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A compressive hyperspectral video imaging
system using a single-pixel detector

Yibo Xu1 , Liyang Lu2, Vishwanath Saragadam 3 & Kevin F. Kelly3

Capturing fine spatial, spectral, and temporal information of the scene is
highly desirable in many applications. However, recording data of such high
dimensionality requires significant transmission bandwidth. Current compu-
tational imaging methods can partially address this challenge but are still
limited in reducing input data throughput. In this paper, we report a video-rate
hyperspectral imager based on a single-pixel photodetectorwhich can achieve
high-throughput hyperspectral video recording at a low bandwidth. We
leverage the insight that 4-dimensional (4D) hyperspectral videos are con-
siderably more compressible than 2D grayscale images. We propose a joint
spatial-spectral capturing scheme encoding the scene into highly compressed
measurements and obtaining temporal correlation at the same time. Fur-
thermore, we propose a reconstruction method relying on a signal sparsity
model in 4D space and a deep learning reconstruction approach greatly
accelerating reconstruction. We demonstrate reconstruction of 128 × 128
hyperspectral imageswith 64 spectral bands atmore than 4 frames per second
offering a 900×data throughput compared to conventional imaging,whichwe
believe is a first-of-its kind of a single-pixel-based hyperspectral imager.

Hyperspectral video imaging captures 4-dimensional (4D) information
of the scene containing 2D spatial, 1D spectral, and 1D temporal
information represented by X ðx,y,λ,tÞ. High resolution hyperspectral
video imaging has become highly desirable in many applications for
studying dynamic optical phenomena with complicated spectral
information both in microscopic and macroscopic systems, such as
biological fluorescence imaging, remote sensing, surveillance, and
autonomous driving, etc. However, directly recording data of such
highdimensionality requires large storage and significant transmission
bandwidth. It may lead to significant power consumption, memory
footprint, and time costs, imposing extreme pressure on imaging
systems especially when storage and transmission of the data is cri-
tical, i.e., on satellites and rovers. On the other hand, it is well-known
that the contents in adjacent frames of a video are highly correlated,
and the image slices fromnearbywavelength bands are very similar. As
a result, 4D hyperspectral video data have higher inherent redundancy
and far more compressible than 2D images, offering possibility to be

sampled and reconstructed at very high compression ratio or very low
input data throughput.

Compressive sensing (CS)1–3 is an effective solution to deal with
the dilemma of limited bandwidth in hardware for high-throughput
data acquisition. CS is a mathematical framework for efficient signal
acquisition and robust recovery. Exploiting the inherent structure or
prior of signals, CS enables us to stably reconstruct a signal sampled
below the Nyquist sampling rate. CS allows for reducing the costs
associated with sampling, transmission bandwidth and storage, espe-
cially when handling high-dimensional signals. Among the numerous
applications inspired by CS, single-pixel imaging4 (SPI) is a computa-
tional imaging technique that acquires coded projections of a scene
using a photodetector without spatial resolution and computationally
reconstructs the scene from the coded compressed measurements. In
contrast to full-frame sensors having millions of pixel elements, the
single-pixel detector design allows for high signal-to-noise ratio (SNR)
and low-cost development of high-throughput cameras using exotic
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imaging modalities or beyond visible wavebands where conventional
pixelated detectors are either too expensive, cumbersome or
unavailable5. The SPI techniques have been demonstrated for a wide
variety of applications, including infrared imaging6,7, terahertz
imaging8, low light imaging4,9, hyperspectral imaging10–15, video
imaging16,17, and computer vision-related tasks18–21, etc.

Reconstructing the signal fromcompressedmeasurements is an ill-
posed problem in general, since the system of equations of measure-
ments is under-determined. To solve the CS reconstruction problem,
many optimization-based algorithms have been proposed22–28. Such
algorithms generally use signal sparsity as prior knowledge to regular-
ize the ill-posed inverse problem. The signal structure model or prior
used greatly affects the reconstruction quality. For CS video recon-
struction, the joint sparsity of signal in two spatial and the temporal
dimensions such as 3DTV algorithm has been demonstrated17,29. The
optimization-based approach enjoys the benefits of the flexibility of
handling images of different sizes, compression ratios (CRs), and var-
ious types of signal priors, etc. However, optimization algorithms suffer
from long computation time due to its iterative nature. Recently, deep
learning methods for CS reconstruction flourished and have shown the
potential to improve both the reconstruction quality and speed30–34.

Hyperspectral imaging aims to obtain the spectrum associated
with each pixel in the image of a scene in many narrow wavelength
ranges35. Conventional scanning-based hyperspectral imaging meth-
ods are greatly speed-limited36,37. Compressive spectral imaging
methods developed in recent years such as coded aperture snapshot
spectral imaging (CASSI)38, dual-coded compressive hyperspectral
imaging (DCSI)39, spatial-spectral encoded compressive hyperspectral
imaging (SSCSI)40, and various other spectral multiplexing
mechanisms32,41–43 perform spectralmultiplexing to reduce the 3Ddata
cube to the 2D array sensors. However, the compression in the mea-
surements only happens in the spectral dimension, leading to limited
compression ratio or limited capability in reducing input data
throughput. Also, the 2D array detector used can be prohibitively
expensive if not unavailable for wavelengths beyond the visible
wavebands. Yako et al.44 presented a video-rate snapshot hyperspec-
tral imager where a CMOS-compatible random array of Fabry-Pérot
filters is placed above a conventional 2D image sensor for pixel-wise
spectral encoding. Reconstruction algorithms based on CS theory are
used. Experiments demonstrated hyperspectral video reconstruction
of spatial resolution of 480 ×640 pixels with 20 spectral bands at 32
frames per second (fps). In the sampling process, however, the signal
encoding and compression happens only in the spectral dimension
and not in the spatial dimension. The compression ratio is 20:1, thus
having a 20x data throughput compared to conventional methods.
Saragadam et al.45 presented an adaptive hyperspectral imaging sys-
tem which optically implements the so-called Krylov subspace
method. Based on the low-rank assumption of the underlying image, it
directly captures the dominant singular vectors of the hyperspectral
image to compute its low-rank approximation. It allows hyperspectral
imaging with 560 ×550 spatial pixels and 256 bands over visible
wavebands. Besides being amulti-frame technique based on a 2Darray
sensor, the compression ratio in the experiments is less than 10:1.
Saragadam et al.46 introduced a video-rate hyperspectral imager by
fusing the RGB image of the scene with the spectra sampled from a
sparse set of spatial locations, utilizing scene-adaptive spatial sam-
pling. The system allows hyperspectral imaging of 600 × 900 pixels
with 30 spectral bands at a frame rate of 18 fps. The approach relies on
assumptions of the image property precluding imaging certain types
of scenes. Based on one RGB 2D sensor and one grayscale 2D sensor,
the compression ratio in sampling is smaller than the number of
spectral bands. Soldevila et al.47,48reported a time-resolved multi-
spectral camera for fluorescence imaging based on a CMOS camera, a
time-resolved bucket detector and a spectrometer coupled with a

detector array. It produced a hypercube of 512 × 512 pixels with
16 spectral bands for 256 time-resolved frames while sampling 0.03%
of all the reconstructed voxels. However, the system functions such
that each sensor acquires a heavily downsampled version of the data
which are upsampled and fused to produce the full-resolution data. It
does not utilize any signal prior nor compressive sensing theory.
Temporal information is obtained only from the time-resolved bucket
sensor which reconstructs 256 low-resolution grayscale frames. The
mechanism is designed for time-resolved fluorescence imaging and
does not apply to normal motion scenes. Also, with heavy down-
sampling in each dimension, the reconstruction accuracy would be
very low for normal spectral imaging.

