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Mucosal host-microbe interactions associate
with clinical phenotypes in inflammatory
bowel disease

A list of authors and their affiliations appears at the end of the paper

Disrupted host-microbe interactions at the mucosal level are key to the
pathophysiology of IBD. This study aimed to comprehensively examine
crosstalk between mucosal gene expression and microbiota in patients with
IBD. To study tissue-specific interactions, we perform transcriptomic (RNA-
seq) and microbial (16S-rRNA-seq) profiling of 697 intestinal biopsies (645
derived from 335 patients with IBD and 52 from 16 non-IBD controls). Mucosal
gene expression patterns in IBD are mainly determined by tissue location and
inflammation, whereas the mucosal microbiota composition shows a high
degree of individual specificity. Analysis of transcript-bacteria interactions
identifies six distinct groups of inflammation-related pathways that are asso-
ciated with intestinal microbiota (adjusted P <0.05). An increased abundance
of Bifidobacterium is associated with higher expression of genes involved in
fatty acid metabolism, while Bacteroides correlates with increased metal-
lothionein signaling. In patients with fibrostenosis, a transcriptional network
dominated by immunoregulatory genes is associated with Lachnoclostridium
bacteria in non-stenotic tissue (adjusted P < 0.05), while being absent in CD
without fibrostenosis. In patients using TNF-α-antagonists, a transcriptional
network dominated by fatty acid metabolism genes is linked to Rumino-
coccaceae (adjusted P < 0.05). Mucosal microbiota composition correlates
with enrichment of intestinal epithelial cells, macrophages, and NK-cells.
Overall, these data demonstrate the presence of context-specific mucosal
host-microbe interactions in IBD, revealing significantly altered inflammation-
associated gene-taxa modules, particularly in patients with fibrostenotic CD
and patients using TNF-α-antagonists. This study provides compelling insights
into host–microbe interactions that may guide microbiota-directed precision
medicine and fuels the rationale for microbiota-targeted therapeutics as a
strategy to alter disease course in IBD.

Inflammatory bowel diseases (IBD), which encompass Crohn’s disease
(CD) and ulcerative colitis (UC), are chronic inflammatory diseases of the
gastrointestinal tract1. The pathogenesis of IBD is caused by a complex
interplay between inherited and environmental factors, gut microbiota

and the host immune system2,3. Alterations in gut microbiota composi-
tion and functionality are commonly observed in patients with IBD,
including decreased microbial diversity, decreased abundances of
butyrate-producing bacteria and increased proportions of pathobionts3,4.
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Disrupted host-microbe interactions are central to the patho-
genesis of IBD. Relationships between host genetics and the gut
microbiome have been studied in both healthy subjects and patients
with IBD. For example, we previously focused on host genome–gut
microbiota interactions in the context of IBD5. However, in order to
disentangle disease mechanisms that might underlie the etiology
and progression of IBD, more focus is needed on local effects, i.e. the
intestinal mucosa6. Modulation of host mucosal gene expression
by gut microbiota or effects of gene expression on microbial fitness
may expose mechanisms that contribute to IBD pathogenesis, knowl-
edge that could be utilized to explore novel therapeutic targets7.
Most studies, however, employ fecal sampling for microbiota char-
acterization, which precludes analysis of local interactions and their
immediate impact on host intestinal expression signatures. Other
studies examining mucosal gene expression–mucosal microbiome
associations in the context of IBD previously identified microbial
groups associated with host transcripts from immune-mediated and
inflammatory pathways7–10. In a longitudinal study, the chemokine
genes CXCL6 and CCL20 were negatively associated with the relative
abundances of Eubacterium rectale and Streptococcus, suggesting that
these bacteria are more susceptible to the actions of these
chemokines8. Another study found an inverse association between
host expression of DUOX2, which produces reactive oxygen species

(ROS), and the relative abundance of Ruminococcaceae, an association
that may suggest ROS-mediated antibacterial effects11. However, more
studies are needed to unravel IBD-associated interaction factors
among mucosa-attached microbiota and host intestinal-gene expres-
sion under different conditions (e.g. inflamed vs. non-inflamed tissue)
and across different patient phenotypes (e.g. disease location or
medication use).

Here we analyze 697 fresh-frozen intestinal biopsies derived from
335 patients with IBD and 16 non-IBD controls, and for the same
biopsies we generated both mucosal transcriptomic and microbial
characterization using bulk RNA-sequencing and 16S rRNA gene
sequencing, respectively. We combine both datasets and present a
comprehensive investigation of mutual mucosal host-microbe inter-
actions and by integrating these with extensive clinical characteristics
available. Following this approach, we aim to not only investigate
mucosal gene expressions or microbiota associations with clinical
phenotypes of IBD, but also study the altered host–microbe interac-
tions while disentangling disease-, location- and inflammation-specific
associations (Fig. 1). Finally, we replicate our main results in data from
an independent, publicly available cohort8. Such comprehensive study
of mucosal host–microbe interactions could broaden our under-
standing of the local inflammatory responses and potentially guide
microbiome-directed therapies.

Fig. 1 | Methodological workflow of the study. The study cohort consisted of 335
patientswith IBD (CD: n = 181, UC: n = 154) and 16 non-IBD controls, fromwhom697
intestinal biopsies were collected (IBD: n = 645, controls: n = 52) and processed to
perform bulk mucosal RNA-sequencing and 16S gene rRNA sequencing. Detailed
phenotypic data were extracted from clinical records for all study participants. In
total, 245 ileal biopsies (CD: n = 179, UC: n = 57, controls: n = 9) and 452 colonic
biopsies (CD: n = 177, UC: n = 232, controls: n = 43) were included: 211 biopsies
derived from inflamed regions and 434 from non-inflamed regions. Ileal biopsies
from patients with UC were not included in downstream statistical analyses.
Mucosal gene expression and bacterial abundanceswere systematically analyzed in

relation to different (clinical) phenotypes: presence of tissue inflammation, Mon-
treal disease classification, medication use (e.g. TNF-α-antagonists) and dysbiotic
status. Module-based clustering, network analysis (Sparse-CCA and centrLCC ana-
lysis) and individual pairwise gene–taxa associations were investigated to identify
host–microbiota interactions indifferent contexts.Machine learningmethodswere
used to predict IBD subtypes. We then analyzed the degree to which mucosal
microbiota could explain the variation in intestinal cell type–enrichment (esti-
mated by deconvolution of bulk RNA-seq data). To confirm our main findings, we
used publicly available mucosal 16S and RNA-seq datasets for external validation8.
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Results
Cohort description
Demographic and clinical characteristics of the study population
on both biopsy and patient level are provided in Supplemental Results
(see Supplementary Information). In total, we included 645 intestinal
biopsies from 335 patients with IBD and 52 intestinal biopsies from 16
non-IBD controls. Biopsies were derived from the colon (64.8%) and
ileum (35.2%), and patients with CD and UCwere similarly represented
among inflamed (CD: 54.5%, UC: 45.5%) and non-inflamed (CD: 55.5%,
UC: 44.5%) biopsies. The proportion ofmales and smokerswere higher
among controls (both P < 0.01, respectively). The remaining patient
characteristics were evenly distributed among groups without sig-
nificant differences, except for some types of medications which are
naturally more commonly used in either patients with CD or UC.

