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Charting cellular differentiation trajectories
with Ricci flow

Anthony Baptista 1,2 , Ben D. MacArthur1,3,4 & Christopher R. S. Banerji 1,5

Complex biological processes, such as cellular differentiation, require intricate
rewiring of intra-cellular signalling networks. Previous characterisations
revealed a raised network entropy underlies less differentiated and malignant
cell states. A connection between entropy and Ricci curvature led to applica-
tions of discrete curvatures to biological networks. However, predicting
dynamic biological network rewiring remains an open problem. Here we apply
Ricci curvature and Ricci flow to biological network rewiring. By investigating
the relationship between network entropy and Forman-Ricci curvature, theo-
retically and empirically on single-cell RNA-sequencing data, we demonstrate
that the two measures do not always positively correlate, as previously sug-
gested, and provide complementary rather than interchangeable information.
We next employ Ricci flow to derive network rewiring trajectories from stem
cells to differentiated cells, accurately predicting true intermediate time
points in gene expression time courses. In summary, we present a differential
geometry toolkit for understanding dynamic network rewiring during cellular
differentiation and cancer.

Cellular differentiation is a complex biological process essential for
embryonic development aswell as themaintenance and repair of adult
tissues. Aberrant differentiation underlies a wide spectrum of pathol-
ogy. This includes malignancy, where cells may fail to differentiate or
de-differentiate, becoming trapped in a more plastic, proliferative
state1. A key featureof cellular differentiation is anorchestrated shift in
the intra-cellular transcriptomic distribution. C. H. Waddington pro-
posed in 1939, a seminal interpretation of the intra-cellular state during
differentiation, known as the Waddington Landscape2. Under this
landscape, less differentiated cells occupy a higher potential energy,
represented by an elevated position. As cells differentiate they roll
down this complex landscape, following a trajectory determined by its
hills and valleys, dropping in potential energy until the cell arrives at an
attractor state: the differentiated cell.

While an intuitive and appealing picture, the deep complexity of
the intra-cellular state revealed by modern transcriptomic and pro-
teomic quantification, as well as the discovery that we can repro-
grammecells to earlier phases of differentiation,motivated a recasting

of the Waddington Landscape from a metaphorical picture into an
interpretable mathematical framework3,4. Modern interpretations of
Waddington’s Landscape have re-framed cell fate trajectories via the
phase space of transcriptomic dynamics5–7. While non-deterministic
elements of these transcriptomic dynamics have motivated more
information-theoretic characterisations of cell fate trajectories8. The
latter interpretation has revealed the intra-cellular states of less dif-
ferentiated cells can be considered more “promiscuous", displaying a
higher entropy in their protein-protein interactions, which decreases
during differentiation and increases in cancer, providing a quantitative
correlate for the “height" in Waddington’s landscape9–11.

As Waddington’s landscape has evolved from an intuitive picture
to a mathematical framework, however, cell fate transitions have
maintained a geometric appeal12. Geometric approaches to studying
cell fate have often focused on characterisations of the underlying
dynamical system and typically require detailed knowledge of gene-
regulatory networks relevant to specific cell fate transitions7,13.
However, at the genome-wide scale, we do not have this deep
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understanding of intra-cellular interactions and instead rely on sparse
graphical representations, known as biological networks, which can be
weighted by biological samples to describe relevant dynamics9. The
notion that a (weighted) network has an underlying geometry is well-
studied and there are numerous methodologies for network
embedding14, with application to biological networks15,16. Recently,
discrete analogues of tools from differential geometry17,18, a rich
mathematical field for studying manifolds and their curvatures, have
been applied to the study of biological networks19–23. These tools
provide a new window into the geometry of cell fate and a rich theo-
retical literature to apply.

In particular, discrete analogues of Ricci curvature, well known for
its use to describe the curvature of space-time in Einstein’s theory of
general relativity, have been employed to discriminate biological net-
works weightedwith cancer gene expression data fromcorresponding
healthy tissue19. In 2015, Sandhu et al.,19 proposed a theoretical link
between network entropy and a discrete version of Ricci curvature
(Ollivier-Ricci curvature17) computed over the edges of a weighted
network. This link was motivated by the theoretical results of Lott and
Villani, relating a lower bound of the Ricci curvature on a metric-
measure space to the convexity of an entropy functional24, suggesting
that Ricci curvature and entropy (computed in this way) may be
positively correlated. Though network entropy is not theoretically
equivalent to the entropy functional from the metric-measure space
setting, it was found that, like network entropy, total Ollivier-Ricci
curvature is elevated on networks weighted with cancer data, com-
pared to healthy19. Subsequently, similar results have been obtained,
using the less computationally intensive Forman-Ricci curvature21,23,
including that this curvature decreases during cellular differentiation,
again like network entropy. It is of note, however, that depending on
the construction of this Forman-Ricci curvature, investigators have
demonstrated both positive22 and negative25 correlations with network
entropy.

Cellular differentiation and oncogenesis like all biological events
are dynamic processes, and the recent results detailed above suggest
that the geometryof theunderlying spaceof intra-cellular interactions,
described by biological networks,may change predictably during their
progression. The dynamic evolution of manifolds is a well-studied
topic in differential geometry. In a seminal contribution to the field,
Hamilton introduced Ricci flow as a tool to study the topological
implications of deforming ametric on amanifold according to its Ricci
curvature26, which led subsequently to the striking solution of the
Poincaré conjecture by Perelman27,28. Like curvature Ricci flow can also
be defined in a discrete setting29, and recently discrete Ricci flows and
curvatures have been applied to problems in network theory30–32 such
as network alignment33, community detection34–36, functional com-
munity inference for biological networks37 and phase transitions in
time-varying complex networks38.

In what follows we first present some background on the com-
putation of network entropy and discrete Ricci curvatures in the
context of gene expression weighted protein-protein interaction net-
works. We then propose a framework for employing a discrete Ricci
curvature and normalised Ricci flow to predict dynamic trajectories
between temporally linked gene expression samples.Wenext consider
the relationshipbetween our Forman-Ricci curvature construction and
network entropy; using a simple toy network we show that the two
network measures are not always positively correlated. We find that in
promiscuous signalling regimes (such as in stemcells) themeasures do
positively correlate, but in lower entropy regimes they may anti-cor-
relate, suggesting the two measures are complementary rather than
interchangeable. By analysing over 6000 single-cell transcriptomes,
we confirm these propositions, demonstrating that network entropy
and our Forman-Ricci curvature positively correlate in stem cells, but
negatively correlate in cancerous and differentiated samples. Lastly,
we consider two independent transcriptomic time courses describing

multiple time points during cellular differentiation in different tissues.
Using our Ricci flow construction we derive gene expression trajec-
tories from the first time point sample to the last, faithfully predicting
the ordering of intermediate samples, without prior knowledge.

