,76–78.
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The linking framework between stimulus statistics, neural repre-
sentations, and perceptual sensitivity was most significant for the
energy cross-correlation statistics. These statistics capture depen-
dencies in high-order spatial correlations, sampling different parts of
the image with filters having different spatial scales and orientations15.
Therefore, energy statistics are sensitive to the “ergodic” properties of
textures, that is the homogeneity of the statistics across different parts
of an image or, for a given part, across exemplars from the same tex-
ture family1. Spatial structures and patterns repeated across the image
(e.g., elongated contour bands) are absent in scramble images, which
however are matched in average orientation power to texture images.
It is possible that mice rely on these patterns in the behavioral tasks.
Previous psychophysical studies in humans34 have shown that energy
components play a crucial role in predicting perceptual sensitivity to
texture images, motivating the use of perceptual components in
models of texture synthesis59. However, bridging the gap between the
perceptual strategies employed by mice in our tasks and the link
between energy statistics and human perception remains challenging.
Finally, additional research is necessary to extend our findings to non-
ergodic natural images, such as images of objects and faces, also
characterized by high-order spatial correlation properties.

The asymmetry in texture-scramble discriminability (d’) observed
in V1, with a bias for the upper visual field, could reflect an adaptive
mechanism to natural-image statistics. Previous studies have identified
gradients inmouseV1 related to variables such as binoculardisparity70,
coherent motion71, and UV-green color contrast72. These gradients
have been related to statistical properties in visually relevant envir-
onments. Likewise, the observed gradient in the discriminability
measure (d’) may signify a heightened sensitivity to high-order spatial
correlations in the upper visual field associated with natural elements
in the visual scene—not uniquely textural—such as predators or land-
marks used for navigation.

The prominent texture selectivity found in area LM is consistent
with what is known about the area specialization of the mouse visual
cortex, implicating LM in the processing of content-related (semantic)
visual information74,79–86, in high-fidelity representations of spatial
features—including those of textures58 and with inactivation studies
demonstrating the necessity of LM for the perception of even simple
visual stimuli80,83.

At the circuit level, an analysis of the representational geometryof
LM population responses87,88 revealed distinct activity subspaces
associated with different texture families. These texture “manifolds”
are reminiscent of the concept of object manifolds introduced in
relation to the processing of complex objects along the ventral stream
in primates89–92 and in mice57,93. When comparing LM to V1 repre-
sentations,we found a reduction in the size (radius) of texture clusters,
with this effect leading to an overall improved lineardiscriminability of
texture families in LM compared to V1. One interpretation is that the
increased discriminability fromV1 to LM is related to an increase in the
representational invariances to image statistics, as suggested by pre-
vious studies on rats55,56 and mice57. The reduction in cluster sizes
reflects an overall more compact representation of the four texture
families, which may relate to LM achieving a higher encoding capacity
than V1 while, at the same time, retaining large encoding accuracy for
textures. Another possibility is that the V1 texture representations
reflect an “incomplete inheritance” from LM via top-down signal
processing94; experiments inactivating LM while recording from V1
could elucidate this point.

Neural recordings were done in untrained animals passively
viewing the stimuli, thus enabling comparisons with primate studies
that used similar preparations34,36,95. Furthermore, neural recordings in
untrained animals eliminate the possibility that the observed selec-
tivity and representational features emerge as a consequence of the
task-learning process. Rather, our analyses likely highlight a compu-
tational property of the visual system emerging from an evolutionarily

refined genetic program28 and from exposure to a rich set of image
statistics during development. The observation that in naïve animals
the decoding quality of the neural signals follows the statistical
separability of texture–scramble images, mirrored by congruent per-
formancemodulations in trained animals, supports this interpretation.
It is also conceivable that learning and attentional processes, as ani-
mals engage in tasks, might affect the properties of neural
representations1,96,97. Therefore, in future studies, it would be of
interest to examine the neural dynamics underlying texture repre-
sentations during the different phases of learning.

In conclusion, our results demonstrate the signal processing of
naturalistic stimuli in the mouse visual cortex akin to what has been
observed in primates, additionally highlighting an intimate link
between the geometry of neural representations, stimulus statistical
dependencies, and perceptual behavior, which is a distinct hallmark of
efficient coding principles of information processing. Considering that
similar processing features are also found in V2/LM equivalents in
artificial neural networks, our results likely reflect a general efficient
coding principle emerging in hierarchically organized computational
architectures devoted to the extraction of semantic information from
the visual scene.

Methods
Subjects
All procedures were reviewed and approved by the Animal Care and
Use Committees of the RIKENCenter for Brain Science. The behavioral
data for the texture–scramble and texture–texture discrimination
visual task were collected from a total of 21 mice: six CamktTA;-
TREGCaMP6s (fourmales and two females), 14 C57BL/6 JWT (11males,
three females), and one male CaMKIIα-Cre. For the passive imaging
experiments, we used a total of 11mice (11 for widefield and 10 for two-
photon): six CaMKIIα-Cre transgenic mice (four males and two
females) and five C57BL/6 JWT (twomales and three females). The age
of the animals typically ranged between eight and 28 weeks old from
the beginning to the end of the experiments. The mice were housed
under a 12–12 h light–dark cycle. Temperaturewas kept in the 20-24 °C
range and humidity at 45-60%.

