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A consistent map in the medial entorhinal
cortex supports spatial memory

Taylor J. Malone 1,7, Nai-Wen Tien 1,5,7, Yan Ma1,7, Lian Cui1, Shangru Lyu1,
Garret Wang1, Duc Nguyen1,6, Kai Zhang1,2, Maxym V. Myroshnychenko3,
Jean Tyan 1, Joshua A. Gordon 3,4, David A. Kupferschmidt 3 & Yi Gu1

Themedial entorhinal cortex (MEC) is hypothesized to function as a cognitive
map for memory-guided navigation. How this map develops during learning
and influences memory remains unclear. By imaging MEC calcium dynamics
while mice successfully learned a novel virtual environment over ten days, we
discovered that the dynamics gradually becamemore spatially consistent and
then stabilized. Additionally, grid cells in theMECnot only exhibited improved
spatial tuning consistency, but also maintained stable phase relationships,
suggesting a network mechanism involving synaptic plasticity and rigid
recurrent connectivity to shape grid cell activity during learning. Increased
c-Fos expression in the MEC in novel environments further supports the
induction of synaptic plasticity. Unsuccessful learning lacked these activity
features, indicating that a consistent map is specific for effective spatial
memory. Finally, optogenetically disrupting spatial consistency of the map
impaired memory-guided navigation in a well-learned environment. Thus, we
demonstrate that the establishment of a spatially consistent MEC map across
learning both correlates with, and is necessary for, successful spatial memory.

The ability to form a memory of an environment and use the memory
to guide future navigation is one of the most fundamental brain
functions. This ability relies on the hippocampal-entorhinal circuit,
which is hypothesized to construct a cognitive map representing the
spatial layout of an environment1,2. Themedial entorhinal cortex (MEC)
is a major component of the map. MEC dysfunction leads to spatial
memory deficits in animals and humans and is associated with
impaired spatial cognition in Alzheimer’s disease3,4. The MEC also
contains navigation-related cell types, such as grid cells, which fire in a
triangular lattice in an open arena5, and other cell types with activity
patterns representing animals' head direction, speed, and environ-
mental borders and landmarks during navigation6.

Despite the pivotal role of the MEC in spatial memory and its
diverse neural activity during navigation, little is known about how

MEC activity supports spatial learning and memory. Answering this
question requires studies to demonstrate the association between
MEC activity features with successful and unsuccessful spatial learning
and the necessity of these activity features for effective spatial mem-
ory. However, such studies have never been conducted. Although
electrophysiological evidence suggests experience-dependent chan-
ges inMEC activity stability5 and patterns7–11, and stableMEC activity in
familiar environments within the same day12, none of the MEC activity
features has been causally associated with spatial learning outcomes.
Additionally, these studies suffered from the limitations of electro-
physiology, which can only track the activity of tens of MEC neurons
over several days7,8,11 or at best, tens to hundreds of neurons within the
same day9,10,12, and therefore, were not ideal for studying activity fea-
tures of a large number of neurons during many days of spatial
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learning. Thus, a reliable and comprehensive measurement of long-
termMECneural dynamicsduring spatial learning,which could bebest
achieved using cellular-resolution two-photon imaging13,14, is needed
to fully understand the association between MEC activity features and
spatial learning. Furthermore, the necessity of MEC activity in spatial
memory remains to be determined by disrupting the map and evalu-
ating behavioral effects after memory is established (Fig. 1a).

In addition, neural dynamics of the MEC during learning are also
important for validating theories for the formation of grid cell activity
patterns in novel environments. The continuous attractor network
(CAN) models predict that grid cell activity is shaped by recurrent
connectivity, which is stably maintained within a mature grid network
and tightly constrains phase relationships between grid cells (spatial
offsets of grid activity fields), regardless of altered network states15–17.
Although CANmodels explain the grid activity pattern per se, they do
not answer how grid activity is aligned to a new environment during
learning. Other models address this alignment issue by introducing
synaptic plasticity of feedforward inputs from cells encoding envir-
onmental features onto grid cells, so that grid cell activity can be
gradually tethered to new environments and stabilized. Meanwhile,
phase relationships between grid cells are preserved by their stable
recurrent connectivity18–27 (Fig. 1b). Testing these models requires
measuring neural activity of grid cells and other cells encoding envir-
onmental features28–30 during spatial learning. However, such mea-
surement has not been conducted.

Here, we address the above hypotheses (Fig. 1) using cellular-
resolution two-photon imaging13,14, which enabled reliable tracking of
calcium activity in several thousands of MEC neurons across 11 days in
mice with different levels of spatial learning performance in virtual
reality (VR) environments. Combining the imaging with histology, we
discovered that successful spatial learning was associated with

increased c-Fos expression upon novel environment exposure and
gradually improved spatial activity consistency. In contrast, unsuc-
cessful spatial learning corresponded to high but unchanged c-Fos
expression and an inconsistent cognitive map. These results suggest a
synaptic plasticity-basedmechanism shaping a consistent MECmap in
successful learning. This consistent map is necessary for spatial
memory, as optogenetically introducing inconsistent, but not con-
sistent activity, to the MEC specifically impaired mouse behavior once
spatial memory was formed. Together, our study reveals a direct link
between spatially consistent MEC dynamics and spatial learning and
memory. Moreover, we demonstrate that during spatial learning, grid
cells increase their spatial tuning consistency while maintaining their
phase relationships, suggesting a mechanism involving both synaptic
plasticity and stable recurrent connectivity to shape grid cell activity in
novel environments.

Results
Variable levels of performance in mice during spatial learning
To measure neural dynamics of the MEC during spatial learning, we
performed cellular-resolution two-photon calcium imaging in 15 head-
fixed Thy1-GCaMP6f transgenic mice (GP5.3)31,32 while they uni-
directionally navigated along one-dimensional (1D) VR tracks, in which
visual cues and water rewards were consistently delivered at specific
locations (Fig. 2a). GP5.3 mice stably express calcium indicator
GCaMP6f in both stellate and pyramidal cell populations in layer 2 of
the MEC33, setting the stage for long-term measurement of calcium
dynamics of MEC excitatory neurons. This experimental paradigm
allowed us to correlate MEC neural dynamics with mouse behaviors
during spatial learning.

Water-restricted naïveGP5.3micewerefirst trained to runona 10-
meter 1DVR track (familiar environment, FE) forwater rewards (Fig. 2b,
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Fig. 1 | Hypotheses of MEC dynamics during learning. a Hypothesis of the MEC
cognitivemap during learning: Themap formed after novel environment exposure
can change after repeated exposures. After successful learning, the map became
spatially consistent across days, whereas unsuccessful learning corresponds to a
spatially inconsistent map. Disrupting the consistent map leads to impaired spatial
memory, reflected by poor navigation performance. b Hypothesis of grid cell
activity during learning: (Top) In a novel environment, environmental-specific
feedforward inputs (redarrows) drive synaptic plasticity of grid cells and lead to the
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(Middle) Spatial fields of individual grid cells shift (downward red arrows) to align
with an environment during learning through a synaptic plasticity mechanism
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grid cells are maintained during learning, as indicated by the same orientation and
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S1a). After 3–4 weeks of training, mice generally developed predictive
slowing (PS) and licking (PL) prior to rewards, indicating the antici-
pation of learned reward locations (Fig. 2c)34–37. Either high PS or PL
was taken as an indicator of environmental familiarity. Once mice

exhibited stablePS andPL (seeMethods), theywere exposed to a novel
environment (NE) with a reward and new cues arranged at different
locations compared to the FE (Figs. 2b, S1b), and their behavior in the
NE was monitored for ten consecutive days. Expectedly, PS and PL
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generally decreased on dayone in the NE and improvedwith increased
experience (Fig. 2c–e), indicating learning of the NE.

We ranked learning performance of individual mice in the NE
based on their PS and PL calculated usingmultiple distance thresholds
(Fig. S1c; see Methods). Four mice (3, 7, 8, and 10) were consistently
ranked in the lower half of the cohort in all conditions (Fig. 2f) and,
therefore, were categorized as relatively poor performers. The others
were categorized as relatively good performers. The good performers
showed higher PS and PL than the poor performers during learning
(Fig. 2g, h), and averaged PS and PL of individual mice in the NE were
positively correlated (Fig. 2i). The good performers generally achieved
stable performance after 6.3 days in the NE (an average of 4.5 days for
PS and 8 days for PL, Fig. S1d, e).

Further analyses indicate that PS and PL reflected a mouse’s spa-
tial learning ability, rather than other factors, such as attention,
experience, environmental features, age, or sex (Fig. S1f–o). The good
and poor performers also learned equally well in a visual discrimina-
tion task to identify the correspondence between cue patterns used in
the NE track and reward delivery (Fig. S1p–s), indicating no difference
in their ability to distinguish visual patterns and to learn associations
between patterns and rewards. Therefore, the good and poor perfor-
mer groups, which represented successful and unsuccessful spatial
learning, respectively, were used in subsequent analyses.

Properties of the active neural ensemble of the MEC during
spatial learning
We analyzed MEC calcium dynamics in the 15 mice underlying their
different spatial learning performances. Active cells in individual ima-
ging fields of view (FOVs) were longitudinally tracked for 11 days (one
day in the FE (day 0) and ten days in the NE (days 1–10); Fig. 2b).
Overall, the poor performers showed larger numbers of active cells per
FOV than the good performers (Fig. 2j). Given that the two performer
groups had comparable numbers of visibly identifiable cells, including
pyramidal and stellate cells, this difference reflected a higher percen-
tage of active cells in both cell populations in the poorperformers (Fig.
S2a–d). Bothperformer groups exhibited a significant expansionof the
active cell population on dayone in theNE, which slowly shrank during
learning (Fig. 2j, S2e).

We next asked whether the decreased number of active cells
during learning reflected different neural populations becoming active
on each day, or the refinement into a smaller cell population. We
classified active cells into 12 categories: those commonly active on
days 0 (in the FE) and 1 (in the NE) (c01), active on day 0 but not day 1
(a0), and newly active on day 1, day 2, …, and day 10 (a1, a2, …, and
a10). Of these categories, the c01 cells were the largest population
(Fig. 2k) and were most persistently active in both performer groups
(Fig. 2o). The fraction of newly active cells gradually decreased during
learning (Fig. 2k). To eliminate the possibility that the features of
c01 cells were due to the specific selection of cells active on two
adjacent days, we investigated other cell categories, the first two
adjacent active days of which were days 1 and 2 (c12), 2 and 3 (c23),…
and days 9 and 10 (c910). Compared to these cells, c01 cells were still
the largestpopulation (Fig. S2f)with themostpersistent activity across
days (Fig. S2g). These dynamics together indicate that the c01 cells
were stabilized during learning, whereas other cells were gradually
eliminated.

We next focused on grid and landmark cells because both cell
types are potentially involved in spatial learning7,9–11,26,27. Cue cells are
MEC landmark cells inVR and are specifically active around left or right
visual landmarks (left or right cue cells, respectively)29,38. Since the
number of active days varied for individual neurons (Fig. 2k, o), we
defined true grid and cue cells (left or right) as those classified as such
on more than half of their active days based on previous classification
criteria29,33,39. Overall, both performer groups had comparable per-
centages of grid cells, right cue cells, and left cue cells (Fig. S2h). The

c01 cells contained the largest fractions of grid and right cue cells, and
around 10%of left cue cells (Fig. 2l–n), all ofwhichwere themost stably
active populations across days (Fig. 2p–r).

