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Midbrain signaling of identity prediction
errors depends on orbitofrontal cortex
networks

Qingfang Liu 1, Yao Zhao1, Sumedha Attanti 2, Joel L. Voss3,
Geoffrey Schoenbaum 1 & Thorsten Kahnt 1

Outcome-guided behavior requires knowledge about the identity of future
rewards. Previous work across species has shown that the dopaminergic
midbrain responds to violations in expected reward identity and that the lat-
eral orbitofrontal cortex (OFC) represents reward identity expectations. Here
we used network-targeted transcranial magnetic stimulation (TMS) and func-
tional magnetic resonance imaging (fMRI) during a trans-reinforcer reversal
learning task to test the hypothesis that outcome expectations in the lateral
OFC contribute to the computation of identity prediction errors (iPE) in the
midbrain. Network-targeted TMS aiming at lateral OFC reduced the global
connectedness of the lateral OFC and impaired reward identity learning in the
first block of trials. Critically, TMS disrupted neural representations of
expected reward identity in the OFC and modulated iPE responses in the
midbrain. These results support the idea that iPE signals in the dopaminergic
midbrain are computed based on outcome expectations represented in the
lateral OFC.

Knowledge about associations between cues and outcomes is funda-
mental for adaptive behavior. This involves not only the value of
expected outcomes, but also the value-neutral sensory characteristics
that comprise their identity. Value-neutral representations of expected
outcomes are part of a detailedmodel of the world that can be used to
support flexible model-based planning and decision making in chan-
ging environments (see1–4 for reviews).

Recent work suggests that the dopaminergic midbrain con-
tributes to reward identity learning. Specifically, prediction error (PE)
signaling in midbrain dopamine neurons5–8 is not restricted to mis-
matches in value predictions but can also be observed when expec-
tations about value-neutral reward features are violated9–16. For
instance, the same dopaminergic neurons in rats respond to unex-
pected changes in both the magnitude (i.e., value) and flavor (i.e.,
identity) of equally-preferred food rewards9,16. Similarly, functional
magnetic resonance imaging (fMRI) responses in overlapping regions
of the human midbrain correlate with identity (iPE) and value PEs10–12.

Moreover, activity of dopaminergic neurons at the time of reward is
critical for establishing outcome-specific associations between sen-
sory cues and rewards17. These findings suggest a key role for dopa-
minergic iPEs in reward identity learning, but the systems-level
mechanisms by which these error signals are computed remain
unclear.

A candidate region for providing detailed information about the
identity of expected outcomes as input for computing iPEs is the lat-
eral orbitofrontal cortex (OFC)18. Work across species indicates that
lateral OFC maintains information about the identity of expected
outcomes2,3,10,19–24. For instance, neural responses in the lateral OFC
correlate with the identity of future rewards and track changes in
outcome identity across reversals10,19,21,25. Moreover, lesions or inacti-
vation of the lateral OFC cause deficits in behaviors that require
information about the identity of expected outcomes26–29.

Given the involvement of the lateral OFC and midbrain in signal-
ing reward identity and reward identity errors, respectively, as well as
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their positioningwithin the cortico-striatal circuit30,31, we hypothesized
that both regions jointly contribute to reward identity learning. Spe-
cifically, we hypothesized that reward identity expectations repre-
sented in the lateral OFC might contribute to the computation of iPEs
signaled by the midbrain, which, in turn, update reward identity
expectations in the lateral OFC.

A key prediction from this hypothesis is that disrupting activity in
the lateral OFC should alter midbrain responses to iPEs. Here, we
causally tested this prediction in humans. To this end, we used
network-targeted transcranial magnetic stimulation (TMS) to disrupt
activity in the lateral OFC network26,32 and used fMRI to measure
midbrain responses to iPEs in a trans-reinforcer reversal learning task.
Similar to tasks that we have previously used to demonstrate iPE sig-
naling in the rat andhumanmidbrain9–11,21, the task required subjects to
learn associations between visual cues and unique but equally-
preferred food odor rewards. These associations reversed unpredic-
tably throughout the task, thereby inducing iPEs. We used a compu-
tational model of reward identity learning to derive predictions for
TMS-induced changes in task behavior, midbrain iPE signals, and OFC
identity expectations. In line with the predictions of a model with
reduced learning rates, we found that OFC network-targeted TMS (1)
impairs reward identity learning, (2) modulates iPE signaling in the
midbrain, and (3) disrupts reward identity expectations in the OFC.

These results support the idea that reward identity learning depends
on recursive interactions between outcome expectations in the lateral
OFC and error signals in the dopaminergic midbrain.

Results
Trans-reinforcer reversal learning task and experimental design
We studied identity learning using a trans-reinforcer reversal learning
task (Fig. 1a). On each trial, subjects (N = 31, 11male, age 19–42) sawone
of two visual cues that were deterministically paired with one of three
unique but equally-valued food odor rewards (e.g., potato chips,
chocolate, and peach, Fig. 1d). During cue presentation, subjects were
asked to predict which odor would be delivered after the cue. Thus,
subjects needed to learn and maintain the associations between the
cues and the foododors.Unpredictably to the subject, the associations
between cues and odors reversed six times for each cue per task run,
thereby eliciting iPEs (Fig. 1b).

The study was conducted over 4 days (Fig. 1e): an initial screening
session (Day 1), a session toobtain a structuralMRI, a resting-state fMRI
scan, and to determine resting motor thresholds (rMT) (Day 2), and
two TMS sessions (Day 3 and Day 4) wherein cTBS targeting the lateral
OFC network (or sham, both outside theMRI scanner) was followed by
three runs of the trans-reinforcer reversal learning task inside the MRI
scanner.
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Fig. 1 | Trans-reinforcer reversal learning task and experimental design.
a Schematic of the trans-reinforcer reversal learning task. Each trial starts with the
presentation of a visual cue (1 s), followed by a prompt to predict which odor is
currently associated with the presented cue (3 s). After 4 s of fixation, an odor is
delivered (2 s), with the fixation turning blue cueing the subject to sniff. Each trial
ends with an inter-trial interval pseudorandomly drawn from 2 to 4 s. b Odor
identity reversal schedule example. Trials with the two visual cues are randomly
interleaved. On a given trial, each visual cue is associated with one of three equally-
valuedodors, and the association is reversed after a variable number of trials. Trials
in which the associated odor changes from the previous trial with the same cue are
labeled “reversal trials.” c Illustration of network-targeted TMS on a glass brain
using BrainNet viewer65. left, indirectly targeted OFC seed region (cyan) and the
LPFC stimulation site (red); right, individually selected stimulation coordinates in
the LPFC (red) based onmaximal resting-state fMRI connectivity with the targeted

OFC seed region (cyan).dThree different categories of food odorswere used in the
experiment: savory, sweet, and fruity. For each subject, one odorwas selected from
each category such that theymatched in pleasantness ratings (as a proxy for reward
value) collected on Day 1. e Study timeline. Day 1: subjects rated the pleasantness
and intensity of odors to select the three equally-valued odors. Day 2: T1-weighted
brain image and resting-state fMRI scanswere collected, followedby determination
of the resting motor threshold (rMT). Day 3/4: TMS (cTBS or sham, order coun-
terbalanced across subjects) session, followed by three runs of task-based fMRI
scans. The average time from finishing TMS to the start of theMRI scan was ~9min.
Each fMRI run took approximately 15min. ITI inter-trial interval, LPFC lateral pre-
frontal cortex, OFC orbitofrontal cortex, TMS transcranial magnetic stimulation,
MRI magnetic resonance imaging, fMRI functional magnetic resonance imaging,
cTBS continuous theta-burst stimulation.
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Our TMS approach targeted an area in the lateral OFC, which has
previously been shown to represent the identity of expected
rewards19,22,33 and which is functionally connected to an isolated
cluster in the lateral prefrontal cortex (LPFC) in a large normative
data set (neurosynth.org). For each subject and hemisphere, we then
used this lateral OFC area as the seed region in a subject-level resting-
state fMRI connectivity analysis and identified an area in LPFC that
showed maximal connectivity with the OFC seed (Fig. 1c). Our pre-
vious work has shown that continuous theta burst stimulation (cTBS)
over these individually selected stimulation sites modulates activity
in the lateral OFC network and disrupts outcome-guided
behaviors26,32.