Cranial window implantation
As described in ref. 64, for the implantation of a head-post and optical
chamber, the animals were anesthetized with gas anesthesia (Iso-
flurane 1.5–2.5%; Pfizer) and injected with an antibiotic (Baytril, 0.5ml,
2%; Bayer Yakuhin), a steroidal anti-inflammatory drug (Dex-
amethasone; Kyoritsu Seiyaku), an anti-edema agent (Glyceol, 100μl;
Chugai Pharmaceutical) to reduce brain swelling, and a painkiller
(Lepetan, Otsuka Pharmaceutical). The scalp and periosteum were
retracted, exposing the skull, and then a 5.5mmdiameter trephination
was made with a micro drill (Meisinger LLC). Two 5mm coverslips
(120-170 μm thickness) were positioned in the center of the cra-
niotomy in direct contact with the meninges, topped by a 6mm dia-
meter coverslip with the same thickness. When needed, Gelform
(Pfizer) was applied around the 5mm coverslip to stop any bleeding.
The 6-mmcoverslipwas fixed to the bonewith cyanoacrylic glue (Aron
Alpha, Toagosei). A round metal chamber (7.1mm diameter) com-
binedwith a head-post was centered on the craniotomy and cemented
to the bone with dental adhesive (Super-Bond C&B, Sun Medical),
which was mixed with a black dye for improved light absorbance
during imaging.

Viral injections
For imaging experiments, we injected the viral vector rAAV1-syn-
jGCaMP7f-WPRE (4 × 1012 gc/ml, 1000 nl) into the mice’s right visual
cortex (AP, −3.3mm: LM 2.4mm from the bregma) at a flow rate of
50 nl/min using a Nanoject II (Drummond Scientific, Broomall, Penn-
sylvania, USA). The injection depth was 400 μm. After confirmation of
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fluorescent protein expression (approximately two weeks after the
AAV injection), we made a craniotomy (5.5mm diameter) centered on
the injection site while keeping the dura membrane intact and
implanted a cover-glass window, as described above.

Behavior
Behavioral training procedure. Water-restricted mice were habi-
tuated to our automated behavioral training setups with self-head
fixation, as previously described64. The training of mice progressed
according to four stages with increasing difficulty, both procedural
and perceptual, and with the fourth stage involving the final tasks
described in the Results section (both the texture–scramble and
texture–texture tasks). In the first stage, trial timing and stimulus
properties were already set as in the final stage (Fig. 1d). However, 1)
the “go” stimuliwere shown in 70%of the trials (insteadof 50%as in the
fourth stage); 2) the minimum wheel rotation required to trigger a
response was 5° instead of 45°; 3) the maximum wheel rotation that
was allowed during the last second of the ITI was larger (20° instead of
5°); 4) the reward size was 8 μl instead of 4 μl. During this training
stage, mice learned the association between wheel rotation and water
reward contingent on the stimulus presentation on the screen. After
they learned to rotate thewheel contingent to stimulus presentation in
at least 80% of the trials for three consecutive sessions, they were
moved to the second training stage, with the following changes: (1) the
“go” stimuli were shown in 70% of the trials; (2) the wheel rotation
angle to signal a responsewas increased to 15°; (3) themaximumwheel
rotation allowed during the ITI was decreased to 5°; and (4) the water
rewardwas lowered to 4 μl. After themice reached at least 70% hits for
three consecutive sessions, they were moved to the third training
stage, in which the only change was an increase in the wheel rotation
angle to 30° to signal a response. After reaching at least 70% hits for
three consecutive sessions, the mice were moved to the fourth and
final training stage with 50% hit trials. Most of the mice started the
training with the honeycomb or scales texture/scramble family.
Afterwards, we randomly selected the next family until all four families
were successfully discriminated against the corresponding scrambles.
A texture–scramble family discrimination was considered completed
when themouse had a d’ > 1 consistently over 10 consecutive sessions.
The training details for the texture–texture task are described in the
“Texture–texture task” section. In the final stage, mice received 4–5ml
of water daily. In preceding stages, in cases where mice failed to
acquire sufficient hydration to maintain a healthy body weight (mea-
sured daily), specifically falling below 75% of the baseline body weight,
we administered a significant bolus of water gel after the session.
Alternatively, we temporarily withdrew the animal from the training
protocol in instances where the mouse struggled to rapidly regain a
healthy weight. Mice were typically not trained on weekends when
they had free access to water.

Behavioral performance.We evaluatedbehavioral performance using
the discrimination metric d-prime (d’) from signal detection theory98

which is defined as: d’ = Z(hit-rate) - Z(false-alarm-rate), where Z is the
inverse cumulative normal distribution function, “hit rate” is the pro-
portion of correct “go” trials, while “false alarms” is the proportion of
“no go” trials with erroneous responses.