Results
Intuition, definitions and preliminaries
Intuitively, we interpret the Waddington Landscape as analogous to
the phase space of transcriptomic dynamics during cellular differ-
entiation (Fig. 1A). Let n denote the number of genes in the genome
and xt : = ðxt

i Þ
n
i= 1 >0 denote the vector of transcript abundance for

each gene at time t 2 R+ . Consideration of dxt

dt yields an n dimensional
phase space ϕ, describing permissive trajectories of gene expression.
Trajectories between two points in ϕ represent geodesics from one
transcriptomic state to another, and distances along these trajectories
can be computed by equipping ϕ with a Riemannian metric g. The
degree to which these geodesic distances differ from Euclidean dis-
tances canbe assessed via considerationofRicci curvature, allowingus
to recast the n dimensional manifold (ϕ, g) as an n + 1 dimensional
manifold Φ with a Euclidean geometry. This added dimension allows
us to interpret the “height" of Waddington’s Landscape, and permits
investigation of its association with cellular differentiation states.

A key issue in progressing this construct is the knowledge of dxt

dt ,
which will be a highly sophisticated function incorporating transcrip-
tion, translation and degradation of mRNA and protein for each gene,
as well as the complexities of epigenetic regulation, gene-regulatory
networks, protein-protein interaction networks and cell-cell/micro-
environment interactions.

It has been shown however, that integration of transcriptomic
data with a protein-protein interaction network (PIN), compiled from
multiple sources, yields an entropy rate which is a clear correlate of
cellular differentiation potential and thus represents a proxy for
“height" in Waddington’s differentiation landscape9. This suggests a
pragmatic approach considering dxt

dt purely constructed from protein-
protein interactions, may be sufficient for initial interrogation of the
structure ofΦ, in lieu of a more rigorous theoretical understanding of
other contributors.

Network entropy and discrete Ricci curvature
In our construct we let G = (V, E) denote the undirected graph
describing the human PIN, with adjacency matrix A= ðaijÞi,j2V , where
∣V∣ = n. For any x∈ϕ, where xi >0 for all i∈V, we define the weighted
adjacency matrix W ðxÞ= ðaijxixjÞi,j2V , and the row-stochastic matrix,
PðxÞ= ðpijðxÞÞi,j2V , where:

pijðxÞ=
aijxjP

k2Vaikxk
: ð1Þ

The entropy rate SR(x) of P(x) (hereafter denoted as network
entropy, Methods) decreases as cells differentiate, this has been
established in bulk and single-cell transcriptomic data from cells at
different stages of differentiation and throughout differentiation time
courses, by us and multiple independent investigators9,11,22. Network
entropy is also higher in cancerous compared to healthy tissue, and is
prognostic in breast and lung cancer10,11,39.

Sandhu et al.,19 proposed a positive correlation between network
entropy and adiscrete version ofRicci curvature computedover edges
in a weighted network ðRiceðxÞÞe2E , with network average or total Ricci
curvature defined by:

RicðxÞ=
X
i2V

πiðxÞ
1

degðiÞ
X
j2V

aijRicði,jÞðxÞ, ð2Þ

where deg(i) =∑j∈Vaij andwhere ðπiðxÞÞni = 1 is the stationary distribution
of P(x). The correlation between network entropy and total discrete
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Ricci curvature has since been considered by several studies in the
following form19,21,22:

ΔSRðxtÞΔRicðxtÞ≥0: ð3Þ

While not an unreasonable deduction, justification for this
inequality derives from a theoretical investigation of metric-measure
spaces (M, d,m), where (M, d) is a metric space andm is a measure on
the Borel σ − algebra of M (Methods)24,40. Investigation in this setting
uncovered a relationship between the convexity of a relative entropy,
computed over the space of probability measures on (M, d), with
respect to the measurem and a lower bound of the Ricci curvature of
(M, d,m)24,40. From this association, it was concluded that the negative
of the relative entropy and Ricci curvature are positively correlated19.
We note, however, that the network setting is not equivalent tometric-
measure spaces. In particular network entropy (an entropy rate) is not
equivalent to the relative entropy described by24. The inequality (3) is
therefore not guaranteed from the results on metric-measure
spaces24,40.

Moreover, discrete Ricci curvatures, though often theoretically
rich, are not exact quantifiers of the continuous Ricci curvature on a

manifold. There are several approaches to computing a discrete Ricci
curvature on edges of a network, including Ollivier-Ricci curvature17

and Forman-Ricci curvature18, both of which have been applied to
biological networks and demonstrate elevated total curvature in
cancer19,21,22. Forman-Ricci curvature follows a combinatorial con-
struction as follows:

RF ði,jÞ=Wi +Wj � ðωijÞ1=2 Wi

X
k≠j

ðωik Þ�1=2 +Wj

X
k≠i

ðωkjÞ�1=2

2
4

3
5 ð4Þ

where ðWiÞi2V is a vector of vertex weights and ðωijÞði,jÞ2E is a vector of
edge weights. We note that Forman-Ricci curvature is less computa-
tionally intensive to evaluate than Ollivier-Ricci curvature.

Though the discrete entropy and curvature measures do not
exactly correspond to the metric-measure space setting, the relation
(3) suggests an intriguing geometrical interpretation for the observa-
tion that network entropy decreases during cellular differentiation.
Transcriptomic states representing undifferentiated cells xstem∈ϕ,
have higher network entropy compared to differentiated cellsxdiff∈ϕ.
Under (3) it follows that Ric(xstem) > Ric(xdiff). Tree-like networks have a

Stem cell (xstem) 

Stem cell (xstem) 

Network Entropy
Discrete Ricci-

Curvature

Differentiated 
cell (xdiff)

Differentiated cell (xdiff)

n-dimensional Riemannian manifold (φ,g) 
describing phase space of dx/dt, i.e., 

permissive transcriptomic states space (Φ)

trajectory
 xstem -> xdiff

plots the 
geodesic 

g(xstem, xdiff) in φ

Proposition 1: the Forman-Ricci 
Curvature of a PIN weighted with 

transcriptomic data x can 
approximate the Ricci Curvature of 

(φ,g) at x

Proposition 2: a normalised discrete Ricci 
flow on this weighted PIN can approximate 

trajectories between points in (φ,g) of different 
network entropy
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Weighted Protein Interaction Network (PIN) Properties
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i j

i j
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+ =
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* Node weights must not depend on t
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Fig. 1 | Overview of Ricci curvature and flow approach for biological networks.
A Schematic of the transcriptomic phase space interpretation of the Waddington
Landscape. Permissive trajectories are interpreted as geodesics which can be
considered within Euclidean geometry via consideration of Ricci curvature. Protein
interaction networks can be used to approximate height in the landscape by

network entropy and possibly by discrete Ricci curvature. B Schematic describing
mass action principle weighting of protein interaction networkwith transcriptomic
data, alongside required parameter choices and corresponding constraints to
implement Ricci flow. C An interpretation of edge curvature in terms of node
proximity in an underlying metric space and consequences for parameter choices.
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very low curvature, whereas cliques are highly curved33, giving a nat-
ural interpretation to this inequality in terms of more deterministic
pathway activation during differentiation.

