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Interferon gamma (IFNγ) is a critical cytokine known for its diverse roles in
immune regulation, inflammation, and tumor surveillance. However, while
IFNγ levels were elevated in sera of most newly diagnosed acute myeloid
leukemia (AML) patients, its complex interplay in AML remains insufficiently
understood. We aim to characterize these complex interactions through
comprehensive bulk and single-cell approaches in bone marrow of newly
diagnosed AML patients. We identify monocytic AML as having a unique
microenvironment characterized by IFNγ producing T and NK cells, high IFNγ
signaling, and immunosuppressive features. IFNγ signaling score strongly
correlates with venetoclax resistance in primary AML patient cells. Addition-
ally, IFNγ treatment of primary AML patient cells increased venetoclax resis-
tance. Lastly, a parsimonious 47-gene IFNγ score demonstrates robust
prognostic value. In summary, our findings suggest that inhibiting IFNγ is a
potential treatment strategy to overcoming venetoclax resistance and
immune evasion in AML patients.

Acutemyeloid leukemia (AML) is a clonaldisorder characterizedby the
presence of immature blasts and arrested differentiation of malignant
myeloid blasts in the bone marrow1. Discoveries of the genetic
underpinning of AML provided better understanding of the biology,
prognosis, and treatment of this disease2–4. This has led to the recent
FDA approval of several targeted therapies that are improving the care
of patients with AML5, including the targeted BCL2 inhibitor, veneto-
clax, which has been transformative in treating older patients with
AML when used in combination with azacitidine6 or low dose
cytarabine7, and emerging evidence of its impact in combination with

intensive chemotherapy in younger patients8,9. Venetoclax combined
with azacitidine leads to a response in almost two-thirds of AML
patients; however, the remaining third have primary resistance or
experience early relapse6. Themechanisms of resistance to venetoclax
are not fully understood but monocytic subclones are suggested to
have inherent resistance to venetoclax10,11.

The relationship of the bone marrow immune microenvironment
and the pathogenesis of AML is also incompletely understood. Dys-
regulated inflammatory pathways have been implicated in leukemo-
genesis and the maintenance of leukemic blasts12,13. On the one hand,
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AML-intrinsic repression of inflammation via IRF2BP2 may contribute
to AML cell survival14. Other findings suggest that pro-inflammatory
cytokines secreted in the microenvironment can induce leukemo-
genesis and impact the proliferative capacity of hematopoietic cells.
For instance, tumor necrosis factor alpha (TNFα) induces proliferation
in myeloid neoplastic cells15. Also, interleukin-1 (IL-1) is a druggable
target that stimulates the production of other inflammatorymolecules
promoting AML progression16,17.

Type 1 interferons, interferon alpha (IFNα), beta (IFNβ), and
omega (IFNω), and the type 2 interferon, gamma (IFNγ), are major
players in the inflammatory response to cancer18. While most cells,
including monocytes, macrophages, and other immune cells, produce
type 1 IFNs, IFNγ is primarily produced by T and natural killer (NK)
cells19. IFNα treatment is FDA-approved for myeloproliferative neo-
plasms (MPN) and tyrosine-kinase resistant chronic myeloid leukemia
(CML) and has also been used in the treatment of minimal-residual
disease (MRD) in favorable-risk AML,with evidence of conversion to an
MRD-negative state in somepatients and improvements in relapse-free
survival20–22. Additionally, IFNγ treatment has been proposed for post-
transplant AML patients to induce the expression of human leukocyte
antigen (HLA) class II and restore graft versus leukemic immune
responses23. On the other hand, recent findings have suggested that
chronic IFNγ promotes cancer growth, abrogates T cell cytolytic
activity, and drives CD8 cells towards an exhausted phenotype24,25.
Additional pro-tumorigenic effects of IFNγ include the induction of
immune checkpoint receptors26, enhancement of tumor metastasis27,
and promotion of hyper-progression after immunotherapy28. These
data underscore the dichotomous nature of IFNγ signaling in both the
pathogenesis of cancer and immunotherapy response, emphasizing
the need for further investigation of its role in leukemia.

In this work, we use a complement of bulk and single-cell
approaches in samples from patients newly diagnosed with AML to
disentangle the relationship between AML blasts and their immune
microenvironment. We show that IFNγ signaling in monocytic and
del7/7q subtypes contributes to a unique immune microenvironment.
Further, we leverage functional dependency datasets and ex vivo
experimentation on primary patient samples to elucidate potential
IFNγ-associated dependencies and mechanisms of venetoclax resis-
tance unique to AML. Our work provides a deep characterization of
IFNγ signaling and its association with venetoclax resistance in AML.

Results
Differential IFNγ activity in distinct subgroups of AML patients
We used single-sample gene set enrichment analysis (ssGSEA) to
examine the transcriptional programs linked to IFNγ signaling in 672
newly diagnosed adult AML patients from 3 independent datasets:
TCGA4, MD Anderson Cancer Center (MDACC)29, and BEAT-AML3.
Patient characteristics were summarized in Supplementary Data 1. By
applying ssGSEA to each sample individually, we calculated indepen-
dent enrichment scores for each gene set-sample pairing. There was a
positive correlation between the IFNγ signaling score, and immune
activation pathways curated from the Gene Ontology (GO), Hallmark,
and Reactome gene set collections of the Molecular Signature Data-
base (MSigDB) (Fig. 1A, Supplementary Data 2). Additionally, IFNγ
signaling score had an approximately normal distribution, suggesting
a varying extent of signaling among individuals with AML (Supple-
mentary Fig. 1A).

We next examined clinical characteristics associated with IFNγ
signaling score and found a negative correlation with blast percentage
(r = −0.41, p < 2.2 × 10−16) (Fig. 1B). Additionally, we observed significant
differences in IFNγ signaling score across AMLdifferentiation states, as
defined by the French American British (FAB) classification (Kruskal-
Wallis test, p = 1.76 × 10−8) and cytogenetic groups (Kruskal-Wallis test,
p =0.01). Specifically, among AML patients with diploid cytogenetics,
those with monocytic differentiation (FAB M4/M5) had the highest

IFNγ signaling scores (Fig. 1C). Patients with diploid cytogenetics but
without a reported FAB classification, referred to as diploid, not
otherwise specified (NOS), displayed intermediate levels of IFNγ sig-
naling scores, likely indicating that this group contained a combination
of monocytic and non-monocytic patients.