Texture–scramble task. Mice independently fixed their headplate to
the latching device twice a day in a fully automated behavioral setup64

that was connected to their home-cage. It comprised a self-latching
stage, a rubber wheel with a quadrature encoder sensor to read the
wheel’s position99, a spout that dispensed water drops (4 μl), and a
computer monitor positioned in front of the latching stage. Mice were
required to rotate the toy wheel with their front paws contingent on a
texture stimulus shown on the screen (the “hit” trials were rewarded
with a water drop; the “false alarm” responses were discouraged by

presenting a full-field flickering checkerboard pattern for 10 seconds;
no feedback was given for “misses” and “correct rejects”). Regarding
the temporal structure of the trial (shown in Fig. 1d), a session began
with an ITI with an isoluminant gray screen (with the same mean
luminance level of the texture and scramble images). The ITIs lasted
for four to six seconds chosen from a randomly uniform distribution.
Mice had to refrain from rotating the wheel, with movements during a
one-second period before the onset of the visual stimulus extending
the ITI by one second. The stimuli had a 50% chance of being either a
go stimulus (texture exemplar) or a no-go stimulus (scramble exem-
plar). The parameters of the stimulimatched thoseused in the imaging
experiments: 100° in visual angle, with a raised cosine mask to reduce
sharp edges (high-frequency components), and the texture family to
be discriminated was kept constant during the entire session, ran-
domly selecting the image to be displayed in each trial from a set of 20
exemplars. Following the stimulus presentation, the mice had two
seconds to respond (response window). A wheel rotation was counted
as a response if it exceeded 45°. After a hit trial, a water reward was
given, which was followed by a one-second period, during which the
stimulus remained visible on the screen, which then disappeared at the
beginning of the ITI period with a randomized four to six second
duration. In false-alarm trials, the stimulus disappeared after the wheel
rotation, and a flickering checkerboard pattern (2Hz) was displayed
for 10 seconds followed by an ITI period. For miss trials, a new ITI
began at the end of the two-second response window. The session
ended either when the mice received 400 μl of water or when the
session’s duration reached 1800 seconds. To verify that the mice did
not rely on “brute force” memorization of the luminance patterns
shown on the screen to solve the task100, in a subset of expert animals
(n = 17), trained on all four texture–scramble family pairs, we intro-
duced new sets of texture and scramble exemplars (20 each) and
compared the performance of mice in the five sessions before and
after the change in exemplars.

Texture–texture task. The mice trained in the texture–texture go/no
go taskwere both a subset of themice trained in the texture–scramble
(n = 14) and a new cohort of naïve mice (n = 2). If the mouse had been
previously trained in the texture–scramble task expert, we simply
changed the protocol so that a randomly chosen texture family (20
exemplars) was the new “go” stimuli and, similarly, another randomly
chosen texture family (20 exemplars) was the new “no go” stimuli.
Instead, for naïve mice, we trained them following the same training
procedure described for the texture–scramble task but using exem-
plars from another randomly chosen texture family instead of
scrambles.

Image synthesis
Texture synthesis. As described in ref. 59, convolutional neural net-
works (CNNs) can be used to extract a compact representation of
texture images by measuring the activation patterns of a CNN to a
given texture. These activations are an over complete multi-scale
representation59,101 that can be used to synthesize an arbitrary set of
texture exemplars. Specifically, the first step for the synthesis of a
novel texture exemplar relative to a reference texture (“target”, x) is to
obtain a CNN parametrization of x—that is, its feature vector repre-
sentation, f ðxÞ. This is done by concatenating the spatial means of the
feature-map activations in each of the five VGG16 layers, which results

in a feature vector of size 1,472: f xð Þ= fμ ið Þexj ; i = 1, . . . ,m; j = 1, . . . ,nig,
wherem= 5 is the number of convolutional layers, ni is the number of
featuremaps in convolutional layer i, exj is the spatialmean across filter

activations in the feature map j, and μ ið Þexj is the set of such means for

layer i. The second step is to obtain a feature vector representation,
f yð Þ, of a Gaussian-noise image y:
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f yð Þ= fμ ið Þeyj ; i= 1, . . . ,m; j = 1, . . . ,nig. To obtain f xð Þ≈f yð Þ, we solve

an optimization problem (with an L1 loss):

y? =argminyΣjf xð Þ � f yð Þj ð1Þ

Where y* is the fully optimized image relative to the target image, x.
This approach is nearly identical to that of ref. 59, with the only

difference being that we did not add the mean of the three-color
channels of x to our feature transform59 since in our framework it
created somedegree of “pixelation” in the synthesized images. Rather,
as an additional step after optimization, we normalized the images to
have equal mean luminance and standard deviation (RMS contrast), as
detailed below.

For the synthesis of the textures in Supplementary Fig. 7 we used
the Portilla-Simoncelli algorithm to generate images for four texture
families. First, we computed the PS statistics of four original textures
(using randomly chosen exemplars), and then we generated new tex-
tures constraining linear, marginal, and spectral statistics to be those
of the “scales” family. Instead, the energy statistics were the original
statistics of each of the four texture families (MATLAB function “Tex-
tureSynthesis.m”, http://www.cns.nyu.edu/~lcv/texture/).