Finally, we examined the anatomical clustering of the c01 cells
relative to “other cells” (a0 through a10) (Fig. S2i), as previous work
showed that functionally relevant MEC cells, such as grid cells, are
anatomically clustered13,33,40. Although c01 cells in both performer
groups showed clustering relative to “other cells”, in the good per-
formers they were clustered both locally and globally, whereas in the
poor performers they were only clustered locally (Fig. S2j–n).

Overall, regardless of learning performance, c01 cells were the
largest and most persistently active population during learning,
whereas other cells were gradually eliminated, suggesting the refine-
ment of the MEC spatial map. Therefore, the c01 population was the
best candidate to be linked to the spatial memory.

Higher inter-day activity consistency during learning in good
performers
We further focused on the subset of the c01 cells that werepersistently
active for all 11 days (persistent cells) to investigate the relationship
betweenMECdynamics and learning performance of themice. Around
80% of the persistent cells were stellate cells (Fig. S3a), which con-
stituted less than 60% of GCaMP6f+ excitatory cells (Fig. S3b). This
enrichment of stellate cells in the persistent cell population supports
their essential role in spatial learning41.

We first investigated the persistent cells in their overall calcium
response (ΔF/F), which was represented by statistically significant
calcium transients. Compared to the good performers, the poor per-
formers showed lower ΔF/F (Fig. 3a), resulting from the low frequency
of their significant transients, despite thehigher amplitudes and longer
durations of the transients (Fig. S3c–e).ΔF/F of both performer groups
showed a comparable increase on day one in the NE and gradually
decayed during learning (Fig. 3a, S3f). This observation and the rapid
expansion of the active cell population on day 1 (Fig. 2j) indicate that
theMECnetwork of both performer groups immediately responded to
NE exposure.

Consistent with previous reports42, NE exposure induced global
activity remapping in the MEC in both performer groups, as shown by
the dissimilarity of their population activity matrices on days 0 and 1
(Fig. 3b, c, the first two columns), and the nearly-zero correlations
between population activity matrices and between spatially binned
calcium responses of individual cells on days 0 and 1 (Fig. 3d, e). These
low correlations were uncorrelated with PS and PL of individual mice
(Fig. S3g, h) and occurred in both performer groups on the very first
run in the NE (Fig. S3i, j). These results indicate that the good and poor
performers exhibited similar levels of global remapping upon NE
exposure.

We next evaluated inter-day consistency by calculating the cor-
relation of population activity matrices on adjacent days. The corre-
lation for the good performers gradually increased in the NE during
learning, whereas for the poor performers it stayed low and did not
improve (Fig. 3b–d). The same difference existed when correlating
spatially binned calcium responses of individual cells (Fig. 3e). These
correlationswerealsopositively correlatedwith averagedPS andPLon
adjacent days of individual mice, further supporting the association
between the inter-day activity consistency and learning performance
(Fig. S3k, l).

We next asked what activity pattern the MEC map had acquired
during learning by focusing on the percentage of the track covered by
spatial fields (spatial field coverage), which consist of adjacent spatial
bins with significant calcium responses. Higher spatial field coverage
generally reflects more spatially frequent and consistent neural
response (Fig. S3m). After an initial decrease upon entering theNE, the
field coverage in the goodperformers steadily increased and stabilized
during learning (Fig. 3f). Despite having comparable anatomical
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locations along the ventral-dorsal axis of the MEC (Fig. S3n), which
could affect spatial tuning features43,44, spatial field coverage in the
poor performers was overall lower and did not increase during learn-
ing (Fig. 3f). Spatial field coverage was also positively correlated with
daily PS and PL on an individual-mouse level (Fig. S3o). The higher
spatial field coverage in the good performers during learning resulted
from increased spatial fields around several cues and before the
reward (Fig. 3g), indicating enhanced representation of goal
locations9,10 and salient landmarks by the MEC map during learning.
This change was not observed in the poor performers.

These results demonstrate that during successful learning, the
MEC spatial map became consistent across days, and the map

represented salient environmental features, despite overall
decreased amplitude of the neural response. In contrast, unsuc-
cessful learning was coupled with a less reliable spatial map on a
day-by-day basis.

Higher intra-day activity consistency and decoding ability in
good performers
We further investigated intra-day activity consistency of individual
cells by calculating activity correlation on a run-by-run (RBR) basis
within a single behavioral session of a day. The good performers
showed decreased RBR correlation on day one in the NE, and the
correlation increased and then stabilized around day seven (Fig. 4a, c).
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In contrast, the cells of the poor performers had lower RBR correla-
tions that further decreased during subsequent days (Fig. 4b, c). RBR
correlation was positively correlated with daily PS and PL of individual
mice (Fig. S4a). Cells becoming active on different days or on different
adjacent pairs of days, as categorized in Fig. 2k and Fig. S2f, generally
hadhighRBRactivity correlation in the goodperformers. Among these
subpopulations, c01 cells had the highest RBR activity correlation
(Figs. 4d, S4b), indicating that c01 cells not only were the largest and
most persistently active cell population, but also had the highest
spatial activity consistency.

We further examined the ability of the MEC population activity to
decode VR track locations using a population-vector-based method45

(Fig. 4e). Because the performance of the decoder was sensitive to the
number of cells used in the analysis (Fig. S4c)45, we evaluated decoding
accuracy by assessing 50 simultaneously imaged cells randomly cho-
sen from each FOV, and calculated decoding error and the percentage
of correctly decoded track positions. The good performers showed
smaller decoding errors and a higher percentage of decoded track
positions compared to the poor performers (Fig. 4f, g). The decoding
accuracy of the good performers improved and stabilized during
learning, while the poor performers showed poor decoding perfor-
mance without improvement. Decoding accuracy was correlated with
daily PS and PL of individual mice (Fig. S4d, e). When evaluating the
decoding performance using all active cells, the poor performers still
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exhibited relatively lower decoding accuracy despite their higher
numbers of active cells (Figs. 2j, S4f, S4g).

These results indicate that during successful but not unsuccessful
learning, the MEC spatial map showed high and improved intra-day
spatial consistency and accurate spatial decoding. Higher running
speed has been reported to increase precision of MEC spatial
encoding46, but running speed was not different in the two performer
groups (Fig. S4h) and did not contribute to spatial encoding differ-
ences (Fig. S4i–t).

Different spatial dynamics of grid and cue cells during spatial
learning
Next, we focused on activity dynamics of grid and cue cells among the
cells persistently active for 11 days. The percentages of grid and cue
cells were comparable in the two performer groups (Fig. S5a–d). The
percentages of left cue cells were lower than right cue cells (Fig. S5d),
consistent with the dominant representation of right cues in the left
MEC29. Therefore, left and right cue cells were combined for following
analyses.

After global activity remapping on day one for both performance
groups, grid cells of the good performers, but not the poor perfor-
mers, showed higher and improved consistency in their inter- and
intra-day activity (Figs. 5a, c, e and S5e, h, S6a, c), reflecting a gradual
stabilization of the grid map. The inter- and intra-day activity con-
sistency of grid cells was also positively correlated with PS and PL of
individual mice (Figs. S5k, l, S6e, f). In agreement with prior research7,
grid scale increased upon entering the NE, and gradually decreased
over the subsequent days specifically in the good performers (Fig.
S5m). The grid scale expansion on day one could reflect the decreased
number of grid fields (Fig. S5n) that led to larger spacing between
adjacent fields. In contrast, cue cells in both performer groups con-
stantly represented landmark patterns in both the FE and NE. Their
activity had stable inter- and intra-day consistency, which was higher
than that in grid cells (Figs. 5b, d, f, S5f, g, i, j, S6b, d). Cue cells in the
poor performers, however, showed less consistent intra-day activity
than the good performers (Fig. 5f). Given that single cue cells typically
responded to individual cues with a constant spatial shift but with
different amplitudes (Fig. S6g)29, we further analyzed these features on
an RBR basis. While cue cell responses showed small spatial shift
deviations across runs in both performer groups (Fig. S6h), they had
greater amplitude variations to individual cues in the poor performers
(Fig. S6i, j).

Overall, the grid map gradually stabilized during successful
learning, whereas cue cells reliably represented landmarks across
environments and throughout learning. These dynamics are in line
with the hypothesis that landmark signals guide the formation of a
consistent grid map in a novel environment through a synaptic
plasticity-based mechanism (Fig. 1b). During unsuccessful learning,
cue cells were unable to maintain reliable response amplitudes to
individual cues, which could potentially affect grid map consistency.

Constant phase relationships of grid cells during learning
We further asked that during the gradual change in spatial activity
consistency of grid cells in the NE, whether phase relationships of
spatial activity of co-modular grid cells, which are grid cells with
similar scales44, remained stable (Fig. 1b). We examined phase
relationships of simultaneously imaged co-modular grid cells,
which were determined based on similar spacings and widths of
their spatial fields (see Methods). A previous study demonstrated
that small and large phase differences of grid cell pairs correspond
to high and low correlations of their temporal activity,
respectively47. Therefore, we used pairwise correlations (Pairwise
corr.) of 1D temporal calcium activity of grid cells to approximate
their 2D phase relationships (Fig. 5g). We first calculated Pairwise
corr. of all simultaneously imaged co-modular grid pairs on

individual days. We then compared their Pairwise corr. on adjacent
days to evaluate whether their Pairwise corr. patterns, i.e., phase
relationships, were preserved across days (Fig. 5h). Indeed, Pairwise
corr. of the good performers on adjacent days showed high and
stable correlations (Day corr.) (Fig. 5i, k), indicating stable phase
relationships of co-modular grid cells on adjacent days, regardless
of the environmental switch and subsequent learning. In addition,
Day corr. between grid cells in different modules (grid cells with
different scales) were lower than those within the samemodule (Fig.
S7a, c), as expected if different grid modules belong to different
attractor networks and are less connected44,47,48. In contrast, grid
phase relationships in the poor performers were weakly preserved
within the same module (Fig. 5j, k) and the difference in phase
relationships between the same and different modules was dimin-
ished (Fig. S7b, d).