In our phase space analogy to Waddington’s Landscape, with dxt

dt
essentially described byW(xt), we see stem cells occupying regions of
high curvature (hill tops) and curvature decreasing as cells differ-
entiate, analogously, rolling downhill to valleys. This gives us an
intuitive, empirical tool to understand construction of the n + 1
dimensional spaceΦ for the n dimensional phase space (ϕ, g) at given
data points.

Normalised discrete Ricci flow
Cellular differentiation is a dynamic process and typically we only have
data for start and end points xstem and xdiff and perhaps a handful of
points between. We consider extrapolation between these data points
via a discrete normalised Ricci flow.

We propose to use a discrete version of the 2-dimensional nor-
malised Ricci flow, which has previously been considered in the con-
text of weighted networks30:

dt +Δtði,jÞ=dtði,jÞ+ΔtðRicðxtÞði,jÞ � Ricði,jÞÞdtði,jÞ ð5Þ

for Δt >0, where dt(i, j) is a distance between connected nodes i, j∈V
at time t, RicðxtÞði,jÞ is the Ricci curvature on edge (i, j)∈ E at time t and
Ricði,jÞ is an edge-wise normaliser to which we want to converge.

Here we consider t =0 to refer to the undifferentiated cell state
xstem and define the normaliser via the fully differentiated state:
Ricði,jÞ =Ricðxdiff Þði,jÞ. We postulate that (5) will permit estimation of a
permissive trajectory from xstem to xdiff in ϕ.

For (5) to generate trajectories the following properties are
required (Fig. 1B):

• Knowledge of dt(i, j) must be sufficient to calculate RicðxtÞði,jÞ.
• Δtmust be sufficiently small to prevent negative values of dt.The

following properties are also desired:
• Knowledge of dt allows calculation of xt or some transformation

thereof, e.g.,W(xt). This will permit comparison to intermediate
real data points to validate the approach.

• Computation time of Ricci curvatures must be sufficiently short
to permit multiple iterations rapidly, as for large PINs such as
those investigated here, there are typically ~ 150, 000 edges.

Inwhat followswecomputeRicðxtÞði,jÞ as a Forman-Ricci curvature
Rt
F ði,jÞ with edge weights ωij : =ω

t
ij =

aij

xti x
t
j
and node weights Wi =

1
degðiÞ.

RicðxtÞði,jÞ =Rt
F ði,jÞ thus obeys:

Rt
F ði,jÞ= degðiÞ�1 + degðjÞ�1 � ðxti xt

j Þ
�1=2

degðiÞ�1
X
k≠j

ðaikx
t
i x

t
kÞ

1=2
+ degðjÞ�1

X
k≠i

aik ðakjx
t
kx

t
j Þ
1=2

2
4

3
5 ð6Þ

We further choose dtði,jÞ=ωt
ij . These choices satisfy all of our

required anddesiredproperties anddetailed justification canbe found
in the Methods.

Positive correlation between network entropy and total
Forman-Ricci curvature requires a specific signalling regime
Previous studies have demonstrated a positive correlation between
network entropy and network average (or total) discrete Ricci curva-
ture computed on differentiating stem cells19,22. However, recently it
has been demonstrated using a slightly different construction of
Forman-Ricci curvature that a negative correlation can be observed
with network entropy25. As discussed above a positive correlation
between network entropy and discrete Ricci curvature is not guaran-
teed in general, as the motivating theoretical results relate to slightly
different quantities24,40.

To gain intuition we investigated the association between our
version of Forman-Ricci curvature and network entropy on a simple k-
star network displayed in Fig. 2A, consisting of k + 1 nodes, of which k
have a single edge connecting them to a central node i. We assign each
node l ≠ j a weight xl = 1 and assign node j a weight xj = ϵ >0. We can
derive analytical expressions for network entropy (SR) and total
Forman-Ricci curvature (RF, defined by (6) and (2)) on this simple
network in terms of k and ϵ (Methods).

We performed a numerical analysis of these expressions for var-
ious values of k 2 Z + n 1 and ϵ > 0 (Fig. 2B–D). By construction SR is
maximal for ϵ = 1, regardless of k. For k = 2, RF also has a global max-
imum at ϵ = 1 and the positive correlation with SR expressed in (3)
holds. However for all other values of k, the association between net-
work entropy and total Forman-Ricci curvature follows two regimes
depending on ϵ (Fig. 2D). For ϵ < 1(3) holds and network entropy and
total Forman-Ricci curvature are positively correlated. However, for
ϵ > 1 we can always find a range of values of ϵ for which network
entropy and total Forman-Ricci curvature are negatively correlated,
this range becomes larger as k increases.

Though these results only apply to a very simple network, they
suggest a fundamental difference in what network entropy and total
Forman-Ricci curvature are measuring. This suggests these measures
are complementary, rather than interchangeable as has been pre-
viously proposed19. In our simple network, network entropy is max-
imised for ϵ = 1. We can reduce network entropy by reducing ϵ,
signallingmore the k − 1 neighbours of our central node i at the cost of
reducing signalling to our chosen neighbour j, a strategywe call “many
for one" (Fig. 2E), in this caseRFwill also decrease. Alternatively,we can
reducenetworkentropy by increasing ϵ, and signalmore toour chosen
node j at the cost of signalling less to our remaining neighbours, a
strategywe call “one formany" (Fig. 2E), in this case for larger values of
k, RF may increase.

Network entropy is blind to the two signalling strategies, but they
are biologically distinct. The “one for many" strategy mirrors deter-
ministic pathway activation, characteristic of a low entropy regime.
This strategy is more likely in a highly committed cell, performing a
very specific function9. Variation in gene expression amongst well-
differentiated cells may therefore capture the negative correlation
between network entropy and total curvature we have demonstrated
possible by our theoretical investigation. Conversely, the “many for
one" signalling strategy, though not maximising entropy, represents a
more disordered state than the “one for many" strategy, maintaining
the possibility of diverse pathway activation without committing. This
regime mirrors the promiscuous signalling of stem cells, which must
maintain the option to differentiate and perform a wide variety of
functions9. Variation in gene expression amongst stem cells may
therefore capture the positive correlation between network entropy
and total curvature, which we have theoretically demonstrated more
dominant in “many for one" signalling.