Mucosal gene expression reflects tissue specificity, inflamma-
tory status and disease subtypes
First, we aimed to examine the main determinants of mucosal gene
expression patterns. Principal component analysis (PCA) showed that
the transcriptional patterns could be stratified by biopsy location
(ileum vs. colon), inflammatory status (non-inflamed vs. inflamed) and
IBD subtype (CD vs. UC) in the first two components (Fig. 2A). Tissue
location and inflammatory status was significantly associated with the

first two PCs (biopsy location, ileum vs. colon: PWilcoxon = 2.87 × 10−12;
biopsy inflammatory status, P = 7.15 × 10−27), whereas diagnosis (CD vs.
UC vs. controls) was associated with the second PC (P = 2.14 × 10−16).

We then investigated dysregulated gene expressions under
inflammatory status. Three differential expression comparisons
between non-IBD controls, non-inflamed and inflamed biopsies stra-
tified by diagnosis and tissue location (ileal CD, colonic CD and UC)
revealed 3157, 3486, and 6710 differentially expressed genes (DEGs),
respectively (adjusted P <0.05) (Fig. 2B, Supplementary Data 2, Sup-
plemental Methods). These DEGs fall mainly within interleukin sig-
naling, neutrophil degranulation and extracellular matrix (ECM)
organization pathways (adjusted P Fisher < 0.05, Fig. S1A). In total, 1441
DEGs were identified in all three comparisons, including known upre-
gulated genes in inflammation such as DUOX2, MUC1, JAK2, OSM and
IL17A (Fig. 2C), while the down-regulated genes under inflammation
were enriched in drug metabolism (Gene Set Enrichment Analysis,
adjusted P <0.05, Fig. S1B). We also observed an enrichment of these
DEGs in IBD-associated genomic loci (PFisher = 9.6 × 10−9)2.

The significant association between diagnosis and gene expres-
sion PCs suggested distinct molecular mechanisms between CD and
UC (Fig. 2A). When comparing inflamed colonic tissue from patients
withCDandUC, 1,466genesweredifferentially abundant, ofwhich733
(50%) were overrepresented in CD and 733 (50%) in UC (adjusted

Fig. 2 |Mucosalhost gene expressionpatterns in intestinal tissue frompatients
with IBD and controls. A Principal component analysis, labeled by tissue location
(ileum/colon), inflammatory status (non-inflamed/inflamed) and disease diagnosis
(control/CD/UC), shows that variation in host gene expression can be significantly
explained by tissue location and inflammatory status (Wilcoxon signed-rank test).
B Venn diagram showing the number of tissue inflammation-associated genes for
all three comparisons and how many of them were shared among these compar-
isons: blue, ileal tissue from controls vs. non-inflamed tissue from patients with CD
vs. inflamed tissue from patients with CD (n = 3157), yellow, colonic tissue from
controls vs. non-inflamed tissue from patients with CD vs. inflamed tissue from
patients with CD (n = 3486) and red, colonic tissue from controls vs. non-inflamed
tissue from patients with UC vs. inflamed tissue from patients with UC (n = 6710)

(adjusted P <0.05 consideringmultiple comparisons). C Relevant examples of four
inflammation-associated genes, DUOX2, JAK2, MUC1 and IL17A, illustrating the
presence of tissue inflammation (linear regression, t-test, adjusted P <0.05). The
sample sizes from left to right are9, 115, 65, 43, 126, 50, 43, 137 and96. CDi, inflamed
tissue from patients with Crohn’s disease. CD-non, non-inflamed tissue from
patients with Crohn’s disease. PC, principal component. UCi, inflamed tissue from
patients with ulcerative colitis. UC-non, non-inflamed tissue from patients with
ulcerative colitis. Box plots showmedians and the first and third quartiles (the 25th
and 75th percentiles), respectively. The upper and lower whiskers extend the lar-
gest and smallest value no further than 1.5 × IQR. Source data are provided as a
Source Data file.
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P <0.05) (Supplementary Data 3). Pathway enrichment analysis
showed the Notch-1 signaling pathway to be highly upregulated in CD
compared to UC, whereas vitamin, cofactor and lipoprotein metabo-
lism pathways were upregulated in UC (Fig. S1C)12,13. Thus, the under-
lying molecular pathways largely differed between inflamed colonic
CD and UC. Subsequent cell type–deconvolution revealed that plasma
cells, endothelial cells and Th2-lymphocytes were significantly
increased in UC compared with CD (adjusted P <0.05, Supplementary
Data 4), further suggesting that different immunological mechanisms
are involved in inflammation in CD and UC.

Mucosal microbiota composition is highly personalized
Next, we analyzed the mucosal microbiota composition within biop-
sies. The most common bacterial phylum observed across all tissue
samples was Bacteroidetes (CD: 58%, UC: 58%, controls: 66%), followed
by Firmicutes (CD: 27%, UC: 33%, controls: 23%) and Proteobacteria
(CD: 14%, UC: 8%, controls: 9%). Interestingly, across our cohort, few
differentially abundant taxa were observed between colonic and ileal
biopsies, and this appeared to be independent of inflammation (Fig.
S2). More specifically, only seven bacterial taxa were differentially
abundant between patients and controls (Supplementary Data 5, 6),

Fig. 3 | Overall characterization of mucosa-attached microbiota in patients
with IBD and controls. AMicrobial alpha-diversity (Shannon index) was lowest in
samples from patients with CD (n = 356) compared to patients with UC (n = 289)
and non-IBD controls (n = 52) (Wilcoxon signed-rank test). B PCA plot based on
Aitchison’s distances demonstrates the microbial dissimilarity of the mucosa-
attached microbiota (colors as in A). C The degree of microbial dissimilarity (as
measured by Aitchison’s distances) is significantly higher in biopsies from patients
with CD (n = 356), followed by patients with UC (n = 289) and non-IBD controls
(n = 52) (Wilcoxon signed-rank test). D, Microbial dissimilarity is higher in samples
from different individuals (inter-individual) when compared to paired samples
from the same individual (intra-individual), which includes paired inflamed–non-
inflamed tissue from ileumandcolon (leftpanel, inter-colon:n = 11,430, inter-ileum:
n = 7377, intra: n = 203), paired colonic tissue samples from inflamed and non-
inflamed areas (middle panel, inter-inflamed: n = 7372, inter-non-inflamed:
n = 8369, intra: n = 166) and paired ileal tissue samples from inflamed and non-

inflamed areas (right panel, inter-inflamed: n = 1590, inter-non-inflamed: n = 1592,
intra: n = 73) (Wilcoxon signed-rank test). E Hierarchical analysis performed using
an end-to-end statistical algorithm (HAllA) at genus level indicates the main phe-
notypic factors that correlate with intestinal mucosal microbiota composition.
Significantly associated phenotypic factors were plotted after BH-approach cor-
rection. Heatmap color palette indicates the relative pairwise normalized mutual
information (NMI). Numbers in cells identify significant pairs of features (pheno-
typic factors vs. bacterial taxa) during hierarchical analysis, where the numbers
represent the descending order of statistically significant block associations based
on P values in each block. White dots in cells indicate themarginal significance of a
particular pair of features. CD Crohn’s disease. PCA principal component analysis.
UC ulcerative colitis. Box plots show medians and the first and third quartiles (the
25th and 75th percentiles), respectively. The upper and lower whiskers extend the
largest and smallest value no further than 1.5 × IQR. Source data are provided as a
Source Data file.
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which might however be driven by the relatively low number of non-
IBD controls8,14,15.