Texture normalization. To ensure that texture exemplars had the
same lower-order statistics (mean luminance and RMS contrast), we
z-scored the pixel intensity values, multiplied them by a fixed contrast
(standard deviation, σ =0.15), and, finally, added a fixed mean lumi-
nance value (µ =0.5). This normalization was applied to all the “target”
texture images (relative to the synthesis procedure with VGG16) and
the synthetized texture exemplars, as there were small differences in
the luminance and contrast relative to the target after each exemplar
was synthetized. Furthermore, to ensure that the spatial frequency
content of the textures was within the range of mouse perceptual
sensitivity, we used an iterative algorithm in which we progressively
rescaled the “target” texture images such that 1) > 95% of the spatial-
frequency amplitudes of all the target textures lied within the 0.0 to
0.5 cpd102 interval; 2) the average amplitude spectrum overlapped
across families in the frequency range between 0.01 and 0.5 cpd.

Scramble generation. Scrambles are the noise images spectrally
matched to the textures34 generated via FFT-transform of a given
texture exemplar (changing for different texture–scramble pairs) and
randomizing the phase components while keeping the amplitude
ones. Phase randomizationwasdonebydrawing the phase values from
an FFT-transform of a Gaussian-noise image. The thus-generated
scrambles retained the sameaverageorientation and spatial-frequency
power as the texture exemplars but lacked the higher-order statistical
dependence of the textures34. For each of the synthesized scrambled
images, we verified that the mean luminance and RMS contrast
remained nearly identical to the original textures. The difference was
within the floating-point error.

Images with similar skewness and kurtosis. We generated a new set
of texture and scramble images in which we normalized the luminance
histograms (scikit-image function ‘match_histograms’). This function
was applied before the rescaling procedure (see “Texture normal-
ization”), therefore skewness and kurtosis values were not exactly
equal between images after rescaling; however, by being randomly
mixed, skewness and kurtosis could not be used to separate between
textures families and textures fromscrambles (Supplementary Fig. 3a).
We then created a texture-scramble and texture-texturediscrimination
task in which mice used these new images (n = 7 mice, newly trained).
These mice had to discriminate between “scales” images and corre-
sponding scrambles, and between “scales” and “plants” textures.

Image analysis
Image statistics. We explored the image statistics at various levels of
complexity. Our texture normalization procedure ensured that the
pixel histogram distributions had identical means and standard
deviations between the images (i.e., luminance, and RMS contrast).
Within families and between a matching pair of textures and scram-
bles, we also confirmed that the average orientation and spatial fre-
quency content were the same. To do so, in each image Fourier
transform, we measured the average power in “slices” of the spatial
frequencies and orientations (spatial frequency bins: [0.01 cpd, step
0.02 cpd: 0.5cpd]; orientation bins: [0°: step 15°: 180°]). The plots in
Supplementary Fig. 1b, c show the amplitude values as a function of
spatial frequencies and orientations, averaged across 20 exemplars for
all families and stimulus types, and normalized to 1. To measure the
higher-order statistics of the images, we decomposed them using an
approach devised by Portilla and Simoncelli15, which decomposes an
image using a bank of linear and energy filters tuned to different
orientations, spatial frequencies, and spatial positions. The correla-
tions are then computed across the outputs of thesefilters (i.e., the “PS
statistics”). The parameters and classification of the PS statistics we
adopted follow what has been previously described34,36,38,39. Briefly, we
used a filter bank composed of four spatial scales (four downscaling
octaves), four orientations (0°, 45°, 90°, 135°), and a spatial neigh-
borhood of seven pixels to compute the filter output correlations. In
addition, the marginal statistics of the pixel distributions were also
computed (min, max, mean, standard deviation, skewness, and kur-
tosis). However, since part of our image synthesis pipeline procedure
already ensured equal mean and standard deviation, only the differ-
ences in skewness and kurtosis were added to the characterization of
the image statistics. In the end, the output of this image decomposi-
tion yielded four main groups of PS statistics: 1) marginal statistics
(skewness and kurtosis); 2) spectral statistics; 3) linear cross-
correlation statistics; and 4) energy cross-correlation statistics.

Dimensionality reduction of PS statistics. The number of parameters
associated with the PS decomposition is larger (740) than the total
number of images (320, eight image categories—four texture families
and four scrambles—and 20 exemplars per category with two rota-
tions). We thus reduced the number of parameters by applying Prin-
cipal Component Analysis (PCA) to each PS statistical group after
z-scoring the parameter values.We retained atmost eight components
in each group, which explained at least 70% of the variance per group
(Supplementary Fig. 8). The marginal statistics with only two “dimen-
sions” were excluded from this decomposition. After PCA, we again
z-scored the outputs across exemplars to ensure that the range of
parameter values between the groups of statistics was commensurate;
this was necessary to gain interpretability of the distance metric later
introduced, which was based on these reduced PS statistics. We also
confirmed that the reduced PS statistics retained sufficient informa-
tion to discriminate between textures and scrambles, with the energy
cross-correlation statistics maximally distinguishing between them
(Supplementary Fig. 9a,b).

Imaging experiments
Visual stimuli. The visual stimuli were shown on a gamma-corrected
monitor (widefield: IIYAMA Prolite LE4041UHS 40”, two-photon:
IIYAMA Prolite B2776HDS-B1 27”). Except for the experiments for the
discriminability gradient (see related section below), the size of the
stimuli was 100° of visual angle with a raised cosine window for vig-
netting to correct for sharp edges; the stimuli were shown in front of
themouse perpendicular to its midline, which pointed to the center of
the screen. The animalwas at a distanceof ~33 cmfrom themonitor for
widefield experiments and ~24 cm for two-photon experiments. For
widefield recordings, the stimuli were presented for 250ms, followed
by 750msof an isoluminant gray screen (ITI) before a new trial started.
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Eachmouse was shown 20 exemplars of four texture families and four
scramble families (computed from the textures), a total of 10 times
each exemplar, with 200 blank trials (i.e., trials with an isoluminant
gray screen and no stimuli). This resulted in a total of 1600 trials with
images and 200 trials with no stimulus (blanks). The presentation of
each image/blank was fully randomized across the entire session.