Among AML patients with non-diploid cytogenetics, the IFNγ
signaling score was found to be highest in core-binding-factor (CBF)
AMLwith inv(16). This scorewas significantly higher than thatof t(8;21)
CBF AML (p = 5.49 × 10−4), which is noteworthy because inv(16) AML
typically exhibits a myelomonocytic (M4) differentiation, while t(8;21)
CBF leukemia is usuallymoremyeloid (M2) (Fig. 1D)30. Among patients
with non-CBF, non-diploid AML, those with a deletion in chromosome
7/7q (del7/7q) exhibited highest IFNγ signaling scores (Fig. 1D). Nota-
bly, sorted CD34+ cells which marks the healthy stem cells from 17
healthy donors3 had markedly lower levels of IFNγ signaling scores
than did those from AML patients (Fig. 1E), suggesting that IFNγ
pathway signaling is a predominant feature in AML. Further, we
assessed IFNγ concentrations in the sera of 43 consecutively collected,
newlydiagnosedAMLpatients that present to our center andobserved
elevated level of IFNγ in sera of 67.4% of patients that exceeded those
typical of the healthy reference group, which fortifies the notion that
IFNγ is dysregulated at the time of diagnosis in AML patients and
underscores the need for further exploration into its potential clinical
implications and therapeutic utility (Fig. 1F). Overall, these findings
indicate that IFNγ activity varies across AML subgroups and is asso-
ciated with cell lineage and cytogenetics, both crucial predictors31,32.

Given that HLA class 1 and 2 aremajor downstream targets of IFNγ
signaling33,34, we assessed the correlation of IFNγ signaling with HLA
class 1 and 2 expression. We found a significant positive correlation
between IFNγ signaling score and HLA class 1 and 2 expression (r =0.56
and0.52, respectively; p < 2.2 × 10−16) (Fig. 1G, Supplementary Fig. 1B, C).
IFNγ signaling scorewas also associatedwith T cell dysfunction score, T
cell exhaustion score, and T cell senescence score, consistent with the
fact that chronic IFNγ can lead to T cell dysfunction24 (Fig. 1G, Sup-
plementary Fig. 1D–F). This finding suggested that an inflamed immune
microenvironment is correlated with IFNγ signaling activity in the AML
bone marrow and the presence of T cell dysfunction.

We next employed immune deconvolution with CIBERSORTx35 to
correlate cellular composition with IFNγ signaling activity. Consistent
with the role of IFNγ in promoting CD4 T cell activation36,37, we found a
positive correlation between IFNγ pathway with helper and regulatory
CD4 T cells (Supplementary Fig. 1G). The cell type most strongly cor-
related with IFNγ signaling in bulk deconvolution analysis was with
monocytes (r = 0.41; p < 2.2 × 10−16) (Fig. 1H). This was consistent with
prior findings of the enrichment of inflammatory response signaling
with monocytic differentiation14. It should be noted that deconvolu-
tion analysis cannot differentiate between normal and abnormal
monocytic cells. We therefore hypothesized that this correlation with
monocytic cells may be related to monocytic differentiation prompt-
ing us to examine the respective contributions of AML cellular com-
ponents to the expression of IFNγ pathway.

Characterizationof IFNγ signaling in newlydiagnosedAMLbone
marrow aspirates using single cell RNA (scRNA)
To address the limitations of bulk RNA profiling in discerning cellular
subsets and the relative contributions of cells to IFNγ signaling, we
performed scRNA profiling on 20 bone marrow aspirates from AML
patients at the time of their diagnosis. An overview of the demo-
graphic, clinical, and molecular features of the patient cohort is pro-
vided in Fig. 2A and Supplementary Table 1. Briefly, the cohort had a
median age of 73 years (range 52–87), with 4/20 (20%) being female
and 13/20 (65%) having de novo disease. Seven patients had diploid
cytogenetics (3/7 non-monocytic, and 4/7 monocytic), 5 patients each
had del7/7q or deletion in chromosome 5/5q (del5/5q), and 3 patients
had both del5/5q and del7/7q (double deletion). The most frequent
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mutationswere IDH2,NPM1, andDNMT3A in 7/20 (35%) and 6/20 (30%)
and 6/20 (30%) of patients respectively.

A total of 107,067 cells passed quality control and were further
analyzed (see Methods and Supplementary Figs. 2, 3). Nine clusters
emerged and were identified by canonical gene expression: AML cells
(52.8%), early progenitors (2.6%), T cells (25.5%), B cells (3.5%),

monocytes (3.5%), erythroid cells (5.2%), natural killer (NK) cells (2.2%)
and dendritic cells (DC) (1.6%) (Fig. 2B–D, Supplementary Table 2;
Supplementary Data 3). Less than 3% of cells lacked distinct marker
gene signatures and were classified together with plasma cells and
megakaryocytes as “other”. The non-AML compartment was mainly
composed of T cells (53.97% of cells) and showed variable distribution
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Fig. 1 | Bulk RNA profiling identifies conserved IFNγ signaling in AML samples.
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Hallmark, and Reactome gene set collections of the Molecular Signature Database.
BCorrelation of blast percentage in the bulkRNAsequencing cohorts andHallmark
IFNγ response pathway. Error band represents 95% confidence interval. T test was
used to evaluate the significance of Pearson correlation. C Hallmark IFNγ response
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provided as a Source Data file.
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across cytogenetic groups and patients, suggesting the intrinsic het-
erogeneity of the cellular composition in tumor immune micro-
environment of AML patients.

To validate the identity of AML cells more specifically, we used
infer copy number variation (inferCNV) as described in previous
studies38. This approach successfully recapitulated the conventional
cytogenetic characteristics of patients (Fig. 2E). Additionally, we were
able to recapitulate monocytic differentiation in AML using gene
expression of relevant marker genes (CD34, CD33, or FCGR1A/CD64)
whose protein expression characterization was validated with flow
cytometry (Fig. 2F; Supplementary Table 3). The proportions of AML
cells identified in scRNA were similar to those determined by histo-
pathologic review andwere positively correlatedwith the frequency of
AML cells determined by flow cytometry (r = 0.63, p =0.005) (Fig. 2G).
These consistent results indicated that scRNA analysis accurately
defined AML subsets and provided a reliable basis for further down-
stream analysis.

Disentangling AML and immune cells at the single-cell level
reveals IFNγ signaling activation in leukemic blasts
In addition to AML cells, we focused our subsequent analysis on T and
NK cells, as the latter cells serve as the primarymediators and effectors
for the IFNγ signaling pathway18. We first evaluated the effects of IFNγ
signaling on the AML cells and tumor microenvironment using
AUCell39. We scored both AML and T cells to obtain a single cell-level
assessment of IFNγ signaling activity. The relative difference in the
expression of IFNγ signaling activity in T cells among the cytogenetics
groups was smaller than that observed in AML cells (Fig. 3A). Specifi-
cally, we observed that AML cells in patients with diploid monocytic
AML had the highest expression of IFNγ signaling scores (ratio of AML
to T cells = 0.93), while the non-monocytic, diploid AML cells had the
lowest (ratio of AML to T cells = 0.56) (Fig. 3A, B, Supplementary
Fig. 4A). Among nondiploid cytogenetic groups, IFNγ signaling acti-
vation was highest among thosewith del7/7q (Fig. 3B). Importantly the
observation of high IFNγ signaling in monocytic AML was validated in
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of Pearson correlation. Source data are provided as a Source Data file.
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Fig. 3 | IFNγ signaling in AML blasts is dependent on phenotypic and cytoge-
netic groups. A Radar plot of single cell-level assessment of IFNγ signaling scored,
generated with AUCell, comparing T cells and AML cells from patients with diploid
non-monocytic, diploid monocytic, del5/5q, del7/7q, and double deletion (both
del5/5q and del7/7q) AML. B IFNγ signaling score across specific AML subgroups
(n = 56,168 AML cells; Center line represents the median and lower and upper
bounds of box correspond to the first and third quartiles). C IFNγ signaling score
across AMLdifferentiation hierarchies as described inZeng et al. 2022.D Interferon
regulator factors 8 regulon activity across AML groups determined by SCENIC
(n = 5617; Center line represents the median and lower and upper bounds of box