Shannondiversitywas significantly lower in samples frompatients
with CD compared to UC and non-IBD controls (P = 2.75 × 10−16 and
P =0.03, respectively, Fig. 3A). This difference was still present when
comparing only colonic biopsies from patients with CD to those from
UC, indicating that this difference was not solely attributable to ileal
CD (Fig. S3). Differences in microbial communities between tissue
samples were evaluated by quantifying the Aitchison’s distance
(Fig. 3B, C). Similarly, in the HMP2 cohort, Shannon diversity was
lowest in biopsy samples of patients with CD compared to patients
withUCand non-IBD controls in data from theHMP2 cohort, alongside
other comparable findings (Fig. S4)8.

Microbial dissimilarity was lowest in paired tissue samples from
the same individuals (Fig. 3D). Hierarchical clustering analysis per-
formed on paired samples demonstrated a clear tendency of these
samples to cluster together, a finding that could be well-replicated in
the HMP2 data (Fig. S5A)8. Inter-individual variability in microbial
communities was higher than that in intestinal gene expressions,
confirmedby PERMANOVA analysis andmerging all samples (Fig. S5B).
Overall, our data demonstrate that the composition of the mucosal
microbiota is highly personalized and that inter-individual variability
dominates over the effects of tissue location or inflammatory status.

Similarly, inter-individual variability in mucosal microbiota composi-
tion dominated over tissue location and -inflammation effects in the
HMP2 cohort (Fig. S5B)8.

We then aimed to identify phenotypic factors associated with the
individual microbiota using hierarchical association testing16 (Fig. 3E,
Supplementary Data 7). Analysis at genus level revealed that the main
factors are stricturing disease in CD (fibrostenotic CD, Montreal B2),
usage of TNF-α-antagonists, age at the time of sampling, age of onset
and the comparisons of patients with CD vs. controls, UC vs. controls
and CD vs. UC. In contrast, inflammatory status, tissue location, and
disease location (according to the Montreal classification) did not
show a significant effect. Similarly, age at the time of sampling, the
comparisons of patients with CD vs. controls, UC vs. controls and CD
vs. UC were the main factors associated with mucosal microbiota
composition in the HMP2 cohort (Fig. S5C).

Mucosal gene expression and microbiota classify IBD subtypes
Since gene expression- and microbial differences were observed
between IBD subtypes, we aimed to investigate whether combining
mucosal gene expression and microbiota could predict IBD pheno-
types using interpretable machine learning (XGBoost, see Methods).
To avoid the effect of repeated measurements, we restricted these
analyses to unique samples randomly selected fromeach patient. First,

Fig. 4 | Mucosal host–microbe interaction modules in the context of IBD.
Sparse canonical correlation analysis (sparse-CCA) was performed across inflamed
and non-inflamedbiopsies to identify distinct correlationmodules ofmucosal gene
expression vs. mucosal microbiota. Using 1441 inflammation-related genes and 131
microbial taxa as input, we identified seven distinct pairs of significantly correlated
gene-microbe components in non-inflamed tissue and six distinct pairs in inflamed
tissue (adjusted P <0.05). A Heatmap showing significant component pairs from
sparse-CCA analysis consisting of microbial taxa (horizontal axis) and host path-
ways (vertical axis) to which the involved genes were annotated (Spearman cor-
relation, adjusted P <0.05). Yellow boxes and dots indicate shared significant
component pairs between inflamed and non-inflamed tissues, red colors indicate

significant componentpairs only in inflamed tissues, blue colors indicate significant
component pairs only in non-inflamed tissues, and white colors indicate the
absence of significant correlations. Dot sizes represent the degree of statistical
significance of correlated component pairs. B Examples of inverse correlations
existing between key genes involved in collagen and ECM biosynthesis (COL18A1,
COL1A2, COL4A1, and COL5A2) and the mucosal abundance of Erysipelotrichaceae
UCG 003 taxon, representing the significant component pairs observed in both
inflamedandnon-inflamed tissues asvisualized in the right upper cornerof panelA.
The shaded areas represent the 95% confidence intervals for predictions from a
linear model. Source data are provided as a Source Data file.
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we analyzed the predictive capacity of individual datasets in classifying
IBD subtypes, starting with gene expressions since these showed the
most prominent differences among IBD subtypes. Indeed, gene
expressions showed the best predictive performance in distinguishing
CD from UC compared with basic demographic factors (age, sex, BMI)
and microbiota (gene expression: AUCtest = 0.74; microbial abun-
dance: AUCtest = 0.70; basic factors: AUCtest = 0.55) (Fig. S6A). Still, the
model performed better when combining gene expression and
mucosal microbiota (AUCtest = 0.80). Feature attribution was quanti-
fied by SHapley Additive exPlanations (SHAP) values. The top dis-
criminative features included the genes SLC5A12, NPSR1, PLXDC2 and
bacteria Bilophila and Lachnospira. However, Montreal classification
subtypes could not be accurately predicted, neither by single data
layers nor by combinations (e.g. Montreal behavior, maximum

AUCtest = 0.66; Montreal extension, maximum AUCtest = 0.66) (Fig.
S6B, C, Supplementary Data 8).