The two-photon experiments followed the same temporal struc-
ture as thewidefield experiments; however, we reduced the number of
repeats and added image rotations. Specifically, each mouse was
shown 20 exemplars of four texture families and four scramble
families: a total of eight times for each exemplar, and two rotations (0°
and 90°) of each exemplar, with 160 blank trials. This resulted in a total
of 2560 trials with images and 160 trials with no stimuli (blanks). We
also recorded the responses to oriented gratings: 100 degrees in size,
four orientations (0°, 45°, 90°, 135°), five spatial frequencies (0.02,
0.04, 0.1, 0.2, 0.5 cpd) and 15 repeats per stimulus.

Widefield imaging. As described in ref. 103, awake mice were head-
fixed and placed under a dual cube THTmacroscope (Brainvision Inc.)
for widefield imaging in tandem-lens epifluorescence configuration
using two AF NIKKOR 50mmf/1.4D lenses. We imaged the jGCaMP7f
fluorescence signals using interleaved shutter-controlled blue and
violet LEDs with a CMOS camera (PCO Edge 5.5) with an acquisition
framerate of 60Hz. This dual color recordingmethod ensured that we
could capture both the calcium-dependent GCaMP signal (blue light
path) as well as the hemodynamic-dependent signal (violet light path),
as previously reported in other studies69. The blue light path consisted
of a 465 nm centered LED (LEX-2, Brainvision Inc.), a 475 nm bandpass
filter (Edmund Optics BP 475 × 25 nm OD4 ø = 50mm), and two
dichroic mirrors with 506 and 458nm cutoff frequencies, respectively
(Semrock FF506-Di03 50 × 70mm, FF458-DFi02 50 × 70mm). The
violet path consisted of a 405 nm centered LED (ThorlabsM405L2 and
LEDD1B driver), a 425 nm bandpass filter (Edmund Options BP 425 ×
25mmOD4ø= 25mm), a collimator (ThorlabsCOP5-A), and joined the
blue LED path at the second dichroic mirror. The fluorescence light
path traveled through the two dichroic mirrors (458 and 506 nm,
respectively) and a 525 nm bandpass filter (Edmund Optics, BP 525 ×
25 nmOD4 ø = 50mm) and was finally captured with the PCO Edge 5.5
CMOS camera using the cameralink interface. Camera acquisition was
synchronized to the LED illumination via a custom Arduino-controlled
software. The frame exposure lasted 12ms, starting 2ms after opening
each LED shutter to allow the LED illumination to stabilize. In a subset
of the widefield experiments we displayed texture and scramble sti-
muli on a large screen, IIYAMA Prolite LE4041UHS 40” monitor. Mice
were placed 22 cm away from the monitor, with the body midline
pointing at the right edge of the monitor. With these parameters the
visual stimuli subtended approximately an azimuth range of [−62.4°,
+62.4°] and an elevation range of [−48.5°, +48.5°].

Preprocessing the widefield data. Data preprocessing was done with
custom Python and MATLAB code, with subsequent analyses done in
Python. The continuously acquired imaging data were split into blue
and violet channels. Then, as described in refs. 103,104, we corrected
for the “hemodynamic component” by removing a calcium-
independent component from the recorded signal. For every pixel,
the blue and violet data were independently transformed into a rela-
tive fluorescence signal, ΔF

F = ðF � aF � bÞ=b, where F is the original
data, and the a and b coefficients are obtained by linear fitting each
time series, i.e., F tð Þ∼at � b. Afterwards, for each pixel, the violet ΔF

F
signal was low-pass filtered (6th order IIR filter with cutoff at 5Hz) and
linearly fitted to the blue ΔF

F signal: the hemodynamic-corrected ΔF
F

signal was obtained as ΔF
F corr = ΔF

F blue� ðc ΔF
F violet +dÞ, where c and

d are the coefficients from linearly fitting the low-pass filtered ΔF
F violet

to the ΔF
F blue signal, i.e., ΔF

F blue tð Þ∼ c ΔF
F violetðtÞ � d. The con-

tinuously acquired data was then split into trial periods comprising

sequences of frames in a temporal window of [−500, +1000] ms rela-
tive to stimulus onset. This resulted in a tensor with seven dimensions:
[stimulus type (texture or scramble), family type (4), exemplars (20),
repeats (10), no. pixels X (256), no. pixels Y (230), no. frames]. Next, we
averaged across repeats to obtain an “exemplar response tensor.”