The degree of correlation between network entropy and total
Forman-Ricci curvature has biological relevance
Our theoretical results suggest that our SR and RF may be positively
correlated in stem cells, but negatively correlated in more differ-
entiated tissue. Previous studies reporting an association between
network entropy and total Forman-Ricci curvature typically present
results on stem cell populations21,22,25. Though the curvatures of more
differentiated and cancerous tissues are often also examined, the
association with network entropy in these tissues is typically not
reported25,41. We note that these studies also employ slightly different
constructions of Forman-Ricci curvature than our own and whilemost
show a positive correlation with network entropy in stem cells19,22, one
shows a negative correlation25.

We analysed the previously considered scRNAseqdata sets of Chu
et al.11,22,25,42 describing the early stages of embryonic stem cell (ESC)
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differentiation. These data consist of 2 separate experiments, one
describing 1018 single cells assayed at different stages ofmultipotency
and a second describing 758 single cells assayed at 6 distinct time
points during ESC differentiation. On both these data sets we found
that network entropy and our total Forman-Ricci curvature were
positively correlated (Pearson’s r >0.78, p < 2.2 × 10−16) and dis-
criminate distinct lineages during stem cell differentiation (Fig. 3A, B)
as previously reported11,22,25.

We next analysed a large scRNAseq data set describing 1257
malignant and 3256 healthy single cells from 19 patients with malig-
nant melanoma43, on which total curvature values have previously
been calculated, but the association with network entropy was not
presented22,25. These cells represent more differentiated tissue and as
hypothesised from our theoretical investigation, we found a negative
association between network entropy and our total Forman-Ricci
curvature on these cells (Pearson’s r = −0.77,p < 2.2 × 10−16, Fig. 3C).We
also found that malignant cells displayed higher values of network

entropy as expected (two-tailed Wilcoxon p < 2.2 × 10−16)9, however,
they displayed lower values of total Forman-Ricci curvature (two-tailed
Wilcoxon p < 2.2 × 10−16, Fig. 3C). Considering healthy and malignant
cells separately, we found that the correlation between network
entropy and total Forman-Ricci curvature was significantly more
negative across healthy cells compared to malignant (control cells:
Pearson’s r = −0.83, p < 2.2 × 10−16), malignant cells: Pearson’s
r = −0.009, p =0.76, Fisher’s z-transformation: p < 2.2 × 10−16).

To confirm this finding we analysed an independent data set
describing 272 malignant and 160 healthy cells from patients with
colorectal cancer25,44. We again identified a negative correlation
between network entropy and total Forman-Ricci curvature (Pearson’s
r = −0.86, p < 2.2 × 10−16, Fig. 3D), with higher network entropy (two-
tailed Wilcoxon p = 1.5 × 10−6) but lower total Forman-Ricci curvature
(two-tailed Wilcoxon p = 8.0 × 10−4) in cancerous cells. Again, con-
sidering healthy and malignant cells separately, the correlation
between network entropy and total Forman-Ricci curvature was

Fig. 2 | Examining the association between network entropy and total Forman-
Ricci curvature in a toy network. A A simple k-star network with k + 1 nodes, k
nodes of degree 1 are connected to a central node of degree k. Nodeweights are set
to 1 for all nodes except j, which is set to some ϵ >0. B Plot of network entropy
against ϵ for k = 2,…, 20, colours from blue to brown denote increasing k. C Plot of

total Forman-Ricci curvature against ϵ for k = 2,…, 20, colours from blue to brown
denote increasing k.DPlot of total Forman-Ricci curvature against networkentropy
for k = 2,…, 20, colours from blue to brown denote increasing k. E Probability bar
charts comparing the “one for many" to “many for one" regimes.
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nant melanoma (colours label phenotype: red=malignant, blue=healthy) andD 272
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label phenotype: red=colorectal cancer, blue=healthy). Boxplots present data as
follows:minima:minimumvalue,maxima:maximumvalue, centre:median, bounds
of box:first and thirdquartile,whiskers: lowest valuewithin 1.5 × interquartile range
of the first quartile, to largest value within 1.5 × interquartile range of the third
quartile. Two-sided Wilcoxon p-values are displayed on boxplots, and Pearson’s r
and corresponding two-sided p-values are displayed on scatter plots. In stem cells
network entropy and total Forman-Ricci curvature positively correlate, while for
more committed cells there is a negative correlation. Source data are provided as a
Source Data file.
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significantly more negative across healthy cells compared to malig-
nant, though the difference was more subtle than in the melanoma
data set (control cells: Pearson’s r = −0.90, p < 2.2 × 10−16, malignant
cells: Pearson’s r = −0.83, p < 2.2 × 10−16, Fisher’s z-transformation
p < 4.8 × 10−3).

This suggests that network entropy and total Forman-Ricci cur-
vature are not interchangeable measures of cell potency, but com-
plementary. Increasing network entropy is seen in both less
differentiated tissue and cancer, while total Forman-Ricci curvature
increases in less differentiated tissue and decreases in cancer. Toge-
ther these measures present a more complete picture of the global
intra-cellular signalling state.

Ricci flow for approximating transcriptomic trajectories
We have found that network entropy and our total Forman-Ricci cur-
vature are related quantities but not interchangeable.

We next consider whether Ricci flow can approximate realistic
trajectories through gene expression phase space during cellular dif-
ferentiation. We first considered the time course scRNAseq data set of
Chu et al.42, describing ESC differentiation at 6 time points. For each
time point we computed themean transcriptomic vector across single
cells, which we considered representative of the transcriptomic state
at this time point, giving us a set of 6 vectors ðxtÞ5t =0 (Fig. 4A). To
provide a null model we considered a straight line trajectory from
W(x0) to W(x5) (Methods). We computed the Euclidean distance
between points along this straight line and the true intermediate data
points ðW ðxtÞÞ4t = 1, to determine the ordering of the true data points
along the straight line trajectory (Methods, Fig. 4B). As anticipated the
straight line trajectory did not pass the true data points in the correct
order, and the distance along the trajectory to the closest pass of the
true data point was not correlated with differentiation time of the true
data point (Pearson’s r =0.85, p =0.153, Fig. 4C). We next considered
the trajectory from W(x0) to W(x5) produced by our normalised dis-
crete Ricci flow described by (5) (Methods). We found that the Ricci
flow trajectory passed by the true data points in the correct order, and
the number of iterations to the closest pass of the true data points
correlated with the differentiation time of those points (Pearson’s
r =0.96, p =0.04, Fig. 4D).

To confirm the finding that Ricci flows correctly orders differ-
entiation trajectories, we considered our data set of bulk RNA-
sequencing of human myoblast differentiation into multinucleated
myotubes, with transcriptomic samples taken at 8-time points in
triplicate (Fig. 5A)45. Performing analysis as above, separately for
each triplicate, we found that closest pass progression along a null
model linear trajectory correlated with differentiation time but could
not robustly discriminate time points across triplicates (Pearson’s
r = 0.79, p = 1.0 × 10−4, Fig. 5B). In contrast, closest pass Ricci flow
iterations were highly correlated with differentiation time (Pearson’s
r = 0.93, p = 3.7 × 10−8, Fig. 5B) and were tightly reproducible across
triplicates, discriminating all time points, with the exception of the
first two intermediate time points. These initial time points were
taken only 90min apart and thus are unlikely to represent a sig-
nificant dynamic change.