We further asked whether phase relationships of grid cells were
stable enough to maintain their topographical organization on the
MEC cell sheet throughout learning, as the consistency between
anatomical arrangement of grid cells and their connectivity would
facilitate efficient functioning of the circuit33. In layer 2 of the MEC,
grid cells are anatomically arranged according to their phases:
within an anatomical distance of 120 µm, phase differences between
co-modular grid cells increase with distance. This pattern repeats
on the MEC cell sheet as a 2D phase lattice33. Similar to above, this
topographical organization of grid phases can be revealed by
evaluating pairwise activity correlation of grid cells as a function of
their anatomical distance, i.e., grid cells in close proximity
(~0–50 µm) and at large distances (~200–250 µm) have highly cor-
related activity, whereas those at intermediate distances
(~100–150 µm) have poorly correlated activity13 (Fig. 5l). Therefore,
we examined whether the relationship between activity correlation
(the same Pairwise corr. calculated above) and anatomical distance
between grid cells was maintained during learning. We calculated
mean Pairwise corr. of cell pairs within three distance ranges: zone 1:
0–50 μm, zone 2: 92–132 μm, and zone 3: 193–245 μm. In the good
performers, the Pairwise corr. in zones 1 and 3 were higher than
those in zone 2, and this pattern was observed before (days 1–2) and
after (days 7–10) learning (Fig. 5m, n) and on individual days (Fig.
S7e, f). In addition, there was an overall increase in Pairwise corr.
between grid cells during learning (Fig. 5n, 5o, S7g). To eliminate the
effect of this increase, we further calculated “Adjusted Pairwise
corr.” by subtracting the mean Pairwise corr. of grid cell pairs at all
distances from the Pairwise corr. in the three zones. Adjusted
Pairwise corr. in each of the three zones was comparable before and
after learning (Fig. 5p), as well as on individual days (Fig. S7h). These
observations suggest the grid cell network receives feedforward
input that is strengthened during learning, leading to a network-
wide increase in activity correlations of grid cell pairs. Meanwhile,
rigid recurrent connectivity between grid cells maintains their
phase relationships throughout learning. In contrast, the poor
performers did not show the characteristic correlations in the three
zones (Figs. 5q, r, t, S7i, j, l), and only exhibited a slight increase in
the overall Pairwise corr. between grid cells during learning
(Figs. 5r, s, S7k).

Overall, during the learning of the goodperformers, althoughgrid
cells exhibited increased spatial tuning consistency and temporal
activity correlation, their phase relationships remained constant,
strongly supporting stable recurrent connectivity between grid cells
throughout learning. However, the grid network coherency was dis-
rupted in the poor performers.

c-Fos expression in the good and poor performers
The stabilization of a consistentMECmapduring learning suggests the
involvement of synaptic plasticity that is induced upon novel envir-
onment exposure and shapes the new spatial map. To test this
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hypothesis, we analyzed expression of an immediate early gene, c-Fos,
which indicates neuronal activation and is also linked to neurons
undergoing learning-induced synaptic plasticity for memory
encoding49–51. We histologically examined c-Fos protein expression in
MEC layer 2, the same region imaged above, of 20 mice (histology
mice) after a 1-h exposure to FEs or NEs (Fig. 6a). The 11 good and 9
poor performers among histology mice were grouped based on their
PS and PL in FEs using the thresholds developed from the behaviors of
imaging mice in their last six days in the NE (see Methods). Histology
mice showed comparable learning performance to the corresponding

groups of imaging mice (Fig. 6b, c). The good performers exhibited
low c-Fos levels in FEs and high levels inNEs (Fig. 6d, e), consistentwith
previous observations that c-Fos expression in the MEC increased
during early training of learning tasks and decreased with extended
training52,53. In contrast, the poor performers had a high c-Fos level in
both FEs and NEs. Most c-Fos+ cells were reelin+ stellate cells, in
contrast to the low fractions of calbindin+ pyramidal cells andGAD67+
interneurons (Fig. 6f, g), consistent with stellate cells being the most
abundant cell type in the persistent cell population during learning
(Fig. S3a) and crucial for spatial learning41.

Pairwise corr. (day 5)

Day corr. = 0.31

-0.2      0.2        0.6          1

Poor
1

0.6

0.2

-0.2Pa
irw

is
e 

co
rr.

 (d
ay

 4
)

Pa
irw

is
e 

co
rr.

0.2

0.15

0.1

0.05

0

0    100    200   300
Pairwise distance (μm)

0    100    200   300
Zone

Days 1-2 Days 7-10

1      2       3 1      2       3

***

* **

*

***

* **
****

***

m

*

Pa
irw

is
e 

co
rr.

Zone

Days 1-2 Days 7-10

1      2       3
0    100    200   300

Pairwise distance (μm)
0    100    200   300

1      2       3

0.2

0.15

0.1

0.05

0

***

*
*****

* *

***

********

q

Pa
irw

is
e 

co
rr.

 (d
ay

 4
)

-0.2       0.2        0.6          1
Pairwise corr. (day 5)

1

0.6

0.2

-0.2

Good
Day corr. = 0.53

0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
-0.1
-0.2

Good
Poor

D
ay

 c
or

r.

G vs P: *
0-

1
1-

2
2-

3
3-

4
4-

5
5-

6
6-

7
7-

8
8-

9
9-

10

Correlation days

Good 
shuffle

Poor 
shuffle

n.s.

n.s.

Grid cells Cue cellsGrid cells Cue cells

n.s.

n.s.
**

n.s.

Good
Poor

Good
Poor

Good
Poor

Good
Poor

n.s.

n.s.

**

n.s.

1-
2

3-
4

5-
6

7-
8

9-
10

Correlation days Correlation days

1-
2

3-
4

5-
6

7-
8

9-
10

M
ea

n 
ac

tiv
ity

 c
or

re
la

tio
n

n.s.

* *

**

*** *
Good
Poor

Good
Poor

R
BR

 a
ct

iv
ity

 c
or

re
la

tio
n

0 1    3    5   7    9
Day 

0 1    3    5    7    9
Day 

1-
2

3-
4

5-
6

7-
8

9-
10

Correlation days Correlation days
1-

2
3-

4
5-

6
7-

8
9-

10

Grid cells Cue cells

1

0 250

2 3

Pairwise distance (μm)

Idealized Pairwise Correlation

Pa
irw

is
e 

co
rr.

 o
f

1D
  t

em
po

ra
l a

ct
iv

ity

High

Low

Cells 1 vs 2

Cell1 Cell2 Cell3 Cell4

25μm
110μm

225μm

Varied phase relationships
over different anatomical distances

Cells 1 vs 3 Cells 1 vs 4
Phase differences

An
at

om
ic

al
 

di
st

an
ce

sDay n+1Day n
Cell1
Cell2

Cell3
Cell4

Constant phase relationships
over timeCell1

Cell2

Cell3
Cell4

Small phase difference High Pairwise Corr.

1D temporal activity

1D temporal activity

Low Pairwise Corr.
time

time

ΔF
/F

ΔF
/F

Large phase difference

Idealized Day Correlation

corr1-2

co
rr1

-2
co

rr3
-4

corr3-40
0

1

1
Pairwise corr. (day n+1)

Pa
irw

is
e 

co
rr.

 (d
ay

 n
) Day corr. = 1

Anatomical 
distance 
zones

Pairwise corr.

Cells 1 vs 2

Cells 1 vs 3

Cells 1 vs 4

0.9

0.8

0.7

0.6

-0.1

-0.2

0.9

0.8

0.7

0.6

-0.1

-0.2

0.6

0.5

0.4

0.3

0.2

0.6

0.5

0.4

0.3

0.2

0.9

0.8

0.7

0.6

-0.1

-0.2

0.9

0.8

0.7

0.6

-0.1

-0.2

0.1

0.05

0

Pa
irw

is
e 

co
rr.

** ***
***n

n.s.

*
n.s.

o p

*** ******
***

**

******

*

Zone
Days 1-2 Days 7-10
1     2     3           1     2     3

0.04

0.02

0

-0.02

n.s.
n.s.

n.s.
Ad

ju
st

ed
 P

ai
rw

is
e 

co
rr.

Zone
Days 1-2 Days 7-10
1     2     3           1     2     3

0.1

0.05

0

Pa
irw

is
e 

co
rr.

Zone
Days 1-2 Days 7-10
1     2     3           1     2     3

r s t

k

g h

i j

l

a b c d e f

n.s.
n.s.

n.s.

0.04

0.02

0

-0.02
Zone

Days 1-2 Days 7-10
1     2     3           1     2     3Ad

ju
st

ed
 P

ai
rw

is
e 

co
rr.

Days    1-2  7-10

0.1

0.08

0.06

0.04

0.02

0

Pa
irw

is
e 

co
rr.

***
All distances

Days    1-2  7-10

***
0.1

0.08

0.06

0.04

0.02

0

Pa
irw

is
e 

co
rr.

All distances

R
BR

 a
ct

iv
ity

 c
or

re
la

tio
n

M
ea

n 
ac

tiv
ity

 c
or

re
la

tio
n

Ac
tiv

ity
 m

at
rix

 c
or

re
la

tio
n

Ac
tiv

ity
 m

at
rix

 c
or

re
la

tio
n

Article https://doi.org/10.1038/s41467-024-45853-4

Nature Communications |         (2024) 15:1457 8



The increased c-Fos expression when the good performers
were switched from FEs to NEs reflected an MEC cell population
strongly responding to novelty stimuli. This observation, together
with changed neural activity in the NE (Figs. 2–4), suggests the

induction of synaptic plasticity to shape a consistent MEC map in
the NE. In contrast, in the poor performers, c-Fos level was high in
FEs and did not further increase in NEs. Such high basal activity in
FEs indicated by c-Fos could lead to dysregulated synaptic

Fig. 5 | Grid and cue cell activity during learning. a–bActivitymatrix correlations
on adjacent days for grid (a) and cue (b) cells. c–d Correlation of mean ΔF/F as a
function of track position on adjacent days for individual grid (c) and cue (d) cells.
e–fRBR activity correlationof grid (e) and cue (f) cells. g Phase relationships of grid
cells as represented by pairwise correlations (Pairwise corr.) of their temporal
calcium activity. Small and large phase differences of grid cell pairs (left) corre-
spond to high and low correlations of their temporal activity (right), respectively.
h If pairwise phase relationships between grid cell pairs are preserved on adjacent
days (left), the Pairwise corr. of these pairs on adjacent days will be perfectly
correlated (Day correlation/Day corr. = 1; right). i–j Pairwise corr. of grid activity
(ΔF/F) on days 4 and 5 in the good (i) and poor (j) performers. k Day corr. between
adjacent days for the good performers (G), poor performers (P), and their shuffles
(Good or Poor). Error bars are generated by data from individual FOVs. l The phase
relationship of grid cell pairs varies with respect to their anatomical distance. Cells
in close proximity (zone 1: 0–50 μm) and farther distances (zone 3: 193–245μm)
have small phase differences (top) and therefore high Pairwise corr. (bottom). Grid
cells at intermediate distances (zone 2: 92–132μm) have large phase differences

(top) and therefore low Pairwise corr. (bottom). Gray regions represent the above
anatomical distance zones 1–3 used for the following analysis. g, h, l For clarity, we
show 2D grid cell relationships here. In this study, we use the correlation of 1D
temporal activity to approximate 2D phase relationships. m, q Pairwise corr. as a
function of pairwise distance for the good (m) and poor (q) performers before
(days 1–2) and after (days 7–10) learning. * indicates the significant difference
between real data and shuffles. n, r Pairwise corr. in the three zones before (days
1–2) and after (days 7–10) learning in good (n) and poor (r) performers. o and
sComparison of the pairwise correlations of grid cell pairs in the good (o) and poor
(s) performers at all distances before and after learning. p, t Comparison of
Adjusted Pairwise corr. in the three zones before and after learning in the good (p)
and poor (t) performers. *p ≤0.05, **p ≤0.01, ***p ≤0.001. Error bars represent
mean ± sem.Horizontal gray lines indicatep values for the groupdifference. * to the
right of line graph indicates significantpositiveornegative correlation fromday 1–2
to day 9–10 or day 1 to day 10, as appropriate. See Supplementary Data 1 for exactn
and detailed statistical information. Source data are provided as a Source Data file.
See also Figs. S5–S7.
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plasticity54,55, and therefore, an inconsistent MEC map during
learning (Fig. 6h).