Distinct host-microbe interaction modules are identified in
relation to inflammation
Tissue inflammation is one of the main contributors to intestinal DEGs
(Fig. 2A, Fig. S5A). To detect how these DEGs interact with microbiota,
we focused on the 1,441 DEGs associated with tissue inflammation and
all the 131microbial taxa. Sparse canonical correlation analysis (sparse-
CCA) was performed using all biopsies stratified by their inflammatory
status and after regressing out potential confounders, including age,
sex, BMI, batch, location, andmedication. In total,we found six distinct
modules of genes in inflamed tissue and seven distinct modules of
genes in non-inflamed tissue that were significantly correlated with

Fig. 5 | Fibrostenotic CD and TNF-α-antagonist usage significantly alter
mucosal host–microbe interactions in the context of IBD. CentrLCC-network
analyses were performed to characterize altered mucosal host–microbe interac-
tions between different patient phenotypes. Overall, fibrostenotic CD (Montreal B2
vs. non-stricturing, non-penetrating CD, i.e. Montreal B1) and use of TNF-α-
antagonists (vs. non-users) demonstrated altered interaction networks. A Network
graphs showing an example of Lachnoclostridium-associated gene clusters in
patients with non-stricturing, non-penetrating CD (Montreal B1) (left) and patients
with fibrostenotic CD (Montreal B2) (right). Lachnoclostridiumwas the top bacteria
involved (covering 65% of total associations in non-stricturing, non-penetrating CD
and decreasing to 27% in fibrostenotic CD). Red dots indicate mucosal microbiota.
Gray dots indicate the genes annotated by Reactome pathways. Yellow lines indi-
cate positive associations between gene expression and bacterial abundances. Blue

lines indicate negative associations. Middle panel shows key examples that sig-
nificantly altered in the two patient groups, including genes involved in immu-
noregulatory interactions between lymphoid and non-lymphoid cells and tyrosine
kinase signaling (CD8A and CXCR5). Correlations were prioritized on statistical
significance. B Network graphs showing the example of microbiota–gene interac-
tion networks in patients not using TNF-α-antagonists (left) vs. patients using TNF-
α-antagonists (right). Ruminococcaceae UCG_002 was altered in interactions with
host genes in patients using TNF-α-antagonists. Middle panel shows key examples
of Ruminococcaceae UCG_002–gene interactions. These genes were involved in
general biological processes such as the cell cycle but also included genes involved
in fatty acid metabolism (PDK4 and ACAA1). Correlations were prioritized on sta-
tistical significance. The shaded areas represent the 95% confidence intervals for
predictions from a linear model. Source data are provided as a Source Data file.
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specific modules of bacterial taxa (adjusted P <0.05, Supplementary
Data 9-S12. To prioritize the key genes and bacteria, we performed
individual pairwise gene–bacteria associations, which revealed 15 and
59 significant gene–bacteria pairs in inflamed and non-inflamed tis-
sues, respectively (adjusted P <0.05, Supplementary Data 13). Details
on the most intriguing individual pairwise gene–bacteria associations
are discussed in Box 1. Furthermore, we confirmed the robustness of
the results wasnot affectedby the imbalance between the sample sizes
of inflamed and non-inflamed tissues through a downsampling
approach (Supplemental Results).

Mucosal Erysipelotrichaceae bacteria interact with collagen bio-
synthesis pathways. In the significant component pair one in inflamed
tissue and pair nine in non-inflamed tissue, a higher weighting of the
microbial component, representedby the family Erysipelotrichaceae, is
associatedwith lower expression of awide range of ECMgenes that are
involved in collagen biosynthesis, integrin cell surface interactions,
collagen chain trimerization, collagen fibril cross-linking, collagen
fibril assembly, ECM proteoglycans and ECM/collagen degrada-
tion (Fig. 4).

Mucosal anaerobic butyrate-producing bacteria positively corre-
late with transmembrane transport and inversely correlate with
collagen biosynthesis. In the significant component pair five in
inflamed tissue and component pair one in non-inflamed tissue, a
bacterial module mainly represented by commensal anaerobic
butyrate-producing bacterial taxa including Faecalibacterium, Rumi-
nococcaceae, Lachnospira, Agathobacter, Blautia, and more, is asso-
ciated with genes involved in transmembrane transport. The same
cluster of bacterial taxa was also associated with pathways related to
mRNA splicing and transport of bile salts and organic acids in inflamed
tissue, and inversely associated with collagen and ECM biosynthesis
pathways in non-inflamed tissues. In addition, among inflamed tissue,
the component pair ten is represented by mucosal lactic-acid-
producing bacteria including Streptococcaceae, Streptococcus, Veillo-
nellaceae, and Lactobacillales, which are bacteria that actively partici-
pate in physiological food digestion, particularly carbohydrate
fermentation. The gene module of this component pertains to path-
ways mainly related to the metabolism of water-soluble vitamins and
cofactors.

Mucosal Bacteroides and butyrate-producing bacterial taxa
associate with host interleukin signalling and metal ion response
pathways. Among non-inflamed tissue samples, the second pair of
components is mainly represented by Bacteroidetes and selected taxa
representing anaerobic butyrate-producing bacteria (e.g. Alistipes,
Faecalibacterium, Ruminococcaceae). Reduced expressions of a num-
ber of interferon signaling pathways (e.g. IFN-α, IFN-β and IFN-γ as well
as the IL-2, IL-4, IL-6, IL-10, and IL-12 signaling pathways) are associated
with higher weighting in this microbial component. In addition, metal
ion response and metallothionein (MT) pathways (e.g. metal ion
transcription factors MT1A, MT1E, MT1F, MT1G and others) are posi-
tively associated with this microbial component.

Patients with fibrostenotic CD exhibit a Lachnoclostridium-
associated gene network involved in immune regulation
After identifying host-microbiota modules in relation to tissue
inflammation, we next wondered whether specific interaction
patterns could reflect patient characteristics. Patients with fibroste-
notic CD (Montreal B2, n = 107) and patients using TNF-α-antagonists
(n = 113) exhibited differentially abundant microbial taxa compared
to patients without fibrostenotic CD (n = 244) and TNF-α-antagonist
non-users (n = 583) (Supplemental Methods), respectively. We there-
fore investigated intestinal gene-microbiota interactions in these
phenotypes.

Pairwise comparisons between patients with non-stricturing, non-
penetrating disease vs. fibrostenotic CD revealed 2639 differentially
expressed genes and five differentially abundant genera (adjusted
P <0.05, Supplementary Data 14). When examing their associations,
we observed 1405 individual gene–bacteria pairs in patients with non-
stricturing, non-penetrating CD, whereas 620 individual pairs were
found in patients with fibrostenoticCD (adjusted P < 0.05). Comparing
each bacteria-associated gene cluster between patient groups (adjus-
ted P <0.05, Methods, Supplementary Data 15), we identified four
distinct networks represented by mucosal Lachnoclostridium, Copro-
coccus, Erysipelotrichaceae and Flavonifractor. The largest network
was the Lachnoclostridium-gene cluster, which included 907 genes in
patients with non-stricturing, non-penetrating CD, and the connected
genes weremainly involved in cell activation pathways such as vesicle-
mediated cellular transport and membrane trafficking. In total, 166
genes were associated with Lachnoclostridium in patients with fibros-
tenotic CD (adjusted P < 0.05), involved in cellular immunoregulatory
interactions (e.g.CD8A,CLEC2B andCXCR5) and opioid signaling andG
alpha (s) signaling events (mediated via cAMP-dependent protein
kinases, e.g. POMC, GNG7 and GNG11) (Fig. 5A). We confirmed these
analyses through downsampling the number of samples of patients
with non-stricturing, non-penetrating CD to match the number of
samples from patients with fibrostenosing CD (Supplemental Results).
Notably, as the tissues investigated in our study were not derived from
fibrotic regions, our findings show that these distinct gene-microbiota
networks are already present in non-stenotic intestinal tissue.