Each subject received both cTBS and sham in different sessions,
with the order counterbalanced across subjects. This design enabled
us to examine the effect of cTBSon reward identity learning andneural
responses to both iPEs and reward identity expectations within each
subject, and thereby to investigate the causal relationship between
OFC network activity and midbrain error signaling during reward
identity learning.

Network-targeted TMS decreases global connectedness in
lateral OFC
In a first step, we verified the effects of OFC-targeted cTBS on activity
in the lateral OFC, as in our previous study26. Specifically, we calcu-
lated a voxel-wise measure of global connectedness26 using the fMRI
data from the first run of each session. Global connectedness was

computed as the average absolute correlation between each voxel’s
fMRI time series and that of every other gray matter voxel in the
brain. Comparing sham and cTBS sessions, we found that cTBS
decreased the global connectedness in the indirectly targeted OFC
areas (right OFC: [33, 38, –10], t(30) = 3.97, pFWE-SVC = 0.002; left OFC:
[−33, 38, −13], t(30) = 3.50, pFWE-SVC =0.022, Fig. 2a). We found a
similar decrease in connectedness in the actual stimulation site in
the right LPFC ([45, 35, 14], t(30) = 3.65, pFWE-SVC= 0.014, Fig. 2b).
These results show that network-targeted TMS disrupted activity in
the lateral OFC network, as intended.

To track the effects of cTBS on connectivity across time, we
divided the fMRI time series into six time bins (i.e., two bins per run)
and computed the global connectedness for each time bin in inde-
pendent ROIs of the OFC and LPFC (Fig. 2c). Compared to sham, cTBS
decreased the global connectedness of the OFC in the first (V = 114,
p =0.0038) and second time bin (V = 128, p =0.0088), but not in any
other bin (all p’s > 0.1). Importantly, there was a significant interaction
between time and session in the OFC (p =0.017) that was driven by
global connectedness returning to baseline after cTBS (p = 3.73e–8),
and no change after sham (p =0.41). Global connectedness of the LPFC
was decreased in the second (V = 118, p = 0.0049), third (V = 150,
p =0.028), and fourth (V = 143,p =0.020) timebin, but not in anyother
bin (all p’s > 0.1). Although global connectedness in the LPFC returned
to baseline after cTBS (p =0.0067) and therewas no significant change
after sham stimulation (p = 0.12), the time by session interaction was
not significant (p = 0.53).
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Fig. 2 | Network-targeted TMS decreases global connectedness in lateral OFC.
a Difference in global connectedness between sham and cTBS in the first run,
overlayed with the indirectly targeted OFC seed regions (cyan spheres). Statistical
map depicts t-values for the difference in global connectedness between the cTBS
and sham session, thresholded at p <0.001 (uncorrected) for illustration. Right
OFC: [33, 38, –10], t(30) = 3.97, pFWE�SVC =0.002; left OFC: [-33, 38, –13],
t(30) = 3.50, pFWE-SVC=0.022. b Same as (a), but the red spheres indicate the LPFC
stimulation sites. Right LPFC: [45, 35, 14], t(30) = 3.65, pFWE-SVC=0.014. cChanges in
global connectedness across time in each session (cTBS, sham) and ROI (targeted
OFC seed, LPFC stimulation site). Global connectedness values were calculated by
splitting each run into half (6 time bins in total). The line plots denote the mean

global connectedness, and the shaded areas depict ±1 standard error across sub-
jects. Differences between sessions were tested at each time bin using Wilcoxon
signed rank test (V, one-sided). OFC: V = 114, p =0.0038 (1st time bin); V = 128,
p =0.0088 (2nd time bin). LPFC: V = 118, p =0.0049 (2nd time bin); V = 150,
p =0.028 (3rd time bin); V = 143, p =0.020 (4th time bin). * denotes p <0.05, and
** denotes p <0.01. See Supplementary Fig 2 using the functional ROIs shown in (a)
and (b) for subject-wise TMS effects on global connectedness. Correcting for head
motion does not alter these results (see Supplementary Fig 4). LPFC lateral pre-
frontal cortex, OFC orbitofrontal cortex, cTBS continuous theta-burst stimulation,
FWE-SVC family-wise error small-volume correction. Source data are provided as a
Source Data file.
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We also tested whether OFC-targeted cTBS modulated global
connectedness in additional brain areas. First, we ran a whole brain
analysis (pFWE<0.05, whole-brain FWE corrected), which did not reveal
any significant effects of TMS. Second, we explored effects of TMS on
connectedness in several other brain areas commonly associated with
reward learning (Supplementary Fig 3).

Modeling cTBS-induced impairments in reward identity learning
To generate predictions for our behavioral and neural data, we
designed an identity learning model in which identity expectations
are updated by iPEs (Fig. 3a), computed as the difference between
expected and received odor outcomes11,26. We hypothesized that
modulating lateral OFC network function through cTBS would dis-
rupt reward identity expectations. To implement this computation-
ally, we reduced the rates at which reward identity expectations were
updated during learning. We performed simulations with varying
learning rates (ranging from 0.5 to 0.9) to generate predictions for
the possible effects of cTBS on behavioral and neural data (Fig. 3).
With a high learning rate (α = 0.9), the expectation strengths are
rapidly updated to the new odor identity after each reversal, leading
to intact reward identity expectations and identity PEs. Conversely,
with a low learning rate (α = 0.5), the expectation strengths are slower
to update to the new odor identity after reversals, causing reduced
identity expectations and prolonged identity PEs. Taken together,
these simulations show that the effects of different learning rates on
both outcome prediction accuracy and iPEs aremost evident on rev+1
trials (Fig. 3b, c).

cTBS disrupts outcome prediction accuracy
Wenext leveraged the results of themodel simulation shown in Fig. 3b
to predict the effects of cTBS on subjects’ behavior in the task. Col-
lapsing data from all three experimental runs and both sessions,
accuracy significantly decreased from rev−1 to rev trials (paired t test,
t(30) = 27.46, p < 2.2e–16, two-sided) and recovered from rev trials to
rev+1 trials (paired t test, t(30) = 27.76, p < 2.2e–16, two-sided). In
addition, there was a decrease in accuracy from rev−1 to rev+1 trials
(paired t test, t(30) = 3.88, p = 5.4e–4, two-sided), suggesting that
performance was lower directly after compared to directly before
reversals. Importantly, our model predicted that this decrease from
before to after the reversal would be more pronounced with lower
learning rates (Fig. 3b). We therefore next examined the effect of cTBS
on the change in accuracy from rev−1 to rev+1 trials.

Given the transient effects of cTBS on global connectedness
(Fig. 2c), we reasoned that any effect of cTBS on behavior should be
most evident in the first run. Indeed, we found that in the first run,
accuracy decreased significantly from rev−1 to rev+1 trials in the
cTBS session (paired t test, t(30) = 3.013, p = 0.0026, one-sided),
but not in the sham session (paired t test, t(30) = 0.319, p = 0.62,
one-sided). Most importantly, this change in accuracy from rev−1 to
rev+1 trials was significantly different between the cTBS and sham
session (Fig. 4a, b, paired t test, t(30) = 2.344, p = 0.013, one-sided).
No such effect of TMS on the change in accuracy was found in
either the second or the third run (both p > 0.099), consistent with
a recovery of function as the effects of TMS waned. Averaging
across three runs, there was no significant effect of cTBS on the
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change in accuracy (paired t test, t(30) = 0.455, p = 0.65,
two-sided).