Single-pixel approaches have been proposed for spectral imaging
to avoid the limitations brought by array detectors11–13,47,49. Some of
themuseCS technique to reduce the amountofmeasurements, but due
to the imaging system designs, such as the use of spinning wheels for
spectral modulation11,12, or fully mapping the multispectral data on to
the digital-micromirror device (DMD)13, and the two-stage spatial-
spectral modulation models, e.g. using the same set of spectral mod-
ulations within every spatial modulation49, the resolution and com-
pression ratio of these systems are limited. Hahamovich et al.48

developed an approach for rapid single-pixel imaging which uses a fast-
spinning mask coded with cyclic sensing patterns achieving a spatial
pattern modulation rate of up to 2.4MHz. Experiments demonstrated
reconstruction of grayscale images of spatial resolution of 101 × 103
pixels at 72 fps. The systemutilizes 100% samplingwith no compression
in data acquisition for reconstruction. Kilcullen et al.50 developed an SPI
system accelerated via swept aggregate patterns that combines a DMD
with laser scanning hardware to achieve pattern projection rates of up
to 14.1MHz and frame sizes of up to 101 × 103 pixels for real-time
grayscale video imaging up to 100 fps. The highest compression ratio
demonstrated is 4:1 in this system.Althoughachieving ahigh frame rate,
these approaches increase frame rate by boosting spatial pattern pro-
jection rates, which directly leads to extremely short integration period
for each measurement resulting in noisy measurements and very low
SNR in the recovered grayscale image. Gutiérrez-Zaballa, et al.51 pre-
sented a method for on-chip hyperspectral image segmentation
through deep learning to accurately classify and segment objects to
improve scene understanding in autonomous driving. The input to the
neural network is the full 3D spectral image obtained from a 25-band
mosaic spectralfilter camera.Martins et al.52 described an ecosystem for
open-source hyperspectral “single-pixel” imaging, where hypercubes of
128 × 128 spatial pixels with 2048 spectral bands are acquired in
12 seconds. It also presents a database of more than 150 hypercubes.
Note that the system relies on a DMD for spatial modulation and uses a
commercial spectrometer as the detector which has a 2D array sensor.
The spectral resolutionof thehypercube is givendirectlyby the spectral
resolution of the spectrometer. Therefore, the term “single-pixel ima-
ging” used in their papermeans differently than that in our paper which
refers to employing a sensor that actually consists of a single pixel
photodetector. The spatial encoding scheme is based on subsampling
the structured Hadamard matrix with the highest compression ratio of
32:1 demonstrated, and, without employing any compressive sensing
method, shows relatively low reconstruction quality. No spectral com-
pression or temporal correlation is involved. Bian et al.11 proposed a
multispectral imaging system that takes 60 seconds to image a
64×64×10 data cube. The system proposed by Li et al.13 only captures
8 spectral channels of 128 × 128 images in 0.5 second. To minimize the
number of measurements needed while still obtaining a high-quality
high-resolution reconstruction, the inherent structure or the joint
sparsity of 4D hyperspectral data needs to be fully exploited in both the
sensing and the reconstruction stage.

In this paper, we report a hyperspectral video imaging system
based on a single-pixel detector named the “Single-Doxel Imager” (SDI)
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that can achieve high-throughput hyperspectral video recording at a low
bandwidth. Here, a “doxel” is defined as a dynamic voxel or a pixel in the
4D space. We propose the framework for high-throughput hyperspec-
tral video acquisition and recoverywith the SDI. Specifically, we propose
a CS-based sensing scheme using specially designed joint spatial-
spectral modulation patterns displayed by a spatial light modulator,
which encodes the scene into a highly compressed sequence of mea-
surements, obtaining temporal correlation fromoptical flow at the same
time. An optimization-based reconstruction algorithm is proposed that
simultaneously exploits the high sparsity in 4D space. Experiments with
this prototype SDI system demonstrate recovery of high quality 128 ×
128 hyperspectral video data with 64 spectral bands at the speed of 4.3
frames/second, achieving compression ratio of 900:1 and offering a
900× data throughput compared to conventional imaging. To the best
of our knowledge, this is the first time that hyperspectral video can be
acquired at this compression ratio with a single-pixel detector. Fur-
thermore, we develop a deep learning reconstruction approach for fast
recovery, with the 4D temporal-spatial-spectral correlation in the signal
embodied and incorporated in the neural network design. Trained on
simulation data and tested on both simulation and experimental data,
this approach demonstrates the feasibility of a fast reconstruction
solution and promising reconstruction quality.

Results
Optics and hardware
The optical design of the SDI system is shown in Fig. 1a. A real image
of the scene is formed through the relay lenses on the surface of a

DMD (TI DLP Discovery 4100 with DLP9500 DMD chip) serving as a
spatial light modulator through imaging lenses. The 2D spatial pat-
tern displayed on the left part of the DMD, highlighted by a red
square, spatially modulates the image on it and reflects the modu-
lated light signal towards a light-collecting lens which focuses the
spatially modulated image on a slit. Themodulated light signal is the
sum of the light reflected by the micromirrors at the “on” state on
the DMD. The focused light signal on the slit is reflected toward the
DMD with a pair of 45° mirrors. A diffraction grating then spreads
the light signal spectrally and a focusing lens projects the spectrum
onto the right side of the DMD. The slit is used to restrict light into
the shape of a narrow rectangle. The focusing lens forms many
copies of the image of the slit on the DMD each with a different
wavelength due to the diffraction grating. On the right side of the
DMD with the spectrally dispersed signal, a 1D barcode-like spectral
modulation pattern is displayed as highlighted in a blue rectangle.
The micromirrors at the “on” state inside the spectral pattern reflect
the light towards the detector, while the ones at the “off” state dis-
card the light on them. Finally, the spatially and spectrally modu-
lated light signal is focused by a lens onto the single-element
detector (Hamamatsu H9306) for the measurement. Details of SDI
system setup and calibration are described in Section 1 of Supple-
mentary Information.

CS-based Joint Spatial-Spectral Encoding
During measurement process, the DMD displays a series of joint
spatial-spectral patterns. Each pattern is composed of a 2D spatial

Fig. 1 | Hardwaredesign and sensing schemeof theSingle-Doxel Imager. aSchematic diagramof the Single-Doxel Imager systemhardwaredesign,bThemeasurements
of one hyperspectral frame represented in a set of matrix multiplication.
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pattern and a 1D spectral pattern displayed sided by side on a single
DMD, as shown in Fig. 1a. One measurement is taken for every spatial-
spectral pattern. This process can be modeled as a linear equation
system illustrated in Fig. 1b.

As shown in Fig. 1b, one frame of hyperspectral video at time t is
denoted by a N ×K matrix Xt representing spatial resolution offfiffiffiffi
N

p
×

ffiffiffiffi
N

p
with K spectral bands, where each column is a vectorized 2D

image at one spectral band. The spatial modulation by the 2D spatial
pattern on the DMD is equivalent to left multiplying Xt with a 1 ×N row
vector highlighted by a red rectangle, which is the vectorized 2D
spatial pattern. The spectral modulation by the 1D spectral pattern on
the DMD is equivalent to right multiplying Xt with a K × 1 column
vector highlighted by a red rectangle. The product of the 1 ×N spatial
modulation vector, the N ×K data matrix Xt and the K × 1 spectral
modulation vector is a value proportional to the light signal recorded
by the detector, which is stored as one element in the transformed
domain matrix Zt highlighted by a red square.

A complete set of measurements without compression involves
using every combination of N spatial patterns and K spectral patterns
from the full-rank N ×N spatial modulation matrix ΦS and K ×K
spectral modulation matrix ΦW , respectively. The complete mea-
surement results compose the N ×K matrix Zt , containing all the
information from the data Xt . For a 128× 128× 64 hyperspectral frame,
a complete set of measurements requires over 1 million modulations
and data points, which is impractical and unnecessary for hyperspec-
tral video imaging. With CS theory, we sparsely select the spatial and
spectral pattern pairs used for the actual measurement, so only a small
portion of the entries in Zt are filled with the measurement results,
while all other values are kept unknown. The element-wise multi-
plication of a sparse 0-1 matrix Mt with Zt in Fig. 1b represents this
compressive subsampling process. The resulting matrix, Y t , is the
measurement data obtained from SDI system, with which the original
signal Xt can be reconstructed. As shown in Eq. (1), with the proper
definitions, the measurements bt of one hyperspectral frame at time t
denoted by ut can be expressed by a simplified linear equation. Here,N

represents the Kronecker product.

bt = vec Y t

� �
Rt =diagvecð Mt

� �Þ
ut = vec Xt

� �
Φ= Φw �Φs

� �T
bt =Rt Φut

ð1Þ

During sampling of multiple hyperspectral frames, a longer
DMD pattern sequence is used and a series of single pixel measure-
ments are acquired over time. Along this train of measurements, we
use the so-called “data window” to select a consecutive block of
measurements within the window to define and recover each video
frame. The length of the data window refers to the number of mea-
surements within the window. We can “slide” the data window along
the train ofmeasurements to select themeasurements for recovering
each frame. We define the “sliding stride” as the number of mea-
surements which the data window slides over going from one frame
to the next. In principle, the lengths of the data window and the
sliding stride for each frame can be freely chosen, depending on the
needs for a particular scene. Equation (2) constructs the overall linear
model for the hyperspectral video imaging process by the SDI,
combining the matrices and data vectors of different frames. Here, u
is the data vector containing the unknown 4D hyperspectral video, S
is the temporal-spatial-spectral modulation matrix, R is the com-
pressive subsampling matrix, and b is the compressive measurement
vector containing the outputs from the SDI. The ratio between the
amount of unknown data (the length of vector u) and the number of
measurements (the number of 1s in matrix R) is called compression

ratio (CR).
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The modulation patterns used for sensing have pseudo-random
structures making them suitable for CS. For the experiments in this
paper, the spatial modulation patterns in ΦS are from the “structured
random” STOne pattern sequence17. The STOne patterns enable multi-
resolution image reconstruction. Details of the properties of STOne
patterns are presented in Section 2 in Supplementary Information. The
spectral patterns in ΦW are pseudo-randomly permuted Walsh-
Hadamard patterns which are used to provide the randomness nee-
ded forCS-based reconstruction. Both the spatial and spectral patterns
are binary patterns with {+1, −1} entries that can be easily implemented
on the DMD utilizing the so-called complementary patterns (see
“Methods”). The complementary patterns are also used to obtain pure
spatial modulation from the raw measurements for calculating grays-
cale videos from which optical flow can be extracted.