Use of TNF-α-antagonists is associated with Ruminococcaceae-
associated gene interactions related to fatty acid metabolism
Subsequently, we investigated differences in mucosal host–microbe
interactions between all patients using TNF-α-antagonists and those
not using TNF-α-antagonists. Pairwise comparisons revealed that TNF-
α-antagonist use was significantly associated with three different
bacterial taxa, Faecalibacterium, Ruminococcaceae_UCG-002, and
Ruminococcaceae_UCG-005 (all showing reduced abundances in
users), and 513 different genes (adjusted P <0.05, Supplementary
Data 16). When examining associations, we observed 362 individual
gene–bacteria pairs in patients using TNF-α-antagonists and 256 indi-
vidual pairs in patients not using TNF-α-antagonists (adjusted
P <0.05). By comparing each taxa-associated gene cluster between
patients using and not using TNF-α-antagonists, we identified a single
cluster represented by mucosal Ruminococcaceae_UCG-002 that was
significantly altered in users vs. non-users (adjusted P <0.05, Supple-
mentaryData 17).Ruminococcaceae_UCG-002 bacteriawere associated
with 133 genes in non-users, and these genes were mainly enriched in
cell cycle–associated pathways (e.g. PRIM1 and PRIM2), including
mitosis-, prometaphase- and checkpoint-associated genes (Fig. 5B).
However, the Ruminococcaceae_UCG-002-associated genes in TNF-α-
antagonist users (adjusted P <0.05) were predominantly involved in
lipid/fatty acid metabolism (e.g. ACAA1, ACSL5 and PDK4), glycer-
ophospholipid biosynthesis and phospholipidmetabolism. Finally, we
replicated these analyses while downsampling the number of samples
of patients not using TNF-α-antagonists to match the number of
samples from patients using TNF-α-antagonists (Supplemental
Results).

Mucosal host-microbe interactions depend on individual
dysbiotic status
As patients with IBD suffer frommicrobial dysbiosis, we hypothesized
that the strength and/or direction of the individual expressed
gene–bacteria interactions may depend on the microbial community
(eubiosis vs dysbiosis). We therefore defined dysbiosis for all intestinal
biopsies based on dysbiosis scores (Fig. 6A, B, Methods). By using
interactionmodels, 2753 individual gene–bacteria interactions showed
significant alterations (interaction adjusted P < 0.05) (Fig. 6C,
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Supplementary Data 18). Permutation tests further confirmed that
these interactions were not observed by chance (Methods). For
example, expression of the PLAUR gene encoding for the urokinase
plasminogen activator surface receptor was positively associated with
Lachnospiraceae abundance, but this shifted to an inverse association
when only considering dysbiotic individuals. Another example is the
positive association between S100A8, which encodes calgranulin A,
and Lachnospiraceae, showing a negative association in individuals
with dysbiosis. Similar to the two previous examples, the observed
associations between the expression of IL1RN (encoding for the
interleukin-1 receptor antagonist protein), CXCL17 and Lachnospir-
aceae shifted from positive to negative among patients with dysbiosis.

Mucosal microbiota associate with variation in intestinal cell-
type enrichment
Gut barrier dysfunction and immune dysregulation are presented by
altered differentiation of a wide range of intestinal cells. We, therefore,
analyzed associations between mucosal microbiota and intestinal cell
types (Fig. 7, Fig. S7). Deconvolution of host gene expression data
revealed that mucosal microbial abundances were significantly asso-
ciated with the enrichment of specific cell types, most evidently with
intestinal epithelial cells, M1 macrophages, NK-cells and mucosal
eosinophils. These associations appeared evident within a combina-
tion of factors potentially contributing to the explained variation in
intestinal cell type enrichment, including basic factors like age, sex,
and BMI, as well as medication use, inflammatory status, and tissue
location (Fig. 7A). Tissue inflammatory status and location also rela-
tively strongly contributed to the variation inmost intestinal cell types.
Mucosal microbiota that were significantly associated with intestinal
epithelial cell enrichment typically belonged to the Firmicutes phylum,
including Agathobacter, Dialister, Lachnospira, Lachnoclostridium and
Ruminococcaceae (Fig. 7B, Supplementary Data 19).

Discussion
In this study, we show distinct mucosal host–microbe interactions
in intestinal tissue of patients with IBD. Mucosal gene expression
patterns in IBD are mainly determined by tissue location and inflam-
matory status and systematically demonstrate dysregulation of dis-
tinct inflammation-associated genes, even in endoscopically non-
inflamed tissue. Subsequently, we observe that the mucosal micro-
biota composition in patients is marked by high inter-individual
variability. The main focus of our analyses, however, was to compre-
hensively uncover host–microbe associations specific to tissue- and
patient characteristics.We identifymultiple gene-taxamodules related
to inflammation. Furthermore, specific interactions are significantly
altered in patients with fibrostenotic CD, patients using TNF-α-
antagonists and in patients with intestinal dysbiosis. Finally, we show
thatmucosalmicrobiota are significantly associatedwith intestinal cell
type composition, in particular with epithelial cells, macrophages and
NK cells.

Patients with CD and UC show differences in both intestinal gene
expressions and microbial community composition. At host tran-
scriptomic level, Notch-1 signaling pathways are upregulated in CD,
while genes involved in nutrient absorption and lipid metabolism are
downregulated. Activation of Notch-1 signaling has been driven by
lamina propria-residing CD4+-T-lymphocytes that induce intestinal
epithelial cell differentiation12. Notch-1 also confers protection against
the development of colorectal carcinoma via p53 signaling, thereby
promoting cell cycle arrests and cellular apoptosis12,17. Since UC
patients with long-lasting colonic inflammation have a higher risk of
developing IBD-associated colorectal carcinoma, we hypothesize that
downregulation of Notch-1 in these patients may potentially be
involved in carcinogenesis. However, this hypothesis remains spec-
ulative, since the enrichment score ratios of the genes involved in
these pathways are rather small.