To rule out effects of cTBS on the ability to perceive and
identify odors, we asked subjects to perform an odor identification
test after each scanning run. Overall, there was no significant dif-
ference in odor identification performance between the cTBS and

sham sessions (paired t test, t(30) = 1.13, p = 0.27). However, we did
observe a decrease in odor identification performance during the
first run in the cTBS session relative to the sham session (paired t
test, t(30) = 2.53, p = 0.017). Nonetheless, this reduction in identifi-
cation performance was not correlated with the decline in task
performance (r = –0.047, t(29) = –0.25, p = 0.80), suggesting that
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sessions, obtained using a hierarchical Bayesianmodelingmethod. The dotted line
indicates the prior density used for estimating the hyper learning rate parameter.
e Scatter plot showing the behavioral effect of TMS (difference in accuracy change
(re+1 − rev−1) between sham and cTBS), against the estimated learning rate differ-
ence, across 31 subjects. For illustration, the learning rate was logit transformed
before calculating the difference. The gray dotted line denotes the linear fit
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rank correlation, R(29) = 0.54, p =0.0016. b, c Box plots show center line as med-
ian, box limits as the first and third quartiles, whiskers as minimum to maximum
values that are within 1.5 inter-quartile range from box limits. Rev: reversal; cTBS:
continuous theta-burst stimulation. Source data are provided as a Source Data file.
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impaired odor perception cannot account for impairments in
identity learning.

We next fitted our identity learning model to the behavioral data
from the first run using a hierarchical Bayesian approach34 (see
“Methods”). We first compared a model with session-wise learning
rates to a model with learning rates fixed across sessions. The model
with session-wise learning rates (boxplot in Fig. 4c) accounted well for
the observed outcome prediction accuracy (error bars in Fig. 4c) and
provided a better account of behavioral accuracy than the model with
fixed learning rates (deviance information criterion35, DIC; session-wise
learning rates 3585.9, and fixed learning rates 3620.2). Importantly, in
line with our model simulations, the posterior density of learning rate
estimates in the cTBS sessionwas shifted towards lower values andhad
a larger range compared to the shamsession (Fig. 4d). Additionally, the
difference in learning rates between the sham and cTBS sessions was
positively correlated with the behavioral effect of TMS, defined as the
difference in changes in accuracy (rev+1 − rev−1) between the two ses-
sions (Spearman’s rank correlation, R =0.54, p = 0.0016, Fig. 4e). This
is consistent with predictions of our identity learning model (Fig. 3b)
and suggests that individual differences in the effect of TMS on
changes in accuracy (rev+1 − rev−1) can be explained by differences in
learning rates.

Taken together, these results demonstrate that cTBS decreased
outcome prediction accuracy after reversals (rev+1) compared to pre-
reversal trials (rev−1) in thefirst run and thereby support thenotion that

cTBS targeting the lateral OFC network impairs reward identity
learning.

cTBS alters neural responses to identity prediction errors in the
midbrain
To investigate how disruption of lateral OFC activity affects neural
signaling of iPEs, we first identified brain areas in which fMRI activity
correlatedwith iPEs acrossboth sessions. To increase statistical power,
this and the following fMRI analyses used data from all three runs. In
line with previous studies10–12,36,37, we found significantly stronger fMRI
responses to outcomes on reversal compared to non-reversal trials in
the midbrain, as well as other cortical and subcortical regions includ-
ing the medial frontal cortex, LPFC, and insula (pFWE <0.05, whole-
brain FWE corrected, Fig. 5a, Supplementary Table 1). In addition, we
found clusters in the lateral OFC that survived small volume correction
(Supplementary Fig 5a).

Next, we evaluated the impact of cTBS on iPE signals by com-
paring fMRI responses in the midbrain between the cTBS and sham
sessions (Fig. 5b). Following our model predictions (Fig. 3c), we esti-
mated fMRI responses on rev−1, rev, rev+1, and rev+2 trials and tested for
differences on rev+1 trials between cTBS and sham sessions. As pre-
dicted by the model with different learning rates, we found that fMRI
responses to outcomes after the reversalwere larger after cTBS (paired
t test, t(30) = 1.916, p =0.032, one-sided), whereas they did not differ
significantly on the reversal trial (paired t test, t(30) = 0.049, p =0.519,
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one-sided). Importantly, the difference between responses on rev and
rev+1 trials was significantly smaller in the cTBS compared to the sham
session (paired t test, t(30) = 1.846, p =0.037, one-sided, Fig. 5c),
indicating that iPE responses in the cTBS sessionwere slower to return
to baseline after reversals. This result was further supported by linear
mixed effect models that accounted for the effects of subjects and
session orders, such that adding TMS (cTBS vs sham) as a predictor
significantly improved the model fit (p = 0.013). In contrast, no sig-
nificant differences between cTBS and sham sessions were found on
the rev−1 (paired t test, t(30) = 0.255, p = 0.40, one-sided) or rev+2 trials
(paired t test, t(30) = 0.236, p =0.59, one-sided). Moreover, there was
no significant correlation between the behavioral and neural effect of
cTBS in the midbrain (r = 0.154, p = 0.41).

We conducted similar analyses in the cortical areas that were
directly stimulated or indirectly targeted by our TMS protocol (LPFC
and OFC, respectively). In the LPFC, decreases in fMRI responses from
rev to rev+1 trials were significantly smaller in cTBS compared to sham
(paired t test, t(30) = 2.623, p =0.0068, one-sided, Supplementary
Fig 5c) and the fit of a linear mixed effects model was improved by
including TMS as a factor (p = 4.6e–4). However, there was no sig-
nificant differenceon the rev+1 trial (t(30) = 1.536, p = 0.067, one-sided)

or the rev trial (t(30) = 0.987, p = 0.17, one-sided). Interestingly, the
effects of cTBS on changes in the midbrain and the LPFC were sig-
nificantly correlated (r = 0.547, p =0.0015, Supplementary Fig 5b),
suggesting that cTBS affected iPE responses similarly in both regions.
In the OFC, a similar effect was only significant in the left hemisphere
(t(30) = 2.48, p =0.0095, one-sided, Supplementary Fig 5d).

Overall, these findings show that cTBS modulated neural
responses to identity prediction errors in the midbrain. Specifically,
TMS targeting the lateral OFC caused fMRI responses to return to
baselinemore slowly after identity reversals. This is consistent with the
idea that iPEs in the midbrain depend on activity in the lateral OFC
network.

cTBS disrupts reward identity expectations in the lateral OFC
A fundamental assumption of our experiment and model was that
OFC-targeted cTBS would disrupt reward identity expectations in the
lateralOFC. Todirectly test this possibility,we conducted amulti-voxel
pattern similarity analysis on cue-evoked fMRI responses (Fig. 6a). We
defined neural representations of identity expectations as the differ-
ence in correlation (ΔS) between cue-evoked activity patterns from
trials when the same (Ssame) versus different (Sdifferent) reward identify
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was associated with a given cue. Specifically, for the cue-evoked
activity pattern from each rev trial, we computed the correlation with
the activity pattern from the preceding rev−1 trial (Ssame) and sub-
tracted the correlation with the activity pattern from the following
rev+1 trial (Sdifferent). This way, the trial prior to reversals serves as a
baseline tomeasure identity expectations, analogous to using the pre-
reversal trials as a baseline tomeasure behavioral adjustment frompre
to post-reversals. Applying the sameapproach to identity expectations
strengths from our model (Fig. 6b) illustrates that ΔS increases with
higher learning rates, with Ssame consistently surpassing Sdifferent, sug-
gesting that cTBS should reduce ΔS.

To define an unbiased ROI for comparing identity expectations
between cTBS and sham, we performed a searchlight analysis to
identify brain regions that represented reward identity expectations
(positive values of ΔS) using data from both the sham and cTBS ses-
sion. Given our assumption that identity expectations would be dis-
rupted by cTBS in half of the data, we used a lenient threshold
(p < 0.005, uncorrected) for this analysis. Within the lateral OFC
(Fig. 6c), we found significant clusters in both the left ([–26, 48, –18],
t(30) = 3.73; [–24, 30, –14], t(30) = 3.18) and right hemisphere ([16, 40,
–18], t(30) = 3.34; [14, 58, –16], t(30) = 3.41), but only the clusters in the
left hemisphere overlapped with the OFC seed.