In designing the encoding patterns, correctly pairing up the spatial
and spectral patterns and choosing the pattern sequence is critical for
realizing a high compression ratio. In order to maximize the amount of
information encoded in the limited number of measurements, we
propose amechanismwhere the spatial pattern and the spectral pattern
on the DMD change simultaneously. Such joint spatial-spectral com-
pression is different from previous research11,12 where the two-stage
spatial-spectral modulation model was used, keeping a spatial pattern
unchangedwhile changing the spectral patterns.With a different spatial
and a different spectral pattern for each modulation, different spatial
components and different spectral components of the hyperspectral
data are encoded. In this way, when recovering a hyperspectral video
frame from a consecutive set of measurements, the amount of inde-
pendent information carried in the measurements are maximized.

Optical flow assisted 4DTV regularization for hyperspectral
video reconstruction
To effectively and accurately recover the temporal-spatial-spectral
data from compressive measurements, the additional redundancy or
the higher sparsity in this 4D spaceneeds to be fully utilized. Anoptical
flow-assisted 4D Total Variation (4DTV) regularization model for
hyperspectral video reconstruction is proposed as described by Eq.
(3). It exploits the sparsity in thefirst or second-order derivatives of the
data in all 4 dimensions to regularize the ill-posed inverse problem of
compressive reconstruction.

u = arg minðj∇4uj+ j∂t,OFujÞ, s:t:jb� RSuj< ϵ ð3Þ

where j∇4uj=
X

x,y,λ,t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂ux,y,λ,t

∂x

� �2

+
∂ux,y,λ,t

∂y

� �2
s

+
∂2ux,y,λ,t

∂λ2

�����
�����+

∂ux,y,λ,t

∂t

����
����

0
@

1
A

and ∂t,OFu
�� ��= X

x,y,t1,t2

jt1� t2jϵf1,2g
jux,y,t1 � ux + vx ,y+ vy ,t2

j
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The termj∇4uj in Eq. (3) represents the expression for the 4DTV
regularization. The widely used spatial total variation (TV) regulariza-
tion approximates images with a piecewise constant model and
assumes that images have sparse edges. Under this assumption, if an
object in a video scene is moving, a pixel value will only change when
an edge of the moving object passes through it. Consequently, the
piecewise constant approximation can be naturally extended to the
temporal domain53–55. For the sparsity in the spectral dimension, we
apply the piecewise linear approximation given the properties ofmost
spectra in the visible andnear-infraredband and use the L1 normof the
second-order derivatives in spectral dimension for spectral regular-
ization. Alternative spectral sparsity models, such as TV and L1 models
and learned sparse representation dictionaries, can also be used for
other spectral bands.

The term j∂t,OFuj in Eq. (3) represents the optical flow constraint.
Optical flow describes the distribution of apparent movement velo-
cities of brightness patterns in images56. It has been proved to be very
useful for the reconstruction of compressive video imaging16,57–60.
However, the calculation of optical flow requires the knowledge of
video frames while, on the other hand, the optical flow is expected to
be used in video reconstruction for improved results. To solve this
dilemma, we divide the reconstruction of a hyperspectral video into
two stages. First, a grayscale video at the same spatial resolution is
reconstructed from the raw measurements containing the com-
plementary patterns (See “Methods”). More detailed are described in
Section 2 of the Supplementary Information. Then, optical flow can be
extracted between the frames of the reconstructed grayscale video
and used in Eq. (3) for the final hyperspectral video recovery. Figure 2a
shows the flow chart of the whole process of compressive measure-
ment and reconstruction.

For two nearby frames at t1 and t2 in a video, if the optical flow
vector field between them vx x, yð Þ, vyðx, yÞ

D E
is provided, the con-

straint on the pixel intensities of these two frames can be written as
ux,y,t1 =

ux + vx ,y+ vy ,t2
. It suggests that the content at location x, yð Þ in

frame t1 has moved to x + vx , y+ vy
� 	

in frame t2. The optical flow
provides an exactmapping of the pixels between nearby frames. Here,
the optical flows between any two frames with a temporal distance
closer than or equal to 2 are included in the TV term. The temporal TV
term in the 4DTV algorithm only regularize the changes of values

between 2 nearest frames. In contrast, the optical flow constraint
connects the data points in one frame to the data in its 4 nearest
frames, 2 before and 2 after. Without the optical flow constraint, the
4DTV regularization itself will result in decreased reconstruction per-
formance as demonstrated in the next section.

In addition, the ordering of the spatial STOne pattern sequence is
designed in a ’structured random’ way such that any consecutive 4k2

patterns in the sequencecanbe treated as a complete set of embedded
2k ×2k STOne patterns, where k is a positive integer. With these
properties of the STOne pattern sequence, multi-resolution recon-
structions can be achieved from the same set of measurements. The
embedded low-resolution patterns can be used to recover a low-
resolution version of the hyperspectral video, with the corresponding
4DTV algorithm illustrated in Fig. 2b.

Results of optical flow-assisted 4DTV reconstruction
The SDI system is calibrated and tested in experiments. The target
scene as shown in Fig. 3a composed of a spinning color filter wheel
with printed texts against a resolution chart. The color filter wheel is in
focus of the SDI. Using the proposed joint spatial-spectral modulation
scheme and the optical flow-assisted 4DTV reconstruction, 157 frames
of hyperspectral video of size 128 × 128 with 64 spectral bands can be
reconstructed from 184,000 single-pixel measurements, achieving a
compression ratioof around900:1.Wedid not push the pattern rate of
theDMDandoperate theDMDat 5 kHz. From the 5000measurements
during one second, 4.3 video frames are acquired. Details of system
setup, calibration andmodulation patterns canbe found in Section 1 of
Supplementary Information.

Remember, from the train of measurements, the data window
selects and represents a block of measurements for recovering each
video frame. Here, because the STOne patterns with multi-resolution
property are used for spatial modulation, we use a data window of
fixed length of 2048 and a sliding stride of 1024,meaning each frame is
recovered from 2048 measurements and consecutive frames share an
overlap of 1024 measurements.

During reconstruction, 157 frames of 128 × 128 grayscale video are
first reconstructed by the 3DTV regularized algorithm, as demon-
strated in Fig. 3b. On a laptop with an Intel Core i7-9750H CPU, the
Matlab algorithm takes on average about 0.65 seconds to recover 1

Fig. 2 | Diagram and flow chart of the reconstruction process. a Diagram illus-
trating the reconstruction process of the hyperspectral video from the measure-
ment sequence of the SDI system, b Flow chart of the low-resolution hyperspectral

video reconstruction algorithm using the embedded low-resolution STOne
patterns.
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grayscale frame. Then the forward and backward optical flows are
extracted from the grayscale video59. More details on the grayscale
video and optical flow calculation are presented in Section 2 of Sup-
plementary Information. With the joint spatial-spectral sensing pat-
terns, the measurement values, and the optical flows, hyperspectral
video is reconstructed by solving Eq. (3) using the Primal-Dual hybrid
gradient (PDHG) solver29,60. The partial derivative operation of optical
flow with respect to t in the L1 term j∂t,OFuj can be represented by a
linear operator taking the difference between the corresponding pix-
els calculated from optical flow.

The use of sparsity in the 4D temporal-spatial-spectral space and
the optical flow constraints are critical in realizing the 900:1 com-
pression ratio (CR) and successfully reconstructing 4.3 frames of 128 ×
128 × 64 hyperspectral data from only 5000 raw single-pixel mea-
surements taken in one second. Simulated results in Fig.3e demon-
strate the reconstructions if compression and sparsity are only used in
the spatial dimension for the 128 × 128grayscale image. For CRof 100:1
and above, a grayscale image cannot be reconstructed due to too few
measurements. Because the data in the 2D space are far less sparse
than in the 4D space, higher compression ratios lead to very poor
reconstruction accuracy due to too few measurements.

At such a high compression ratio of 900:1, theMatlab algorithmof
the PDHG solver takes about 390 seconds to reconstruct one hyper-
spectral frame on a laptop with an Intel Core i7-9750H CPU. When
operating the DMD at 5 kHz, the data acquisition time results in 4.3 fps
and reconstruction needs to be performed off-line. The long

reconstruction time of optimization-based algorithmsmotivates us to
develop a deep-learning reconstruction approach introduced in the
next section. We will show that deep learning greatly accelerates
reconstruction and is much faster than the data acquisition rate of 4.3
fps, therefore enabling real-time imaging.