correspond to the first and third quartiles). E Regulon activities of 11 core tran-
scriptional regulators reported by Eagle K. et al. visualized by AML groups. F.
Heatmapof HLA class 1 and class 2 expression across patient samples.GHLA-ERNA
expression in AML subtypes. H Representative histogram of HLA-E expression
in AML blast cells as detected by flow cytometry (left) and quantification of mean
fluorescent intensity (MFI) of HLA-E expression between diploid non-monocytic
(n = 5), del7/7q (n = 4), and diploid monocytic (n = 5) AML patient samples
(right; see also Supplementary Fig. 4F). Data are presented as mean values ± SD.
Source data are provided as a Source Data file.
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two independent scRNAseq cohorts40,41 (Supplementary Fig. 4B, C).
This suggested that the differences in IFNγ signaling scores noted in
bulk RNA data were likely driven by differences within the AML cells
themselves.

Zeng et al.32 recently described a cellular hierarchy of AML leu-
kemic stem cells representing distinct maturation states including
LSPC-Quiescent, LSPC-Primed, LSPC-Cycle, GMP-like, ProMono-like,
Mono-like and cDC-like. We investigated IFNγ signaling activity
across these AML hierarchies and found again that it was highest
among cells in the monocyte-like state (Fig. 3C). Zeng et al. also
revealed 4 distinct subtypes in bulk cohort based on the composition
of their leukemia cell hierarchy. We applied this method on our bulk
cohort and validated the IFNγ signaling activity in these patients, and
it was highest in themature state (enriched formatureMono-like and
cDC-like blasts) while lowest in GMP states (Supplementary Fig. 4D).
Because IFNγ activity and signaling are epigenetically regulated, we
employed SCENIC, a computational tool for inferring transcription
factors from constructed gene regulatory networks using scRNA-seq
data39. Our analysis revealed high regulon activities of interferon
regulator factors (IRFs) in AML cells, with elevated levels of IRF1 and
IRF5 regulons in del7/7q and del5/5q, respectively (Supplementary
Fig. 4E). Notably, we also observed an elevated IRF8, IRF2, IRF3, IRF7
regulon in diploid AML cells with monocytic differentiation (Fig. 3D;
Supplementary Fig. 4E), consistent with their role as a lineage-
determinant factor promoting monocytic differentiation42–44. Of the
recently reported 19 core transcriptional regulators of lineage sur-
vival in AML45, 11 were predicted by SCENIC, all of which demon-
strated significant differences in regulon activity across cytogenetic
groups (Fig. 3E). These observations indicate that the activation
levels of IFNγ signaling in AML cells are associated with distinct
cellular states and hierarchies, and that disparate regulons of IFNγ
signaling characterize various patient subgroups.

The antigen presentation machinery, including HLA expression,
are prominent downstream targets of IFNγ pathway activation and
critical for immune recognition. In our analysis, the expression of HLA
class 1 and 2 genes was also notably different across AML cells from
different subgroups, where diploid-nonmonocytic AML patients had
the lowest expression of HLA genes (Fig. 3F). To validate these find-
ings, we performed spectral flow cytometry on 14 peripheral blood
samples from AML patients at diagnosis representing 5 patients with
diploid-nonmonocytic AML, 5 with diploid-monocytic AML, and 4
patients with del7/7q AML (Supplementary Table 4). Interestingly,
HLA-E, a non-classical class 1 HLA with regulatory functions, was more
highly expressed at both the RNA and protein level in diploid-
monocytic AMLblasts than indiploidnonmonocyticblasts, confirming
our scRNA-seq findings (Fig. 3G, H, Supplementary Fig. 4F). However,
flowcytometric protein expressionofHLAclass 2was highly expressed
on most AML samples and was not significantly different across AML
subtypes (Supplementary Fig. 4G, H). These findings, taken together,
indicates that the monocytic AML microenvironment is characterized
by high IFNγ signaling that correlates with high HLA-E expression,
possibly representing an immune evasion strategy to limit CD8 andNK
cytotoxic activity through inhibitory interactions with NKG2A.

High IFNγ pathway activation in AML cells is correlated with T
cell inflamed microenvironment and distinct regulatory path-
way activation
To identify the source of IFNγ in the AML microenvironment, we
assessed IFNG expression in AML and effector immune cell subsets.
IFNG was most prominently expressed in CD8 and NK cells with a
smaller contribution from CD4 T cells and almost no expression of
IFNG in AML cells (Supplementary Fig. 5A). To comprehensively
quantify IFNγ production, we ran gene set enrichment analysis on
AML, CD4, CD8, and NK cells with the IFNγ production gene set from
GO. Again, we found that CD8 T cells showed the highest production

activity followed byNK cells while the AMLcells had the lowest activity
(Fig. 4A). To further elucidate the immune microenvironmental dif-
ferences among cytogenetic and phenotypic AMLgroups, we assessed
the T andNK cell compositionwithin each group. Interestingly, diploid
non-monocytic AML had the lowest infiltration of T cells and had the
lowest proportion of NK cells with expression of the inhibitory
receptorNKG2Awhich binds toHLA-E to suppress the cytolytic activity
of NK cells (Supplementary Fig. 5B–F)46.

