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Deep photonic network platform enabling
arbitrary and broadband optical
functionality

Ali Najjar Amiri1, Aycan Deniz Vit 1, Kazim Gorgulu1 & Emir Salih Magden 1

Expanding applications in optical communications, computing, and sensing
continue to drive the need for high-performance integrated photonic com-
ponents. Designing these on-chip systemswith arbitrary functionality requires
beyond what is possible with physical intuition, for which machine learning-
based methods have recently become popular. However, computational
demands for physically accurate device simulations present critical challenges,
significantly limiting scalability and design flexibility of these methods. Here,
we present a highly-scalable, physics-informed design platform for on-chip
optical systems with arbitrary functionality, based on deep photonic networks
of custom-designedMach-Zehnder interferometers. Leveraging this platform,
wedemonstrate ultra-broadband power splitters and a spectral duplexer, each
designedwithin twominutes. Thedevices exhibit state-of-the-art experimental
performance with insertion losses below 0.66 dB, and 1-dB bandwidths
exceeding 120nm. This platformprovides a tractable path towards systematic,
large-scale photonic system design, enabling custom power, phase, and dis-
persion profiles for high-throughput communications, quantum information
processing, and medical/biological sensing applications.

Photonic integrated circuits (PICs)1,2 have significantly evolved over
the last decade and are now essential technological components with
critical importance in optical communications3, sensing4,5, and
computing6–8. With the growing diversity and complexity of photonic
applications, designing custom PICs with state-of-the-art performance
metrics has become one of themost critical drivers of advancement in
photonic systems. Traditional approaches relying on prior knowledge
of relevant architectures, fundamental principles, and physical intui-
tion yield a limited library of known devices and severely restrict the
potential capabilities of the resulting photonic systems. More general
approaches have recently emerged under the broad category of
inverse/machine-optimized design9–14, allowing for greater design
flexibility than manual tuning of waveguide parameters. Through
comprehensive searches over the complete domain of fabrication-
compatible devices, various types of couplers15, polarization
splitters10,16, and spectral filters9,14 have been proposed and demon-
strated through these inverse-design methods. However, in these

“free-form" design approaches, the degrees of design freedom are
effectively controlled by the specified device footprint, which has key
implications on the final device performance and the associated
computational cost. While larger device footprints inherently provide
the necessary design flexibility for complex and arbitrary optical
functionality, they also rapidly scale the computational complexity of
the necessary optimization process due to the physically-accurate
electromagnetic simulations required9,10,14,17. These requirements pre-
clude the design of arbitrarily complex, ultra-broadband, or
wavelength-specific photonic devices for the increasing number and
variety of use cases and application requirements.

The ideal approach to photonic design must allow for arbitrarily-
specified photonic functionality while maintaining low computational
cost. In recent years, programmable PICs made from Mach-Zehnder
interferometers (MZIs) have been proposed as a potential solution to
this problem3,18–21. These systems enable tuning of optical responses
through active phase shifters to achieve wavelength-specific linear
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mappings for applications including high-speed and power-efficient
optical signal routing3,20,22, image/signal classification23–27, and quan-
tumcomputing8,28. Yet, the potential utility of photonic interferometer
networks extends well beyond these demonstrated capabilities, with
critical implications towards the design of photonic systems with
arbitrarily complex transfer functions.

In this paper, we introduce and experimentally demonstrate a
highly-scalable framework for the design of photonic systems with
arbitrarily-specified functionality, based on a deep photonic network
architecture of custom-designed MZIs. Our architecture consists of a
mesh of individually designed interferometers and is modeled by an
equivalent computational network equipped with ultra-fast and
physically-accurate simulation capabilities. In this network, eachMZI is
constructed from unique waveguide tapers, allowing for specific
wavelength-dependent phase profiles to be achieved according to the
target photonic functionality specified. The exact geometry of the
individual interferometers is optimized by leveraging physics-
informed machine learning capabilities in our design framework
through a combination of rapid lookup of waveguide parameters and
successive evaluation of photonic transfer matrices. Using this fra-
mework, we design ultra-broadband 50/50 and 75/25 power splitters
and a spectral combiner/splitter, each in less than two minutes, with
inherent fabrication compatibility on the 220-nm-thick silicon-on-
insulator platform, and experimentally demonstrate state-of-the-art
performance for all three devices. Our presented framework provides
a path towards the systematic design of large-scale photonic systems
with arbitrarily-specified, wavelength-dependent, or ultra-broadband
responses.