Figure 3d displays 16 hyperspectral frames from the recon-
structed hyperspectral video. To simultaneously show the results of
all spectral bands, we convert the hyperspectral images to sRGB via
the CIE color-matching function. For comparison, images captured
by a color camera, shown in Fig. 3c, illustrate the spatial accuracy of
the reconstructions. Figure 3f displays the 64 single-band images of
one reconstructed hyperspectral frame which are colored according
to their wavelengths, along with a ground truth color camera image.
The spectral resolution is 7.3 nm/band for the whole spectral range
from 361 nm to 827 nm. In the hyperspectral data cubes, different
color filters on the color wheel show different intensity changes over
the 64 wavelength bands. The full 157 frames of the reconstructed
grayscale and hyperspectral videos can be found in Fig. S6 in Sup-
plementary Information and in Supplementary Video 1-3. Multi-
resolution reconstruction results based on the STOne patterns are
presented in Section 2 in Supplementary Information and Supple-
mentary Video 4-6.

Figure 4 plots the spectra of the pixels on different filters of the
color wheel extracted from the reconstructed hyperspectral video and
compares them with the ground truth spectra. The ground truth
spectrum for each filter was directly measured by a fiber-coupled

Fig. 3 | Experimental reconstruction results of the SDI. a The target scene
imaged by the SDI, b 16 frames evenly selected from the 157 reconstructed grays-
cale video frames, c Frames recorded by a conventional color camera, d 16 frames
evenly selected from the reconstructed 128 × 128 × 64 hyperspectral video frames
with a compression ratio of 900:1 converted to artificial RGB images, e Recon-
structions at CR of 10, 100, and 1000 if compression and sparsity are only used in

the spatial dimension for a 128 × 128 grayscale image, f Top left: ground truth color
camera capture. Top right: the corresponding reconstructed hyperspectral frame
converted to artificial RGB image. Bottom: Expanded hyperspectral data cube of
the frame on the top right, containing 64 images of 128 × 128 at different wave-
length bands. The spectral resolution is 7.3 nm/band for the whole spectral range
from 361 nm to 827 nm.
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spectrometer. Additional details of the full-resolution reconstruction
and more analysis are presented in Section 3 of Supplementary
Information.

Figure 5 compares the reconstructions from the same sets of
measurementswith andwithout using the opticalflowconstraints. The
artificial RGB images recovered without optical flow in Fig. 5b lose
color contrast compared to the ones in Fig. 5a. More apparent differ-
ences can be seen in the comparison of pixel spectra shown in Fig. 5c.
For the pixels on the red and green filters, the spectra reconstructed
without optical flow significantly deviate from the ground truth.

The spatial STOne patterns enable multi-resolution reconstruc-
tion from the same set of raw measurements. For example, 1024
measurements with 128 × 128 STOne patterns are enough to compose
a full STOne transformembedded at 32 × 32 resolution. From the same
set of measurements as the full-resolution reconstruction, we
demonstrate the results of a low-resolution reconstruction of 32 × 32
spatial pixels with 64 spectral bands at 4.3 fps, using a data window of
length 1024 and a sliding stride of 1024. Grayscale videos at this
resolution can be calculated by a simple linear inverse transform
without any iterative operations. The reconstructed 32 × 32 grayscale
videos are illustrated in Fig. 5d and the calculation takes 0.5ms per
frame in Matlab. This method is useful in getting a quick look at the
spatial information captured by the SDI. The 32 × 32 × 64 low-
resolution hyperspectral video reconstruction as shown in Fig. 5e takes
45 seconds per frame.

Deep neural networks for hyperspectral video reconstruction
We also develop a deep learning reconstruction approach to address
the challenge of the long reconstruction time of optimization-based
algorithms. The 4D temporal-spatial-spectral correlation in the signal
is embodied and incorporated in the neural network design. In the
4DTV algorithm, the grayscale video is first reconstructed to provide a
temporal correlation. Similarly, we adopt such Divide-and-Conquer
method in the deep learning approach to first reconstruct grayscale
videoswhichareused as additional information in hyperspectral frame
reconstruction. As demonstrated in Fig. 6, the deep learning approach
is composed of two stages: first, a model based on the long short-term
memory (LSTM) network reconstructs the grayscale video from CS
measurements leveraging temporal correlation among 5 adjacent
frames; secondly, a hyperspectral reconstruction network based on
convolutional neural networks (CNNs) with residual connections
recovers hyperspectral frame from the joint spatial-spectral com-
pressed measurements together with the grayscale video recon-
structed in the first stage.

The grayscale video reconstruction network is comprised of two
modules. Thefirstmodule is a CNNwith residual connections for initial
video reconstruction from the spatial CS measurements, which can be
acquired from pairs of spectral complementary measurements (See
“Methods”). As such, themeasurement equation for the grayscale video
can be derived from Eq. (1) as yt =Ψsxt , where xt is the vectorized
grayscale video at time t,Ψs represents the sensingmatrix for the pure

Fig. 4 |Reconstructed and ground truth spectraof thepixels in the hyperspectral video on the light source andon the green, red, and yellow color filters of the colorwheel.
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spatial measurements, which can be acquired by removing the rows
not used in sensing in ΦS

� �T. The vector ΨS

� �Tyt after being reshaped
into 2D is used as input to the network which outputs the recon-
structed grayscale video. The CNN module is pre-trained to improve
reconstruction quality. The CNN module is based on several identical
blocks named the “RCblock” (See “Methods”). The secondmodule is an
LSTM network taking in 5 adjacent grayscale frames each recon-
structed from the same CNN module and outputs 5 video frames
enhanced by temporal correlation and implicit motion estimation
between the frames learned by the LSTM network (see “Methods”).

The hyperspectral frame reconstruction network has the same
backbone as the CNN module composing of identical RC blocks but
with different input and output sizes. In CS measurement process, Eq.
(1) can be reformulated as ebt = eΦut : Here, eΦ represents the matrix
where the rows of zeros in matrix Rt

eΦ are removed, ebt is the mea-
surement vector where the empty entries in bt are removed. We cal-
culate the vector ðeΦÞTebt , reshape it into the size of the 3D
hyperspectral frame to be reconstructed, concatenate it with the
corresponding frame from the reconstructed grayscale video along
the spectral dimension, then use such 3D tensor as input to the
hyperspectral frame reconstruction network which outputs the
reconstructed frame.

Results of deep neural networks for hyperspectral video
reconstruction
We present the reconstruction results of the proposed deep learning
approach on simulation data and on experimental data. Reconstruc-
tion time comparisonwith the opticalflow-assisted 4DTVoptimization
approach is also presented.

First, we present the results of testing on simulation data. We
adopt the strategy of creating hyperspectral video datasets from
hyperspectral image by circularly shifting the images as elaborated in

Section 4A of Supplementary Information. The hyperspectral image
datasets used are CAVE dataset61 and Harvard dataset62. Hyperspectral
video blocks of size 32 × 32 with 31 spectral bands and 5 temporal
frames are extracted from such videos for training and testing due to
GPU memory limit. Simulated compressive measurements are taken
on the video blocks. We train the base network models on a single
NVIDIA Geforce RTX 3070 GPU with 8GB memory. Table 1 shows the
mean of the reconstruction quality measured in the peak signal-to-
noise ratio (PSNR), structural similarity (SSIM)63, and spectral angle
mapping (SAM)64 for the testing dataset without adding measurement
noise for CR of 100, 25, and 10. The metric is calculated on every
spectral channel and averaged over all spectral channels of all frames.
Larger values of PSNR and SSIM suggest better performance, while a
smaller value of SAM implies a better reconstruction. Figure 7 illus-
trates an example reconstructed hyperspectral frames using the deep
learning approach for CAVE and Harvard datasets. Each image is
composed of 6 × 6 non-overlapping tiles of 32 × 32 × 31 reconstructed
hyperspectral blocks converted toRGB image usingCIE colormapping
function.More results are shown in Figure S7 and S8 of Supplementary
Information and in Supplementary Video 7 and 8.

Figure 7c, d shows the absolute error between ground truth and
reconstruction results along spectral dimension. Each ground truth 32
× 32 × 31 hyperspectral block has been normalized to have pixel values
between 0 and 1. The absolute error for each spectral band is averaged
across spatial dimension, temporal dimension, and all test data.With a
given resolution, a lowerCRmeans a greater number ofmeasurements
which embed more information of the scene than higher CR, and
therefore produces higher spectral accuracy.

Since noise is inevitable in real measurements, we conduct addi-
tional groups of experiment to analyze the effect of adding measure-
ment noise to simulation data. Noise analysis is performed by fine-
tuning the base models to simulate real scenarios. More details of

Fig. 5 | Reconstruction with and without optical flow regularization and low-
resolution reconstruction results. aArtificial RGB images of reconstructions with
optical flow. b Artificial RGB images of reconstructions without optical flow.
c Spectra of different pixels from the hyperspectral videos reconstructed with and
without optical flow. d 16 frames evenly selected from the 157 frames of the 32 × 32

L2-reconstructed grayscale video, e 16 frames evenly selected from the 157 frames
of the 32 × 32 × 64 low-resolution hyperspectral video converted to RGB images,
f Expanded hyperspectral data cube of the frame marked in yellow square in
e containing 64 32 × 32 images at different wavelength bands. The spectral reso-
lution is 7.3 nm/band for the whole spectral range from 361 nm to 827 nm.
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model training and results of noise analysis are presented in Section 4A
of Supplementary Information.