Consistent MEC activity is necessary for spatial memory of a
learned environment
We next examined whether spatial memory of a learned environ-
ment requires a spatially consistent MECmap. To better understand
RBR activity consistency along the track, we calculated the con-
sistency as a function of track location in the 10m NE. In both
performer groups, higher consistency was observed at cues pre-
ceding the reward and immediately before the reward (Fig. 7a), and
these areas also had the largest difference in activity consistency
between the good and poor performers throughout learning,
compared to the areas outside cues and away from the reward (out-
cue areas) (Fig. 7b). This suggests that highly consistent activity
patterns at cues preceding the reward and immediately before the
reward are important components of the cognitive map that sup-
ports spatial memory. Therefore, we hypothesized that disrupting
the map consistency on an RBR basis by introducing external

stimulation of MEC neurons at random track locations (random
stimulation, RS) should impair spatial memory. In contrast,
imposed stimulation of MEC neurons at consistent locations (con-
sistent stimulation, CS), specifically, at the cues prior to the reward
or immediately before the reward, would mimic the MEC map
consistency and, therefore, be less disruptive to spatial memory
(Fig. 7c). Different effects of RS and CS would strongly support the
necessity of a consistent MECmap for spatial memory. To test these
hypotheses, we optogenetically stimulated the MEC with different
patterns (RS or CS) on an RBR basis while mice navigated a pre-
viously learned environment. We introduced RS in the areas away
from the reward and compared its behavioral effect with that of CS,
which was imposed at the cues prior to the reward (Fig. 7d).
Although the biggest difference in RBR consistency between the
performers was observed in the area immediately before the reward
(Fig. 7b), we left the area unmodulated so that after experiencing
the modified map prior to the reward, mice could voluntarily initi-
ate reward-predictive behaviors without direct disruption. Addi-
tionally, the potentially increased neural response upon
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optogenetic stimulation could better mimic the higher calcium
response amplitude at cues, but not the lower response immedi-
ately before the reward, in comparison to that in out-cue areas
(Fig. S8).

Optogenetic activation was achieved by virally expressing
channelrhodopsin-2 variant H134R56 (ChR2-GFP or ChR2-EYFP) inMEC
layer 2, and an EGFP-only virus was used as an illumination control

(ChR2 or EGFP mice, respectively, Figs. 8a, S9a). This approach pre-
dominately labeled reelin+ stellate cells (Fig. S9b, c), consistent with
the enrichment of stellate cells in the persistently active cell popula-
tion during learning (Fig. S3a, b). Reliable light-induced action poten-
tials in the MEC of ChR2 mice were confirmed using in vivo multi-unit
recordings (Fig. 8b, c). To obtain sufficient runs for behavioral com-
parison before, during and after stimulation, mice were trained on a
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short 4m track (Fig. 8d). As in the 10mNE, the goodperformers on the
4m track exhibited higher RBR activity consistency than the poor
performers (Fig. S9d–h), and the difference in their activity con-
sistency was most prominent at cues preceding the reward and
immediately before the reward (Fig. S9i, j, m). Their difference in cal-
cium response amplitude was also higher at cues but not immediately
before the reward in comparison to that in out-cue areas (Fig. S9k, l, n),
similar to the observation in the 10m NE (Fig. S8).

After familiarization with the 4m track, mice performed at least
30 runs per session on the same track during optogenetics experi-
ments. Within the 30 runs, optogenetic stimulation was administered
in the middle 10 runs, allowing for reward-predictive behaviors to be
compared between the 10 runs pre-, during-, and post- stimulation
(Fig. 8e). For both CS and RS, three sessions were conducted for
individual good or poor performers, which were categorized based on
their performance during pre-stimulation runs (see Methods). PS and
PL of good and poor performers were both comparable to those in
imagingmice (Fig. S9o, p). Precise behavioral comparisonbetween the
three 10-run epochs in a session was focused on PS, which showed
much smaller variation in pre-stimulation epochs across sessions of
individual mice compared to PL and, therefore, provided reliable
behavioral baselines before stimulation (Fig. S9q).

We compared the effect of three 5 cm RSs with that of three 5 cm
CSs at the cues preceding the reward (Fig. 8f). As hypothesized, RS led
to a significant reduction in PS, while CS had no effect, in ChR2 good
performers on a per-session basis and per-mouse basis (Fig. 8g, h).
Stimulations had no effect in EGFP mice (Fig. 8i, j). On a RBR basis, RS
(Fig. 8k), but not CS (Fig. 8l), significantly reduced PS in ChR2 relative
to EGFPmice. Furthermore, RS in ChR2mice reduced PS relative to CS
(Fig. 8m). PSwas reduced in the veryfirst runwith RS, slowly recovered
post-RS, and reached the pre-stimulation level after around 20 runs
(within 4.6 ± 0.6min) (Fig. 8m). RS and CS comparably had no effect in
EGFP mice (Fig. 8n). In the poor performers, neither stimulation
paradigm impacted reward-predictive behavior (Fig. S10), suggesting
that promoting consistent activity at cues may be insufficient to bol-
ster weak spatial memory.

Together, these results demonstrate that disrupting the con-
sistentMECmap ingoodperformersbyRS led tomemory impairment,
whereas mimicking the consistent map by CS had no effect on mem-
ory. This suggests that spatially consistent MEC activity is not only
correlated with, but is also necessary for, spatial memory.

Discussion
Here, we provide several lines of evidence demonstrating the
importance of a consistent spatial map in the MEC for effective
spatial memory (Fig. 9). First, by tracking calcium activity of MEC
neurons for 10 days in 15 mice with different levels of spatial
learning in a novel environment (NE), we show that MEC activity
gradually becamemore spatially consistent and then stabilized only
in the good but not the poor performers, directly associating a
consistent MEC map with effective spatial memory. In addition, the

good performers exhibited increased c-Fos expression upon expo-
sure to NEs, supporting a proper induction of synaptic plasticity
that shapes the consistent MEC map during learning and facilitates
spatial memory encoding in the MEC. In contrast, c-Fos expression
in the poor performers remained high in FEs and NEs, suggesting a
hyperactive MEC with dysregulated synaptic plasticity. Finally,
optogenetic disruption of spatial activity consistency of the MEC
impaired reward-predictive behaviors of the good performers,
supporting an essential role of a consistent MEC map for spatial
memory.

Furthermore, we provide evidence for the co-existence of a gra-
dually evolving spatial response and stably maintained phase rela-
tionship of the grid network during successful learning. Our results
suggest that synaptic plasticity from input afferents onto grid cells and
rigid recurrent connectivity between grid cells both contribute to
constructing a grid map in novel environments.

Neural dynamics of the MEC during spatial learning
We elucidate neural dynamics of MEC layer 2 during successful spatial
learning in two stages: the first day of novel environment exposure and
the following nine days of environmental learning.

Onday one in theNE,whilemice exhibited an immediate decrease
in reward-predictive behavior, the MEC showed more active cells,
elevated calcium responses, and higher c-Fos expression. This tran-
sient network-wide increase in neural response could result from
reduced inhibition, increased input amplitudes, elevated intrinsic
neural excitability, or changes in neuromodulation35,57–59, supporting
the induction of synaptic plasticity in theMEC upon novelty exposure.
Other activity changes included global activity remapping, reduced
RBRactivity consistency, lower spatialfield coverage, and less accurate
decoding, suggesting context-specific response of the MEC.

Over the next nine days, the reward-predictive behavior in the NE
improved and then stabilized, indicating the establishment of new
spatial memory. The improved behavior was coupled with a refine-
ment into a smaller active cell ensemble with a more spatially con-
sistent and environment-specific representation. After 6–7 days of
experience in the NE, most activity features reached levels observed in
the FE and stabilized. The stabilization of a consistentMECmap agrees
with the stable activity of MEC layer 2 neurons in familiar
environments12. Synaptic plasticity likely contributed to shaping the
consistent MECmap, and the plastic changes in the network stabilized
after environmental familiarization, as reflected by the shift from high
to low c-Fos expression in NEs to FEs. The c-Fos expressions in NEs and
FEs are consistent with the encoding of spatial memory in the MEC50.

We further demonstrated that the consistentMECmap is not only
associated with, but also necessary for spatial memory. Previous stu-
dies have shown the necessity of rodent MEC in spatial memory
through MEC lesion or pharmacological inactivation of layer 2 stellate
cells41,60,61. Our study, specifically uncovers the disruptive effect of
reducing MEC map consistency on spatial memory and, thereby, the
necessity of a consistent MEC map for spatial memory.

Fig. 8 | Consistent MEC activity is necessary for spatial memory. a Schematic
displaying the location of the optical fiber implant and blue LED light delivery to
activate ChR2-GFP/EYFP or EGFP expressing neurons in the superficial layers of the
MEC. Sagittal section is adapted from ref. 95. b In vivo extracellular recording of
light-evoked spikes from an anesthetized ChR2-GFP mouse. c Average change in
the numberof spikesduring stimulation (Sim) versus no stimulation (NoStim) trials
across one full recording session from an anesthetized ChR2-GFP mouse. d Top-
down view of the 4m track. e Experiment design. f Schematics showing the sti-
mulation of three randomly located 5 cm zones (RS) and consistent stimulation for
5 cm at each cue preceding the reward (CS) on an RBR basis. g–j Predictive slowing
(PS) of ChR2 (g and h, 8 mice) and EGFP (i and j, 5 mice) good performers pre-,
during- (Dur), and post- the RS (left) and CS (middle) in f. Data was calculated
per session (g and i, 3 sessions per mouse) and per mouse (h and j). Mean PS of 10

runs in the three periods are plotted. Right: “Fold of pre” reflects relative PS levels
during RS and CS (PS levels during RS and CS divided by the PS during pre-sti-
mulation). g, i Since RS and CS were performed in alternation for the samemouse,
the effects of adjacent RS and CS sessions were compared. k–n PS on a RBR basis
across 40 runs for pairs of good performer groups. k CHR2 RS vs. EGFP RS; l CHR2
CS vs. EGFP CS;m CHR2 RS vs. CHR2 CS; n EGFP RS vs. EGFP CS. Data are nor-
malized by the mean baseline (pre-stimulation) RBR consistency by session. Hor-
izontal gray lines indicate p values for the group difference from stimulation onset
(run 11) to the last post-stimulation run (run 30). All sessions had runs 1–30, while
some had more. Individual * indicate a significant difference for a given run.
*p ≤0.05, **p ≤0.01, ***p ≤0.001. Error bars and shading representmean ± sem. See
Supplementary Data 1 for exact n and detailed statistical information. Source data
are provided as a Source Data file. See also Figs. S9–10.