Retinotopy maps. After the mice recovered from the cranial-window
surgery (typically 3 to 4 days), we performed widefield imaging
recordings during visual stimulation with counterphase flickering bars
to obtain maps of retinotopy. We used a standard frequency-based
method105 with slowly moving horizontal and vertical flickering bars
and corrections for spherical projections74. Visual area segmentation
was performed based on azimuth and elevation gradient inversions73.
The retinotopic maps were derived under light anesthesia (Isoflurane)
with the animal midline pointing to the right edge of the monitor
(IIYAMA Prolite LE4041UHS 40”), centered relative to the monitor
height, and with the animal’s left eye at ~25 cm from the center of the
screen.

Two-photon imaging. As described in ref. 64, imaging experiments
were performed using the two-photon imaging mode of the multi-
photon confocal microscope (Model A1RMP, Nikon, Japan) with a
Ti:sapphire laser (80MHz, Coherent©, Chameleon Vision II). The
microscope was controlled using the A1 software (Nikon). The objec-
tive was a 16x water immersion lens (NA, 0.8; working distance, 3mm;
Nikon). The field of view (512 × 512 pixels) was 532 μm × 532 μm.
jGCaMP7f was excited at 920nm, and the laser power was ~40mW.
Images were acquired continuously at a 30Hz frame rate using a
resonant scanner. To align the two-photon field of view with the maps
of retinotopy,we captured a vascular image at the surfaceof the cortex
and used it for reference.

Preprocessing of two-photon data. All the analyses, except for neu-
ronal segmentation, were conducted using a custom code written in
Python. Cells were segmentedusing Suite2p106, followedby themanual
classification of the segmented ROIs. We then computed the ΔF/F
response values (%) for each neuron by first applying a neuropil cor-
rection: Fc = Fs − 0.7 × Fn, where Fc is the corrected signal, Fs is the
soma fluorescence, and Fn is the neuropil fluorescence. Then, we
computed a baseline-fluorescence value (Fµ) as the mean of Fc during
the first five seconds of the recordings when no stimuli were shown on
the screen.We thendetrended Fc (Scipy function scipy.signal.detrend)
to remove the slow decrease in fluorescence sometimes observed
across several tens of minutes and used the zero-mean detrended
signal Fd to compute ΔF/F = Fd/Fµ.

Data analysis: widefield
Defining regions of interest. For every visual area, we defined a
visually responsive ROI (or stimulus ROI) based on the maps of azi-
muth and elevationobtained fromwidefield imaging, so as to include a
range of [+30°, −10°] in azimuth (relative to the contra- and ipsilateral
visualfields, respectively) and elevation (±30°), which, for the azimuth,
was a conservative estimate of the retinotopic representation of the
stimuli (of size ±50° in azimuth and elevation).

Peak-response and p-value maps. Widefield responses to textures
and scrambles (Fig. 2b) were computed by averaging across repeats,
exemplars, and families; the frames were then averaged in a time
widow [200, 400]ms after the stimulus onset, approximately centered
around the time of peak response. The temporal response curves in V1
and LM to the textures and scrambles (Fig. 2c) were computed by
averaging across repeats, families, and pixels within the response ROIs
in V1 and LM; the variability was across the exemplars. The response
ROIs were defined based on retinotopy as the cortical region that
“mapped” the stimulus location in the visual space. The error bands
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indicated a 95% confidence interval across the exemplars. To evaluate
the significance of the differential response to the textures and
scrambles (Fig. 2f), we tested against a distribution of pre-stimulus
responses. Specifically, we first computed the response–difference
distributions by subtracting the responses to texture exemplars
(averaged across repeats) from the randomly paired scramble exem-
plars. As before, the frames were also averaged around the time of the
peak response, [200, 400]ms after the stimulus onset. This resulted in
a tensor with four dimensions: [family type (4), exemplars (20), no.
pixels X (256), no. pixels Y (230), no. frames]. By grouping the
responses to all the families and exemplars, we generated response-
difference distributions for each pixel, each containing 80 data points.
We applied the same procedure in a temporal window [−350, −100]ms
prior to stimulus onset to obtain “null” distributions for each pixel.
Finally, we tested for statistical differences between the pre-and post-
stimulus onset distributions using a paired t-test and reporting the
associated p-values. This procedure was applied to each animal, and
the p-value maps were then used to compute the texture modulation
of each visual area.

Texture-scramble discriminability gradient in V1. We used full field
stimuli (azimuth [−62.4°, +62.4°], elevation [−48.5°, +48.5°]), suffi-
ciently large to activate the entire V1. For each V1 camera pixel, we
averaged responses across repeats, and time frames within a window
of [200, 400] ms after stimulus onset. Then, we compared average
discriminability values (d’, textures vs. scrambles) in the upper visual
field ([0°, +40°] elevation, [−20°, +20°] in azimuth) vs. the lower visual
field ([−40°, 0°] elevation, [−20°, +20°] in azimuth), and tested for a
significant difference in average d’ values using a t-test. Similarly, we
measured the average discriminability values in the left visual field (,
[−40°, 0°] in azimuth, [−20°, +20°] elevation) vs. the right visual field
([0°, +40°] in azimuth, [−20°, +20°] elevation). Statistics were com-
puted across 8 recording sessions (n = 4 mice, 2 sessions each).

Texture selectivity of visual areas. To determine how significantly a
visual area was modulated by textures compared to scrambles, we
computed the proportion of the significantly modulated pixels
(p < 0.01, from the p-value maps) within the stimulus ROI of each area
(described in the section “Defining regions of interest”). This was
separately computed in five visual areas (V1, LM, RL, AM, and PM) that
were reliably segmented in all animals (Fig. 2g).