We also test the deep learning approach on experimental data
from the SDI to further validate its performance. Since the SDI has 64
spectral bands at 7.3 nm/band from 361 nm to 827 nm and no publicly
available hyperspectral dataset has the same spectral bands, we adopt
the strategy of interpolating the Harvard dataset in the spectral
dimension to have the same spectral bands as the SDI between 423nm
and 715 nm, leading to 41 bands. The neural network models are
trained based on the interpolated dataset with Gaussianmeasurement
noise added. Due to GPU memory limit, the models are designed to
recover hyperspectral image patches of spatial size 32 × 32 with
41 spectral bands at 7.3 nm/band from 423 nm to 715 nm (see “Dis-
cussion”). Model architecture and training scheme are the same as
described in Section 2.5. To match the size of the model input, we
divide the full spatial view of the SDI of 128 × 128 into 16 blocks of 32 ×
32. Compressivemeasurements are taken consecutively for each block
within every video frame. The blocks are individually reconstructed by
the network models and stitched together to form a full hyperspectral
image of 128 × 128 with 41 spectral bands. Details of data generation,
model training, and model testing are described in Section 4B of
Supplementary Information.

The same target scene as shown in Fig. 3a is used for testing.
Figure 8a displays 4 frames from the reconstructed hyperspectral

video for each CR converted to artificial RGB images along with cor-
responding color camera capture. The full reconstructed hyperspec-
tral videos can be found in Fig. S9 and Supplementary Video 9-11.
Figure 8b plots the spectra of the pixels on different filters of the color
wheel extracted from the reconstructed hyperspectral video and
compares them with the ground truth spectra. The reconstruction of
lower CR shows better spectral accuracy in general than higher CR
since more information about the scene is collected with more mea-
surements. To enhance the reconstruction performance, more scenes
similar to the color filters can be included in the training dataset since
Harvard is an outdoor scene dataset. A more realistic noise model will
also help with the performance.

Table 2 demonstrates the reconstruction time comparison in
seconds between the proposed optical flow-assisted 4DTV regular-
ization approach for a 128 × 128 × 64 hyperspectral frame and the deep
learning approach for 16 of 32 × 32 × 41 hyperspectral patches at
CR100/CR25/CR10 on CPU (Intel Core i7-9750H) and on GPU (NVIDIA
GeForce RTX 3070 with 8GB memory). The 4DTV-based optimization
algorithm is not tested on GPU due to its iterative nature. As can be
seen, the deep learning approach enjoys significant gains in recon-
struction time. It can reconstruct at least 16 frames per second,
allowing for real-time reconstruction when data acquisition is slower.
Remember, the data acquisition time for the experiment of color filter
wheel is 4.3 fps. For comparison, using the optimization algorithm,
real-time imaging is not possible and reconstruction needs to be per-
formed off-line. In Table 2, we display the sum of reconstruction times
for 16 patches in order to compare with the optimization algorithm at
the same spatial resolution. However, in reality, the reconstruction of
16 patches can be parallelized because there is no dependency
between the patches, allowing for reconstruction at 16 times higher
frame rate. The CR can be chosen based on factors including the
expected reconstruction quality, data acquisition time, reconstruction
time, etc.

Fig. 6 | Schematic of the deep learning approach for hyperspectral video
reconstruction. First, the grayscale video of 5 frames is reconstructed from
spectral complementary measurements through a CNN module composed of RC
blocks and an LSTM network module. Then, the joint spatial-spectral compressed
measurements after pre-processing are concatenated with the reconstructed
grayscale video frame, which serves as the input to the hyperspectral frame

reconstruction network. The “C” with a circular block denotes the concatenation,
the “+“ with a circular block denotes the summation. The Feature Encoding Block
(FEB) and Feature Decoding Block (FDB) are composed of 3 convolutional layers
each followed by a ReLU. The “Conv” refers to a convolutional layer of kernel size
3 × 3 except in the first layer of the FDB where the kernel size is 1 × 1.

Table 1 | Quantitative evaluation of PSNR(dB)/SSIM/SAMover
test data without measurement noise added

CR CAVE Harvard

100 23.15/0.703/0.159 24.86/0.712/0.083

25 24.06/0.736/0.138 25.69/0.747/0.074

10 28.03/0.838/0.086 28.25/0.841/0.063
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Discussion
In summary, combining a compressive encoding scheme and a
reconstruction algorithm that exploits the inherent redundancy in the
4D hyperspectral data with a unique optical system based on a single-
pixel detector, we report the SDI system that can achieve high-
throughput hyperspectral video recording at a low bandwidth. The
system is demonstrated to capture hyperspectral video of size
128 × 128 with 64 spectral bands at 4.3 fps offering a 900× data
throughput compared to conventional imaging, which is a first-of-its
kind of a single-pixel-based hyperspectral imager. Other features such
as multi-resolution reconstruction are also realized and demonstrated
with the experimental data. To address the challenge of the long
reconstruction time of the optimization-based approach, a deep
learning approach for fast recovery has also been developed for CS
hyperspectral video reconstruction of the SDI on simulation data and
experimental data.

We discuss the advantages and novelty of the proposed single-
pixel approach for hyperspectral video imaging over existingmethods
reported in the literature First, by eliminating the need for a 2D array
sensor (e.g., CMOS or CCD), single-pixel approach can be easily
extended for imaging outside the visible wavelengths such as infrared,
terahertz (THz), and X-ray imaging6–9,65, for which the 2D sensor is
either of low resolution, prohibitively expensive, or lacks cutting-edge
performance of a single pixel sensor. Secondly, single-pixel imaging
may use exotic detectors whose 2D formatwith high specialization are
impractical to manufacture. For instance, employing an ultrasonic
transducer as detector, SPI has been used for photoacoustic
imaging66,67. SPI paired with the photomultiplier tube has found
applications in single-photon imaging68, for time-of-flight 3D

imaging69,70, and imaging objects hidden from direct linefa-of-sight71.
Thirdly, directly recording hyperspectral video of such high dimen-
sionality requires large storage, significant transmission bandwidth as
well as high power consumption, memory footprint, and time cost,
imposing extreme pressure on imaging systems especially when sto-
rage and transmission of the data is critical, e.g., on satellites, and
rovers where the sampled data typically needs to be transmitted to
another facility for processing or reconstruction. The high compres-
sion ratio achieved in the SDI allows transmission of high throughput
data at a low bandwidth significantly relieving the pressure on band-
width and storage. It is also useful, for instance, in biological micro-
scopy for long term observations of certain bioprocesses which occur
sporadically by greatly saving on data storage. As discussed in the
Introduction section, the 900:1 sampling compression ratio is much
higher than both the 2D detector-based and the single pixel-based
techniques in current literature at similar reconstruction quality,
endowing the SDI system with unique benefits to be used in resource-
constraint imaging systems.

The fundamental contribution or innovation that enables the high
compression ratio or data throughput in the SDI system is the pro-
posed framework which fully exploits signal sparsity in 4D space in
both sensing and recovery: the encoding scheme proposed allows the
spatial-spectral information to be jointly and maximally acquired
through a small number of measurements and the temporal correla-
tion (optical flow) can be extracted from the same rawmeasurements,
consequently embedding more scene information in each measure-
ment; the signal prior of joint sparsity in 4D space are proposed and
realized in the reconstruction, extracting more information from the
compressed measurements.

Fig. 7 | Reconstruction results of the deep learning approach on publicly
available datasets. Example reconstruction results of the deep learning approach
of a CAVE dataset and b Harvard dataset. A gamma correction of gamma = 0.4 is
applied on the converted RGB image to brighten darker areas. The first row is

ground truth, the rest three rows are for CR of 10, 25 and 100, c The absolute error
between ground truth and reconstruction results of the proposed deep learning
approach along the spectral dimension forCAVEdataset, and fordHarvarddataset.
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Fig. 8 | Reconstruction results using the deep learning approach testing on
experimentaldataof the SDI. aTop row: Frames recordedby a conventional color
camera. Other rows: 4 example frames from the reconstructed 128 × 128 × 41
hyperspectral video frames converted to artificial RGB images at CR of 10, 25, and

100. b Reconstructed and ground truth spectra of the example pixels in the
hyperspectral video. The example pixels aremarkedby color squares in the top row
in a for the red filter, the yellow filter, the light source, and the green filter,
respectively, from left to right in the top row.
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For the SDI system, it is straightforward to simultaneously
increase all of the spatial resolution, spectral resolution, and frame
rate. Besides, with a resolution increase inoneormoredimensions, the
signal becomes sparser and an even higher compression ratio can be
achieved at the same reconstruction quality. With the DMD as the light
modulator, the spatial resolution can be much larger than 128 × 128.
The current SDI prototype can have at least 256 spectral channels and
we choose 64 since it is enough for the experiment. The spatial and
spectral resolutions are constraint by the DMD resolution, the expec-
ted measurement noise, computation capacity, etc. There will be a
limit where signal strength compared to noise will make each mea-
surement indistinguishable in the detector output and the A/D
encoding and thus result in the inability to accurately reconstruct the
signal. Although increasing the spatial and/or spectral resolution may
lead to decreased SNR of the measurements, with improved recon-
struction algorithms, e.g., neural networks trained with the corre-
sponding noise level, or using another denoising network, the same
reconstruction quality could be obtained at a higher resolution and
higher compression ratio. We did not intent to push the limit of the
spatial or spectral resolution in this paper but aim to propose an
architecture and algorithms which fully exploits the signal sparsity in
4D space in a single-pixel setting.