To further elucidate the cell-cell interactions in the immune
microenvironment we employed the CellChat47 and MultiNicheNet
tools48. CellChat quantifies interaction strength by aggregating the
communication probabilities across all cell group pairs.We observed a
significantly higher communication probability between T cell-AML
interactions in diploid monocytic AML compared to other groups
(P < 0.0001) and no predicted T cell-AML interactions in diploid non-
monocytic AML (Fig. 4B, top). This observation heldwhen the strength
was scaled to account for confounding factors (Fig. 4B, bottom). We
then employed MultiNicheNet to predict the top 100 receptor-ligand
interactions among AML, CD8 T, CD4 T, and NK cells (Supplementary
Data 4). Interestingly, IFNγ fromCD8T cells andNK cellswaspredicted
as a top interaction with AML cells only for patients with diploid
monocytic AML (Fig. 4C, Supplementary Fig. 5G–J). Of note, del7/7q
AML also showed signs of both a pro- and anti-inflammatory micro-
environment with prominent predicted interactions involving TNFα
and the TGFβ pathway (Supplementary Fig. 5I). Given these data sug-
gesting an inflamed microenvironment as a prominent feature of
diploid monocytic AML, we further analyzed receptor-ligand interac-
tions in the diploid monocytic group only (Supplementary Data 5).
This confirmed that IFNγ from CD8 T and NK cells acting on AML cells
as a prominent feature in this group of patients (Fig. 4D, E). Interest-
ingly, this analysis also predicted other prominent inflammation-
related interactions including TNFα, CCL3, CCL4, and the SIRPα
pathwaywhich is an emerging drug target in AML49 (Fig. 4E). To assess
the capacity of AML cells to directly induce INFγ secretion, we per-
formed co-culture assays of AML cells with T cells in primary cells of
two AML patients and two AML cell lines, MOLM13 and THP1. Our
analysis revealed that in isolation, AML cells did not secrete INFγ, while
T cells had a low basal level of INFγ secretion (Fig. 4F). In contrast,
when AML cells were co-cultured with T cells, there was a consistent
and significant elevation in the levels of INFγ detected in the super-
natant at both assessed time points relative to T cells in isolation
(Fig. 4F). This increase in INFγ levels upon co-culture suggests that
AML-T cell interactions is sufficient for INFγ production. Of note,
strong T cell activation with agonistic anti-CD3/CD28 stimulation was
associated with a considerably greater increase in INFγ secretion from
T cells compared to the co-culture assay (Fig. 4F). This substantial
increase suggests that, while direct AML-T cell contact is capable of
initiating INFγ production, other factors may contribute to amplifying
or dampening T cell activation. To further validate T cell-AML inter-
actions, we employed COMET based multiplex immune-fluorescence
(IF) panel to spatially quantify thebonemarrowmicroenvironment in 2
AML bone marrow samples. Using this technology we showed HLA-
E+CD34+ AML cells are in closer proximity to CD3+ T cells than that of
HLA-E- AML cells, suggesting an immunosuppressive neighborhood
between HLA-E expressing AML cells and T cells (Fig. 4G, H; Supple-
mentary Table 5). Taken together, these findings suggest that IFNγ
signaling in AMLwhich is likely instigated from neighboring T/NK cells
confers immune-evasion via upregulation of HLA-E.

High IFITM3 expression predicts worse survival in AML
To delineate the effects of IFNγ signaling in AML and its dependency
genes, we calculated correlations of IFNγ signaling score with all
expressed genes in the single cell data. The top genes positively cor-
related with IFNγ signaling score included CD74, IFITM3, and HLA-E
(Fig. 5A, Supplementary Data 6). Consistent with our findings on
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cellular hierarchy (Fig. 3C), markers for GMP cells (AZU1, CFD) had
strong negative correlation with IFNγ signaling score (Fig. 5A). The
average score at a patient level also showed a significant association
between IFNγ and IFITM3 (Fig. 5B). IFITM3 encodes an IFNγ-induced
protein which has been suggested to play a role in tumor progression
ofmultiple cancers including B-ALL,mantle cell lymphoma, colorectal,

prostate, and hepatocellular carcinoma50,51. The high correlation of
IFITM3 expression with IFNγ signaling prompted us to evaluate whe-
ther IFNγ directly stimulates the expression of IFITM3 in AML cells. We
isolated CD14+ and CD34+ AML blasts from two patients each and
performed IFNγ stimulation for 24 h, followed by IFITM3 protein level
measurement via flow cytometry. Indeed, IFNγ induced IFITM3
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expression in both CD14+ and CD34+ leukemic blasts by 2.1 (p =0.0312)
and 2.2 (p <0.0001) fold increase, compared to unstimulated CD14+

and CD34+ cells, respectively (Fig. 5C). This establishes a direct link
between IFNγ and IFITM3 expression in AML blasts. Cox proportional

hazard and Kaplan-Meier models of AML patients integrated from the
TCGA, BeatAML and MDACC cohorts revealed that patients with high
IFITM3 (>median) expression had significantly worse overall survival
(Fig. 5D; Supplementary Fig. 6A–D). High IFITM3 expression remained
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significantly associated with worse overall survival with adjustments
for age, blast percentage, and cytogenetic risk in a multivariable cox
model (Supplementary Fig. 6E). Of note, IFITM3was almost exclusively
expressed in AML cells, with the highest expression in monocytes and
limited expression in T cells and other microenvironmental cells
(Fig. 5E). This suggests that IFITM3 is a downstream target of IFNγ, and
increased expression adds valuable prognostic information to stratify
newly diagnosed AML patient outcomes.

We next sought to validate the potential impact of IFITM3 loss in
AML cell lines. From the DepMap Public Dataset, which consists of
1,086 cell lines and 17,386 genes, we focused our analysis on 26 AML
cell lines and 188 genes that overlapped with the IFNγ response sig-
nature in the HALLMARK gene set52. Unsupervised clustering applied
to the gene effect identified a cluster of 7 genes (WARS1, IFITM3,
NAMPT, PSMA2, NUP93, PSMB2, and PSMA3) that consistently
decreased the fitness of AML cells after knockout (Supplementary
Fig. 6F, G). In particular, the knockout of IFITM3 caused the cell death
in all AML cell lines tested (Fig. 5F). The significance of this change was
verified by a two-sided t test comparing the fitness score of each gene
to those of the remaining 187 genes. To further evaluate its effect on
AML cells, we used multiplex immunofluorescence to measure the
fluorescence intensity of IFITM3 on blasts in baseline and post relapse
samples. A total of 15 TMA cores were stained for CD34, CD56, CD45,
CD4, CD14, and IFITM3 based on markers determined by flow to
identify blasts (Fig. 5G; Supplementary Table 5). The fluorescence
intensity in post relapse samples was significantly higher than in
baseline samples (p < 2.2 × 10−16) (Fig. 5H, I), supporting the association
of IFITM3 with disease resistance. These data suggest IFITM3 as a
potential dependency in AML cells and could be associated with
therapeutic resistance. However, more experimental data will be fur-
ther needed to validate the role of IFITM3 as a mediator for drug
resistance.

IFNγ signaling confers venetoclax resistance
We next assessed the correlation of IFNγ with drug response. We
leveraged the BEAT-AML ex vivo drug sensitivity data which provided
detailed matched clinical, genomic, and transcriptomic analyses3

(Supplementary Fig. 7A). Given that AML patients with monocytic
differentiation and del7/7q are reported to have resistance to
venetoclax-based therapy10,53, we evaluated the correlation of IFNγ
signaling score with drug sensitivity. We found a strong positive cor-
relation between IFNγ signaling score and venetoclax resistance,
indicating that IFNγ signaling confers venetoclax resistance (Fig. 6A).
This finding was validated in an independent cohort54 of ex vivo drug
screening in AML, where patients with high IFITM3 expression or IFNγ
signaling score were less sensitive to venetoclax-based therapy (i.e.
more resistant to venetoclax) (Fig. 6B). To further validate the role of
IFNγ signaling in AML cell survival and drug resistance, we isolated
leukemic blasts from primary patient samples (n = 3 patients) and
cultured them in the absence or presence of IFN-γ, and with increasing
concentrations of venetoclax then assessed the AML cell viability. IFNγ
induced proliferation and higher resistance to venetoclax, confirming
that IFNγ promotes survival and venetoclax resistance of AML blasts
(Fig. 6C–E).