Fig. 6 | Mucosal host–microbe interactions depend on individual dysbiotic
status. A PCA ofmucosal 16 S rRNA sequencing data shows that degree ofmucosal
dysbiosis scores. B Dysbiosis scores were generally higher among patients with CD
andUCcompared to non-IBD controls (Spearmancorrelation test).CKey examples
of individual gene–bacteria interactions that demonstrate a directional shift upon
dysbiotic samples (higher dysbiosis 90–100%) as compared to patients with

eubiotic samples (lower dysbiosis scores 0–90%) in IBD (linear regression model, t
test, adjusted P <0.05). Mucosal Lachnospiraceae bacteria positively associate with
the expressionof the PLAUR,CXCL17, IL1RN and S100A8genes. CD,Crohn’s disease.
PC, principal component. UC, ulcerative colitis. r, Spearman correlation coefficient.
The shaded areas represent the 95% confidence intervals for predictions from a
linear model. The Source data are provided as a Source Data file.
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Analysis of mucosal microbiota in patients with IBD reveals
reduced alpha-diversity, microbial similarity and marked inter-
individual variability that is particularly strong in CD but still present
to a lesser extent in UC. These observations corroborate those of
previously published mucosal 16S studies in IBD8,14,15. Moreover, our
findings align with a recent prospective meta-analysis study that

concluded that there is a sparse evidence for microbiota-driven dis-
crete disease subtypes within IBD18. Given the differences between CD
and UC, integration of intestinal transcriptome and microbiota still
yielded a reasonable discriminative power in this study.

IBD is characterized by heterogeneous clinical phenotypes
including intestinal inflammation, disease progression (e.g.

Fig. 7 | Mucosal microbiota associate with distinct intestinal mucosal
cell types. A Boxplots show the amount of variation in intestinal cell
type–enrichment that could be explained by a combination of factors. Heatmap
below shows the relative contribution of different factors in explaining this
intestinal cell type–enrichment, including ‘basic factors’ (age, sex and BMI), med-
ication use, tissue inflammatory status, tissue location and microbiota. Mucosal
microbiota contributed most to the variation in the enrichment of intestinal

epithelial cells, M1-macrophages, NK cells and eosinophils. B Boxplots showing the
contribution of the main bacterial taxa that explain the variation in mucosal
enrichment of intestinal epithelial cells, M1-macrophages and NK cells—the cell
types that interacted most strongly with the mucosal microbiota. Box plots show
medians and the first and third quartiles (the 25th and 75th percentiles), respec-
tively. The upper and lower whiskers extend the largest and smallest value no
further than 1.5 × IQR. Source data are provided as a Source Data file.
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fibrostenotic CD) and diverse treatments. We identify inflammation-
associated genes in fatty acid metabolism potentially interacting with
bifidobacteria, which align well with previous animal studies19–21. For
example, treatment with Bifidobacterium adolescentis IM38 attenuated
high fat diet–induced colitis in mice by inhibiting lipopolysaccharide
production, NF-κB activation and TNF-expression in colonic epithelial
cells20. Likewise, treatment with Bifidobacterium infantis ameliorated
DSS-induced colitis in rats, as evidenced by decreased expression of
malondialdehyde (MDA, a lipid peroxidation marker)21. These support
the ongoing quest for efficacious probiotic (bifidobacteria-containing)
supplements in patients with IBD22,23. We also observe that a decreased
Erysipelotrichaceae abundance was associated with higher expressed
intestinal ECM remodeling pathways. Erysipelotrichaceae has been
associated with the expansion of mesenteric adipose tissue (“creeping
fat”) in CD24. Erysipelotrichaceae translocated to mesenteric fat, pro-
moted fibrosis and stimulated tissue-remodeling, resulting in an adi-
pose tissue barrier that may prevent systemic translocation of
intestinal bacteria24. This phenomenon could potentially explain the
negative associations between expression of ECM remodeling and
Erysipelotrichaceae. Still, these findings should be cautiously inter-
preted alongside the relatively weak correlations observed between
involved genes and bacterial taxa.

Another key host–microbe interaction module in relation to
inflammation pertains to Bacteroides, which inversely (albeit weakly)
correlates with interleukin signaling and positively associates with
metal stress response transcription factors encoding for MTs. To
maintain cellular redox balance, MTs detoxify heavy metal ions and
scavenge ROS, thereby attenuating oxidative stress. Previous studies
have shown thatMTsmayprevent experimental colitis or act as danger
signals by mediating immune cell infiltration in the intestine25,26.
Although experimental evidence seems to be inconclusive, there is
ample evidence indicating a role for aberrantMT homeostasis in IBD27.
This mechanism depends on the intracellular accumulation of zinc,
which induces autophagy under chronic NOD2-stimulation. In IBD, the
mucosal microbiota may contribute to the regulation of MT expres-
sion, intracellular zinc homeostasis and autophagy, thereby regulating
intracellular bacterial clearance by intestinal macrophages. Findings
from this study may support a putative role for Bacteroides in mod-
ulating MT activation25–28. Again, however, the findings presented
surrounding this host-microbe interaction module should be cau-
tiously interpreted given the relatively weak correlations observed
between genes and bacterial taxa.

Along with the inflamed tissue effects, fibrostenotic CD and
patients using TNF-α-antagonists also contribute to the change of
crosstalk between host and mucosal microbiota. We observe a sub-
stantial decrease of Lachnoclostridium-associated genes in patients
with fibrostenotic CD that mainly participate in immune system
pathways. These findings suggest that Lachnoclostridium-associated
immunoregulatory expressionpatternsmayplay a role infibrostenotic
CD. Although little is known about the exact role of Lachnoclostridium
in IBD, these bacteria were recently strongly associated with the
development of colorectal cancer and with pulmonary fibrosis29–31. A
network of genes involved in (peroxisomal) fatty acid oxidation and
lipotoxicity, shows different associations with Ruminococcaceae UCG-
002 in patients using TNF-α-antagonists. Interestingly, multiple stu-
dies have observed that Ruminococcaceae increase after anti-TNF
therapy in patients with IBD32–35. One of these studies specifically
identified an association between the Ruminococcaceae UCG-002
group and responsiveness to TNF-α-antagonists, albeit not in relation
to host gene expression patterns33. Strikingly, many of these genes we
observe are controlled by the PPAR-γ transcription factor, a butyrate
sensor that may result in reduced lipotoxicity and reduced intestinal
inflammation through prevention of overgrowth of potentially
pathogenic bacteria36–38. These findings underscore the potential
relevance of PPAR-γ as a therapeutic target in IBD38.

Disease activity in IBD couldbe reflectedby dysbiotic statuswhich
reflects the perturbation of the intestinal microbial ecosystem8. By
defining the patients as being eubiotic or dysbiotic, we demonstrate
host–microbiota interactions that are putatively dependent on
intestinal dysbiosis, including the genes involved in immunological
tolerance and prevention of autoimmunity (e.g. bifidobacteria and
FOSL1/KLF2 expression), colorectal carcinogenesis (e.g. Anaerostipes
and SMAD4, Akkermansia and YDJC) and inflammatory signaling (e.g.
Oscillibacter and OSM expression). In addition, deconvolution of the
mucosal RNA-seq data reveals cell type–specific patterns of microbial
interactions thatwarrant further study, for example through single-cell
RNA-seq studies. In this regard, our findings generated from decon-
volution analysis should be carefully interpreted, since estimated cell-
type fractions did not originate from non-pathological intestinal tissue
and could skew the observed associations between mucosal micro-
biota abundances and intestinal cell-type enrichment.