Article https://doi.org/10.1038/s41467-024-45853-4

Nature Communications |         (2024) 15:1457 12



The gradual stabilization of the MEC map during learning is dif-
ferent from the controversial neural dynamics in the hippocampus
during experience-dependent navigation. While some studies support
the formation of a consistent spatial map in the hippocampus after
environmental familiarization62–68, many other studies showed con-
stantly altered activity of hippocampal neurons in both novel and
highly familiar environments64,65,69–76. It is worth noting that most of
these studies focused on foraging animals without memory demands
or did not have a behavioral readout of memory. However, some stu-
dies, which demonstrated spatial learning based on behaviors, repor-
ted conflicting results: the hippocampus gradually formed spatially
stable activity in certain subregions or tasks64,66,69,70 but showed con-
stantly varied activity in other conditions69,70. In addition, it is also
unclear whether a stable cell ensemble exists in the hippocampus to
encode spatial memory, as a previous study showed that a different
subset of CA1 cells was active each day in a familiar environment76. The
high variability of the hippocampal dynamics raises a possibility that a
consistent cognitive map could also be formed in other brain areas. In
our study, the experience-dependent increase inMECmapconsistency
and the necessity of that consistency for spatial memory strongly
suggest that the MEC forms a consistent cognitive map and supports
spatialmemory. Thepersistent cells,whichare constantly active across
environments and exhibit environment-specific activity that can be
stabilized during multiple days of spatial learning, potentially play a
major role in spatial memory encoding. It would be interesting to
investigate whether such cells exist in the hippocampus and how their
dynamics compare with those in the MEC.

Dynamics of the grid network during learning
During learning, grid cells gradually increased their spatial tuning
consistency while stably maintaining their phase relationships. These
observations suggest a role of synaptic plasticity in shaping a spatially
consistent grid map in a novel environment and the existence of rigid
recurrent connectivity between grid cells to maintain their activity
coherency. Therefore, we propose that a model combining synaptic
plasticity of feedforward inputs to grid cells and recurrent connectivity
between grid cells will better explain the formation of grid cell activity
in novel environments.

Theoretically, Hebbian plasticity can act on the grid cell network
in at least two ways. First, grid cell activity patterns are shaped by pre-
established recurrent connectivity described in CAN models, and

Hebbian plasticity from afferents carrying environmental information
(e.g., borders and landmarks) onto the grid network aligns grid activity
to the environment26,27. Alternatively, Hebbian plasticity directly
establishes the connectivity to shape grid activity patterns in an
environment through specific mechanisms, such as firing rate
adaptation18,19,21,22,25. Our findings could result from either mechanism.
The quickly established and stable landmark-specific tuning of cue
cells across environments and throughout learning supports their
potential role in providing environmental-specific inputs to the grid
network. The existence of feedforward inputs to the grid cell network
is also supported by the overall increased grid cell activity correlation
during learning in Fig. 5.

In most grid cell models, recurrent connectivity is required to
maintain activity coherency between grid cells15–18,21–24. The existence
of recurrent connectivity between grid cells is currently supported by
their stable phase relationships in different environments42,77 and
preserved co-activity patterns during active navigation and sleep47,48.
Here, we show that despite the significant change in spatial activity
patterns of grid cells, their phase relationships and topographical
organization remain stable during learning, strongly suggesting that a
mature grid network is hardwired through recurrent connectivity that
is stable during learning.

Why could the poor performers not learn?
The key difference between the two performer groups was that after
many repetitive visits to previously novel environments, the number of
active cells and c-Fos+ cells remained high and the MEC map con-
sistency failed to improve in the poor performers, indicating a
hyperactive MEC that could not achieve a steady state after learning.
We postulate that the unstableMEC network andweak spatial learning
of the poor performers can be attributed to impaired synaptic plasti-
city, secondary to MEC hyperactivity. This hypothesis is strongly sup-
ported by a recent study demonstrating that hyperexcitability of the
hippocampus underlies a profound loss of hippocampal LTP in a rat
model of psychosis. Interestingly, the hyperexcitable hippocampus
exhibited a high basal expression of an immediate early gene, Arc, and
Arc expression failed to further increase in novel environments54,
matching our observation in the poor performers that c-Fos level was
high in FEs and did not increase in NEs. In agreement with our
hypothesis, impaired neural plasticity and cognitive functions when
neural networks are hyperactive or hyperexcitable have also been

MEC MapNavigation

Day n+1
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Novel Environment

Good Performers Poor Performers

Spatially consistent map
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Successful synaptic plasticity

Unsuccessful learning
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Disrupting the consistent map 

Hyper-active MEC

Fig. 9 | Schematic for the cognitive map of the MEC during spatial learning in
anovel environment.Thegoodperformershave successful synaptic plasticity and
a spatially consistent MEC map and, therefore, are able to successfully learn the
environment. Poor performers have impaired synaptic plasticity (likely due to the

hyper-activity in theMEC) and a spatially inconsistentMECmap and, therefore, are
unable learn the environment. Disrupting MEC map consistency in good perfor-
mers leads to reduced spatial navigation performance.
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widely reported in neurological disorders, such as epilepsy, schizo-
phrenia, and Alzheimer’s disease55,78–83. Future investigations into the
circuitmechanism underlying different levels of spatial learning ability
will not only advance the understanding of spatial cognition, but also
inform on the aberrant mechanisms underlying related neurological
disorders.

Methods
Animals
All animal procedures were performed in accordance with animal
protocol 1524 approved by the Institutional Animal Care and Use
Committee (IACUC) at NIH/NINDS. For two-photon imaging experi-
ments, GP5.3 mice32 (C57BL/6J-Tg(Thy1-GCaMP6f)GP5.3Dkim/J, JAX
stock #028280) were used. These included 8 males and 7 females
ranging from 4–8 months old at the time when chronic imaging was
begun. For histology experiments, TRAP2 mice (Fostm2.1(icre/ERT2)Luo/J,
Jackson stock # 030323) were crossed with CAG-Sun1/sfGFP (B6;129-
Gt(ROSA)26Sortm5(CAG-Sun1/sfGFP)Nat/J, Jackson stock # 021039) or Ai14
(B6;129S6-Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J, Jackson stock #007908)
mice to generate TRAP2+/−; CAG-Sun1/sfGFP+/− (4 males) or TRAP2+/

−;Ai14+/− (6 males and 10 females) offspring to be used for experiment.
Mice ranged from 2.5–4 months of age at time of perfusion. The
optogenetics experiments used C57BL/6 J mice ranging from
3.5–5.5 months old at the time of fiber implantation. For the compar-
ison between the three 5 cmCS at cues preceding the reward and three
5 cm RS, 8 ChR2 good performers, 8 ChR2 poor performers, 5 EGFP
good performers, and 5 EGFP poor performers were used. Mice were
maintained on a reverse 12-hr on/off light schedule with all experi-
ments being performed in the light off period. Animals were housed at
a temperature of 70–74 °F and 40–65% humidity.

Rodent surgeries
All mouse surgeries were performed as follows. Mice were anesthe-
tized using a tabletop laboratory animal anesthesia system (induction:
3% isoflurane, 1 L/min oxygen, maintenance: 0.5–1.5% isoflurane, 0.7 L/
min oxygen, VetEquip, 901806) and surgery was performed on a ste-
reotaxic alignment system (Kopf Instruments, 1900). A homeothermic
pad and monitoring system (Harvard Apparatus, 50-7220 F) was used
to maintain a body temperature of 37 °C. After anesthesia induction,
dexamethasone (2mg/kg, VetOne, 13985-533-03) and saline (500 µL,
0.9% NaCl, McKesson, 0409-4888-50) were administered by intraper-
itoneal (IP) injection, and slow-release buprenorphine (1mg/kg, Zoo-
Pharm, Buprenorphine SR-LAB) was administered subcutaneously.
Enroflox 100 (10mg/mL, VetOne, 13985-948-10) was used as an anti-
microbialwash just after the skullwas exposed and just prior to sealing
the skull. At the end of surgery, the exposed skull was coated with
n-butyl cyanoacrylate tissue adhesive (Vetbond, 3M, 1469SB). A single-
sided steel headplate for headfixationwasmounted to the right sideof
the skull and adhered with dental cement (Metabond, Parkell, S396).
Surgeries for histology experiments in Fig. 6 used thesemethods only.

Microprism construction. Microprism construction procedures were
similar to those described previously14,33. A canula (MicroGroup,
304H11XX) was attached to a circular cover glass (3mm, Warner
Instruments, 64-0720). A right angle microprism coated with alumi-
num on the hypotenuse (1.5mm, OptoSigma, RBP3-1.5-8-550), was
then attached to the opposite cover glass side. All attachments were
performed using UV-curing optical adhesive (ThorLabs, NOA81).

Microprism implantation surgery. Microprism implantation proce-
dures were similar to those described previously14,33. All insertions
were performed on the left hemisphere, aligning with previous
observations of more favorable vasculature14. A 3mm craniotomy was
performed centered at 3.4mm lateral to the midline and 0.75mm
posterior to the center of the transverse sinus (approximately 5.4mm

posterior to the bregma). A durotomy was then performed over the
cerebellum. Mannitol (3 g/kg, Millipore Sigma, 63559) was adminis-
tered by IP prior to the durotomy. The microprism was inserted into
the transverse sinus and sealed to the skull with Vetbond. The head
plate was then mounted on the skull opposite the craniotomy. Finally,
the prism and head plate were adhered to the skull with Metabond.

Viral injection surgery. Micewerebilaterally injectedwith AAV8-hSyn-
ChR2(H134R).GFP (Addgene: 3.3 × 10¹³ vg/mL; diluted 6 times in
mannitol), AAV5-hSyn-ChR2(H134R)-EYFP (Addgene: 2.4 × 10¹³ vg/mL;
diluted 3 times in mannitol), or AAV8-hSyn-EGFP (Addgene: 3.0 × 10¹³
vg/mL; diluted 9 times in mannitol). 100 or 200 nL of virus was
pressure-injected through a glassmicropipette at each injection site at
a rate of 100nl/min. On each hemisphere, mice were injected at 2 sites
in the MEC (0.77mm anterior to the transverse sinus, 3mm lateral to
bregma, 1.79mm from the surface of the brain; 0.6mm anterior to the
transverse sinus, 3.36mm lateral to the bregma, 1.42mm from the
surface of the brain) with mice heads tilted up 18°.

Fiber implantation. At least 3 weeks following the viral injection, mice
were chronically implanted bilaterally with Lambda fibers (Plexon) at
0.3mm anterior to the transverse sinus, 3.2mm lateral to bregma, and
inserted to a depth of 2.5mm from the brain surface as described
previously84. Fiber dimensions were as follows: 0.66 NA, 3.0mm total
length (1.0mm implant length; 2.0mmactive length; 200/230 µmcore
fiber). Following the fiber insertion, a thin layer of Vetbond was first
applied followed by a thick layer of Metabond to cover the
exposed skull.