Discussion
Numerous measures have been developed in network theory to ana-
lyse network properties. Classic approaches include studying the
degree distribution, clustering coefficient, and shortest path between
nodes, all of which provide insights into the network’s geometry46.
However, to study the geometric and topological properties of net-
works more deeply, discrete adaptations of differential geometry have
becomewidely applied19,22,30–33,36,41. In differential geometry curvature is
a key actor, describing the local behaviour of a manifold, and geo-
metric flows can be employed to perturb this important property and

examine the consequences. By treating networks as discrete counter-
parts of manifolds, we can view them as geometric objects and dis-
crete curvatures and flows on networks have proven effective tools for
addressing common network theory questions31–33,36.

Here we investigated discrete Ricci curvature and Ricci flow, to
study properties of biological signalling in differentiating andmalignant
cells. This work builds on the finding that network entropy is a proxy for
“height" inWaddington’s Landscape—havinghigher values on stemcells
and malignant cells compared to healthy differentiated tissue9–11—by
investigating the enticing theoretical link between Ricci curvature and
entropy19,24,40. We propose a framework to calculate the total Forman-
Ricci curvature of a single biological sample, which is compatible with a
discrete Ricci flow, to infer trajectories between the intra-cellular sig-
nalling regimes of two temporally connected transcriptomic samples.

By investigating our framework in a simple analytically tractable
setting, we prove that network entropy and our total Forman-Ricci
curvature are not guaranteed to be positively correlated. Our investi-
gation suggests that a positive correlation is likely across samples with
a highly promiscuous signalling regime (such as stem cells), with a
negative correlation more likely across cells with deterministic sig-
nalling (differentiated cells). We provide empirical evidence for this
theoretical hypothesis through the analysis of > 6000 single-cell
transcriptomes. Interestingly, we found that cancer cells have a
higher network entropy but lower total Forman-Ricci curvature than
healthy differentiated cells and that the correlation between network
entropy and total Forman-Ricci curvature is less negative in cancerous
cells compared to healthy. This is in contrast to stem cells where both
network entropy and total Forman-Ricci curvature are higher than
healthy differentiated cells and positively correlated.

One of the hallmarks of malignancy is anaplasia—the de-
differentiation of cancerous cells compared to their healthy counter-
parts. Anaplasia is typically quantified by histological grade, where
tumour cells are compared morphologically to their healthy counter-
parts and assigned a low grade if they appear similar, or a high grade if
they have lost the appearance associated with specialised function.
Anaplasticmalignant cells gain some of the hallmarks of stem cells, such
as a higher proliferative capacity, they also gain additional functions,
including those which facilitate metastasis. Our theoretical results sug-
gest that the loss of negative correlation between network entropy and
total Forman-Ricci curvature in malignant cells may represent an
increase in “many to one” signalling compared to healthy cells, expected
in anaplasia. Highly anaplastic cells may even attain a signalling regime
more characteristic of stem cells, and show a positive correlation
between network entropy and total Forman-Ricci curvature.

By applying our normalised discrete Ricci flow to the first and last
time point of time courses of cellular differentiation from two distinct
tissues, we derived biological network rewiring trajectories, which
accurately predicted intermediate time points. Predictions made by
this approach require experimental validation but offer the possibility
of deeper insights into the molecular events underpinning cellular
differentiation and early biomarker detection for malignancy and
regenerative pathology.

Our findings contrast with other studies, which proposed a posi-
tive correlation between network entropy and total discrete curvature
of a biological network, by appealing to results on metric-measure
spaces19,24,40. There are a number of reasons for this contrast. Firstly,
the discrete network setting is not the exact analogue of the metric-
measure space setting and in particular the definitions of “entropy" in
the two settings are not identical. Secondly, discrete approximations
of Ricci curvature for networks are non-unique and there are several
ways of defining them depending upon context, including Ollivier-
Ricci curvature derived from optimal transport considerations17 and
Forman-Ricci curvature derived from consideration of cell
complexes18. It has been shown that node averages of these different
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discrete Ricci curvatures computed on the same network do not
always correlate20. Moreover, if we focus only on the Forman-Ricci
curvature employed here, it can be seen from (4) that there is con-
siderable flexibility in its definition, via the selection of node and edge
weights. Indeed a positive correlation between Forman-Ricci curvature
and network entropy22, became negative across the same samples
when the investigators used a different choice of edge weights25. The
selection of weights for Forman-Ricci curvature therefore requires
careful consideration to ensure it is matched to context. In particular,
it may be possible to choose weights which artificially engineer a
correlation between total Forman-Ricci curvature and network
entropy. Moreover, if we define both node and edge weights as vari-
ables which change temporally, as has been done previously22,25, then a
Ricci flow on edges as we have constructed is computationally
intractable. Our findings therefore motivate theoretical investigation
into how to translate the deep results frommetric-measure spaces into
the biological network setting with more fidelity, as well as a more
robust understanding of the impact of parameter choices when
applying Forman-Ricci curvature to weighted biological networks.
Here we provide a framework for such theoretical investigation and
show that our Forman-Ricci curvature is an informative biological
network measure, complementing rather than simply correlating with
network entropy by providing robust discrimination between healthy,
cancerous and stem cells.

Our work paves the way towards addressing questions related to
the prediction of network evolution over time and their study with
tools adapted from differential geometry. Though both theoretical
and experimental investigations are required to fully exploit this
area, we demonstrate that important insights into the molecular

mechanisms of health and disease can be achieved through analysis of
discrete Ricci curvatures and flows.

Methods
Network entropy calculation
The computation of network entropy was as previously described9–11

employing the SCENT package in R and the symmetric PIN compiled
from multiple sources in 2016 available at https://github.com/aet21/
SCENT. We denote the adjacency matrix of the PIN by A= ðaijÞni,j = 1.

For each gene expression sample, genes were matched to pro-
teins in the PIN, whenmultiple genes weremapped to a single protein,
expression levels were averaged over and only the largest connected
component of the PIN was considered post-matching. For each mat-
ched sample x = ðxiÞni= 1 > 0 a weighted networkW ðxÞ= ðaijxixjÞi,j2V , and
row-stochastic matrix, PðxÞ = ðpijðxÞÞi,j2V , where:

pijðxÞ=
aijxjP

k2Vaikxk
ð7Þ

were constructed.
We define the local entropy of node i as

SiðxÞ= �
X
k2V

pik ðxÞ logpik ðxÞ ð8Þ

the entropy rate associated with P(x) is then given by

SRðxÞ=
X
i2V

πiðxÞSiðxÞ: ð9Þ
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Where πðxÞ= ðπiðxÞÞi2V is the stationary distribution of P(x) satisfying

πðxÞ=PðxÞπðxÞ: ð10Þ

As G is undirected and a single connected component, by the Perron-
Frobenius theorem the stationary distribution π has an analytical
solution given by:

πiðxÞ=
P

k2VaijxixjP
k,j2Vakjxkxj

: ð11Þ

When presented in figures network entropy was calculated as the
above entropy rate SR(x) normalised by the maximal entropy rate
possible from the topology of the matched PIN, following our prior
convention, to allow comparison across different networks10,11.