The frame rate demonstrated is also far from reaching its limit. As
described before, we can “slide” the “data window” along the train of
single-pixel measurements to select a consecutive block of measure-
ments to define and recover each video frame. Using a sliding stride of
1 will result in themaximum frame rate. In the color wheel experiment,
the data window length is 2048measurements and the sliding stride is
1024. We did not push the limit of the frame rate by using a smaller
sliding stride because then the content of nearby frames would have
minor difference since the change in motion is far slower than the
period of one measurement. We chose a sliding stride suitable for the
motion in the scene. Even if increasing the spatial or spectral resolution
may require a data window with larger length, the sliding stride can
always be independently chosen and thus the maximum frame rate is,
in theory, not affected by the change in spatial or spectral resolution.
However, for imaging faster motion, the number of spatial-spectral
patterns being grouped per frame would have to be reduced, as dis-
cussed in our earlier CS-MUVI publication72 and correspondingly may
reduce the spatial/spectral pixel count to maintain the same quality.

In addition, we did not operate the DMD at its maximum pattern
rate. As discussed in Introduction, one type of SPI techniques aims to
achieveultra-high frame rate bymechanicallyboosting themodulation
pattern rate but at the cost of low reconstruction quality due to low
measurement SNR48,50. These methods did not exploit the inherent
redundancy of the signal which allows for reducing sampling without
losing information or measurement SNR. On the other hand, however,
by combining such fast alternatives to the DMD with the SDI system,
ultra-high frame rate hyperspectral imagingmay be realized. However,
high pattern modulation rates lead to noisy measurements which will
get more severe when it comes to spectral imaging. Therefore,
reconstruction quality would be one of the key problems to tackle for
such systems if realized. In the deep learning reconstruction for
experimental data, the neural networkmodels are designed to recover

hyperspectral image patches of spatial size 32 × 32 with 41 spectral
bands due to GPU memory limit. The temporal module has around 6
million parameters and the hyperspectral image reconstruction net-
work has around 1 million parameters. The memory bottleneck, how-
ever, resides in the multiple RC blocks in the networks where each RC
block produces and stores many intermediate feature maps. More
optimized network designs or algorithm implementation could help
reducememorycost.Webelieve thatwith hardwareofhigher capacity,
the deep learning approach can be used to recover hyperspectral
video frames of larger sizes. The test data is acquired by the SDI with a
block-based strategy where the full spatial view of 128 × 128 is divided
into 16 blocks of 32 × 32. Compressive measurements are taken con-
secutively for each blockwithin every video frame.We demonstrated a
high CR of 100:1 when reconstructing the 32 × 32 × 41 hyperspectral
image patches. Because the block-based measurement strategy must
be adopted in this case to match the smaller input size of the neural
network models, we do not aim nor expect the same high CR of 900:1
to be achieved aswhen reconstructing the 128× 128 × 64hyperspectral
frames demonstrated in the 4DTV-based reconstruction for two rea-
sons. First, signal sparsity generally decreases with smaller spatial,
spectral and temporal size and therefore the signal is less compressible
than a signal of larger size, leading to a lower compression ratio if to
obtain the same reconstruction quality as a signal of a larger size.
Secondly, because the 16 blocks are measured consecutively within
every video frame, the strategy of using an overlapping data window
when measuring one block is not applicable. The block-based mea-
surement strategy is only a temporary effort tomatch the input size of
networkmodels limited by theGPUmemory.Webelieve hyperspectral
frames of larger sizes at much higher compression ratios can be
reconstructed by the deep learning approach with hardware of higher
capacity. We would like to leave it as our future work in this direction.
As the initial attempt to incorporate the 4D temporal-spatial-spectral
correlation of the signal in the neural network design for CS hyper-
spectral video reconstruction in the single-pixel setting, the results
demonstrate the feasibility of a fast reconstruction solution and pro-
mising reconstruction quality.

Methods
Complementary patterns
In Eq. (1), ThebinarymodulationmatricesΦs andΦw havepositive and
negative values, while light modulation with the DMD can only realize
0-1modulation. In order tomatch themathematicalmodel, spatial and
spectral complementary patterns are inserted into the pattern
sequence. For a joint spatial-spectral measurement, we have

yt =φ
T
s *Xt*φw = φ+

s � φ�
s

� �T *Xt* φ+
w � φ�

w

� � ð4Þ

Here, Xt is the N ×K matrix representing the hyperspectral frame
at time t, φs is an N × 1 vector representing one of the spatial mod-
ulation patterns during measurement of Xt , φw is an K × 1 vector
representing the joint spectral pattern of φs, yt is the single pixel
measurement. Both φs and φw are binary patterns with f+ 1,� 1g
entries. Because the DMD cannot directly display negative entries, we
split φs into positive part and negative part as φs =φ

+
s � φ�

s , where
φ+

s = max φs, 0
� �

,φ�
s = �min φs,0

� �
: As such, we have φ+

s +φ�
s = Is ,

where Is is the N × 1 vector with all 1 entries. We call φ�
s the spatial

complementary pattern for φ+
s . Likewise, φw can be split as

φw =φ+
w � φ�

w, and φ�
w is called the spectral complementary pattern

for φ+
w . We display φ+

s and φ+
w on the DMD in place of φs and φw,

respectively. In the experiment of color filter wheel target in Section
2.4, one spectral complementary pattern φ�

w is inserted for every
spectral modulation φ+

w , which means for every measurement of
φ+

s

� �T *Xt*φ
+
w , we keep the spatial pattern unchanged and display φ�

w
to obtain the measurement of φ+

s

� �T *Xt*φ
�
w. At the same time, one

spatial complementary pattern φ�
s is inserted for every 512 different

Table 2 | Reconstruction time of the 4DTV-based optimization
approach for reconstructing one 128 × 128 × 64 hyperspectral
frame and the deep learning approach for reconstructing
sixteen of 32 × 32 × 41 hyperspectral patches at CR 100/CR
25/CR 10 on the same CPU and GPU

Reconstruction approach CPU time (s) GPU time (s)

4DTV-based Optimization 390 –

Deep Learning (16 patches) 1.9296/1.6992/1.2112 0.0624/0.048/0.0368
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spatial modulations. It means for every 512 pairs of original and
spectral-complementary measurements, we take two extra measure-
ments where we use the spatial complementary pattern φ�

s corre-
sponding to the first spatial pattern φ+

s to measure φ�
s

� �T *Xt*φ
+
w and

φ�
s

� �T *Xt*φ
�
w. Since φ+

s and φ�
s are both random patterns with half of

entries being 1 and the other half being 0, the term φ�
s * Xt produces

approximately half of the sum of all pixel intensities for each spectral
channel. Assuming the target scene does not change too fast such that
its overall intensity stays almost the same during every 512 different
spatialmodulations,we take the strategy of using the sameφ�

s to serve
as the complementary pattern for all the 512 different spatial patterns,
which produces a well-approximated result as using the true φ�

s for
each different spatial pattern. In this way, the four terms in Eq. (4), i.e.
φ+

s

� �T *Xt*φ
+
w + φ+

s

� �T *Xt*φ
�
w + φ�

s

� �T *Xt*φ
+
w + φ�

s

� �T *Xt*φ
�
w can all be

obtained which produces the measurement value yt for the joint
spatial-spectral measurement φT

s *Xt*φw. In addition, because
φ+

w +φ�
w = Iw where Iw is an all 1 vector, the sumof every pair of original

and spectral complementary patterns φT
s *Xt* φ+

w +φ�
w

� �
produces a

pure spatial modulation result for calculation of optical flow of the
grayscale video.