Virtual reality setup
For all behavioral experiments, a customized virtual reality (VR) setup
was used, which projects a one-dimensional (1D) virtual environment
basedon the running of amouse, similar to thatdescribedpreviously14.
Mice were head-fixed onto an air-supported polystyrene ball (8” dia-
meter, Smoothfoam) using the mounted head plate. The ball rotated
on an axle, allowing only forward and backward rotation. The virtual
environment was projected onto a hemispherical dome filling the
visual field of mice (270° projection). An optical flow sensor (Paialu,
paiModule_10210) with infrared LEDs (DigiKey, 365-1056-ND)was used
to measure the rotation of the ball and thereby control the motion of
the virtual environment. The optical flow sensor output to an Arduino
board (Newark, A000062), which transduced the motion signal to the
computer controlling the virtual reality. An approximately 4μl water
reward was provided via a lick tube at fixed locations (1 or 2 reward
locations) in a given environment using a solenoid. A lick sensor con-
nected to both the lick tube and head plate holder was used to detect
mouse licking. A mouse licking the lick tube created a closed circuit
between the lick sensor, the lick tube, the mouse (from the tongue to
the skull), the headplate (which directly contacts the skull), and the
headplate holder. The solenoid and lick sensorwere controlled using a
Multifunction I/O DAQ (National Instruments, PCI-6229). The virtual
environments were generated and projected using ViRMEn software
(Princeton, version 2016-02-12)85. Imaging and behavior data were
synchronized by recording a voltage signal of behavioral parameters
from the VR system using the DAQ. ViRMEn environments were
updated at 60Hz. The DAQ input/output rate was 1 kHz. The syn-
chronization voltage signal was updated at 20 kHz. Final behavioral
outputswerematched to the imaging frame rate (30Hz, see below) for
synchronization.

Environments were colored blue and projected through a blue
wratten filter (Kodak, 53-700) to reduce contamination of the imaging
path with projected light. Virtual environments were 1D linear tracks
with patterned walls and patterned visual cues at fixed locations
(Figs. 2b, S1a, S1b). At the end of the track, mice were immediately
teleported to the start of the track. Imaging experiments used a
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1000 cm track. Optogenetic experiments used a 400 cm track. His-
tology experiments used a 400 cm (4 mice) or 1000 cm (16
mice) track.

Behavior
Training. Mice were allowed to recover for 5 days post-surgery (prism
implantation, virus injection, or optogenetic fiber implantation) and
were then put on water restriction, receiving 1ml water per day. After
approximately 3 days of water restriction, mice were trained daily in
VR. Training experience is summarized in Table S1.

Imaging mice training. For imaging mice, somemice were trained on
a 1m track to encourage running (8 mice: 3 out of 15 mice on 10m
tracks and 5 out of 6 mice on 4m tracks) and/or were first trained on
other VR tracks for other experiments (8mice: 2 out of 15mice on 10m
tracks and all 6 mice on 4m tracks). All mice were further trained on a
10m or 4m track until familiarization (familiar environment, FE), as
measured by consistent running (>40 trials per hour) and stable sig-
nificant anticipation of reward locations for 3 days (less than5%change
in predictive licking and slowing, see “Predictive Licking” and “Pre-
dictive Slowing” for quantification). The mice were then switched to
the novel environment (NE, the same length as the corresponding FE)
for spatial learning experiments.

The experience of all mice in FEs was comparable (Table S1) and
was not correlated with behavioral performance, as shown in Fig. S1i.
The prior experience of the 8mice in other experiments did not affect
their performance in NEs, as the two 10m imaging mice with prior
experience (49 ± 19 days) were categorized as one good and one poor
performer, and the six 4m imaging mice with prior experience
(74 ± 9 days) were categorized as four good and two poor performers,
the ratio of which (4 good: 2 poor) was similar to that of 10m imaging
mice (11 good: 4 poor).

Histology mice training. Initial training of histology mice was per-
formed on a 400 cm (4 mice) or 1000 cm (16 mice) track, which was
used as the FE. After 4–6 weeks of training in FE, half of the mice were
exposed to NEs, while the remaining half were again exposed to FEs.
The NE had the same length track, but the cues had different locations
and patterns and the reward locations were different. After being
allowed to explore the FE or NE for 1 h, the mouse was perfused for
immunohistochemistry.

Optogenetic mice training. After recovery from viral injection,
optogenetic mice were first trained on a 1m track, which motivated
them to run, and then trained directly on the 4m track (Fig. 8d) used
later during stimulation. During training, some mice were tem-
porarily trained on shorter tracks (100–200 cm) to encourage run-
ning. Once half of the mice in a cohort (~10 mice/cohort) reached
the criterion for good performers on the 4m track (see “Spatial
Learning Criteria: optogenetic mice” for details), fiber implantation
was conducted on all mice in the cohort (5–8 weeks after viral
injection). After recovery from fiber implantation surgery, the mice
were trained on the same familiar 4m track again for optogenetics
experiments

Mice used in histology and optogenetic experiments had more
experience (in training days and in laps traversed) in their respective
FEs than imaging mice had in NEs by the end of the 10 experimental
days, as shown in red numbers in Table S1. Therefore, FEs used in the
histology and optogenetics experiments corresponded to times after
the 10 days of learning in imaging experiments.

Predictive licking. Predictive licking (PL) was measured as the per-
centage of licks that occurred within a specific distance threshold
(20 cm, except for spatial learning criteria as below) prior to the
reward delivery relative to all other locations (excluding 30 cm after

reward). When determining good and poor performers, various PL
zone sizes were used, as described below.

Predictive slowing. To calculate predictive slowing (PS), for each run,
the velocity changes between each data point were calculated along
the track. The pre-reward acceleration value was calculated as the
mean velocity changes (Δv) within a given window size (distance
threshold) before the reward (for example 690 cm to 890 cm for a
200 cmwindow size and a reward location at 890 cm). The rest of the
track was analyzed using a rolling average of Δv for the same window
size at 1 cm intervals, generating a series of comparison acceleration
values. The slowdown percentile for a given lap was the percentile of
the pre-reward acceleration within the comparison acceleration values
from the rest of the track, such that a higher percentile signified amore
negative acceleration (i.e., deceleration) and thus better PS. The rolling
averages calculated for the comparison values excluded any window
intersecting the edge of the track or areas close to the reward (from
90 cmbefore to 30 cm after rewarddelivery) to avoid edge effects and
reward related behavior, respectively. Thus, for a 200 cmwindow size,
the comparison windows ranged from 0–200 cm to 600–800 cm on
the 10m novel environment track. Depending on the distance
threshold used, these windows may have some overlap with the pre-
reward window. This overlap was allowed to increase the percent of
the track coveredwhen calculating comparison values. For example, in
the novel environment with a 200 cm window, the last comparison
window would begin at 490 cm if no overlap is allowed, excluding a
large proportion of the track.

Except as noted for spatial learning criteria below, the distance
thresholds used were 150 cm for 10m tracks and 70 cm for 4m tracks,
which corresponded to pre-reward windows of 385–535 cm for 10m
familiar environment, 740–890 cm for 10m novel environment, and
296–366 cmfor 4m track. Note that for the 10m familiar environment,
only the second reward location was used to compute the slowdown
percentile and only 50–700 cm of the track were included for calcu-
lation to exclude the first reward and because several mice started
slowing at the end of the track in anticipation of the first reward.

The slowdown percentile of a session was computed as the
average slowdown percentile of all the runs within the session.

Slowing events. Slowing events were calculated on a run-by-run basis,
ignoring the beginning and final incomplete runs. First, the rolling
average of velocity (70 time point window, ~1.2 s at 60Hz) was calcu-
lated for a given run. Then local velocity minima were found using the
MATLAB “findpeaks” function, defined here as slowing valleys. The
input parameters were set such that slowing valleys were at least 5
time-bins apart and the minimum speed difference between a slowing
valley and the adjacent peaks before and after the valley was at least
2 cm/s. The number of slowing events for a given run was defined as
the number of slowing valleys identified.

Spatial learning criteria: imaging mice. Mice were categorized as
good and poor performers based on spatial learning ability as mea-
sured by both PS and PL, which both correlate with familiarity with an
environment34. PS and PL were calculated with different parameter
settings (PS: 50, 100, 150 and 200 cmdistance threshold; PL: 20, 35, 50
and 75 cm distance threshold) for all 10 days in the 1000 cm NE and
averaged across days, generating 8 values (4 from PS and 4 from PL)
per mouse. All 15 mice were ranked based on each set of values from
high to low. Themice thatwere consistently ranked in the lower half of
mice (i.e., with low performance values) for all 8 sets of values
regardless of the chosen parameters were categorized as poor per-
formers. The remaining mice were categorized as good performers.

Spatial learning criteria: histology mice. The good and poor per-
formers in histologymicewere determined based on their PS and PL in
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FEs. Since both 10m and 4m tracks were used as FEs for the histology
mice, PS on the 10m and 4m tracks was calculated using 150 cm and
70 cm distance thresholds, respectively. PL on both 10m and 4m
tracks was calculated using a 20 cm distance threshold. The PSs and
PLs of each mouse in the last 6 days of FEs were further averaged as
avgPS_hist and avgPL_hist for the mouse, respectively.

The good and poor performers were then determined based on
the thresholds developed from imaging mice: the PS and PL values of
the four imagingpoor performers in the last 6 days (days 5–10 inNE)of
learning were first averaged as avgPS_img, avgPL_img, respectively.
The thresholds for PS and PL were determined as the maximal values
across the poor performers of avgPS_img (65.7th percentile) and avg-
PL_img (22.2%), respectively. The histology mice with both avgPS_hist
and avgPL_hist below the corresponding thresholds were assigned as
poor performers. All other mice were assigned as good performers.
The good and poor performers in histology mice categorized using
this method showed comparable PS and PL as those in imaging mice
(Fig. 6b, c).

Spatial learning criteria: optogenetics mice. PS and PL of the opto-
genetics mice on the 4m track were calculated using 70 cm and 20 cm
distance thresholds, respectively. Since optogenetics experiments
were conducted on a session-by-session basis (one session per day)
without averaging multiple sessions/days as what was done for ima-
ging and histology mice, we needed to classify the good and poor
performance of the mice per session using a reliable parameter.
Therefore, PS was used to indicate mouse performance, as it showed
much smaller variations than PL across individual sessions of the same
mouse (Fig. S9q). As described above (“Spatial Learning Criteria: his-
tologymice”), amousewith PSbelow65.7th percentile (PS threshold) in
a session was assigned as a poor performer in that session. The good
and poor performers categorized using this method showed com-
parable PS and PLwith the imagingmice (Fig. S9o, p). To be consistent,
this classification method was applied to all steps of the optogenetics
experiments.

During early training (after viral injection and before fiber
implantation), when PSof half themice in the cohort (~10mice/cohort)
reached the PS threshold for at least two consecutive days (5–8 weeks
after viral injection), fiber implantation was conducted for all mice in
the cohort. One mouse that never learned to run was removed from
the experiment.

After recovery from the implantation surgery, mice were trained
again until their PS was stable (consistently above or below PS
threshold for at least 2 days) in the same 4m track (normally 7–10 days
of training). Optogenetics experimentswere then conductedon a daily
basis with only one CS or one RS session performed per day. For sti-
mulation (three 5 cm CS at cues versus three 5 cm RS), 3 CS sessions
and 3 RS sessions were conducted in alternation for each mouse (one
stimulation session per day for 6 total days) so that the effects of
adjacent CS and RS sessions could be compared (three pairs of com-
parison per mouse, as in Fig. 8g, “compare”). As described above, the
sessions with PS above and below the PS threshold were assigned to
goodandpoorperformances, which should largely correspond tohigh
and low spatial consistency of MEC activity, as demonstrated by our
imaging data on an individual-session basis (Figs. S4a, S9g). For the
comparison between the three 5 cm CS at cues preceding the reward
and three 5 cm RS, 8 (4 male, 4 female) ChR2 good performers, 8 (5
male, 3 female) ChR2 poor performers, 5 (2male, 3 female) EGFP good
performers, and 5 (2male, 3 female) EGFP poor performers were used.