Construction of the Ricci flow equation
Formally for a smooth manifold Y a Ricci flow defines for an open
interval ða,bÞ 2 R+ a Riemannian metric dt such that:

∂dt

∂t
= � 2RicðdtÞ ð12Þ

the constant − 2 is largely conventional and can be replaced with any
k <0, to ensure existence of a unique solution in finite time. Normal-
ised Ricci flows are typically employed for convergence studies when
certain properties, e.g., volume, are required to be finite

∂dt

∂t
= �2RicðdtÞ+Ric ð13Þ

where Ric is a normaliser.
In 2 dimensions normalised Ricci flow is well-studied

theoretically47 and takes a special form:

∂dt

∂t
= ðRicðdtÞ � RicÞdt ð14Þ

For normalised discrete Ricci Flow we employ the following
expression described in the main text and applied previously21:

dt +Δtði,jÞ=dtði,jÞ+ΔtðRicðxtÞði,jÞ � Ricði,jÞÞdtði,jÞ ð15Þ

for Δt >0, where dt(i, j) is a distance between connected nodes i, j∈V
at time t, RicðxtÞði,jÞ is the Ricci curvature on edge (i, j)∈ E at time t and
Ricði,jÞ is an edge-wise normaliser to which we want to converge.

We next must choose expressions for dt(i, j) and RicðxtÞði,jÞ which
satisfy our required and desired properties outlined in the Results.

We select RicðxtÞði,jÞ to be a Forman-Ricci curvature Rt
F ði,jÞ, as this

discrete form of Ricci curvature is fast to compute compared to other
versions such as Ollivier-Ricci curvature, and we must compute ~
150,000 edge-wise curvatures per iteration of our Ricci flow. We
choose the edge weights of this curvature to be ωij :=ω

t
ij =

aij

xti x
t
j
and

node weights Wi =
1

degðiÞ. R
t
F ði,jÞ thus obeys:

Rt
F ði,jÞ=degðiÞ�1 + degðjÞ�1 � ðxti xt

j Þ
�1=2

degðiÞ�1
X
k≠j

ðaikx
t
i x

t
kÞ

1=2
+ degðjÞ�1

X
k≠i

aikðakjx
t
kx

t
j Þ
1=2

2
4

3
5: ð16Þ

We also choose dtði,jÞ=ωt
ij . We note that, as for other discrete

Ricci flow studies30,33, dt(i, j) is not a metric, as it fails the triangle
inequality, however, it is small, implying “close proximity" of con-
nected vertices i, j∈V if the corresponding transcript levels of genes i

and j arehigh at time t. In addition at each iteration of (5), this choiceof
dt(i, j) allows computation of ðωt +Δt

ij Þði,jÞ2E , which can be input into (4),
allowing computation of ðRt +Δt

F ði,jÞÞði,jÞ2E and thus the next iteration of
(5). This iterated dt+Δt can simply be inverted to give W(xt+Δt) which
allows direct comparison of the Ricci flow generated transcriptomic
distribution with real biological data. Our choice of dt thus satisfies all
our desired properties and is a reasonable distance measure.

Wi is chosen tobe independent ofxt as theRicciflow iterationonly
provides enough equations to calculate updates of edge weights, thus
ifWi depends on twe cannot compute Rt

F ði,jÞ over each iteration of (5).
We select Wi =

1
degðiÞ to normalise the sums in (4), which is important

when comparing total Forman-Ricci curvature and network entropy
(see below).

We further note that:

∂RF ði,jÞ
∂ωij

= � 1
2
ðωijÞ�1=2 Wi

X
k≠j

ðωikÞ�1=2 +Wj

X
k≠i

ðωkjÞ�1=2

2
4

3
5<0 ð17Þ

implying that as ωij decreases, based on our definition of the distance
d(i, j) =ωij, i and j become “closer", and the Forman-Ricci curvature
increases, and vice versa (Fig. 1C). This behaviour is as expected from a
curvature. Moreover, considering our Ricci flow construction in (5), if
Rt
F ði,jÞ>RF ði,jÞ then dt +Δtði,jÞ=ωt +Δt

ij will increase, leading to a
reduction in Rt

F ði,jÞ via (17), driving convergence to RF ði,jÞ.
Thus our choice of Ricci flow construction is computationally

efficient, facilitates convergence of the flow towards the normaliser
and satisfies all our required and desired properties outlined in the
results.

Investigating the correlation between network entropy and
total Forman-Ricci curvature on a simple network
We consider the simple k-star network displayed in Fig. 2A, consisting
of k + 1 vertices, of which k have a single edge connecting them to a
central vertex i. We assign each vertex l ≠ j a weight xl = 1 and assign
vertex j a weight xj = ϵ >0.

Our Forman-Ricci curvature is defined on an edge as follows:

RF ði,jÞ=degðiÞ�1 + degðjÞ�1 � ðxixjÞ�1=2

degðiÞ�1
X
k≠j

ðaikxixkÞ1=2 + degðjÞ�1
X
k≠i

aikðakjxkxjÞ1=2
2
4

3
5 ð18Þ

whence

RF ði,jÞ=degðiÞ�1 1�
X

k2NðiÞnj

ffiffiffiffiffi
xk
xj

s2
4

3
5 +degðjÞ�1 1�

X
k2NðjÞni

ffiffiffiffiffi
xk

xi

r2
4

3
5 ð19Þ

Which we denote as:

RF ði,jÞ= rF ðijjÞ+ rF ðjjiÞ ð20Þ

for notational ease, where:

rF ðijjÞ=degðiÞ�1 1�
X

k2NðiÞnj

ffiffiffiffiffi
xk

xj

s2
4

3
5 ð21Þ

We note that via (1):

xk

xi
=
xk=
P

l2NðjÞxl

xi=
P

l2NðjÞxl
=
pjk

pji
ð22Þ
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which gives us the alternative expression, which can be helpful when
considering stochastic matrices

rF ðijjÞ=degðiÞ�1 1�
X

k2NðiÞnj

ffiffiffiffiffiffi
pik

pij

s2
4

3
5: ð23Þ

Employing the results above it is a simple deduction that for our
toy network:

pij =
ϵ

k + ϵ�1

pil =
1

k + ϵ�1 l≠j

pli = 1 l≠i

plj =0 l≠i

8>>>><
>>>>:

: ð24Þ

The stationary distribution of the network is also easily calculated
from (11) as:

πi =
1
2

πl =
1

2ðk + ϵ�1Þ l≠j,i

πj =
ϵ

2ðk + ϵ�1Þ

8>><
>>: : ð25Þ

It is also clear that the local entropies will satisfy:

Si = � ϵ
k + ϵ�1 log

ϵ
k + ϵ�1

� �� k�1
k + ϵ�1 log

1
k + ϵ�1

� �
Sl =0 l≠i

(
: ð26Þ

The network entropy of this network is thus simply:

SR = � 1
2

ϵ
k + ϵ� 1

log
ϵ

k + ϵ� 1

� �
+

k � 1
k + ϵ� 1

log
1

k + ϵ� 1

� �	 

ð27Þ

Which is a convex function of ϵ maximal at ϵ = 1 (Fig. 2B).
We now consider the total Forman-Ricci curvature, defined by:

RF =
X
l2V

πlRF ðlÞ ð28Þ

where

RF ðlÞ=
1

degðlÞ
X
r2V

alrRF ðl,rÞ: ð29Þ

In our example, the following can be deduced from equation (23):

rF ðljiÞ= 1 l≠i

rF ðijlÞ= 1
k ð3� k � ffiffiffi

ϵ
p Þ l≠j

rF ðijjÞ= 1
k 1� ðk � 1Þ

ffiffi
1
ϵ

q� �
8>><
>>: : ð30Þ

Which allows the calculation of

RF ðiÞ= 1
k k + 1

k 1� ðk � 1Þ
ffiffi
1
ϵ

q� �
+ k�1

k ð3� k � ffiffiffi
ϵ

p Þ
h i

RF ðjÞ= 1 + 1
k 1� ðk � 1Þ

ffiffi
1
ϵ

q� �
RF ðlÞ= 1 + k�1

k ð3� k � ffiffiffi
ϵ

p Þ l≠j:

8>>>><
>>>>:

: ð31Þ

Whence

RF =
1
2k

k +
1
k

1� ðk � 1Þ
ffiffiffi
1
ϵ

r !
+
k � 1
k

ð3� k � ffiffiffi
ϵ

p Þ
" #

+
ϵ

2ðk + ϵ� 1Þ 1 +
1
k

1� ðk � 1Þ
ffiffiffi
1
ϵ

r !" #

+
k � 1

2ðk + ϵ� 1Þ 1 +
k � 1
k

ð3� k � ffiffiffi
ϵ

p Þ
	 


:

ð32Þ

Network entropy and total Forman-Ricci curvature comparison
Network entropy was calculated on each gene expression sample as
described above. Forman-Ricci curvature was computed over an edge
(i, j) using the following expression:

RF ði,jÞ=degðiÞ�1 + degðjÞ�1 � ðxixjÞ�1=2

degðiÞ�1
X
k≠j

ðaikxixkÞ1=2 + degðjÞ�1
X
k≠i

aik ðakjxkxjÞ1=2
2
4

3
5 ð33Þ

Nodal average Forman-Ricci curvature was computed as pre-
viously described22,25 via:

RiciðxÞ=
1

degðiÞ
X
j2V

aijRF ði,jÞ ð34Þ

and network average, or total Forman-Ricci curvature was computed
via:

RicðxÞ=
X
i2V

πiðxÞRiciðxÞ, ð35Þ

where ðπiðxÞÞni= 1 is the stationary distribution of P(x).
The choice of node weights for our Forman-Ricci curvature

Wi =
1

degðiÞ is important here as it ensures that the upper bounds of each
of the two sums comprising edge-wise Forman-Ricci curvature defined
in (4) are not dependent on node degree, and so nodal average
Forman-Ricci curvature is also independent of degree. This is required
as the local entropy of a node i (defined in (8)) takes values on
[0, deg(i)] and thus has a degree dependence. We define total Forman-
Ricci curvature here, to mirror network entropy, as a weighted sum of
nodal average curvatures, using the stationarydistribution ðπiðxÞÞni = 1 as
the weights. Our choice of node weightsWi =

1
degðiÞ thus prevents total

Forman-Ricci curvature and network entropy from correlating purely
becauseof a shareddegree dependence.Wenote thatwhile our choice
of Wi prevents degree dependence of edge wise and nodal Forman-
Ricci curvature, the use of the stationary distribution in calculation of
total Forman-Ricci curvature introduces the relative biological
importance of hub nodes9.

Associations between network entropy and total Forman-Ricci
curvature were assessed using Pearson correlation with significance at
the 5% level.

Computing linear and Ricci flow trajectories between time-
ordered gene expression samples
Trajectories for time course gene expression datawere derived via two
approaches, a null Euclidean straight line trajectory and by employing
our discrete normalised Ricci flow. For both approaches the first gene
expression time point (x0) was used as a starting state and the final
time point (xT) was the end state. Intermediate time points were not
used in the derivation of the trajectory only for its validation.

Article https://doi.org/10.1038/s41467-024-45889-6

Nature Communications |         (2024) 15:2258 11



For normalised discrete Ricci flow we employ the following
expression described above:

dt +Δtði,jÞ=dtði,jÞ+ΔtðRicðxtÞði,jÞ � Ricði,jÞÞdtði,jÞ: ð36Þ

This flow will deform the weight on an edge of the PIN at a rate
proportional to the differencebetween the edge curvature at a starting
state and a final state determined by the normaliser.

We set the normaliser of our Ricci flow as the Forman-Ricci cur-
vature calculated at the final time point T: Ricði,jÞ =R

T
F ði,jÞ. The time

increment Δt was selected empirically. If Δt is too large then negative
values of the incremented distance dt+Δt are possible, which are not
acceptable by definition, however, if Δt is very small convergence of
the Ricci flow to the normaliser will require a great number of itera-
tions and will not be computationally practical. We therefore con-
sidered a range of values for Δt∈ {10−3,…, 10−1}. For each gene
expression time course, we implemented one time step of the Ricci
flow from the first time point x0 using each Δt value and selected the
optimalΔt as the largestwhich does not admit negative values ofd0+Δt.
For both time courses considered this value was Δt =0.06.

We note that the maximal value of Δt which does not admit
negative values of d0+Δt can also be derived theoretically and depends
on the differences between the edge-wise Forman-Ricci curvatures at
t =0 and those of the normaliser via:

Δt* = min
ði,jÞ2E*

1

ðRicði,jÞ � Ricðx0Þði,jÞÞ

 !
, ð37Þ

where, E* = fði,jÞ 2 E : Ricði,jÞ � Ricðx0Þði,jÞ >0g. For both time courses
considered Δt*∈ [0.06, 0.065] and Ricci flow was thus implemented
using close to themaximal valueofΔtpossible. Smaller valuesofΔt can
be used to obtain a more fine-grain approximation of the network
rewiring trajectory, at the cost of increased computation time and the
need for more iterations before convergence.