Despite its correlation with venetoclax resistance, the IFNγ sig-
naling score did not predict survival outcomes in our bulk cohort
(Supplementary Fig. 7B), suggesting that the whole gene set may
contain genes that are less sensitive for predicting outcomes. There-
fore, to improve the prognostic sensitivity of the IFNγ signaling score,
we defined a light weighted IFNγ signature using the least absolute
shrinkage and selection operator (LASSO) model55 (Supplementary
Fig. 7C). After LASSO regression, 47 genes related to survival were
retained, forming a parsimonious IFNγ signature (Supplementary
Table 6). We then scored the bulk AML patients data with the new
parsimonious IFNγ score and revealed a tight positive correlation with

HLA class 1 and 2 scores (Supplementary Fig. 7D, E). Importantly, this
parsimonious IFNγ score was able to predict patient outcomes in our
bulk cohort, whereby a higher score predicted worse survival (Fig. 6F,
Supplementary Fig. 7F). This finding of worse overall survival was
further validated in an independent dataset54 (Supplementary Fig. 7G).
The parsimonious IFNγ score remained a significant and strong pre-
dictor of survival in a multivariate model when we accounted for age,
blast percentage, and cytogenetics, with the highest hazard ratio of all
these predictors (Fig. 6G). Ultimately, these results suggest that the
IFNγ pathway is associated with resistance to venetoclax-based ther-
apy and can predict patient outcomes independently of known risk
factors, making it a promising target for therapeutic intervention.

Discussion
Dissecting inflammatory states within the immune microenvironment
of AML is likely to uncover mediators of therapeutic resistance and
disease progression, and to aid in the development of novel immu-
notherapeutics. It has been demonstrated that the proliferation of
aberrant myeloid cells leads to overproduction of pro-inflammatory
cytokines, many of which have been established to play immunomo-
dulatory roles that drive leukemic progression56–59. However, analyses
of inflammation in the BMniche have been largely focused on immune
cells, and the characterization of inflammatory states in AML cells
remains understudied. Here we presented a comprehensive char-
acterization of inflammation in AML using independent bulk and
scRNA profiling studies of newly diagnosed AML bone marrows. With
this approachwewere able to uncover conserved IFNγ signaling which
was more active in monocytic and del7/7q AML leading to a distinct
immune microenvironment. IFNγ is one of the main mediators of
inflammation in cancer and development of an IFNγ signaling score led
to the identification of IFITM3 as both a prognostic biomarker and a
direct target of IFNγwith apotential dependency inAMLcells lines, i.e.,
its deletion led to loss of AML cell fitness. Importantly, IFNγ signaling
score correlated strongly with venetoclax resistance. Finally, a parsi-
monious IFNγ gene signature added crucial prognostic information to
newly diagnosed AML patients.

IFNγ has long been recognized as a pivotal cytokine that activates
cellular immunity and stimulates antitumor immune responses. How-
ever emerging studies have also indicated that it plays a role in pro-
moting cancer immune evasion and resistance to chemotherapeutic
agents25–28,60,61. We identified IFNγ signaling as a prominent feature in
AML using bulk RNA sequencing. With scRNAseq, we were able to
further disentangle the complex interplay between the AML cells and
the immune microenvironment. This analysis uncovered high IFNγ
pathway signaling within AML patients with monocytic differentiation
and del7/7q. Our data suggested that CD8 T cells and NK cells are the
source of IFNγ in the microenvironment; however, true cytokine pro-
duction data are difficult to discern using scRNA-seq62. The antigen
presentationmachinery, a knowndownstreamtarget of IFNγ signaling,
was correlatedwith IFNγ signaling, but interestingly, sampleswith high
IFNγ signaling also had high expression of HLA-E, in particular samples
withmonocytic differentiation. Additionally, our analysis revealed that
leukemic cells expressing HLA-E were in closer proximity to T cells
compared to HLA-E negative cells. This observation supports the
hypothesis that tumor immune evasion mechanisms may be at play,
wherein HLA-E expressing cells potentially interact with andmodulate
the immune response, thereby promoting their survival within the
tumor microenvironment. Further research into this relationship
could shed light on novel therapeutic strategies to enhance anti-tumor
immune responses. The HLA-E-NKG2A axis is an emerging immune
checkpoint that restrains anti-tumor immune responses and high HLA-
E expression correlates with a T cell inflamed microenvironment46,63.
Pancreatic cancer metastases are in fact mediated via cancer cell
upregulation of HLA-E as a mean to evade immune recognition during
transit to metastatic sites64. Additionally, CD74 which provides the
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peptides for class II-associated invariant chain peptide (CLIP) was also
highly correlated with IFNγ signaling. CLIP-positive AML blasts have
been shown to evade CD4 T cell killing by blocking the presentation of
endogenous leukemia-associated antigens and the induction of a
leukemia-specific T-cell response65,66. Thus, our findings are consistent
with emerging data that suggest that T cell- and NK cell-derived IFNγ
helps to create an immunosuppressive microenvironment through
HLA-E and CD74 upregulation on target cells67–69. In a recent study
highlighting the possible detrimental effects of IFNγ in hematologic
disorders, it was shown that IFNγ is not essential for CAR-T therapy.
Instead, inhibiting IFNγ reduces checkpoint blockade expression,

enhances CAR-T cell proliferation and reduces associated toxicities,
without mitigating CAR T- cell antitumor efficacy. Given that myeloid
cells are a major target of IFNγ70 and IFNγ promotes myeloid differ-
entiation of HSPCprogenitors71, it is possible thatmyeloid leukemia, in
particular, evolves to co-opt IFNγ signaling, ultimately hijacking HLA-E
for immune evasion and promoting blast growth in the bone
marrow niche.

Further analyses identified a strong correlation between IFITM3
expression and IFNγ signaling. Interestingly, IFITM3 expression was
mainly limited toAML cells andwas not seen in other bonemarrow cell
populations. IFITM3 expression was also independently associated
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Fig. 6 | IFNγ signaling in AML is associated with venetoclax resistance and
parsimonious IFNγ score is associated with worse overall survival.
A Correlation of IFNγ signaling score and venetoclax resistance in BEAT-AML data.
Error band represents 95% confidence interval. T test was used to evaluate the
significance of Pearson correlation. B Correlation of IFNγ signaling score and
venetoclax resistance in Malani et al. data. Error band represents 95% confidence
interval. T test was used to evaluate the significance of Pearson correlation.
C–E Viability assessment of AML blasts after stimulation with 10 ng/ml IFNγ and
incubation with venetoclax using the CellTiter-Glo luminescent cell viability assay.