Behavior fitting. To determine when the good-performing mice
achieved stabilized behavioral performance, PS and PL calculated with
different parameter settings were fitted with a one phase association
exponential function (Prism 9.3.1, GraphPad), where y is the PS (or PL),
and x is day. The start points of fitted curves were set to be 0% for PL

(no predictive licking) and the 50th percentile for PS (the random level
of PS). Once the values for the plateau and K, a rate constant, were
derived, the number of days required to achieve 95%of the plateauwas
calculated.

Visual discrimination task. Our visual discrimination task was based
on established visual discrimination protocols but adapted for head-
fixed mice in our virtual reality setup86,87. In each session, mice
experienced 98–379 individual trials. For analysis, the first 98 trials
per session were analyzed. Each trial began with a 3–5 s (uniformly
distributed at random) inter-trial interval during which the VR pro-
jection showed a black screen. A patterned wall moving at 10 cm/s in
the direction of mouse motion was then shown for 6 s. Mouse running
speed did not affect wall motion. Each grouping of three trials dis-
played the three cue patterns on the wall in a randomly permuted
order. Wall patterns included the target cue (vertical stripes, with
reward) and the non-target cues (diagonal stripes and dots, without
reward). All three patterns were used as spatial landmark patterns in
the 10m NE. The test zone was 4 s in duration beginning 1 s after the
start of the cue presentation. During target cue trials, if a mouse licked
during the test zone, it immediately received a 4 µl water reward. If no
lick occurred before the end of the test zone, a water rewardwas given
to reinforce association of the target cue with the reward. A mouse
couldonly receive 1 water reward per trial. No rewardwas given during
the presentation of non-target cues regardless of mouse licking, and
no punishment was given in response to incorrect licking. All licks
during a session were recorded, but only those during test zones were
used for the calculation of the discrimination factor. The discrimina-
tion factor (d-prime) was calculated according to the formula: d-
prime= norminv(HR)-norminv(FA); where HR=Hit Rate or the fraction
of target cue trials with licking during test zone, and FA=False Alarm
Rate or fraction of non-target cue trials with licking during test zone88.
A threshold of d-prime>1 was used to denote successful visual
discrimination86,88.

Two-photon imaging
Imaging was performed using an Ultima 2Pplus microscope (Bruker)
configured with the above VR setup. A tunable laser (Coherent, Cha-
meleonDiscoveryNX) set to a 920nmexcitationwavelengthwasused.
Laser scanning was performed using a resonant-galvo scanner (Cam-
bridge Technology, CRS8K). GCaMP fluorescence was isolated using a
bandpass emission filter (525/25 nm) and detected using GaAsP pho-
tomultiplier tubes (Hamamatsu, H10770PB). A 16x water-immersion
objective (Nikon, MRP07220) was used with ultrasound transmission
gel (Sonigel, refractive index: 1.335989; Mettler Electronics, 1844) as the
immersion media.

The anterior-posterior (AP) and the medial-lateral (ML) angle of
the prism (i.e., the angle of the surface of the prism along to the AP or
ML direction of the mouse) relative to the head-fixed position of the
mouse were measured prior to the first imaging session. The head
plate holder and rotatable objective angles were set daily to align the
objective with the prism in the AP andML direction, respectively, such
that the objective was parallel to the prism surface. Black rubber tub-
ing was wrapped around the objective and imagingwindow to prevent
light leakage into the objective.

Microscope control and image acquisition were performed using
Prairie View software (Bruker, version 5.5). Raw data was converted to
images using the Bruker Image-Block Ripping Utility. Imaging was
performed at 30Hz with 512 × 512 resolution. Average beam power at
the front of the objective was typically 70–115mW. Imaging and
behavior data were synchronized as described above.

Image processing
Imaging data was down-sampled by a factor of three by taking the
average of each consecutive block of 3 frames and processed as
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previously described using published MATLAB scripts33. Motion cor-
rection was performed using cross-correlation based, rigid motion
correction. Identification of regions of interest (ROIs, active cells) with
correlated fluorescence changes was performed using principal com-
ponent analysis combined with independent component analysis90.
The fluorescence time course of individual ROIs was then extracted.
The fractional change in fluorescence with respect to baseline (ΔF/F)
was calculated as (F(t) – F0(t)) / F0(t)14. For each cell, significant cal-
cium transients were identified using amplitude and duration thresh-
olds, such that the false-positive rate of significant transient
identification was 1%13. A final ΔF/F including only the significant cal-
cium transients was used for all further analysis.

The mean ΔF/F (significant transients only, as mentioned above)
for a cell was calculated as a functionof position along the track in 5 cm
bins.Data pointswhen themousewasmoving below a speed threshold
were excluded from this analysis. The speed threshold was calculated
by generating a 100-point histogram of all instantaneous velocities
greater than 0 and taking the value twice the center of the first bin
(approximately 1% of max positive speed).

To remove artifactual ROIs occasionally caused by light leak, ROIs
with an extreme non-circularity (ROIs were the ratio of the major to
minor axis of the ellipse with the same normalized second central
moments as the region was greater than 3.3) were removed from fur-
ther analysis.

Cell alignment. All imaging sessions for a given mouse were aligned
pairwise, as previously described91, to identify common cell pairs
between each pair of sessions. Pairwise alignments were combined to
generate the full set of possible cell alignments for all imaging days.
These possible alignments were manually checked to determine the
set of cells identified in all imaging sessions. Similarly, cells tracked for
fewer than 11 days were identified by utilizing the pairwise alignments
for all imaging days. Due to the pairwise nature of the alignment, some
cells from some days appeared in multiple similar alignment group-
ings. Such groupings were combined to identify the first day a cell was
tracked. The number of days a cell was tracked was calculated as the
maximal tracked days in all alignment groupings.

Data analysis
Stellate/pyramidal cell classification. To identify the total cell
number of cells in a FOV regardless of activity, cells were manually
traced frommotion corrected maximal projections of each FOV. Cells
were classified as stellate cells or pyramidal cells based on the bimodal
distribution of their long-axis diameters as previously described33. The
valley between the two peaks of cell diameters was 16.6 µm. To
increase the confidence of cell classification, cells with diameters
smaller than 15.6 µm and larger than 17.6 µm (16.6 ± 1 µm) were classi-
fied as pyramidal and stellate cells, respectively.

Matchingmanually identified cells to active cells. To identify which
manually identified cells corresponded to which active cells, the clo-
sest active cell to eachmanually identified cell was calculated using the
centroid-to-centroid distance. A given pair of manual and active cells
was considered to be the same cell if this centroid-to-centroid distance
was less than 10 µm.

Anatomical clustering analysis. Anatomical cell clustering was per-
formed similar to previous analysis40. c01 cells were all cells tracked on
both day 0 and day 1 (Fig. 2k). “Other” cells were all cells that were
tracked on only one of day0 and 1 (a0 and a1, Fig. 2k), as well as all cells
thatwerefirst tracked after day 1 (a2-a10, Fig. 2k). To avoid edge effects
caused by unequal coverage of FOVs, only “other” cells thatmapped to
the region covered by both day 0 and 1 were included in the “other”
category. To avoid artifacts caused by unequal numbers of cells
between groups or across FOVs, the minimum number of cells for

either group in any FOVwas calculated (n = 39 cells). When performing
the following analysis, random subsets of 39 cells were selected from
both the common and other cells within a FOV. The analysis was
averaged across 1000 such subset pairs. To calculate the nearest-
neighbor (NN) distances for a given FOV, for each cell in a group
(c01 cells or other cells), the centroid-to-centroid distance was aver-
aged for the N-nearest cells in that same group (N = 1–38). These cal-
culated NN-distances were then averaged for each value of N to
determine the average NN-distance for that group across the FOV.

Inter-day activity correlation. The activity matrix correlation for a
given set of cells in a particular imaging session was calculated as
follows: the spatially binned mean ΔF/F for each cell was averaged
across all runs along the track, generating a 1D array. The calculated
array for each cell was concatenated to generate a singlematrix (size =
total number of cells by number of spatial bins) such that the activity of
a given tracked cell was in the same row of the activity matrix for all
days. The day-to-day activity matrix correlation was the 2D correlation
between the calculated matrices for two consecutive days when the
cell activity was placed in the same order in both matrices.

The activity correlation for individual cellswascalculated similarly
to above, except the mean ΔF/F averaged across runs was not con-
catenatedwith other cells. Instead, day-to-day activity correlation for a
given cell was the 1D correlation between the generated 1D arrays for
that cell on two consecutive days.

Spatial field distribution. To calculate significant spatial firing fields,
regions of the track with significantly consistent activity, the mean ΔF/
F was compared to shuffles of the original ΔF/F as described
previously33. Each shuffle was calculated such that the original spatial
positionof each timepointwaspreserved, but theΔF/Fwas shuffledby
bisecting the full ΔF/F time course at a random time point and swap-
ping the order of the resulting halves. ThemeanΔF/F of the shufflewas
then calculated as described above. A spatial field was defined as a
region of at least 3 consecutive 5 cm bins (except that the fields at the
beginning and endof the track could have 2 bins) that had ameanΔF/F
higher than 80% of 1000 shuffles at the corresponding bins. Addi-
tionally, at least 10%of runswere required to have a significant calcium
transient in the spatial field.

The spatial field distribution includes all spatial bins contained
within all spatial fields for a given imaging session. For the activity of
each cell on one day, a bin vector (200 elements corresponding to 200
bins on 1000 cm track) was generated by using ones and zeros to
indicate whether individual spatial bins were in a spatial field or not,
respectively. The bin vectors of all cells were grouped in a 2D matrix
(M, size = total number of cells by number of spatial bins), representing
the spatial field distribution of all cells on a given day. To calculate the
significance between the two spatial field distributions before (days
1–2) and after learning (days 7–10), we averaged theMson days 1 and 2
(M1), and days 7–10 (M2), and compared M1 and M2 on a bin-by-bin
basis (columns of M1 and M2).

Intra-day run-by-run (RBR) activity consistency. The run-by-run
consistency for a given cell in a particular imaging session was calcu-
lated as previously described45. The spatially binned mean ΔF/F for
each run along the track was correlated with that of every other run.
The average of these correlations is the run-by-run consistency value
for a given cell.

Position decoding. Position decoding was performed by separating
the imaging data into template data (odd runs) and testing data (even
runs) as described previously45. The spatially binnedmeanΔF/F for the
template data runswere averaged across runs and concatenated for all
cells to generate a template matrix (size = total number of cells by
number of spatial bins). The ΔF/F of all cells at each time was then
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correlated to each spatial bin of the averaged template data matrix.
The decoded position for a given time point was the spatial position of
the template bin that gave the highest correlation. Decoding error for
each time point was calculated as the absolute difference between the
decoded spatial position and the true position at that time point. For
calculating correct decoding percentage, a time point was considered
correctly decoded if the decoding error was less than 10 cm. Due to
unstable running of behavior at the beginning and endof the track, the
data in the first and last 150 cm were removed45. The decoding was
performed using either all cells or 50 randomly chosen cells. When 50
cell were used, two random selections of 50 cells were made for each
FOV and the averaged the value was used for the decoding perfor-
mance of the FOV.