To examine whether cTBS disrupted reward identity expecta-
tions, we next analyzed activity patterns in lateral OFC clusters iden-
tified above that overlapped with the targeted OFC seed regions.
Representations of reward identity expectationswere significant in the
sham (V = 442, p = 4.49e–5, one-sided) but not the cTBS session
(V = 328, p =0.12, one-sided). Importantly, neural representations of
identity expectations differed significantly between the sham and
cTBS session (V = 343, p = 0.032, one-sided, Fig. 6d). However, the
cTBS effect on identity expectation in the lateral OFC was not sig-
nificantly correlated with the behavioral effect of cTBS
(r = –0.105, p =0.58).

Discussion
Workacross species has shown thatwhereas the lateralOFC represents
expectations about the identity of future rewards2,3,19,21–23, activity in
the dopaminergic midbrain responds to violations in such
expectations10,11,13,14. Here we tested the causal contribution of the lat-
eral OFC to neural signaling of iPEs, using a network-targeted cTBS
approach to perturb activity in the lateral OFC network26,32. Verifying
this targeted approach, cTBS decreased the global connectedness of
the lateral OFC in the first run, indicating that TMS transiently altered
neural processing in the lateral OFC. Paralleling these effects in the
OFC, cTBS impaired behavioral outcome predictions in the first run of
the trans-reinforcer reversal learning task, while altering iPE responses
in the midbrain and disrupting neural representations of expected
reward identity in the lateral OFC.

Associations between sensory cues and the identity of future
rewards are key components of cognitive maps that can be used for
model-based inference and learning1,12,38. By modulating activity in the
OFC andmeasuring fMRI responses in the midbrain, our study reveals
how the lateral OFC network and midbrain synergistically contribute
to the learning and updating of such maps. Our findings suggest a
neurobiological model of this learning process in which outcome-
specific expectations in the lateral OFC2–4,10,19 contribute to the com-
putation of sensory prediction errors, which are signaled by the
dopaminergic midbrain3,39 and in turn update outcome-specific
expectations in the lateral OFC.

This model is consistent with previous work suggesting that
interactions between theOFC andmidbrain support reward learning40.
For instance, OFC lesions in rats alter value-related error signals in the
ventral tegmental area (VTA)39,41, and we have previously shown that
iPE responses in the humanmidbrain correlate with changes in neural
representations of expected reward identity in the lateral OFC10. The

current study extends these findings by demonstrating a causal link
between lateral OFC representations and iPE signals in the midbrain.

Our results leave open the question whether iPEs are computed
within the midbrain or in upstream regions. To compute prediction
errors, an area needs information about what is expected and what is
received. Dopamine neurons in the VTA have been proposed as a
candidate for computing reward prediction errors42, and the same
inputs and mechanisms would put dopamine neurons in a good
position to compute iPEs. For example, previous studies show that the
lateral OFC provides excitatory inputs to GABA-ergic neurons in the
VTA43, which, in turn, inhibit VTA dopamine neurons44. Furthermore,
dopamine neurons receive direct excitatory input about received
rewards from sensory cortex and the lateral hypothalamus45,46. While
these pathways are typically hypothesized to carry information about
value, the upstream regions are known to also encode sensory features
of outcomes2,3,10,19–24, which could be used to signal iPEs. Our results
showing that modulating activity in lateral OFC changes iPE responses
in the midbrain are compatible with the idea that information about
expected reward identity from the lateral OFC converges on dopamine
neurons with information about received reward to compute identity
prediction errors. However, we cannot rule out the possibility that
other, additional regions are involved in the computation of iPEs.

In addition to the midbrain, we found identity prediction error
responses in other areas, including the striatum, mPFC, thalamus,
insula, and lateral OFC. Responses to identity errors in the lateral OFC
are consistentwithprevioushuman fMRI studies10,11,23 but contrastwith
what has been observed using electrophysiological recordings in
rats47. This discrepancy could reflect differences between species or
training requirements but seems most likely to be due to the different
neural recoding methods. Specifically, single-unit recording approa-
ches measure spiking activity and are biased to sample from large
pyramidal neurons, whereas BOLD responses are more closely related
to local field potentials (reflecting presynaptic activity) thanmulti-unit
responses48. This suggests that fMRI responses to iPEs in the lateral
OFC could reflect the influence of input from dopaminergic neurons
on activity in neural populations that are poorly sampled by unit
recording approaches (e.g., local interneurons) or on subthreshold
events that are not visible in spiking activity.

In line with previous suggestions that OFC represents the identity
of future rewards3,19,21,33 and other task states24,49–51, our multivoxel
pattern similarity analysis revealed representations of expected
reward identity in the lateral OFC. These representations were dis-
rupted by cTBS, showing that our TMS approach not only modulated
the connectivity in the targeted OFC area but also diminished the
strength of neural representations in this region.We speculate that the
disruption of these reward identity expectations caused the change in
identity PEs observed in the midbrain.

We modeled the effects of disrupted OFC function on signaling
reward identity expectations as a reduction in learning rates. Both the
behavioral and neural effects of cTBS were highly consistent with this
model. Importantly, however, we do not suggest that the function of
the OFC is to regulate learning rates, but that disrupting OFC function
has system-level effects that can be convenientlymodeled by reducing
learning rates.

The network-targeted cTBS protocol used here differed from our
previous studies26,32 in two ways. First, we used a placebo coil for the
sham session instead of lowering stimulation intensity. Second, and
more importantly, we stimulated both hemispheres insteadof only the
right side. The current findings parallel our earlier observations26,
showing that cTBS decreases global connectedness in the lateral OFC,
albeit on both sides, as intended. In addition, the current results also
provide important information on the duration of these effects,
revealing that this protocol disrupts OFC connectivity for approxi-
mately 23min (elapsed time from the end of TMS to the end of the first
run: 22.97 ± 1.97min). However, in contrast to our previous study26, we
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also observed an effect on the directly stimulated area in LPFC. This
highlights the need to further investigate the mechanisms of network-
targeted TMS, including its effects on both the indirectly targeted and
directly stimulated areas52.

Taken together, our findings support the idea that representa-
tions of expected outcome identity in the lateral OFC contribute to
iPEs responses in the midbrain by providing the identity predictions
necessary for computing the error signal. Thus, our results support a
systems-level model of identity learning in which midbrain iPEs are
generated by comparing incoming sensory information with outcome
identity expectations stored in the OFC.

Methods
Subjects
Forty-two healthy right-handed human subjects with no history of
psychiatric or neurological disease gave informed written consent to
participate in this study. Thirty-five completed all sessions. Of these,
data from four subjects were excluded fromanalysis: twobecause they
did not tolerate cTBS at 80% rMT such that intensity was adjusted to
50% rMT, and two due to poor odor identification performance (less
than 80% correct on average). All results reported in this manuscript
are based on the remaining 31 subjects (11 male, ages 19–42, mean =
26.39, SD = 6.04). The experimental protocol was approved by the
Northwestern University Institutional Review Board and registered
(NCT04926961).

Study design
The study consisted of four separate sessions (Fig. 1d), described in
detail below. Day 2 was scheduled on average 4.52 d (SD = 4.39 d) after
Day 1 (Day 1 and Day 2 sessions occurred on the same day for six
subjects for ease of scheduling). The average time between Day 2 and
Day 3 was 9.23 d (SD = 8.24 d). Day 3 and Day 3 were the main study
days and were scheduled, on average, 8.29 d (SD = 2.71 d) days apart.
On these days, subjects received either sham or active cTBS, with the
order of sham and cTBS counterbalanced across subjects and sex.
17 subjects (5 males, 12 females) out of 31 received sham on Day 3. For
all sessions, subjects were instructed to arrive in a hungry state, having
fasted for at least four hours prior to testing. Subjects were compen-
sated with $20 per hour of behavioral testing, $30 per hour of TMS
procedure, and $40 per hour of fMRI scanning.

Day 1: screening session
After informed consent and screening for eligibility, subjects rated the
pleasantness of ten food odors (Fig. 1d). Food odors were provided by
International Flavors and Fragrances (New York, NY), and included
four savory food odors (pot roast, potato chip, sauteed onion, and
barbecue), three sweet food odors (caramel, chocolate, and ginger-
bread), and three fruity foododors (strawberry, peach, andpineapple).