Results
Deep photonic network architecture
The architecture of our deep photonic network consists of an input
layer, a series of MZI layers, and an output layer, as shown in the
schematic in Fig. 1a. This architecture based on amesh of MZIs has the
theoretical capability to implement any linear N ×N input-output
mapping in order to achieve arbitrary optical functionality29–31. Input
optical signal to the network is provided either externally by a series of

couplers as shown, or by waveguides from upstream devices on-chip.
The input optical signal is processed unidirectionally through layers of
custom MZI interferometers, each with its own specific 2 × 2 mapping
function denoted by Ti,j. This modular network is modeled using the
transfer matrix description of each one of its constituent building
blocks, in a modular configuration. Specifically, each MZI consists of
two pairs of waveguide tapers with custom geometries and two
directional couplers, as illustrated in Fig. 1(b). The overall transfer
matrix for each MZI is described by the transfer matrices of these
constituent blocks as:

TðλÞ= e�jφðλÞ tðλÞ �jqðλÞ
�jqðλÞ tðλÞ

� �
e�jθ21ðλÞ 0

0 e�jθ22ðλÞ
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where t(λ), q(λ), and φ(λ) are the through- and cross-port amplitude
coefficients and the phase response of the directional couplers, and
θ11(λ) through θ22(λ) are the phases accumulated in corresponding
waveguide tapers. The wavelength dependence of each one of these
parameters plays a critical role in achieving arbitrary optical
functionality in our networks. The directional couplers used through-
out the network are identical and are designed to be approximately
50% couplers at 1550 nm (see Supplementary Section 1 for details). A
schematic of this directional coupler and its simulated through-port
transmission are shown in Fig. 1c. In contrast, all waveguide tapers are
unique and custom-designed using a set of width and length
parameters, as illustrated in Fig. 1d, which are determined through
an iterative optimization algorithm. The phase accumulated through
each customwaveguide taper is calculated as a differentiable function
of these custom widths (wi), taper length (Lθ), and input wavelength
(λ), using the waveguide effective index neff(w, λ). This unique
implementation allows the network to achieve wavelength-
dependent phase profiles different from that of a straight waveguide,
as demonstrated in the inset of Fig. 1d, enabling much higher degrees
of freedom while maintaining the same device footprint. Our design

Fig. 1 | Deep photonic network architecture and components. a The network
architecture is composed of the input stage, horizontally-cascaded and vertically-
repeated custom interferometric layers, and the output couplers. Each interfero-
metric layer consists of a combination of Mach-Zehnder interferometers and
individually-optimized waveguide structures. b Block diagram of a Mach-Zehnder
interferometer with two pairs of waveguide tapers of custom geometries and two
directional couplers. θ11 through θ22 indicate the phases accumulated through each
custom waveguide taper. c Schematic of the directional coupler with two S-bends

and a 10 μm-long coupling section, and its 3D-FDTD simulated transmission
response. d Schematic of an example custom waveguide taper constructed from a
set of optimizable width parameters, from which the accumulated phase is calcu-
lated as a function of wavelength using the effective index. These custom wave-
guide tapers enable unique spectral phase profiles different from those in straight
waveguides, as shown in the inset. eOverall structure of an example deep photonic
network with cascaded interferometric layers of directional couplers and indivi-
dually optimized waveguide tapers.
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framework then constructs the overall photonic integrated circuit
through an arbitrary number of interferometric layers as shown
in Fig. 1e.