Speed exclusion criteria. For determining the subset of the good
performers with comparable speed to the poor performers, the aver-
age speed of each mouse on individual days was calculated. If the
maximum average speed of a good performer was higher than the
maximum average speed of any poor performer, it was excluded from
this subset of mice.

Grid/cue cell classification. Grid cells were identified as described
previously based on the features of spatial fields33. Cue scores were
calculated as previously described29. Cue score thresholds were
separately calculated for left and right cue cells as the 95th percen-
tile of the left and right cue scores for 200 shuffles of each cell from
all mice and imaging sessions in a given environment, respectively.
In the rare cases when a cell was above the left and right cue score
threshold, the cell was classified as the side with the higher cue
score. Left and right cue cells were combined for all analyses. A cell
that met the criteria for both cue cells and grid cells was only clas-
sified as a cue cell. Aligned cells were declared true cue cells or grid
cells only if they were identified as such in more than half the ima-
ging sessions they were tracked for. For example, a cell tracked for
all 11 days was only classified as a true cue or grid cell if it was
identified as such on 6 or more days.

Grid scale/grid field spacing. The grid scale of a particular grid cell
was calculated as the smallest distance between the centers of any two
adjacent significant spatial firing fields, which were calculated
as above.

Cue cell statistics. The spatial shift and response amplitude for cue
cells were calculated on a run-by-run basis from the spatially binned
mean ΔF/F for each cue individually. The spatial shift was the number
of bins to shift cue cell activity in a particular run so that the shifted
activity had themaximal correlation with the cue template. The spatial
shift was then converted to centimeters. The response amplitude was
the peak value of mean ΔF/F of the response to individual cues. The
standard deviation of each measure was calculated for each cue
separately and averaged together to generate the standard deviation
value for a given cell. The variation in response amplitude for each cell
was normalized by the mean ΔF/F of the cell.

Grid module identification. Grid modules were identified based on
field spacing and width of grid cells as described previously33.
Throughout the 11 days, the field spacing and width of a cell were
determined as the minimal spacing (as described above) and maximal
field width that appeared on at least two days, respectively. Within
each FOV, field spacing and widths of all cells were clustered and cells
in different modules were assigned according to the clustering. The
grid module with the smallest grid spacing in each mouse was further
identifiedbasedon themodule spacings in all FOVsof the samemouse.
Generally, each mouse had 2–3 FOVs, which spread across the first
1mm along the dorsal and ventral axis of the MEC and contained 2–3

modules. The spacing of the smallest module was generally
around 50 cm.

Pairwise activity correlations and day correlation of grid cells. The
pairwise activity correlations of grid cells were calculated using theΔF/
F containing only significant transients. To be consistent across cells
and behavioral sessions, the first 4000 data points (~6.7 minutes dur-
ing behavior) of the ΔF/F were used for all calculations. The pairwise
activity correlations of grid cells were calculated using the significant
transient – only ΔF/F binned as a function of track positions. Day
correlationswere further calculatedbycorrelating thepairwise activity
correlations on adjacent days. Shuffled correlations were made by
randomly permuting pairwise correlations 200 times among grid cell
pairs in individual FOVs on individual days and recalculating Day cor-
relationusing thepermuteddata. For pairwisecorrelation as a function
of pairwise distance, data are grouped in 30 µm bins. The adjusted
Pairwise corr. on each day was calculated as the original correlation
subtracted by the mean Pairwise corr. of grid cell pairs at all distances
on the same day.

RBR activity consistency along the track. RBR activity consistency
along the track was calculated by calculating the RBR activity corre-
lation (as in “Intra-day run-by-run (RBR) Activity Consistency”) within a
rolling window of 5 spatial bins. For a 1000 cm track with 200 spatial
bins, the correlationswere calculated for areaswithin bins 1 to 5, 2 to 6,
3 to 7, …196 to 200.

Optogenetics
In vivo electrophysiology. To confirm the efficacy of the ChR2, after
approximately 4 weeks of viral injection with AAV8-hSyn-
ChR2(H134R)-GFP, multi-unit recordings were performed using cus-
tomized tungsten electrodes (California fine wire92) and a 32-channel
amplifier chip (Intan technologies, RHD2132). Mice were anesthetized
with 0.5–1.5% isoflurane and placed into a stereotaxic frame to make a
craniotomy to insert an optrode (tungsten electrodes glued to an
optical fiber (Thor labs, 0.39 NA, Ø200 µm cut and coupled to ferrule
in-house) into the MEC (0.15mm anterior to the transverse sinus,
3.24mm lateral to the bregma, 1.5–2.2mm from the surface of the
brain). The location of the optrode was confirmed by advancing the
electrode towardMEC andmonitoring for light induced changes in the
multi-unit activity. Spikes were acquired using an Open Ephys (Open
Ephys GUI, version 0.5.5.2) recording system at 30 kHz. Before
experiments, a blue LED module (465 nm, PlexBright LD-1 Single
Channel LED Driver from Plexon) was coupled to the optrode fiber,
and the blue light at approximately 4–5mW was used for electro-
physiology (measured at the tip of the fiber using Sphere Photodiode
Power Sensor; Thorlabs S142C). During recordings, light pulses were
2ms long and were delivered at 10Hz for 1 s, followed by 10 s inter-
train intervals, and repeated over 3 times at each depth. The LED was
triggered using the Pulse Pal 2 (Sanworks) controlled by custom
MATLAB scripts.

Multi-unit spike detection. High frequency voltage traces were first
extracted using a bandpass filter with cutoff frequencies between 250
and 8000Hz93. Spikes were then defined as contiguous voltage
deflections that were larger than 3 standard deviations from themean.

Optical stimulation during behavior. Behavior experiments for opti-
cal stimulation were performed as described above using a 4m track.
Before experiments, a blue LED module was coupled to the Lambda
fibers, and the blue light was used at ~8–9mW. Each stimulation ses-
sion began with 10 no-stimulation runs, followed by 10 consecutive
stimulation runs and then switched back to 10 no-stimulation runs
(after the 5 excluded runs, see below). For each stimulation run, spe-
cific locations along the 4m track (excluding the first 5 cm and the
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track area after the reward) were selected for stimulation, as indicated
in Fig. 8f. When the mouse location was within the stimulation zone
and the speed was above 1 cm/s, a 10Hz pulse train (2ms duration;
controlled by Pulse Pal 2, Sanworks) of 465 nm light was delivered. If
the mouse was within the stimulation zone and paused (speed <1 cm/
s), the pulse train was not delivered until the mouse moved again
(speed > 1 cm/s). The connection area between the fiber and optic
patch-cord was covered by black aluminum foil (BKF12, Thorlabs) to
minimize potential visual distraction caused by blue light leakage. The
first five runs of each behavioral session were excluded from beha-
vioral analysis, as some mice required a short period of time to
warm up.

Immunohistochemistry
Mice were anesthetized with a ketamine (200mg/kg, VetOne, 13985-
584-10) and xylazine (20mg/kg, VetOne. 13985-612-50) cocktail and
were transcardially perfusedwith 4% paraformaldehyde (PFA, Electron
Microscopy Sciences,15713) in phosphate buffer solution (PBS, Corn-
ing, 46-013-CM). Brain tissues were dissected and fixed in 4% PFA in
PBS overnight at 4 °C. Sagittal slices (40 µmthick) were prepared using
a VT1200S vibratome (Leica Biosystems). Slices were washed in PBS
(3 × 10min), and then blocked with 10% bovine serum albumin (BSA,
Millipore Sigma, A3294), 0.5% triton X-100 (Millipore Sigma, T9284),
and PBS for 1 h at room temperature. Primary and secondary anti-
bodies were diluted in 2% BSA, 0.4% triton, and PBS. Slices were
incubated in dilutedprimary antibodies overnight at 4 °C, thenwashed
in PBS (3 × 10min). Slices were incubated in diluted secondary anti-
bodies (1:500 dilution) for 1.5–2 h at room temperature, then washed
in PBS (3 × 10min) and mounted with mounting medium (Vector
Laboratories, H-1000-10). Images were collected using a Zeiss
880 spectra confocal. Primary antibodies used include rabbit anti-c-
Fos (1:2000, Cell Signaling Technology, 2250S), mouse monoclonal
IgG1 anti-Reelin (1:1000, Abcam, AB78540), mouse monoclonal IgG2a
anti-Calbindin (1:3000, Abcam, AB75524), and mouse monoclonal
IgG2a anti-GAD67 (1:2000, Millipore Sigma, MAB5406). Secondary
antibodies included Alexa 488 conjugated goat anti-rabbit antibody
(Invitrogen, A32731), Alexa 568 conjugated goat anti-mouse IgG1
antibody (Invitrogen, A21124), Alexa 568 conjugated goat anti-mouse
IgG2a antibody (Invitrogen, A21134), and Alexa 647 conjugated goat
anti-mouse IgG1 antibody (Invitrogen, A21240). Nissl (1:100, Invitro-
gen, N-21479) staining was performed on individual slices to label
neurons.

Quantification of histology. Each cell was selected using “Cell Magic
Wand Tool” and its intensity of c-Fos, Calbindin and Gad67 immu-
nostaining was measured in Fiji. Afterward, the intensity distribution
for each brain slice was plotted using “ksdensity” built-in function in
MATLABwith width setting to get reasonable distribution (width for c-
Fos, Calbindin and Gad67 is 400–500, 1000–2000, and 1000,
respectively). The cut-off for c-Fos, Calbindin and Gad67 are the first
valley after 8000, 5000, and 20000, respectively.

General data analysis and statistics
Image processing was performed using previously publishedMATLAB
(MathWorks, version R2015aSP1) codes as cited above. Data analysis
wasperformedusing ImageJ (Fiji, version 1.53q),MATLAB (MathWorks,
versions R2015aSP1 and 2020a), and GraphPad Prism (version 9.3.1).
Linear correlations and the corresponding r and p values were calcu-
lated using a two-tailed Pearson’s linear correlation coefficient. Other
significance values were calculated using Student’s t test, Student’s
paired t test, or ANOVA tests (two- or three-way ANOVA, or repeated
measures ANOVA; sphericity is assumed for all tests). Where appro-
priate, multiple pairwise comparisons were performed following
ANOVA tests using Student’s t test or Student’s paired t test. P values
were adjusted for multiple comparisons using the Bonferroni–Holm

method as noted. For anatomical clustering, pairwise comparisons
were performed using the two-sidedMann–WhitneyU test. Two-tailed
tests were used for all analyses expect for analysis of pairwise corre-
lation of grid cells with respect to distance. One-tailed tests were
performed for these tests in the direction predicted by the distance
between cells13. P values less than 0.05 were considered significant
(* < 0.05, ** <0.01, *** <0.001). All figures show mean and standard
error, except where noted. Detailed statistical information for all fig-
ures can be found in Supplementary Data 1.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw data are extremely large and not feasible for upload to an online
repository but are available upon request to yi.gu@nih.gov. Processed
source data for all figures and associated statistical analysis are pro-
vided with the paper. Source data are provided with this paper.

Code availability
CustomMATLAB scripts used for data analysis are available on GitHub
(https://github.com/GuLab-NIH/MaloneNatComm2024).
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