Mucosal host–microbiota interactions have been investigated
previously in both cohort- (e.g. the HMP2 and Irish IBD) and experi-
mental studies7–11. Alongside several observations consistent with
previous findings, we identify many previously unidentified
host–microbe interactions. Differences in sample size, patient phe-
notypes and sample handling may be at least partially responsible for
these observations. In our study, large groups of gene–bacteria asso-
ciations are revealed that cover a wide range ofmolecularmechanisms
potentially relevant in the context of IBD, including immune response
pathways, cellular processes and a variety of metabolic pathways.
Moreover, our sample size enabled us to perform an integrative ana-
lysis with respect to the large disease heterogeneity and identify pre-
viously unknownhost–microbiota crosstalk related todifferent clinical
characteristics. However, several limitations also warrant recognition.
As our study is of cross-sectional nature, we cannot assess the long-
itudinal dynamics of host–microbe interactions to discover signatures
for therapy responsiveness or disease prognosis. Consequently, our
associative results cannot establish potential causality between
microbial abundances and host gene expression. Additionally, there
were limited numbers of non-IBD controls included in this studydue to
the difficulty to obtain these type of samples from healthy individuals.
Therefore, our primarily focus was to unravel the heterogeneity of
host-microbiota interactions among different clinical phenotypes in
IBD. The 16S-sequencing for microbial characterization also has lim-
itations when it comes to taxonomic resolution as compared to
metagenomic shotgun sequencing. Another limitation pertains to the
fact that we were not able to replicate all of our analyses in the vali-
dation dataset from the HMP2 cohort, since there was limited overlap
in clinical phenotypes and difference in sample size (and, conse-
quently, statistical power). Finally, bowel preparation prior to the
endoscopic procedure, cross-contamination between biopsy sites
during endoscopy, or differences in fecal vs. mucosal microbial pro-
filing can affect the mucosal microbiota composition8,14,15,39,40.

Our results demonstrate context-specific mucosal gene expres-
sions andmicrobiota in IBD. Most importantly, we revealed a complex
and heterogeneous interplay between host-microbiota patterns that is
concomitant with the strong impact of specific IBD patient traits. Our
findings may guide development of mechanistic studies (e.g.
host–microbe co-culture systems) that could provide functional con-
firmation of relevant pathophysiological gene–bacteria interactions
and serve as a resource for rational selection of therapeutic targets in
IBD. This study presents a large-scale, comprehensive landscape of
intestinal host–microbe interactions in IBD that could aid in guiding
drug development and provide a rationale for microbiota-targeted
therapy as a strategy to control disease course. For example, the gene-
microbe interaction modules identified in this study may help to
prioritize candidate bacterial species for pre- or probiotic modulation
and could facilitate patient stratification alongside such treatment.
Following this approach, therapeutics could be tailored to subgroups
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of patients who would benefit most from it based on their disease
characteristics. Future studies are warranted to focus on the integra-
tion of host–microbe interaction modules in prospective clinical trials
investigating their utility for predicting disease course and respon-
siveness to treatment and for stratifying patients to facilitate ther-
apeutic decision-making.

Methods
Study population
This study complies with all relevant ethical regulations and has been
approved by the Institutional Review Board (IRB) of the University
Medical Center Groningen (UMCG), Groningen, the Netherlands (in
Dutch: ‘Medisch Ethische Toetsingscommissie’, METc; IRB nos. 2008/
338 and 2016/424). The study was conducted according to the prin-
ciples of theDeclaration ofHelsinki (2013). Patientswith an established
diagnosis of IBD were included at the outpatient clinic of the UMCG
based on their participation in the 1000IBD biobank, for which
detailed phenotypic information and molecular profiles have been
generated41. Patients included in this study were at least 18 years old
and were enrolled from 2003–2019. Diagnosis of IBD was based upon
clinical, laboratory, endoscopic and histopathological criteria, of
which the latter criteria also was used to determine the inflammatory
status of collected biopsies. Detailed phenotypic data at the time of
sampling were collected for all patients (SupplementaryMethods). We
further included 52 biopsies from 16 healthy non-IBD controls who
underwent endoscopies because of clinical suspicion of intestinal
disease or within the context of colon cancer screening, which were all
negative. All participants provided written informed consent prior to
sample collection.

Mucosal RNA-sequencing and 16S rRNA gene sequencing
In total, 711 intestinal biopsies from 420 patients with IBD were col-
lected. These were immediately snap-frozen in liquid nitrogen by an
endoscopy nurse or research technician present during the endo-
scopic procedure. Biopsies from inflamed and non-inflamed areas
were taken from adjacent regions, and biopsy inflammatory status was
subsequently assessedhistologically by certifiedpathologists. Biopsies
were taken from ileal and colonic tissue in both patients with CD and
UC, albeit inflamed ileal biopsies from patients with UC (likely due to
backwash ileitis, n = 3) were excluded from the analyses. Biopsies were
stored at −80 °C until further processing. The RNA isolation procedure
and RNA-seq data processing steps are described in the Supplemental
Methods. Total DNA extraction using 0.25 g of the same intestinal
biopsies used for RNA sequencing was performed for 16S rRNA gene
sequencing, as described previously42–44. Descriptions of the PCR, DNA
clean-up, MiSeq library preparation, primers (Supplementary Data 1),
and 16S data processing are described in the Supplemental Methods.

Statistical analysis
Descriptive statistics. Descriptive data are presented as means ±
standard deviation (SD), medians [interquartile range, IQR] or pro-
portions n with corresponding percentages (%). Between-group com-
parisons were performed using Mann-Whitney U-tests, Pearson’s chi-
squared tests or Fisher’s exact tests (if n observations were <10).
Nominal P values ≤0.05 were considered statistically significant.

Mucosal gene expression analysis and microbial characterization.
Sample gene expression dissimilarity was calculated using Aitchison’s
distances after clr transformation using the R package Compositions
(v2.02). Generalized linear mixed models were used to assess the
associations between mucosal gene expression and clinical pheno-
types while controlling for potential confounders, which were deter-
mined fromour previous study, including age, sex, BMI, tissue location
and -inflammation, medication use (aminosalicylates, thiopurines and
steroids), and sample batch45. Moreover, the presence of multiple

biopsies per patient was accounted for by introducing a random effect
in the models. Microbial richness and evenness was determined by
calculating the Shannon index representing alpha-diversity of the gut
microbiota. Microbial dissimilarity of samples was also determined by
calculating Aitchison’s distances after clr transformation. Analysis of
paired samples from the same individuals was performed while com-
paring microbial features between inflammation status, disease loca-
tion and disease subtype using paired Wilcoxon tests. Factors
potentially influencing mucosal microbiota were determined using
Hierarchical All-against-All significance testing (HAllA)16. A detailed
description of these analyses are provided in the Supplementary
Methods.