Simulation and optimization of the network’s optical response
Propagation of the complex optical amplitude through the network is
carried out by a computational graph mimicking the physical network
architecture. At each wavelength, the optical transformation carried
out by the mesh of interferometers between N input channels and N
output channels is represented by a computational graph. This archi-
tecture calculates the wavelength-dependent linear scattering matrix
S(λ) of the entire deep photonic network according to
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for networks with an odd number of inputs. Here, M represents the
number of interferometric layers, n= bN2c, R =2dM2e+ 1, and F is a scalar
indicating the phase accumulated through the topmost and bottom-
most arms of the network where no interferometer is present. Note
that the very first matrix is omitted from the products when using an
odd number of layers.

This computation involves integrating the waveguide effective
index using the custom widths and lengths for each waveguide taper,
and extracting the directional coupler through-port, cross-port coef-
ficients, andphase response from the 3D-FDTD results. In order for our
custom photonic networks to be optimized for user-defined optical
functionality, these operations are implemented through a differenti-
able programming construct, enabling both fast parameter lookups
and automatic calculation of relevant derivatives32. For calculating
θ(λ), we numerically integrate the effective index throughout the
length of the custom tapers using data obtained from Silicon Photo-
nics Toolkit33, an open-source software package providing access to
several important propagation-related parameters in silicon wave-
guides as functions of wavelength and waveguide width. The direc-
tional coupler coefficients are similarly extracted from a differentiable
interpolation of its 3D-FDTD simulation results. The result of this
computation yields the complete network transfer functionwith a high
degree of physical accuracy including the wavelength-dependent
mappings for each input-output pair.

The ability to rapidly calculate a given network’s optical
response as a differentiable function of its design parameters is

critical from an optimization perspective. Using this capability, we
construct an optimization procedure by iteratively modifying the
waveguide tapers in order to obtain application-specific photonic
networks with arbitrarily defined transfer functions. This procedure
is illustrated for an example 1-input 4-output network in Fig. 2a. First,
we initialize a network with the desired number of interferometric
layers and input-output ports. We define the target optical transfer
function of these input-output pairs (Ttarget(λ)), and assign semi-
random width and length parameters to the constituent custom
waveguide tapers. The network’s optical response is evaluated as a
function of wavelength using the procedure described above and
compared with the target transfer function. The difference between
the calculated and target transfer functions is formulated as a mean
squared error JðxÞ= 1

Q

P
λjTcalculatedðλ, xÞ � T targetðλÞj2, where Q is the

number of wavelengths and x are design parameters including widths
and lengths of the custom tapers. Gradient of J(x) with respect to
these design parameters ∇x J is calculated through a back-
propagation procedure. We then minimize this error by iteratively
modifying the widths and lengths of waveguide tapers, as illustrated
in Fig. 2b, using a gradient-based optimization algorithm34. In addi-
tion to this error itself, we implemented numerous regularization
schemes to achieve inherent fabrication compatibility by restricting
waveguide widths from undergoing extreme changes in the custom
tapers throughout the optimization procedure. Details regarding
network initialization, convergence of this optimization process, and
final resulting waveguide parameters can be found in Supplementary
Section 2.

Arbitrary optical functionality with deep photonic networks
One of the key advantages of our proposed deep photonic network
functionality is its ability to enable designs of photonic devices with
arbitrary spectral specifications. We demonstrate how this capability
allows for a universal design procedure for designing devices with
ultra-broadband responses, and also devices with specific spectral
features. As a proof of principle, this functionality is illustrated in Fig. 3
with three separate devices: twobroadbandpower splitters with 50/50
and 75/25 splitting ratios operating within 1400-1600 nm, and a
1 × 2 spectral duplexer between 1450 nm and 1630 nm.