Data represents results from 3 AML patients’ blasts, with each condition having 3
replicates, except for (D), which has two replicates. For (C, E), data are presented as
mean values ± SEM. Two-sided t test was used.FKaplan-Meier survival curves of the
AML patients from TCGA, Beat-AML, and MDACC by parsimonious IFNγ score in
bulk RNA profiling cohort. G Multivariable adjusted Cox regression model for
overall survival among the patients in the combined bulk RNA profiling cohort
adjusting for parsimonious IFNγ score, age, blast percentage, and cytogenetics.
Wald test was used tomeasure the significance of factors. Source data are provided
as a Source Data file.
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with overall survival, as AML patients with higher expression of IFITM3
had worse survival. The role of IFITM3 in AML is not well described;
however, a recent report confirmed our finding that high expression
correlated with worse survival in AML72. Elevated expression of IFITM3
has been noted in B-cell acute lymphoblastic leukemia (B-ALL) and
B-cell lymphomas, and B cell malignancies with high IFITM3 expression
have poorer prognoses51. In models of B-ALL, IFITM3 amplified onco-
genic PI3K signaling to contribute to B-cell oncogenesis51. The higher
expression of IFITM3 at time of relapse and the genetic loss-of-
function data suggested a potential dependency of AML cells on
IFITM3, wherein loss of IFITM3 caused decreased fitness in all AML cell
lines tested. Lastly, we were able to link IFNγ signaling with venetoclax
resistance in primary patient samples. This fits with emerging data
suggesting that monocytic differentiation is a major venetoclax resis-
tance pathway10,11. However, further experimental validation that
directly evaluates the impact of IFITM3 loss in an immunocompetent
mouse model can shed further light on the direct impact of IFNγ-
IFITM3 axis mediated from the tumor immune microenvironment on
therapeutic resistance inAML. Though the exactmechanismsbywhich
monocytic differentiation leads to venetoclax resistance are yet to be
elucidated, our data suggest that IFNγ signalingmay play a pivotal role
and is a potential therapeutic target in venetoclax resistance in AML.

While our study offers important insights, it is subject to certain
limitations. Notably, while we demonstrated that IFNγ secretion by T/
NK cells can be recapitulated in vitro, the complexity of immune
interactions within the microenvironment may extend beyond our
models. The potential role of IFITM3 in AML in relation to venetoclax
requires direct evidence, and the prominence of IFNγ in our findings
does not exclude the possible influence of other inflammatory path-
ways. These factors highlight theneed to furthermodel and validate our
conclusions.

In summary, through integration of bulk and scRNA profiling data
from newly diagnosed AML patients, we observed high IFNγ signaling
in monocytic and del7/7q AML samples which held prognostic value.
These findings offer important insights into AMLbiology andmay lead
to the identification of potential novel therapeutic targets.

Methods
The research fully complies with principles of the Declaration of Hel-
sinki. A written informed consent for all uses of human material was
approved by the MD Anderson’s institutional review board.

Bulk RNA-seq analyses
RNA-seq data and corresponding clinical data from TCGA, BeatAML
and MDACC were downloaded and integrated. Batch effects were
corrected using ComBat-seq73. Analysis was limited to adult patients
with newly diagnosed AML that did not fall into FAB classification M3/
M6/M7. Cytogenetic groups were determined from the clinical meta-
data of patients: the diploid-monocytic group include diploid patients
with FAB classificationM4/M5; diploid-nonmonocytic includeddiploid
patients with FAB M0, M1, M2; and diploid-NOS referred to diploid
patients with cytogenetics not otherwise specified. Gene counts were
transformed into transcripts per million (TPM) for quantification of
ssGSEA scores using the GSVA software package74. Curated gene sets
(HALLMARK, KEGG, GO) for pathways were obtained from MSigDB
(http://software.broadinstitute.org/gsea/msigdb/index.jsp). T cell
dysfunction signatureswere obtained frompublished literatures: T cell
dysfunction score75, T cell exhaustion score76, and T cell senescence
score77.

Immune-cell deconvolution
Immune infiltration levels of bulk datawere predicted byCIBERSORTx35

using its website server (https://cibersortx.stanford.edu). The TPM-
normalizedmatrix was used as the input mixture file, and the signature
matrix for 22 immune cells LM22 was used as the signature gene file to

estimate the cellular components. Other settings include 100 permu-
tations and disabled quantile normalization.

Evaluation of cytokines in newly diagnosed AML patients
The serum levels of cytokineswerequantified usingMILLIPLEXHuman
Cytokine/Chemokine Panel 1 (MilliporeSigma, St. Charles, MO). The
Luminex 3D instrumentswere used for the assay. To avoid the prozone
effect, any samples with an initial measurement exceeding 5000pg/ml
were retested. These samples were re-evaluated after a 1:10 dilution
was applied, and the results were back-calculated with the dilution
factor.

Human participants
Patients 18 years of age or older with a new diagnosis of AML seen at
The University of Texas MD Anderson Cancer Center were included in
this study. Written informed consent from all participants was
obtained, and the study protocol was approved by MD Anderson’s
institutional Review Board. The study was conducted in accordance
with the principles of the Declaration of Helsinki.

Sample collection and preparation
Bone marrow biopsies were routinely collected before treatment
initiation. Sampleswere freshly frozenwith freezingmediumcontaining
20% fetal calf serum (FCS) and 10% dimethyl sulfoxide (DMSO) in Dul-
becco’s modified Eagle medium (DMEM) and stored in liquid nitrogen.
All frozen BM samples were retrieved immediately before sample pro-
cessing. Tomaximize the recovery of the cellular viability, sampleswere
processed inbatches according to a thawingprotocol. Briefly, cellswere
gently thawed in a water bath at 37C until partially thawed and then
immediately placed on ice. Next, cells were gently transferred to 10mL
of RPMI1640 supplemented with 20% fetal bovine serum [FBS] and
centrifuged (453 g for 5min). After removal of the supernatant, the cell
pellet was carefully resuspended in 10mL of thawing medium
RPMI1640+ 20% FBS supplemented with 1mg of heparin [stock 2mg/
ml, Cat# 9041-08-1; Sigma Aldrich], 20μL DNase [stock 1μg/ml, Cat#
89835, Thermo Fischer Scientific] and 200μL MgSO4 [stock 200mM,
Sigma Aldrich], followed by incubation at 37 °C for 15min. After incu-
bation, cells were centrifuged and gently washed twice in 2mLof 0.04%
bovine serum albumin in phosphate-buffered saline (PBS). Cells were
then passed through a 35μm strainer to remove cell clumps. Finally,
cells were stained with 10μL of 0.4% Trypan blue and quantified and
assessed for viability using the standard hemocytometer and light
microscope. Cells were eventually centrifuged again and re-suspended
in the appropriate amount of PBS to adjust for the desired cell density.