Prediction of IBD subtypes using intestinal gene expression and
microbiota. We used eXtreme Gradient Boosting (R package xgboost,
v1.6.0.1) method to distinguish IBD subtypes, including CD vs. UC,
Montreal B1 vs B2, andMontreal E2 vs E3. The outcomes were selected
based on a minimum sample size of 50. Only one unique sample was
randomly selected from each individual to avoid repeated measure-
ments effects. Each predictionmodel was trained in a training set (80%
samples) with 5-fold cross-validation and tested in a test set (20%
samples). SHapley Additive exPlanations (SHAP) values were obtained
to quantify the feature contributions to the model. The following
prediction models were evaluated:

1) IBD subtypes ~ age + gender +BMI
2) IBD subtypes ~ age + gender +BMI + intestinal microbial
abundance
3) IBD subtypes ~ age + gender + BMI + intestinal gene expression
4) IBD subtypes ~ all combined

Gene–microbiota interaction analysis. We first focused on the genes
that were dysregulated in inflamed (vs. non-inflamed and controls)
biopsies (n = 1441) to investigate their potential associations with
mucosal microbiota. Module-level correlations between gene expres-
sion andmucosalmicrobiota were performed by sparse-CCA using the
residuals of genes and microbiota after correcting for age, gender,
BMI, inflammation, tissue location, medication (including aminosali-
cylates, thiopurines and steroids), sample batch and repeated mea-
surements separately45. Sparse-CCA identifies the canonical
components of two paired datasets that maximizes the correlation
between the relevant modules. In the sparse-CCA analyses, the lasso
penaltywasused toperformfeature selection. The sparsity parameters
(λ1, representing microbial abundance data, λ2, representing gene
expression data) were tuned using a grid-search approach. More spe-
cifically, λ1 and λ2 for inflamed samples were 0.13 and 0.21, and λ1 and
λ2 for non-inflamed samples were 0.10 and 0.37. The first 10 sparse-
CCA components were selected and the significance was determined
using the leave-one-out cross-validation approach at adjusted P <0.1
(Benjamini-Hochberg, BH method). Host-enriched pathways were
annotated using the Reactome database46 for all significant compo-
nents while adjusting for multiple comparisons using the BH method
as implemented in the p.adjust function in R. Statistical significance
was considered under an adjusted P <0.05. To prioritize key gene-
microbiota pairs, individual pairwise associations were assessed by
fitting a generalized linearmodel. A gene–microbiota network analysis
was visualized using the R package ggview.

1) Individual gene–bacteria associations were determined using
the following model:

Gene ~ intercept + taxa + inflammation + location + age + sex +BMI
+ medication + batch+ (1|ID)
Second, we focused on host–microbiota interactions associated

with different clinical phenotypes (e.g., disease behavior, medication
use). Genes and taxa that were differentially abundant between clinical
phenotypes were selected and then served as input for CentrLCC-
network analysis using theNetCoMiRpackage (v. 1.1.0). This analysis was

Article https://doi.org/10.1038/s41467-024-45855-2

Nature Communications |         (2024) 15:1470 11



done in different groups separately (e.g. users and non-users of TNF-α-
antagonists). To assess whether the taxa-associated gene networks were
altered between groups, the associated genes for each taxa were ranked
within the total geneset background based on Z-scores. The Wilcoxon
test was used to compare the two gene rank lists for each taxa.

Third, we aimed to evaluate whether gene–microbiota associa-
tionswould changeupon thepresenceof intestinal dysbiosis. Todo so,
we modeled gene-microbiota associations using an additional inter-
action term in generalized linear models. IBD dysbiosis scores were
presented by the median Aitchison’s distances to non-IBD controls.
Dysbiotic status was defined as over 90% of the scores and eubiosis
was defined as being below 90% of the scores8. To determine whether
these interactions were observed by chance, we also performed per-
mutation tests that randomly shuffled dysbiosis 100 times across all
samples, and then repeated the interaction models. On average, only
three BH-adjusted significant results were obtained for each round of
permutation testing, suggesting that the rate of total false positives
was approximately ~ 0.014 (3/204).

2) Gene ~ intercept + taxa + dysbiosis + taxa * dysbiosis + inflam-
mation + location + age + sex +BMI + medication + batch+ (1 | ID)

Fourth, enrichment of specific intestinal cell types was inferred
from the RNA-seq data using theXcellpackage (v.1.1.0) in R. The effects
of tissue location, inflammatory status and microbial abundances on
enrichment of mucosal cell types were assessed using linear models,
adjusting for age, sex, BMI, batch andmedication usage. Subsequently,
we used the glmnet R package (v.4.1.6) to investigate the variation of
cell type–enrichment that could be explained by the mucosal micro-
biota using lasso regression while employing a 10-fold cross-validation
using six models:

1) Cell enrichment ~ age + gender +BMI + batch
2) Cell enrichment ~ medication
3) Cell enrichment ~ inflammation
4) Cell enrichment ~ tissue location
5) Cell enrichment ~ bacteria abundance
6) Cell enrichment ~ full factors mentioned above
The percentage of explained variance (R2) was calculated to esti-

mate the variation in cell type–enrichment explained by the mucosal
microbiota. All analyses were corrected for multiple comparisons
using the Benjamini-Hochberg method while employing an adjusted P
threshold of 0.05. All gene pathway enrichment analyses were con-
ducted using the Reactome database from MsigDB46.

Replication in the HMP2 dataset. RNA-seq and 16S raw data were
obtained from https://ibdmdb.org and reprocessed using the same
pipeline in this study. After harmonizing with the phenotype file, we
included 152 intestinal biopsies from the 85 patients with CD, 46
patients with UC and 45 non-IBD controls. Given the limited overlap in
clinical phenotypes between the two cohorts, gene expression and
mucosal microbiota patterns were compared separately between this
study and HMP2.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets generated for the current study are publicly available
from the European Genome-Phenome Archive (EGA) under the
accession code EGAS00001002702 (mucosal RNA-seq:
EGAD00001008214; 16S rRNA: EGAD00001008215). Due to patient
confidentiality, the clinical data associated with the RNA-seq- and 16S
rRNA-sequencing datasets are not publicly available but can be made
available upon request through a minimal access procedure. This
procedure consists of sending a request per email to Ms. Wieke Hol-
werda (w.holwerda@umcg.nl). A response will be provided within two

weeks. This procedure is installed to ensure that the clinical data are
being requested for scientific purposes only and thus complies with
the informed consent signed by 1000IBD participants, which specifies
that the collected data will not be used by commercial parties. The
workflow in Fig. 1 was made in BioRender (https://www.biorender.
com/). Source data are provided with this paper.

Code availability
All analytic code used for this study can be found at the following link:
https://github.com/GRONINGEN-MICROBIOME-CENTRE/Groningen-
Microbiome/tree/master/Projects/IBD_biopsy_project (https://doi.
org/10.5281/zenodo.10416879).
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