On each trial, subjects smelled one food odor for two seconds and
then rated how much they liked the odor on a scale from “Most Dis-
liked Sensation Imaginable” to “Most Liked Sensation Imaginable.” All
ratings were made on visual analog scales through a scroll wheel and
keyboard button press. Each food odor was presented three times in a
pseudo-randomized order and ratings were averaged per odor. Based
on these ratings, we selected three odors (one from each of the three
categories) that were rated as pleasant (above neutral) and most clo-
sely matched. These three odors were used as rewards for the trans-
reinforcer reversal learning task on Day 3 and Day 4. Subjects were
excluded from further participation if no such three odorswere found.
Subjects then rated the intensity andpleasantnessof the three selected
odors. The scale of the intensity rating was from “Undetectable” to
“Strongest Imaginable.” Subjects were also tested on their ability to
discriminate between each pair of odors and rated the similarity
between two odors to make sure that they were able to distinguish
between the odors. Supplementary Fig 1 displays data on how subjects

rated the three selected odors in terms of their pleasantness, intensity,
and similarity, along with their ability to discriminate between
different odors.

We used a custom-built computer-controlled olfactometer to
deliver food odors with precise timing directly to nasal masks worn by
subjects. This olfactometer directed medical-grade air through the
headspace of amber bottles containing liquid solutions of food odors,
maintaining a constant flow rate of 3.2 L/min. Using two independent
mass flow controllers (Alicat, Tucson, AZ), the olfactometer enabled
the dilution of odorized air with odorless air. Throughout the experi-
ment, a constant stream of odorless air was delivered to subjects’
noses. Odorized air was mixed into this airstream at specific time
points, while ensuring no impact on the overall flow rate and pre-
venting any alteration in somatosensory stimulation.

Day 2: MRI and TMS resting motor threshold session
We acquired a T1-weighted structural MRI scan to assist TMS neuro-
navigation and an 8.5min resting-state fMRI scan (250 volumes, TR =
2 s) to individually define OFC-targeted cTBS coordinates (see below).
We then measured rMT by administering single TMS pulses to the
hand area of the left motor cortex. rMT was defined as the lowest
percentage of stimulator output required to evoke 5 visible thumb
movements from 10 pulses. For 3 subjects, rMT was determined using
TMS pulses over the right motor cortex, due to difficulties evoking
isolated finger movements on the left.

Days 3 and 4: OFC-targeted cTBS sessions
Our TMS protocol was modified from our previously established OFC
network-targeted protocol26,32. The key difference is that stimulation
was applied to both hemispheres instead of just the right. TMS was
applied at an intensity of 80% rMT using a cTBS protocol consisting of
three-pulse 50Hz bursts delivered every 200ms (5Hz) for a total of
600 pulses (~40 s)53. TMS pulses were delivered using a MagPro
X100 stimulator with a MagPro Cool-B65 A/P butterfly coil (MagVen-
ture). Previous work has demonstrated that this cTBS protocol at 80%
MT has inhibitory aftereffects which persist for 50–60min over pri-
mary motor cortex. We administered 600 pulses to both left and right
hemisphere54, alternating the order across subjects, with 16/31 starting
on the left. The order was consistent per subject for both sessions.
Immediately after the final pulse of cTBS on the second side, the time
was recorded, and subjects moved across the hall into the MRI to
perform three runs of the trans-reinforcer reversal learning task during
fMRI data acquisition (see below). The first run of the task started
8.77min (SD = 1.97min) after the end of TMS. No significant difference
in this duration was observed between cTBS and sham sessions
(t(30) = 1.63, p = 0.11, paired t test).

Similar to our previous work26,32, the target coordinates were
defined as the locations in the left and right LPFC with the strongest
functional connectivity with the left and right OFC seed regions (see
details below). The figure-of-eight coil was tilted so that its long axis
was approximately perpendicular to the long axis of the middle
frontal gyrus. Whereas cTBS was delivered by positioning the active
side of the A/P coil to modulate neural tissue, sham cTBS was
applied with the placebo side of the A/P coil, producing similar
somatosensory and auditory experiences for the subject without
modulating neural tissue. Electrodes were placed on subjects’
forehead and direct current stimulation was applied in synchrony
with the TMS pulses to mask TMS effects and enhance the similarity
between cTBS and sham sessions.

Subjects were informed about potential muscle twitches in the
face, eyes, and jaw during the simulation. To test for tolerability, two
single pulses were applied over the stimulation coordinates before
administering cTBS. Two subjects reported discomfort with the
intensity of 80% rMT, so the intensity was reduced to 50% rMT and
their data were excluded from analysis.
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We assessed subjects’ discomfort and perceived stimulation
intensity after each of the two TMS sessions. The cTBS session was
generally perceived as more uncomfortable and intense compared to
the sham session. On a scale ranging from 0 (not uncomfortable at all)
to 10 (extremely uncomfortable), mean discomfort ratings were 2.69
and 5.65 for the sham and cTBS session, respectively (t(30) = –7.92,
p = 7.72e–09). Similarly, on a scale ranging from0 (not strong at all) to
10 (extremely strong),mean intensity ratingswere 3.44 and6.71 for the
sham and cTBS session, respectively (t(30) = –9.29, p = 2.45e–10).
During debriefing at the end of the study, 25 out of the 31 subjects
reported having noticed differences between the two TMS sessions.
Also, when asked, 18 out of 29 subjects were able to correctly name on
which session they received sham or cTBS. However, 24 subjects
reported that they had not considered the real or sham nature of our
TMS procedure before the debriefing interview. We did not collect
these data from two subjects. Overall, it appears that despite our
attempts to obscure the somatosensory differences between the sham
and cTBS sessions, differences between cTBS and shamTMS could not
be fully concealed. Nevertheless, it is worth noting that most subjects
did not consider this question during the experiment. For each of the
analyses presented in the manuscript, we considered discomfort and
perceived TMS intensity as potential confounding variables and per-
formed control analyses to test whether they could account for the
results (see Supplementary Information). All control analyses show
that the TMS effects reported here cannot be explained by subjects’
physical discomfort or perceived TMS intensity.

Coordinate selection for lateral OFC network-targeted TMS
The stimulation coordinates on the bilateral LPFC were individually
determined based on the resting-state fMRI connectivity52,55,56 from
Day 2, using central-lateral OFC seed regions in each hemisphere. The
central-lateral OFC was selected based on previous research linking
activity in this region to outcome-specific expectations19,22,33 and
strong functional connectivity of this region with the LPFC in a large
resting-state dataset (N = 1000, neurosynth.org). In other words, we
focused on an area of lateral OFC that is relevant to our hypotheses
regarding the cognitive function and that is a “good” indirect target in
the sense of having robust connectivity to stimulation-accessible
locations within LPFC. Specifically, we used coordinates in the central-
lateral OFC (right: x = 28, y = 38, z = –16; left: x = –28, y = 38, z = –16),
and in the LPFC (right: x = 48, y = 38, z = 20; left: x = −48, y = 38, z = 20).
We first generated spherical masks of 8-mm radius around these four
coordinates in MNI space, each inclusively masked by the gray matter
tissue probability map provided by SPM12 (thresholded at >0.1). We
then transformed these fourmasks to each subject’s native space using
the inverse deformation field generated during the normalization of
the T1 anatomical image (see below). Resting-state fMRI data were
realigned, resliced, and smoothed with a 6mm Gaussian kernel. We
then specified two resting-state fMRI functional connectivity analyses
(one per hemisphere) for each subject, using individual OFC masks as
the seed region and motion parameters from the realignment as
regressors of no interest. Finally, stimulation coordinates were defined
as the voxels within the left and right LPFC masks with the strongest
functional connectivity to the left and right OFC seed regions,
respectively. We used infrared MRI-guided stereotactic neuronaviga-
tion (LOCALITE) to apply stimulation to these two LPFC coordinates.