Library preparation and scRNA-seq
The 5’ gene expression libraries were prepared using a 10x Genomics
Chromium Controller instrument and Chromium Single-Cell 5′ V5.1
reagent kits (10x Genomics). Briefly, cells were concentrated to 1000
cells/μL and loaded into each channel to generate single-cell gel bead-
in-emulsions, resulting in mRNA barcoding of an expected
10,000 single cells for each sample. After the reverse transcription
step, gel bead-in-emulsions were broken, and single-strand cDNA was
cleaned with DynaBeads. The amplified, barcoded cDNA was frag-
mented, A-tailed, ligated with adaptors, and amplified by index poly-
merase chain reaction. A High-Sensitivity D5000 DNA Screen Tape
analysis (Agilent Technologies) and the Qubit dsDNA HS Assay Kit
(Thermo Fisher Scientific) were used to assess cDNA and the con-
structed libraries. Sequencing was conducted on an Illumina
NovaSeq6000 sequencer with 2 × 100 bp paired reads to target
sequencing depth of 50,000 read pairs per cell.

scRNA-seq data processing
Raw scRNA-seq data were demultiplexed and aligned and read count
matrix was generated using the Cell Ranger Single Cell Software Suite

Article https://doi.org/10.1038/s41467-024-45916-6

Nature Communications |         (2024) 15:1821 11

http://software.broadinstitute.org/gsea/msigdb/index.jsp
https://cibersortx.stanford.edu


provided by 10x Genomics. The Seurat v4 (version 4.2.1) R package78

was used to analyze the scRNA-seq data. Detailed quality metrics were
evaluated. Genes detected in fewer than 3 cells and cells with fewer
than 250 genes, or 500 transcripts were excluded from subsequent
analysis. Cells with more than 10% of reads mapping to mitochondrial
genes were removed as well. Possible doublets were identified and
removed by (1) the DoubletFinder package79 (2) identifying cells
expressing markers of distinct cell types, and (3) identifying cells
exhibiting aberrantly high gene counts. Cells from all samples were
then merged and normalized. Batch effects were removed using the
Harmony package80 before clustering analysis. The filtered count
matrix was normalized with the NormalizeData function and was used
to identify the most variable features using a variance stabilizing
transformation. Cell-cycle scores (“S.Score” and “G2M.Score”) and the
cell cycle phase were calculated and assigned to each cell using the
CellCycleScoring function. Cell cycle effects were regressed out using
the ScaleData function. Principal component analysis was performed
on variable features and an elbow plot was generated to assess the
optimal number of principal components. Uniform Manifold Approx-
imation and Projection (UMAP) layouts and nearest-neighbor graphs
were generatedusing the top20components. Different resolutions for
graph-based clustering were examined to determine the best number
of clusters.

Inference of copy number variations
For patientswith clinically abnormal karyotypes, the inferCNV toolwas
used to infer the large-scale copy number variations (CNVs)81. Normal
monocytes from 3 healthy donors were used as controls. InferCNVwas
run on each patient with nondiploid cytogenetics separately using
default settings except cutoff=0.1 and denoise=TRUE.

Determination of cell type and AML cell states
Todefine themajor cell types, the FindAllMarkers function fromSeurat
was used to identify differentially expressed genes (DEGs) for each
cluster. The top 50DEGs for each cluster and a set of canonical marker
genes were carefully compared to assign cell types. Flow cytometry
and inferred CNVs were used to further confirm the identity of
malignant cells in patients with nondiploid cytogenetics. Of note, for
the 20 patients included in this study, CD8 T cells (n = 10,777 cells)
were recently analyzed as part of another study75. AML cells were
subset from each patient and integrated. The cellular states of AML
cells were determined by the cell type classifier described by Zeng
et al.32 using their 7 predefined leukemic cell populations spanning the
differentiation trajectory: LSPC-Quiescent, LSPC-Primed, LSPC-Cycle,
GMP-like, ProMono-like, Mono-like and cDC-like.

Regulon activity analysis
From each of the 5 cytogenetic groups in single cell data, 10% of cells
were subsampled, and the raw countmatrix of subsampleswas used as
the input for SCENIC to predict gene regulatory networks (regulons) in
R39. Coexpression modules between transcription factors and target
genes were inferred, followed by regulon selection based on enrich-
ment of bindingmotifs. Regulon activities were scored using AUCell in
each individual cell. The top 15 differentially activated regulons in each
cytogenetic groupwere selectedby two-sample t test and visualizedby
ComplexHeatmap82.

Cellular communications
To analyze cell-cell interactions among AML, CD4, CD8 and NK cells,
we applied MultiNicheNet, which is an extension of the original
NicheNet pipeline that better predicts niche-specific ligand-receptor
(L-R) pairs48. DEGs between cytogenetic groupswere calculated. Genes
with log2 fold change >0.5 and adjusted P value < 0.05were selected as
gene sets of interest. All expressed genes in our sample were used as
background genes. Genes were considered as expressed when they

had non-zero values in at least 10 of the cells in a cell type. Sender and
receiver were set on all cell types to obtain a comprehensive L-R net-
work. The top 100 active L-R pairs across all groups and the top 50 in
the diploid monocytic group were selected and visualized via circos
diagrams and heatmaps using the make_circos_group_comparison and
make_sample_lr_prod_activity_plots functions.

Spectral flow cytometry
Patient peripheral blood mononuclear cell samples that had been
frozen in 90% FBSwith 10% dimethyl sulfoxidewere obtained from the
MD Anderson Leukemia Sample Bank. R20 media was made using
RPMI 1640 (Corning), 20% heat inactivated FBS (Sigma Aldrich), 1%
Penicillin/Streptomycin (Sigma Aldrich), 1% HEPES buffer (Corning),
and 1% Glutamax (Gibco). Samples were thawed in 10mL warm media
(40% FBS + R20) and incubated with 0.5mL of Benzonase® (EMD Mil-
lipore) to remove cell clumps, and 1–2×106 cells were resuspended in
Phosphate Buffer Saline (PBS; Corning) for staining. The cells were
incubated with Zombie Aqua™ viability stain (1:1000; BioLegend) for
15min at 4 °C, followed by Fc blocking with 1:300 human TruStain
FcX™ (BioLegend), 2% normal human serum, and 2% normal mouse
serum (15min, 4 C). A surface staining cocktail was prepared using
Brilliant Stain Buffer (BD Biosciences), and cells were incubated for
15min at 4 C in the dark. Fixation was done using 4% methanol-free
paraformaldehyde (ThermoFisher; 15min, 4 C), followed by an incu-
bation with Perm/Wash Buffer (BD Biosciences; 15min, 4 C) and
intracellular staining cocktail (20min, 4C). Cells were resuspended in
300mL PBS for spectral flow cytometry using the 5-laser Cytek Aurora
system. Data analysis was performed in FlowJo™ 10.8.2. Fluorescently
labeled anti-human antibodies against CD3 (HIT3a), CD33 (WM53),
CX3CR1 (2A9-1), CD14 (M5E2), CD64 (10.1), CD74 (LN2), HLA-E (3D12),
CD34 (581), HLA-DR/DP/DQ (Tü39), and IFNγ (4 S.B3) were obtained
fromBioLegend, andCD4 (SK3) andCD8 (RPA-T8)wereobtained from
BD Biosciences.