Texture discriminability. To compute the texture–scramble dis-
criminability values for V1 and LM (Fig. 2h), we considered the
responses to exemplars—separately for textures and scrambles—aver-
aged across (i) repeats, (ii) pixels within stimulus ROIs (see section
“Defining regions of interest”), and (iii) time frames within a window of
[200, 400] ms after the stimulus onset. We then calculated a
texture–scramble discriminability index (d’) as follows:

d0 =
μtex � μscffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 σ2

tex +σ2
sc

� �q ð2Þ

Whereμtex andμsc are themean responses to the texture and scramble
exemplars (80), and σ2

tex and σ2
sc the corresponding variances. To

calculate the “null distribution” of the d’ values shown in Fig. 2h (gray
band), we followed the same procedure as above in a time window
[−300, −0] ms prior to the stimulus onset, reporting the 5% and 95%
percentiles of that distribution.

Data analysis: two-photon
Stimulus-responsive cells. In a typical experiment, we could segment
~200–450cells (as described in the section “Two-photon imaging”). To
establish whether a cell was visually responsive, in each trial ([−500,
+1000] ms relative to stimulus onset) we “frame-zero” corrected ΔF/F

by subtracting the average activity within a pre-stimulus period of
[−500, 0] ms. Then, we used a d’ discriminability measure (similar to
refs. 74,107) by comparing the responses to visual stimuli and to
“blanks.” Specifically, in each trial and for every segmented cell, we
averaged the responses in a window of [250, 500] ms post stimulus
onset. We then used these average values to generate two distribu-
tions: one from the trials with visual stimuli, the other from the “blank”
trials. The distributions with the visual stimuli were computed sepa-
rately for the individual texture and scramble exemplars and con-
sidering the response variability across repeats. For each stimulus
exemplar, we then computed a discriminability measure, d0

stim, as
done in refs. 74,107:

d0
stim =

μstim � μblank

σstim +σblank
ð3Þ

Where, μstim is the mean response across repeats for the chosen
exemplar,μblank is themean responseacross the repeats of blank trials,
and σstim, σblank are the corresponding standard deviations. This pro-
cedure generated a distribution of d0

stim values for each cell. A cell was
considered visually responsive if the maximum value of this distribu-
tion was ≥ 1, and if ΔF/F ≥ 6% in the stimulus-response window (for
consistency with refs. 74,107). Subsequent analyses were performed
on this subset of stimulus-responsive cells.

Texture–scramble d-prime. For every stimulus-responding cell, we
considered frame-zero corrected ΔF/F data, averaging across repeats
and responses in a time window of [250, 500] ms after stimulus onset.
We then considered the data variability across exemplars (and their
rotations) to compute a discriminability measure d’ as follows:

d0 =
μtex � μscffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 σ2

tex +σ2
sc

� �q ð4Þ

Whereμtex andμsc are themean responses to the texture and scramble
exemplars, and σ2

tex and σ2
sc the corresponding variances.

Regressive model. Using a set of reduced PS statistics as regressors
(see section “Image statistics”), we constructed a linear regressive
model (ridge regularized) to predict individual cell responses. For each
exemplar, we computed an average response value as the mean ΔF/F
(averaged across repeats and frame-zero corrected) in a time window
of [250, 500]ms post stimulus onset. For each neuron i, themodel was
trained to capture the responses to different exemplars using the
following loss function:

min
wi

j yi � Xwij
�� ��2

2
+ λ jwij

�� ��2
2 ð5Þ

Where wi are the optimization weights, yi the data, λ a regularization
parameter, and X the reduced PS statistics (two dimensions per group,
i.e., the first two PCs). We confirmed that the model did not perform
significantly better when using more PCs. The model was trained with
five-fold cross validation to reduce overfitting, and the regularization
parameter λ was optimized using a grid search. The model’s
performance was evaluated in terms of the explained variance (EV)
in the cross-validated data. To establish the significance of themodel’s
fit and to derive an EV threshold value for the inclusion of cells in the
analyses of Fig. 3l, we used a permutation test. For a given cell, we
refitted the responses using as input statistics those from randomly
chosen images (across exemplars from all textures and scrambles).
Therefore, for each experiment, we obtained a shuffled distribution of
EVs (across cells) and chose the 95th percentile of the distribution as
the threshold value for significance (α =0:05). We used this approach
in all n = 20 experiments, resulting in an average threshold value,
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EVth = 0.87% ± 0.07% (s.e.). We set a conservative inclusion threshold
at EVth = 1%.

Regressive model: weight analysis. To examine the contribution of
the different reduced PS statistics in the regressivemodel, we summed
the absolute values of the regressive weights separately for each of the
four statistical groups: for a given cell, and for the PS group i, we
computedWi =

Pd
j = 1 wi,j

��� ���, with d = 2, that is, the number of PCs for the
reduced PS statistics. We then averaged Wi across all the cells in a
given animal (individual data points in Fig. 3l).