Trans-reinforcer reversal learning task
The trans-reinforcer reversal learning task used on Day 3/4 (Fig. 1a)
required subjects to learn the association between visual cues and the
food odor rewards that were individually chosen based on pleasant-
ness ratings from Day 1. Two abstract visual symbols were randomly
chosen for each subject and used throughout the experiment (only
one is shown in Fig. 1a). Each trial started with one of the two visual
cues displayed on the screen for 1 s, followed by the presentation of

three abbreviated odor names. The subject was asked to indicate
which odor they were expecting to receive, by pressing one of three
buttons corresponding to the position of the three odor names on the
screen (the order of the odor names on the screen was randomized
across trials). If the subject responded within 3 s, the odor names
turned gray, the cuedisappearedwith afixation cross remainingon the
screen for the following 4 s. Then, the odor associatedwith the current
cue was delivered, signaled by the central fixation cross turning blue
for 2 s cuing the subject to sniff. If no response was made within 3 s,
“TOO SLOW” appeared on the screen for the following 4 s, followed by
the delivery of the odor. The odor delivery was followed by a 2–4 s
inter-trial interval pseudo-randomly sampled from a uniform dis-
tribution. The task was presented and behavioral data were acquired
using the Cogent 2000 toolbox (v1.32) in Matlab (R2016b).

In each run, the association between cues and odors reversed six
times per cue, independently for each cue, totaling 12 reversals
(Fig. 1b). The number of trials between each reversal varied from three
to five, preventing subjects from knowing when the next reversal
would occur. This also allowed for each trial to be classified as reversal
trial (rev), one or two trials after a reversal (rev+1, rev+2), or one trial
before a reversal (rev−1). The trials from the two cues were randomly
interleaved, resulting in64 trials per run and increasing the difficulty of
predicting when the next reversal would occur.

After each run of the trans-reinforcer reversal learning task, sub-
jects completed an odor identification task to control for possible
effects of TMS on olfactory identification performance. On each trial,
one of the three odors was delivered, and subjects had to select the
correct odor name via a corresponding button press. Each odor was
presented twice and performance was averaged across all trials. Data
from two subjects was excluded from further analysis due to poor
overall performance on the identification task (less than 80% correct).
Paired t tests were conducted to compare subjects’ odor identification
performance after cTBS and sham TMS.

Behavioral data analysis
In analyzing behavioral data from the trans-reinforcer reversal learning
task, we removed all trials in which subjects did not respond within 3 s
and trials with response times outside the range of ±3 standard
deviation from themean response time for each subject. This resulted
in the exclusion of 2.48% of trials from the behavioral analysis. We
analyzed the accuracy of subjects’ outcome predictions before, dur-
ing, and after each reversal trial. In addition to comparingperformance
on cTBS and sham sessions across all three runs, we specifically
focused on the first run to capture any transient effects on behavioral
performance. The analysis and visualization of behavioral data (Fig. 4,
along with ROI-based fMRI data in Fig. 2c, Fig. 5b, c, Fig. 6d) were
conducted inR (4.1.2)/ RStudio (2022.07.1) with packages dplyr (1.0.8),
plyr (1.8.6), and ggplot2 (3.4.1).

Identity learning model
This identity-based learningmodel10,11 is grounded in the delta learning
rule and represents reward identity receivedon trial t as a vector~It . The
model updates the identity expectation strength ~Vt based on the error
vector ~δt , which reflects the prediction error for each reward identity,
such that

~δt =~It � ~Vt , ð1Þ

Vt + 1
��!

= Vt
�!

+αδt

! ð2Þ

The learning rate α affects the rate of updating the expectation
strength vectors across trials, whose effect can be observed in Fig. 3a.
In the simulation, the accuracy of outcome predictions (Fig. 3d) was
calculated by transforming the identity expectation strengths into
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probabilities using a softmax function

pit = e
θVit=

X
z

eθVzt ð3Þ

Where θ is the inverse temperature parameter that controls the degree
of randomness in the choice. We used a fixed θ = 5 in the model
simulation in Fig. 3b. Vit denotes the expectation strength on the odor
identity i at trial t. A scalar term etof identity PEswasdefinedas the sum
of the absolute values of the elements of the error vector ~δt , such that

et =
X
i

��δit

��: ð4Þ

Hence et quantifies the overall discrepancy between the actual
outcomeand the representationweights across three reward identities
and serves as an important bridge between the identity learningmodel
and the fMRI responses to iPEs. In Fig. 3a, for illustrative purposes, the
magnitude of et was normalized within each condition by

f xð Þ= x �minðxÞ
max xð Þ �minðxÞ , ð5Þ

such that the lowest and highest et values are set to 0 and 1,
respectively.

Fitting learning models to behavioral accuracy
We fitted the identity learning model to the behavioral data across all
trials from the first run, using hierarchical Bayesian parameter esti-
mation with a hierarchical structure on the learning rate parameter,
such that

αj,c ∼ Beta αμc
κ, 1� αμc

� �
κ

� �
, ð6Þ

whereαj,cdenotes the learning rate for session c (c = cTBSor sham)and
subject j. The beta function Betaðμν,ð1� μÞvÞ is parameterized using
the “mean” (μ) and “sample size” (ν) parameters, so that αμc

denotes
the hyper learning rate in session c. The prior distributions for αμc

and
κ are specified by

αμc
∼ Beta 8, 2ð Þ, ð7Þ

κ ∼ Gamma 1, 0:1ð Þ, ð8Þ

where Gamma(r,λ) denotes a gamma distribution with the shape
parameter r and rate parameter λ, and Beta(a, b) denotes a beta dis-
tribution with the two shape parameters a and b. We used an infor-
mative prior distribution of Beta(8, 2) to express our prior belief that
the learning rate distribution should be heavily skewed towards high
values near one, given that our task was simple. In addition, we spe-
cified a prior distribution of Gamma (5, 1) for the inverse temperature
parameter θ. To help assess the effect of cTBS on the learning rate, we
created a baselinemodel with the identicalmodel structure and priors
except for the absence of session-wise learning rate parameters αμc

and αj,c.
We estimated the hierarchical Bayesian model in JAGS57 using the

R2jags package58 in R.We sampled from the posterior distributions for
5000 iterations with 2000 burn-in and three chains, resulting in
9000 samples per model. We ensured convergence by examining the
R̂ under 1.159 for each model and each parameter. The maximum a
posterior (MAP) estimates of the posterior sampleswere calculated for
all subject-level parameters and hyperparameters. We compared
hierarchical models using the deviance information criterion (DIC)
from the R2jags output, with lower DIC values indicating better model

performance35. To get an absolute sense of how well the identity
learning model captured subjects’ outcome prediction accuracy
across trials, we performed a posterior predictive check by simulating
the learning models 1000 times using the MAP estimates for each
subject and compared the model-simulated prediction accuracy with
observed data. We also correlated the difference of learning rates
between cTBS and sham sessions with the accuracy difference on trials
rev+1 across subjects.

Sniff recording and analysis
We measured subjects’ nasal airflow (i.e., sniffing) directly at the nose
through a nasal mask, using a respiratory flow head and a spirometer.
We recorded nasal airflow data using PowerLab equipment (ADIn-
struments, Dunedin, New Zealand) at a sampling rate of 1 kHz. Airflow
traces for each fMRI runwere preprocessed, including smoothing with
a 250ms moving window, down-sampling to 10Hz, high-pass filtering
(50 s cutoff) to eliminate slow signal drifts, normalization by sub-
tracting the mean and dividing by the standard deviation across the
run trace, and a final down-sampling to 0.5Hz to align with the TR.We
computed sniff volume as the integral of the nasal airflow. Nasal air-
flow, sniff volume, and their squared values were included as nuisance
regressors in all fMRI analyses.

MRI data acquisition
MRI data were acquired on a Siemens 3 T PRISMA system equipped
with a 64-channel head-neck coil. For resting-state fMRI on Day 2, 250
echo-planar imaging (EPI) volumes were acquired with a parallel ima-
ging sequencewith the following parameters: repetition time, 2 s; echo
time, 22ms; flip angle, 80°; multi-band acceleration factor, 2; slice
thickness, 2mm, no gap; number of slices, 58; interleaved slice
acquisition order; matrix size, 104 × 96 voxels; field of view,
208mm× 192mm. The functional scanning window was tilted ~30°
from axial tominimize susceptibility artifacts in the OFC60. In addition,
a 1mm isotropic T1-weighted structural scan was acquired for neuro-
navigation during TMS and to aid spatial normalization.