For both gene expression time courses, we found that after 150
iterations the normalised Ricci flow converged very close to the nor-
maliser, with little change in dt+Δt with subsequent iterations, we thus
selected 150 as the optimal number of iterations in the flow. We note
that by construction the final transcriptomic time point will always be
closest to the end of the trajectory. As the number of iterations is
selected as sufficiently large to ensure convergence, rather than the
minimum number of iterations required for convergence, the end of
the trajectory represents signalling in a steady state, as opposed to the
precise moment gene expression matches the final time point.

To derive the Euclidean linear trajectory null model, from the
starting gene expression time point to the final, we constructed a
straight line fromW0 = ðaijx

0
i x

0
j Þi,j2V toWT = ðaijx

T
i x

T
j Þi,j2V inRn×n. We

selected 150 equally spaced points along this line via the following
expression

Wtði,jÞ=W0ði,jÞ+ tðWT ði,jÞ �W0ði,jÞÞ
150

: ð38Þ

Comparing inferred trajectories to true time course gene
expression data
For both normalised discrete Ricci flow and the Euclidean linear tra-
jectory null model we derived a trajectory described by 150 discrete
points from the starting gene expression state to the final, as above.
Each of these discrete data points can be transformed into a prediction
of the weighted network:WpðxrÞ=aijx

r
i x

r
j for r∈ {1,…, 150}. In the case

of the Euclidean trajectory, the inferred point is exactly this weighted
network, while for the normalised Ricci flow WpðxrÞ= ð1=drði,jÞÞi,j2V .

For each true intermediate time point in the gene expression time
course {1,…, T − 1} we computed the Euclidean distance between each

of the 150 predictions ofWp(xr) in each inferred trajectory and the true
data points {W(x1),…,W(xT−1)}.

The value of r which minimised the distance between Wp(xr) and
W(xt) was considered the point along the trajectorywhichmost closely
corresponded to the true gene expression trajectory at time t.

The association between the trajectory points corresponding to
the measured time points and the true intermediate time points
themselves (excluding starting and ending time points) was assessed
via Pearson correlation, with significance at the 5% level.

Entropy and Ricci curvature on networks and metric-
measure spaces
A connection between Ricci curvature and relative entropy has been
explored in the setting of metric-measure spaces by several
investigators24,40,48. Formally let (M, d,m) be a metric-measure space,
where (M, d) is ametric spaceandm is ameasureon theBorelσ-algebra
ofM, the authors typically aim to define a notionbywhich (M, d,m) has
a Ricci curvature bounded below by K 2 R and explore the con-
sequences. To do so they consider themetric space P2(M) = (P(M),W2),
associated with the metric space (M, d), where P(M) is the space of
Borel probability measures onM andW2 is theWasserstein-2 distance.
W2 is a distance measure commonly used in optimal transport, to
provide intuition ifm1,m2∈ P(M) thenW 2ðm1,m2Þ2 is the smallest cost
of transporting the total mass from themeasurem1 to themeasurem2,
where the cost of transporting a unit mass between points a1 and
a2∈M isdða1,a2Þ2. Employing results ondisplacement convexity along
geodesics in P(M), a connection between anentropy functional defined
on P(M) and the Ricci curvature of (M, d,m) can be proposed.

Formally, using the notation of Strum 200640, we define a relative
entropy functional with respect to m on P(M) via:

Ent ðνjmÞ=
Z

M

dν
dm

log
dν
dm

� �
dm ð39Þ

It has been proposed (based on results for Riemannian
manifolds48) that (M, d,m) has Ricci curvature bounded below by K 2
R if and only if, for any ν0, ν1∈ P(M), where Ent(ν0∣m), Ent(ν1∣m) <∞,
thereexists a geodesic γ: [0, 1]→ P(M),where γ(0) = ν0 and γ(1) = ν1 such
that:

EntðγðtÞjmÞ ≤ ð1� tÞEntðγð0ÞjmÞ+ tEnt ðγð1ÞjmÞ

� K
2
tð1� tÞW 2ðγð0Þ,γð1ÞÞ2:

ð40Þ

Sandhu et al.19, use this statement to infer a positive correlation
between an entropy defined as the negative of Ent( ⋅ ∣m) and the Ricci
curvature of (M, d,m).

In our setting of networks, there is not an unambiguous way to
map to a metric-measure space. The definition of the space (M, d,m)
could have many choices in terms of network topology as well as
vertex and edge weights. Moreover, the definition of Forman-Ricci
curvature applied to networks is again non-unique, depending on edge
and vertex weights and the validity of this curvature depends upon an
interpretation of the network as a cell complex approximation to a
Riemannianmanifold. The definition of network entropy as an entropy
rate is also not equivalent to the definition of Ent( ⋅ ∣m), and again the
choice of m for the network setting is non-unique. Collectively this
highlights a distinction between the network setting and metric-
measure spaces, and results in one setting cannot be expected to be
valid in the other, in particular correlation between entropy and
curvature.

Statistics and reproducibility
The association between network entropy and total Forman-Ricci
curvature in transcriptomic data sets was evaluated using Pearson’s
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correlation coefficient. The comparison between network entropy
and total Forman-Ricci curvature in cancerous and healthy single
cells was evaluated using two-tailed Wilcoxon tests. The association
between closest pass Ricci flow iteration/straight line trajectory
iteration and true differentiation time was evaluated using Pear-
son’s correlation coefficient. No statistical method was used to
predetermine the sample size. No data were excluded from the
analyses. The experiments were not randomised. The Investigators
were not blinded to allocation during experiments and outcome
assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All relevant data supporting the key findings of this study are available
within the article. The Normalised read count data corresponding to
RNA-sequencing used in this study are available in the GEO database49

under the following accession codes. The data describing scRNAseq of
1018 single cells assayed at different stages of multipotency and
alongside data describing 758 single cells assayed at 6 distinct time
points during ESC differentiation42 are available in the GEO database
under accession codeGSE75748. Thedatadescribing scRNAseqof 1257
malignant and 3256 healthy single cells from 19 patients with malig-
nant melanoma43 are available in the GEO database under accession
code GSE72056. The data describing scRNAseq of 272 malignant and
160 healthy cells from patients with colorectal cancer44 are available in
the GEO database under accession code GSE81861. Our data set
describing healthy myoblast differentiation at 8 distinct time points45

is available in the GEO database under accession codes GSE102812 and
GSE123468. Source data are provided in this paper.

Code availability
The R code developed for the analysis presented in the paper is
accessible in the following Github: https://github.com/anthbapt/
Cellular-differentiation-trajectories-with-Ricci-flow and the used ver-
sion of the code is deposited in Zenodo with https://doi.org/10.5281/
zenodo.1046956250.
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