Regressivemodel: unique EV. To examine the unique contribution to
the explained variance by the different reduced PS statistics, we
measured the loss in EV when training models without a particular
statistical group. Specifically, considering a subset of cells with sig-
nificant explained variance (EV > 10%), we first trained a model with all
four groups of PS statistics (full model). Further, we trained four more
models, each missing one of the four PS groups. We then computed a
measure of unique variance explained, ΔEVui

, as follows:

ΔEVui
= 100

EVf � EVi

EVf
8i 2 PS1, . . . ,PS4

� �
: ð6Þ

Where EVi is the explained variance of a model trained without the PS
group i, and EVf is the explained variance of the full model.

PCA embedding of neural responses. For every stimulus-responding
cell, we considered the frame-zero corrected ΔF/F data, averaging
across repeats and time frames in a timewindow of [250, 500]ms post
stimulus onset. After z-scoring the responses of each cell to different
exemplars, we applied PCA (n = 20 PCs, separately for V1 and LM
populations) to “standardize” the population size, thus facilitating a
comparison between experiments, each having a different number of
segmented cells. An example of a PCA space of neural activity is shown
in Fig. 4g for LM recordings (n = 2 PCs).

Decoding responses to textures and scrambles. In the PCA spaces of
neural activity for V1 and LM, as described in the section above, we
considered responses to exemplars separately for each of the four
texture–scramble families. For each family, we trained a binary logistic
classifier to distinguish texture exemplars from scramble exemplars.
The model was five-fold cross-validated, and its performance was
evaluated using the average accuracy across the five folds. We repe-
ated the same analysis by varying the number of PCs and examining
the related changes in classification accuracy separately for the V1 and
LM data (Supplementary Fig. 11a–c). Instead, for the analysis in Sup-
plementary Fig. 9a, a binary classifier was trained to discriminate
between texture and scramble images (across all families and exem-
plars), separately on different PS statistical groups.

Distance metrics for stimulus statistics. For each of the four PS sta-
tistical groups, we considered a 2D-PCA space of image statistics (see
section “PCA of PS statistics”), with two PCs already sufficient for near-
optimal classification performance (Supplementary Fig. 9a). The
overall distance patterns described in Fig. 4 were consistent when
using larger numbers of PCs. A single point in each PCA space corre-
sponds to the statistical representation of an exemplar image based on
the associated PS statistical decomposition (reduced to four main PS
statistical groups). To compute the radius of a cloud of points (20
exemplar points) for a given family, we computed the standard
deviation of the x and y coordinates, σx ,σy, and defined the radius as
theirmean value ri =

σx + σy

2 . For the inter-cluster distance of a given pair
of clouds (i.e., exemplars of textures or scrambles), we first computed
the center of mass of the two clouds as the mean of the x and y
coordinates, μx ,μy, measured their Euclidean distance which we then

normalized (divided) by the mean of the two corresponding radii. The
inter-cluster distances were calculated for all the matching pairs of
texture/scramble families (for Fig. 4c). Further, the radius values were
computed for all the families and stimulus types and for all the groups
of PS statistics.

Decoding the responses to texture families. In the PCA spaces of
neural activity for V1 and LM (as described in the section “PCA
embedding of neural responses”), we created a linear decodingmodel
trained to classify all four texture families. We used a multinomial
logistic classifier with an L1 regularization penalty. The training data
consisted of the cells’ responses to 160 texture stimuli (four families,
20 exemplars, two rotations). The model was trained using five-fold
cross validation, and the regularization factor was optimized with a
grid search. The model’s performance was evaluated as the cross-
validated accuracy averaged across folds. We also examined the
dependence of the model’s performance on the number of
PCs (Fig. 4h).

Distance metrics for neural representations. To compare the
representational differences between V1 and LM, we created a com-
mon PCA space of neuronal activations. For a given mouse, we con-
sidered responses to exemplars pre-processed as described in “PCA
embedding of neural responses“ (before PCA). We then applied PCA
to a “concatenated” ensemble of V1 and LM cells to derive a common
PCA space with n = 16 components. The number of segmented cells
and the z-scored response values were commensurate between V1
and LM. Using the PCA projection matrix, and by zeroing responses
of the “other” area, we could then separately project the V1 and LM
responses in this common space. We then measured the radii of the
activation “clouds” in this PCA space for each texture family, as well
as the inter-cluster distances for pairs of texture families. To com-
pute the radius of a cloud of points (n = 40 points, 20 exemplars, 2
rotations) for a given family, we computed the standard deviation of
the x and y coordinates, σx ,σy, and defined the radius as their mean
value ri =

σx + σy

2 . For the inter-cluster distance of a given pair of clouds
(i.e., exemplars of two textures), we first computed the center of
mass of the two clouds as the mean of the x and y coordinates, μx ,μy,
measured their Euclidean distance. Finally, we compared the radii
and inter-cluster distances for all six pairs of families between
V1 and LM.

For the Mahalanobis distance analysis, for each animal we con-
sidered the clouds of points in the V1-LM shared PCA space and
computed a Mahalanobis distance value for each of the six pairs of
texture families. An ANOVA statistical test was then performed to
quantify the area effect (V1 vs. LM).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data to generate all figure panels is provided as a Source Data file and
deposited in https://github.com/CBS-NCB/mouseTextures Source
data are provided with this paper.

Code availability
Analysis code is available at this GitHub repository: https://github.
com/CBS-NCB/mouseTextures
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