RC block and the LSTM network
The so-called “RC block” in the reconstruction neural networks con-
tains the feature extraction part and image reconstruction part con-
nected by a convolution layer. The feature maps generated during
feature extraction are concatenated with those generated in the image
reconstruction part. Here, concatenation is used here instead of
summation according to experimental results. The feature extraction
part comprises of four feature encoding blocks (FEBs). Each FEB con-
tains three convolutional layers of 3 × 3 kernel each followed by a
rectified linear unit (ReLU). Each convolutional layer generates 64-
channel feature maps. The image reconstruction part contains four
feature decoding blocks (FDBs). Each FDB consists of three convolu-
tional layers, where the first layer has 1 × 1 kernels and the other two
layers has 3 × 3 kernels. Each convolutional layer generates 64-channel
feature maps followed by ReLU. For the CNN module in grayscale
video reconstruction network and for the hyperspectral frame recon-
struction network, we use 11, 8, and 6 RCblocks for compression ratios
of 100, 25, and 10, respectively.

We enforce the RC block to predict the residual by adding a
residual connection that adds the block input to the block output,
since residual learning enables fast and stable training. We do not use
any pooling layer or up-sampling layer to avoid losing image details.
Different RC blocks in the same network are enforced to share the
same parameters to avoid over-fitting. Besides, we introduce the
enhancement of additional residual connections which add the net-
work input to the output of every RC block to utilize the input
information in every stage of the network information flow for
improved reconstruction quality. Furthermore, instead of using the
simple residual connection, we propose the improvement of adding
a weight to it. Therefore, every residual connection in the networks
has an individually learnable weight, which increases network flex-
ibility while imposing little computation burden. The long-short-
term memory (LSTM) network module takes as input the output of
the same pretrained CNN module for 5 adjacent videos frames
xt�4, xt�3, xt�2, xt�1, xt and outputs 5 reconstructed grayscale video
frames. The LSTM network has two hidden layers. The size of output
of each hidden layer is 4 × 32 × 32. The LSTM network learns the
temporal correlation and implicit motion estimation between the 5
frames and outputs enhanced video frames based on the CNN
module output.

Data availability
Thedatasets used for thedeep learning approacharepublicly available
from the following sources. The CAVE dataset can be obtained at

https://www.cs.columbia.edu/CAVE/databases/multispectral/. The
Harvard dataset can be obtained at http://vision.seas.harvard.edu/
hyperspec/d2x5g3/.

Code availability
The code for the reconstruction algorithms in this study is available
from the corresponding author upon reasonable request.

References
1. Candès, E. J. et al. Compressive sampling. In Proceedings of the

International Congress of Mathematicians, 3, 1433–52 (Madrid,
Spain, 2006).

2. Donoho, D. L. Compressed sensing. IEEE Trans. Inf. Theory 52,
1289–1306 (2006).

3. Baraniuk, R. G. Compressive sensing [lecture notes]. IEEE Signal
Process. Mag. 24, 118–121 (2007).

4. Duarte, M. F. et al. Single-pixel imaging via compressive sampling.
IEEE Signal Process. Mag. 25, 83–91 (2008).

5. Gehm, M. & Brady, D. Compressive sensing in the eo/ir. Appl. Opt.
54, C14–C22 (2015).

6. Takhar, D. et al. A new compressive imaging camera architecture
using optical-domain compression. In Computational Imaging IV,
6065, 43– 52 (SPIE, 2006).

7. Radwell, N. et al. Single-pixel infrared and visible microscope.
Optica 1, 285–289 (2014).

8. Chan, W. L. et al. A single-pixel terahertz imaging system based on
compressed sensing. Appl. Phys. Lett. 93, 121105 (2008).

9. Shi, X. et al. Image quality enhancement in low-light-level ghost
imaging using modified compressive sensing method. Laser Phys.
Lett. 15, 045204 (2018).

10. Li, C., Sun, T., Kelly, K. F. & Zhang, Y. A compressive sensing and
unmixing scheme for hyperspectral data processing. IEEE Trans.
Image Process. 21, 1200–1210 (2011).

11. Bian, L. et al. Multispectral imaging using a single bucket detector.
Sci. Rep. 6, 1–7 (2016).

12. Wang, Y., Suo, J., Fan, J. & Dai, Q. Hyperspectral computational
ghost imaging via temporal multiplexing. IEEE Photonics Technol.
Lett. 28, 288–291 (2015).

13. Li, Z. et al. Efficient single-pixel multispectral imaging via non-
mechanical spatio-spectral modulation. Sci. Rep. 7, 1–7 (2017).

14. Xu, Y., Giljum, A. & Kelly, K. F. A hyperspectral projector for simul-
taneous 3d spatial and hyperspectral imaging via structured illu-
mination. Opt. Express 28, 29740–29755 (2020).

15. Xu, Y. et al. Compressive hyperspectral microscopy of scattering
and fluorescence of nanoparticles. J. Phys. Chem. C 126,
2614–2626 (2022).

16. Sankaranarayanan, A.C. et al. Videocompressive sensing for spatial
multiplexing cameras using motion-flow models. SIAM J. Imaging
Sci. 8, 1489–1518 (2015).

17. Goldstein, T., Xu, L., Kelly, K. F. & Baraniuk, R. The stone transform:
Multi-resolution image enhancement and compressive video. IEEE
Trans. Image Process. 24, 5581–5593 (2015).

18. Kapoor, A., Viswanathan, R. & Jain, P. Multilabel classification using
Bayesian compressed sensing. Adv. Neural Inf. Process. Syst.
Vol. 25 (2012).

19. Xu, Y., Liu,W.&Kelly, K. F. Compresseddomain imageclassification
using a dynamic-rate neural network. IEEE Access 8,
217711–217722 (2020).

20. Della Porta, C. J., Bekit, A. A., Lampe, B. H. & Chang, C.-I. Hyper-
spectral image classification via compressive sensing. IEEE Trans.
Geosci. Remote Sens. 57, 8290–8303 (2019).

21. Chen, J., Xu, Y., Liyang, L. & Kelly, K. Deep learning for compressive
infrared and hyperspectral machine vision. In 2018 IEEE Research
and Applications of Photonics In Defense Conference (RAPID), 1–4
(IEEE, 2018).

Article https://doi.org/10.1038/s41467-024-45856-1

Nature Communications |         (2024) 15:1456 13

https://www.cs.columbia.edu/CAVE/databases/multispectral/
http://vision.seas.harvard.edu/hyperspec/d2x5g3/
http://vision.seas.harvard.edu/hyperspec/d2x5g3/


22. Beck, A. & Teboulle, M. A fast iterative shrinkage-thresholding
algorithm for linear inverse problems. SIAM J. Imaging Sci. 2,
183–202 (2009).

23. Blumensath, T. & Davies, M. E. Iterative hard thresholding for
compressed sensing. Appl. Comput. Harmon. Anal. 27,
265–274 (2009).

24. Candès, E. J., Romberg, J. & Tao, T. Robust uncertainty principles:
Exact signal reconstruction from highly incomplete frequency
information. IEEE Trans. Inf. Theory 52, 489–509 (2006).

25. Daubechies, I., DeVore, R., Fornasier, M. & Güntürk, C. S. Iteratively
reweighted least squares minimization for sparse recovery. Com-
mun. Pure Appl. Math. 63, 1–38 (2010).

26. Li, D., Wang, X. & Kong, D. Deeprebirth: Accelerating deep neural
network execution on mobile devices. In Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 32 (2018).

27. Needell, D. & Tropp, J. A. Cosamp: Iterative signal recovery from
incomplete and inaccurate samples. Appl. Comput. Harmon. Anal.
26, 301–321 (2009).

28. Tropp, J. A. & Gilbert, A. C. Signal recovery from random mea-
surements via orthogonal matching pursuit. IEEE Trans. Inf. Theory
53, 4655–4666 (2007).

29. Goldstein, T., Li, M., Yuan, X., Esser, E. & Baraniuk, R. Adaptive
primal-dual hybrid gradient methods for saddle-point problems.
arXiv preprint arXiv:1305.0546 (2013).

30. Metzler, C., Mousavi, A. & Baraniuk, R. Learned d-amp: Principled
neural network based compressive image recovery.Adv. Neural Inf.
Process. Syst. Vol. 30 (2017).

31. Huang, L., Luo, R., Liu, X. & Hao, X. Spectral imaging with deep
learning. Light Sci. Appl. 11, 61 (2022).

32. Zhang, W. et al. Deeply learned broadband encoding stochastic
hyperspectral imaging. Light Sci. Appl. 10, 108 (2021).

33. Wang, L., Sun, C., Fu, Y., Kim, M. H. & Huang, H. Hyperspectral
image reconstruction using a deep spatial-spectral prior. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, 8032–8041 (2019).

34. Xu, K. & Ren, F. Csvideonet: A real-time end-to-end learning fra-
mework for high-frame-rate video compressive sensing. In 2018
IEEEWinter Conference onApplications of Computer Vision (WACV),
1680–1688 (IEEE, 2018).

35. Willett, R. M., Duarte, M. F., Davenport, M. A. & Baraniuk, R. G.
Sparsity and structure in hyperspectral imaging: Sensing, recon-
struction, and target detection. IEEE Signal Process. Mag. 31,
116–126 (2013).