On Day 3 and Day 4, subjects performed three runs of the trans-
reinforcer reversal learning task while fMRI data were acquired with
the same parameters as the resting-state scan. Each run lasted 14.4min
and consisted of 430 EPI volumes, covering all but the dorsal portion
of the parietal lobes. To aid coregistration between the functional
scans and the anatomical image, ten whole-brain EPI volumes were
acquired for each subject on Day 2, Day 3, and Day 4, using the same
scanning parameters as described above except covering the whole
brain (95 slices) with a repetition time of 3.15 s.

Imaging data preprocessing
We preprocessed the imaging data using the Statistical Parametric
Mapping (SPM12) software (www.fil.ion.ucl.ac.uk/spm/) in Matlab
(R2020b, Mathworks Inc). For each subject, we corrected for head
movement by realigning all functional EPIs from all runs and ses-
sions to the first acquired image. We also realigned and averaged
the ten whole-brain EPIs for each subject, and coregistered the
mean whole-brain EPI to the T1 anatomical image. We then cor-
egisterd the mean functional EPI to the mean whole-brain EPI and
applied the transformation parameters to all functional EPIs. For
spatial normalization, we normalized the T1 anatomical image from
each subject to the Montreal Neurological Institute (MNI) space
using the six-tissue probability map provided by SPM12, and then
applied the resulting deformation fields to the functional EPIs to
transform them into MNI space. Finally, we smoothed the normal-
ized functional EPIs with a 6mm full-width half maximum Gaussian
kernel in all three spatial dimensions. For multivariate imaging data
analysis, we instead applied a Gaussian kernel with 2mm size to the
resliced, coregistered, and normalized images for maintaining suf-
ficient spatial information.
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Global connectedness analysis
To validate the network-targeted TMS protocol, we computed voxel-
wise maps of global connectedness26. This measure assesses the
average connectivity between the fMRI activity in a given voxel and all
other gray matter voxels. Unlike26, who used resting-state fMRI, we
utilized the task-based fMRI data, because we did not collect resting-
state fMRI scans after TMS. To increase computational efficiency, we
resampled functional EPIs to 3mm isotropic resolution and restricted
the analysis to graymatter voxels (tissue probabilitymap, thresholded
at > 0.1).

Prior to computing global connectedness, we regressed out nui-
sance regressors from the activity time course of each gray matter
voxel. These regressors included: the mean global signal in all gray
matter voxels, all white matter voxels, all cerebrospinal fluid (CSF)
voxels, linear drift, and a constant baseline, as well as the six volume-
wise realignment parameters (three translations, three rotations)
estimated during motion correction; the derivative, square, and the
square of the derivative of each realignment regressor; the absolute
signal difference between even and odd slices, and the signal variance
across slices in each functional volume (to account for fMRI signal
fluctuation due to within-scan head motion); the squares, derivatives,
and squaredderivatives of these twowithin-volumemeasures; the four
sniff trace regressors (see sniff recording and analysis); and addi-
tional dummy regressors as needed to account for individual volumes
with particularly strong head motion. White matter and CSF masks
were defined using their respective tissue probability maps (thre-
sholded at >0.9).

We regressed out all above regressors through a linear filtering
process. We denote the number of volumes involved in the analysis as
nvol, the number of graymatter voxels in 3mm space as nvox, and the
number of above regressors as nreg. We created a filter matrix F
containing the above regressors of dimension (nvol*nreg), where all
regressors except for the constant were z-scored. We also organized
fMRI responses of each gray matter voxel in a matrix B of dimension
(nvol*nvox). Then the weight W can be obtained from the least square
solution of a linear regression that predicts B using F as

W = F 0F
� ��1 F 0B

� � ð9Þ

where (.)’ denotes transpose of amatrix and (.)−1 denotes the inverse of
a matrix. Global connectedness was calculated based on the residual
matrix R after removing the variance explained by the filter matrix F
from the fMRI responses, where

R =B� FW ð10Þ

For each subject and each run, we calculated the Pearson corre-
lation between each gray matter voxel and every other gray matter
voxel, and then averaged the absolute Fisher’s Z-transformed corre-
lations for each voxel to obtain the voxel-wise global connectedness
measure.

We obtained a whole-brain map of the effect of cTBS on global
connectedness by comparing the global connectedness values from
the cTBS and sham session, per run. The resulting difference maps
were smoothed with a 6mm FWHM kernel. To identify early effects of
OFC network-targeted cTBS comparable to our previous study using
resting-state fMRI26, we focused on data from the first run. Voxels in
the OFC and LPFC with reduced global connectedness after cTBS
compared to sham were identified using one-sample t tests, FWE-SVC
corrected for the OFC and LPFC ROIs that were used in the con-
nectivity analysis to determine TMS coordinates. Visualization of
group-level effects of TMS on global connectedness (Fig. 2a, b), iPE
(Fig. 5a), and identity expectation (Fig. 6c) are conducted using
MRIcroGL(version 12.6).

To investigate how the effects of cTBS on global connectedness
change over time, we conducted ROI analyses in the OFC and LPFC
(same ones as used for FWE-SVC above), averaging across both
hemispheres. We divided each run into two parts and calculated the
global connectedness for each of the six time bins. We performed
Wilcoxon signed-rank tests for each ROI in each time bin to determine
whether cTBS decreased global connectedness relative to sham61.
Additionally, we ran linearmixed effect regressionmodels to analyze if
the global connectedness after sham or cTBS changed over time. We
assessed the difference in the linear trend of time between cTBS and
sham by testing whether including interaction effects of time and
sessionbeyond themain effects improved themodel fits. An improved
model fit would suggest a significant interaction effect and, therefore,
a difference in the linear trend between cTBS and sham.

Because the OFC and LPFC are strongly functionally connected, it
is possible that changes in OFC connectedness were entirely driven by
effects of TMS on the LPFC rather than the OFC. To rule out this
possibility, we conducted an additional analysis inwhichwe eliminated
any contribution from the LPFC on global connectedness estimates in
theOFC by excluding voxelswithin the LPFC ROI from thewhole-brain
gray matter voxels. This analysis yielded nearly identical results to the
original analysis. Thus, the global connectedness effects observed in
the OFC were not substantially driven by effects of TMS on the LPFC,
suggesting that TMS altered the connectivity of the OFC beyond its
connection to the LPFC.

Univariate test for iPE fMRI signals
To examine neural responses to iPEs and how they weremodulated by
cTBS, we constructed subject-level event-related GLMs using regres-
sors convolved with a canonical hemodynamic response function
(HRF), and time-locked to the onset of the cue presentation and odor
delivery. Wemodeled four different odor delivery conditions: reversal
trials (rev), one trial before (rev−1), one trial after (rev+1), and two trials
after a reversal (rev+2). Only trials with valid responses were included:
for non-reversal trials, correct outcome predictions were considered
valid; for reversal trials, trials were considered valid if subjects pre-
dicted the odors received on trial rev−1.

To increase the statistical efficacy, the odor delivery regressors
from all three runs from a given session were concatenated. The cue-
locked regressors from all six runs were combined into a single
regressor. As a result, each subject-level GLM contained nine task-
related regressors (sham rev-1, sham rev, sham rev+1, sham rev+2, cTBS
rev-1, cTBS rev, cTBS rev+1, cTBS rev+2, all cues), along with nuisance
regressors.

Nuisance regressors were the same as those used in the Global
connectedness analysis. These nuisance regressors were con-
catenated across six runs, and six run-wise constant terms were added
to account for baselinedifferences between runs.Wecomputed single-
subject contrast images, comparing fMRI responses associated with
the onset of odor delivery on reversal trials with responses on non-
reversal trials across both sessions (rev vs. [rev−1, rev+1, rev+2]).

For voxel-wise group analysis, we used an explicitmask consisting
of voxels in the graymatter and themidbrain. Graymatter voxels were
identified using the tissue probability map provided by SPM12 (thre-
sholded at >0.1, excluding the cerebellum), and midbrain voxels were
identified using a probabilistic atlas (thresholded at > 0.5)62. Sig-
nificance threshold for voxel-wise t testswas set atp <0.05, family-wise
error (FWE) corrected formultiple comparisons across thewhole brain
at the voxel level. For the OFC, FWE small volume correction (FWE-
SVC) was performed in the OFC seed ROIs used to determine OFC
network-targeted TMS coordinates (Fig. 1c).