Multiplex immunofluorescence imaging
The Lunaphore Comet multiplex IF platform was used to profile the
leukemic and immune bone marrow microenvironment. A formalin-
fixed, paraffin embedded tissue microarray slide containing 75 cores
from 12 patients was baked, dewaxed, treated with 3% hydrogen per-
oxide, and rehydrated. Antigen retrieval was performed at 107 C for
15min in an ethylenediaminetetraacetic acid-based buffer. TrueBlack
lipofuscin autofluorescence quencher was applied for 1min before the
slide was washed in PBS. The slide was then loaded into the Lunaphore
Comet to fit 16 cores (4 × 4) in a 9 × 9mm square imaging window to
capture two patients enriched in CD34+ leukemic blasts. Staining,
imaging, and elution was performed cyclically by the Comet until all
antibodies were captured. The resulting tiff files were imported into
the Visiopharm image analysis software. Cell segmentation was per-
formed using U-Net. Mean intensity thresholding was used to pheno-
type cells. Distances between cell types were calculated in Rv.4.2.1.

AML blasts and T cells co-culture assay
Human T cells (5 × 104 per well) isolated from peripheral blood
mononuclear cells (PBMCs) from a healthy donor using the EasySep
NegativeHumanTCell Kit (Cat# 19051, STEMCELL Technologies) were
rested in R20 supplemented with 200 U/ml recombinant human IL-2
for 72 h. CD34+ blasts and CD14+ blasts were isolated from patients
PBMC using the EasySep Human CD34 Positive Selection Kit II (Cat#
17856, STEMCELL Technologies) and the EasySep Human CD14 Posi-
tive Selection Kit II (Cat# 17858, STEMCELL Technologies), respec-
tively. AML patients’ blasts from one CD34+ patient (myeloid), one
CD14+ patient (monocytic), THP1 cells, and MOLM13 cells were co-
cultured (5 × 104 per well) with the healthy donor’s T cells (5 × 104 per
well) in R20 media in a U-bottom 96-well plate. Additionally, wells
containing blasts alone, T cells alone, or a 1:1 ratio of T cells with
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Dynabeads Human T-Activator CD3/CD28 [Cat# 1161D, Thermo Fisher]
were included for comparison. After 72 and 120 h of culture, the cul-
ture media were collected, and IFN-γ levels were assessed by ELISA
using the LEGEND MAX™ Human IFN-γ ELISA Kit [Cat# 430107,
BioLegend].

AML blasts IFN-γ stimulation assay
To assess IFITM3 levels, CD34+ blasts and CD14+ blasts cultured in R20
media (5 × 105 perwell in a 24-well plate)were stimulatedwith 10 ng/ml
of human recombinant IFN-γ [Cat# 300-02-20UG, PeproTech]. Unsti-
mulated (PBS) blasts were included for comparison. After 24 h of cul-
ture, the cells were collected, washed twice with PBS, and
intracellularly stained for IFITM3 as described in the Spectral Flow
Cytometry protocol with minor modifications. Instead of the intra-
cellular staining cocktail, cells were incubated with a 1:250 IFITM3
monoclonal antibody (1 h, room temperature) [Cat# D8E8G, Cell Sig-
naling Technology], followed by washing and incubation with a 1:1000
Alexa Fluor™ Plus 488 conjugated secondary antibody (1 h, room
temperature) [Cat # A32731, Invitrogen]. The cells were washed and
resuspended in 300μL of PBS for flow cytometry using the Beckman
Coulter Gallios Flow Cytometer. Data analysis was performed in
FlowJo™ 10.8.2.”

Treatment of AML blasts with Venetoclax
CD34+ blasts cultured in R20 media were stimulated with 10 ng/ml of
human recombinant IFN-γ. Unstimulated (PBS) blasts were included
for comparison. After 12 h of culture, blasts with or without IFN-γ sti-
mulation were counted and plated in a U-bottom 96-well plate (5 × 104

per well), with or without 10 ng/ml of human recombinant IFN-γ, along
with titrated concentrations of venetoclax [Cat# S8048, Selleck Che-
micals]. After 24 h of incubation, cell viability was assessed using the
CellTiter-Glo luminescent cell viability assay [Cat# G7572, Promega]
following the manufacturer’s protocol. IC50 values were calculated
using GraphPad Prism version 10.1.0.

Evaluation of gene effects on AML cell lines by CRISPR
The CRISPR data for cell lines were downloaded from DepMap Public
22Q4 (https://depmap.org/portal/). Gene effects were analyzed by
DepMap using Chrono, which infers gene fitness based on cell pro-
liferation. DepMapmetadata was used to separate the AML cell lines. A
total of 26 AML cell lines were selected to evaluate the 188 IFNγ
response pathway (HALLMARK) genes that overlapped with the
CRISPR data. The gene effect value was used to create the heatmap
using the pheatmap package in R. Positive values indicate that
knocking out the gene leads to the growth of AML cell lines, while
negative values represent cell death in AML cell lines. The gene
dependency scores were evaluated by a two-tailed t test using the
Empirical Bayes Statistics for Differential Expression implemented in
the limma R package83 and presented by volcano plot.

LASSO regression for feature selection
A LASSO regression model was applied to gene expression data for
AML patients to select genes correlated with survival. The model was
implemented in the R package glmnet84 and trained using tenfold
cross-validation to select the best penalty parameter. Genes with a
non-zero coefficient were retained.

Statistical analysis and reproducibility
All statistical analyses were performed using Rv.4.2.1 and GraphPad
Prism10. Pearson correlation tests were applied to assess the rela-
tionship between pathway enrichment scores and gene expressions.
Kruskal-Wallis and Wilcoxon rank sum tests were used to compare
IFNγ signaling in different cytogenetic groups. Log-rank test was used
in comparing survival curves. All statistical significance testing in this
study was two-sided, and results were considered statistically

significant at P values or FDR q-values (for multiple testing) was <0.05.
Default “P < 2.2 × 10−16” in R v4.2.1 was used if the P value was too small
to illustrate.

Sample sizes were determined with the intent to capture a
representative cohort of AML patients, encompassing the principal
molecular subgroups identified in current research. This decision was
also informed by practical considerations including budgetary con-
straints and the availability of samples within our databank. Due to the
nature of our study, which necessitated the correlation of molecular
findings with clinical outcomes, randomization and blinding were not
employed.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The single cell sequencing data generated in this study have been
deposited in the GEO database with the accession number
(GSE239721). The metadata and raw counts of bulk RNA sequencing
data were downloaded from https://gdc.cancer.gov/about-data/
publications/pancanatlas (TCGA), GEO database GSE165656
(MDACC) and https://www.nature.com/articles/s41586-018-0623-z#
Sec38 (BEAT-AML). The public drug screening data were download
from https://zenodo.org/records/7274740 and https://biodev.github.
io/BeatAML2/. Source data are provided with this paper.

Code availability
All codes can be accessed from https://github.com/abbaslab/2023_
IFNG_Inflammation85.
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