36. Fairbairn, N., Christofidou, A., Kanaras, A. G., Newman, T. A. &
Muskens, O. L. Hyperspectral darkfieldmicroscopyof single hollow
gold nanoparticles for biomedical applications. Phys. Chem. Chem.
Phys. 15, 4163–4168 (2013).

37. Sinclair, M. B., Haaland, D. M., Timlin, J. A. & Jones, H. D. Hyper-
spectral confocal microscope. Appl. Opt. 45, 6283–6291 (2006).

38. Gehm,M. E., John, R., Brady, D. J.,Willett, R.M.&Schulz, T. J. Single-
shot compressive spectral imaging with a dual-disperser archi-
tecture. Opt. Express 15, 14013–14027 (2007).

39. Lin, X., Wetzstein, G., Liu, Y. & Dai, Q. Dual-coded compressive
hyperspectral imaging. Opt. Lett. 39, 2044–2047 (2014).

40. Lin, X., Liu, Y., Wu, J. & Dai, Q. Spatial-spectral encoded compres-
sive hyperspectral imaging. ACM Trans. Graph. 33, 1–11 (2014).

41. Golub, M. A. et al. Compressed sensing snapshot spectral imaging
by a regular digital camera with an added optical diffuser. Appl.
Opt. 55, 432–443 (2016).

42. Oiknine, Y., August, I. & Stern, A. Multi-aperture snapshot com-
pressive hyperspectral camera. Opt. Lett. 43, 5042–5045 (2018).

43. Wang, Z. et al. Single-shot on-chip spectral sensors based on
photonic crystal slabs. Nat. Commun. 10, 1020 (2019).

44. Yako, M. et al. Video-rate hyperspectral camera based on a CMOS-
compatible random array of Fabry–Pérot filters. Nat. Photonics 17,
218–223 (2023).

45. Saragadam, V. &Sankaranarayanan, A. C. KRISM—Krylov subspace-
based optical computing of hyperspectral images. ACM Trans.
Graph. 38, 1–14 (2019).

46. Saragadam, V. et al. SASSI—super-pixelated adaptive spatio-
spectral imaging. IEEE Trans. Pattern Anal. Mach. Intell. 43,
2233–2244 (2021).

47. Soldevila, F. et al. Giga-voxel multidimensional fluorescence ima-
ging combining single-pixel detection and data fusion. Opt. Lett.
46, 4312–4315 (2021).

48. Hahamovich, E., Monin, S., Hazan, Y. & Rosenthal, A. Single pixel
imaging at megahertz switching rates via cyclic hadamard masks.
Nat. Commun. 12, 4516 (2021).

49. August, Y., Vachman, C., Rivenson, Y. & Stern, A. Compressive
hyperspectral imagingby randomseparable projections in both the
spatial and the spectral domains. Appl. Opt. 52, D46–D54 (2013).

50. Kilcullen, P., Ozaki, T. & Liang, J. Compressed ultrahigh-speed sin-
gle-pixel imaging by swept aggregate patterns. Nat. Commun. 13,
7879 (2022).

51. Gutiérrez-Zaballa, J. et al. (2023). On-chip hyperspectral image
segmentation with fully convolutional networks for scene under-
standing in autonomous driving. J. Syst. Arch. 139, 102878 (2023).

52. Martins, G. B., Mahieu-Williame, L., Baudier, T. & Ducros, N. Open-
Spyrit: an ecosystem for open single-pixel hyperspectral imaging.
Opt. Express 31, 15599–15614 (2023).

53. Chan, S. H., Khoshabeh, R., Gibson, K. B., Gill, P. E. & Nguyen, T. Q.
An augmented Lagrangian method for total variation video
restoration. IEEE Trans. Image Process. 20, 3097–3111 (2011).

54. Le Montagner, Y., Angelini, E. & Olivo-Marin, J.-C. Video recon-
struction using compressed sensing measurements and 3d total
variation regularization for bio-imaging applications. In 2012 19th
IEEE International Conference on Image Processing, 917–920
(IEEE, 2012).

55. Harmany, Z. T., Marcia, R. F. & Willett, R. M. Compressive coded
aperture keyed exposure imaging with optical flow reconstruction.
arXiv preprint arXiv:1306.6281 (2013).

56. Horn, B. K. & Schunck, B. G. Determiningopticalflow.Artif. Intell. 17,
185–203 (1981).

57. Baraniuk, R. G. et al. Compressive video sensing: Algorithms,
architectures, and applications. IEEE Signal Process. Mag. 34,
52–66 (2017).

58. León-López, K. M., Carreno, L. V. G. & Fuentes, H. A. Temporal
colored coded aperture design in compressive spectral video
sensing. IEEE Trans. Image Process. 28, 253–264 (2018).

59. Liu, C. et al. Beyond pixels: exploring new representations and
applications for motion analysis. Ph.D. thesis, Massachusetts Insti-
tute of Technology (2009).

60. Goldstein, T., Li, M. & Yuan, X. Adaptive primal-dual splitting
methods for statistical learning and image processing. In Adv.
Neural Inf. Process. Syst., 2089–2097 (2015).

61. Yasuma, F.,Mitsunaga, T., Iso, D. &Nayar, S. K. Generalized assorted
pixel camera: postcapture control of resolution, dynamic range,
and spectrum. IEEE Trans. Image Process. 19, 2241–2253 (2010).

62. Chakrabarti, A. & Zickler, T. Statistics of real-world hyperspectral
images. In CVPR 2011, 193–200 (IEEE, 2011).

63. Wang, Z., Bovik, A. C., Sheikh, H. R. & Simoncelli, E. P. Image quality
assessment: from error visibility to structural similarity. IEEE Trans.
Image Process. 13, 600–612 (2004).

64. Kruse, F. A. et al. The spectral image processing system (SIPS)—
interactive visualization and analysis of imaging spectrometer data.
Remote Sensing Environ 44, 145–163 (1993).

Article https://doi.org/10.1038/s41467-024-45856-1

Nature Communications |         (2024) 15:1456 14



65. Klein, Y., Schori, A., Dolbnya, I. P., Sawhney, K. & Shwartz, S. X-ray
computational ghost imaging with single-pixel detector. Opt.
Express 27, 3284–3293 (2019).

66. Liang, J., Gao, L., Li, C. & Wang, L. V. Spatially Fourier-encoded
photoacoustic microscopy using a digital micromirror device.Opt.
Lett. 39, 430–433 (2014).

67. Torke, P. R., Nuster, R. & Paltauf, G. Photoacoustic computational
ghost imaging. Opt. Lett. 47, 8951 (2022).

68. Zhao, W. et al. Ultrahigh-speed color imaging with single-pixel
detectors at low light level. Phys.Rev. Appl. 12, 034049 (2019).

69. Gong, W. et al. Three-dimensional ghost imaging lidar via sparsity
constraint. Sci. Rep. 6, 26133 (2016).

70. Sun, M.-J. et al. Single-pixel three-dimensional imaging with time-
based depth resolution. Nat. Commun. 7, 12010 (2016).

71. Chen,Q., Chamoli, S. K., Yin, P.,Wang, X. &Xu, X. Imagingof hidden
object using passive mode single pixel imaging with compressive
sensing. Laser Phys. Lett. 15, 126201 (2018).

72. Sankaranarayanan, A.C. et al. Videocompressive sensing for spatial
multiplexing cameras using motion-flow models. SIAM J Imaging
Sci. 8, 1489–1518 (2015).

Acknowledgements
This research has been supported by theW.M. Keck Foundation and the
National Science Foundation (NSF) (Grant #CHE-1610453). The authors
thank Prof. Richard G. Baraniuk from Rice University for helping bring
about collaboration between the authors.

Author contributions
Y.X. conceived and developed the deep learning reconstruction fra-
mework including principles and algorithms, designed and performed
relevant experiments and simulations, analyzed data, and wrote the
manuscript. L.L. developed the 4DTV reconstruction approach, per-
formed relevant experiments and simulations, analyzed data, and con-
tributed to the first draft. K.K. conceived and initiated the research. V.S.
contributed to discussion and the preparation of the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-45856-1.

Correspondence and requests for materials should be addressed to
Yibo Xu.

Peer review information Nature Communications thanks Nicolas
Ducros, Lizhi Wang and the other, anonymous, reviewer(s) for their
contribution to the peer review of this work. A peer review file is avail-
able.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-45856-1

Nature Communications |         (2024) 15:1456 15

https://doi.org/10.1038/s41467-024-45856-1
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	A compressive hyperspectral video imaging system using a single-pixel detector
	Results
	Optics and hardware
	CS-based Joint Spatial-Spectral Encoding
	Optical flow assisted 4DTV regularization for hyperspectral video reconstruction
	Results of optical flow-assisted 4DTV reconstruction
	Deep neural networks for hyperspectral video reconstruction
	Results of deep neural networks for hyperspectral video reconstruction

	Discussion
	Methods
	Complementary patterns
	RC block and the LSTM network

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