We created three functional ROIs (midbrain, LPFC, and OFC)
based on the contrast of reversal > non-reversal from both cTBS and
sham sessions. For the LPFC and midbrain (Supplementary Fig 5a), we
identified clusters of voxels around the peak activations (leftmidbrain:
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[−10, −24, −10]; right midbrain: [10, −14, −10]; left LPFC: [−40, 6, 40];
right LPFC: [46, 22, 30]) that survived whole-brain correction at
pFWE = 0.05 with a voxel-extend threshold of 25. The functional mid-
brain ROI was further masked with the anatomical midbrain mask62

thresholded at 0.5 to exclude adjacent voxels not part of themidbrain.
For the OFC, the functional ROI (Supplementary Fig 5a) included
voxels at p <0.001 (uncorrected) from clusters around peak voxels
that survived pFWE-SVC = 0.05 for the OFC (left OFC: −22, 30, −14]; right
OFC: [20, 42, −16]). One-sided paired t tests were conducted to
examine the difference in fMRI responses between cTBS and sham
sessions.

To account for the order of the two experimental sessions
(counter-balanced across subjects), we confirmed results in Fig. 5c
using linearmixed effect models. For this, we compared themodel fits
of two linear mixed effect models: a full model that included effects
from subjects, session orders, and TMS condition (cTBS vs sham), and
a reduced model without the effect of TMS condition. We also con-
ducted independent t tests (two-sided) exploring if the cTBS effect on
iPE signals was related to any across-subject factors such as subjects’
sex. We found that the average effect of cTBS on iPE responses was
smaller in females compared to males in the LPFC (t(14.33) = 2.86,
p =0.012, Supplementary Fig 5b), but not themidbrain (t(13.26) = 1.86,
p =0.086) or the left OFC (t(17.17) = 1.29, p = 0.21). Other across-
subject factors we tested (using two-sided independent t tests or
Pearson’s correlation tests) include TMS session order (cTBS or sham
first), TMS intensity, and age, but we found no significant effect on
those factors (all p >0.4).

Multivoxel pattern similarity analysis
To test for representations of expected reward identity, we conducted
a multivoxel pattern similarity analysis. In a first step, we estimated
single-trial beta values time-locked to the cue onsets using the “least
squares separate” approach63 that was designed to avoid the multi-
collinearity problem. For each trial, we specified a GLM with the
regressor of interest being the “cue” onset of the current trial, and
other regressors including the cue onsets of all other trials, “odor
outcome” onsets of the current trial, “odor outcome” onsets of all
other trials, and nuisance regressors (as above). We estimated the
GLMs on resliced, coregistered, and normalized functional EPIs,
smoothed with a 2mm FWHM Gaussian kernel.

We then computed the difference in correlations (ΔS) between
activity patterns from the rev and rev−1 trials (Ssame) and between
activity patterns from the rev and rev+1 trials (Sdifferent) as a neural
measure of identity expectations. Specifically, for each identity rever-
sal, we computed the Pearson’s correlation between the patterns of
cue-evoked single-trial beta estimates from the rev and rev−1 trials, and
between the cue-evoked patterns from the rev and rev+1 trials. The
correlation coefficients were Fisher’s z-transformed, subtracted
(corr(rev, rev−1) minus corr(rev, rev+1)), and averaged across reversals
per session to obtain reward identity expectations. In this analysis, we
included all trials from the experiment irrespective of subjects’ beha-
vioral response. The total number of reversals per session was 36 (i.e.,
6 reversals per cue x 2 cues x 3 runs).

We used a whole-brain searchlight approach64 with a 2 voxel
radius (i.e., 4mm) and mapped average ΔS onto the center voxel of
each searchlight, resulting in whole-brain map of ΔS for each session
and each subject. The resulting ΔS maps were smoothed with a 6mm
FWHM kernel before group-level analysis.

For voxel-wise group analysis, we conducted one-sample t tests
comparing the voxel-wise ΔS values (averaged across both sessions)
against zero. We used a lenient threshold of p <0.005, uncorrected
(voxel-extend threshold 25) for this test under the assumption that
identity expectations (ΔS)might havebeendisruptedby cTBS inhalf of
the runs.We used anexplicitmask containing voxels in the graymatter
and the midbrain (see Univariate test for iPE fMRI signals above).

We conducted ROI-based pattern similarity analyses by using
functional ROIs in the lateral OFC that overlapped with the targeted
OFC seed regions. Specifically, we conducted the same analysis
described above using activity patterns in clusters of voxels at
p <0.005 (uncorrected) around thepeakactivations (lateral OFC: [–26,
48,–18], [–24, 30,–14])with at least 25 voxels. For statistical testing, we
conductedWilcoxon signed rank tests. All testswereone-sided, testing
our hypothesis that cTBS would disrupt identity expectations.

We also conducted independent t tests (two-sided) and Pearson’s
correlations exploring if the cTBS effect on identity expectations were
related to any between-subject factors such as sex, TMS session order
(cTBS or sham first), TMS intensity, and age, but found no significant
effects (all p >0.1).

Regions of interest (ROIs)
This section includes a summary of the ROIs used in our study,
including their use in both the small volumecorrection (SVC) for voxel-
wise analysis and in ROI-based statistical testing.

ROIs for the lateral OFC and LPFC were defined based on 8mm
spheres around MNI coordinates (left lateral OFC: [–28, 38, –16]; right
lateral OFC: [28, 38, -16]; left LPFC: [-48, 38, 20]; right LPFC: [48, 38,
20]). We refer to these two ROIs as “Targeted OFC seed” and “LPFC
stimulation site” respectively. These ROIs were used in the functional
connectivity analysis to determine TMS stimulation coordinates
(Fig. 1c). They were also used for SVC of the global connectedness
voxel-wise analysis (Fig. 2a, b), for SVC of the identity expectation
analysis (Fig. 6), and for ROI-based global connectedness analysis
across runs and sessions (Fig. 2c).

For the iPE analyses, we defined ROIs in the midbrain, LPFC and
OFC as follows. For the LPFC andmidbrain (Supplementary Fig 5a), we
identified clusters of voxels around the peak activations (leftmidbrain:
[–10, –24, –10]; right midbrain: [10, −14, −10]; left LPFC: [−40, 6, 40];
right LPFC: [46, 22, 30]) that survived whole-brain correction at
pFWE = 0.05 with a voxel-extend threshold of 25. The functional mid-
brain ROI was further masked with an anatomical midbrain mask62

thresholded at 0.5 to exclude voxels that are not part of the midbrain.
For the OFC, the ROI (Supplementary Fig 5a) included voxels at
p <0.001 (uncorrected) from clusters around peak voxels that sur-
vived pFWE-SVC = 0.05 for the Targeted OFC seed region (left OFC: [−22,
30, −14]; right OFC: [20, 42, –16]).

For comparing reward identity expectations between cTBS and
sham sessions, we defined unbiased ROIs in the OFC based on a
searchlight analysis that combined data from both the sham and cTBS
session. Specifically, we used a lenient threshold p =0.005 to identity
clusters that contained reward identity expectations and defined the
ROI based on clusters in the lateral OFC that overlapped with the
Targeted OFC seed.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The behavioral and processed imaging data supporting the findings
presented here are available on GitHub (https://github.com/
QingfangLiu/OFC_midbrain_TMS). Source data are provided with this
paper. Statistical group-level maps are available on NeuroVault
(https://neurovault.org/collections/15898/). The probabilistic mid-
brain atlas is available from the authors of the original article (https://
www.adcocklab.org/neuroimaging-tools). Source data are provided
with this paper.

Code availability
Analysis code for reproducing the findings reported in thismanuscript
is available on GitHub (https://github.com/QingfangLiu/OFC_
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midbrain_TMS, https://doi.org/10.5281/zenodo.10537266) with rele-
vant instructions. Any additional information required to reproduce
the findings is available from the lead contact upon request.
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