Depending on the complexity of the desired functionality, our
framework allows for the appropriate selection of hyperparameters of
the deep photonic network including the number of interferometric
layers and the number of custom widths in each waveguide taper.
Details regarding the selection of hyperparameters can be found in
Supplementary Section 3. Here, the power splitters are both designed
with networks of three layers each, and the duplexer is designedwith a
network of six layers. For each customwaveguide taper in our devices,
we used five trainable widths and a trainable length, resulting in a total
of 24parameters for eachMZI inour photonic networks. The evolution
of the resulting mean squared errors throughout the optimization
processes are plotted in Fig. 3a–c, where convergence is achieved in
several hundred iterations and, atmost, a fewminutes on a single Tesla
V100 GPU. Details regarding the optimization time of the photonic
networks and their scalability can be found in Supplementary
Section 4.

The wavelength-dependent design capability of our network is
illustrated in Fig. 3d–f, where we plot the transmission at one of the
output ports for each one of the three devices as a function of wave-
length. Throughout optimization, the output state evolves towards the
target output functionality, as can be seen by the optical responses
gradually approaching the desired 50%, 25% (for one output), and the
spectrally duplexed outputs for the three devices, respectively. In
Fig. 3g–i, the transmission spectra at both output ports are plotted for
each device at their randomly-initialized states at the beginning of
optimization, at an intermediate state where the devices have been
partially trained, and at the final states of the optimized devices. The
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final device responses demonstrate a near-perfect match with the
specified target functionality. These responses are verified by the
propagation of the optical input in the final optimized devices, which
are plotted using the electric field intensity from 3D-FDTD simulations
in Fig. 3j–l. These simulation results confirm the expected outputs
from our transfer matrix calculations that our networks are trained
with. As expected, the power splitters achieve broadband operation;
and the duplexer functions as a spectral splitter within its spectral
design range, providing long-pass and short-pass outputs.

Experimental demonstration and analysis of network response
The experimental characterization results for the two power splitters
are shown in Fig. 4a, b. For the 50/50 splitter, the maximum deviation
from 50% transmission is as low as ± 6.42% for both output ports; and
the insertion loss is measured to be less than 0.5 dB. As such, our
network-based power splitter experimentally achieves a deviation of at
most 0.6 dB within the 120 nm of measured bandwidth, and therefore
a 1-dB bandwidthmuchwider than that. Similarly, for the 75/25 splitter,
the deviations from the target transmission are within ±5.49% ( ±0.86
dB) and ±8.88% ( ±0.55 dB), for output ports number one and number
two, respectively. The measured insertion loss is less than 0.61 dB for
both output ports. These results indicate that the 75/25 splitter
achieves a 1-dB bandwidth of at least 120 nm, our widestmeasurement
range possible. The spectral duplexer’s experimental characterization
results are shown in Fig. 4c. Within the pass-bands, a maximum loss of
11.45% (0.52 dB) and 15.30% (0.72 dB) are measured for the short-pass
and long-pass outputs, respectively, and the insertion loss ismeasured
about 0.66 dB (occurring at 1590 nm). The measured cutoff wave-
length is around 1555.2 nm, compared to the specified target cutoff
wavelength of 1550 nm. The extinction ratio between the two outputs
is better than 15 dB for the majority of the wavelength range char-
acterized, and only reaches 13.6 dB at the edge of the measured
spectrum (1600 nm). All three devices experimentally exhibit state-of-
the-art performance and a close match with the training objective
transmission responses. Reflection in our networks was also char-
acterized, and found to be around -30 dB for the majority of the
measured spectrum with no practical influence on our device optimi-
zation processes (Supplementary Section 5). These results

demonstrate and experimentally verify the universal capability of our
design approach.

Next, we analyze the robustness of our deep photonic networks
against fabrication variations. Specifically, we plot the resulting
transmission responses from transfer matrix calculations under
potential over-etch and under-etch scenarios in Fig. 4d–f up to a
change of ±20 nm in the waveguide widths and gaps. The device
responses are calculated by simulations of the network structures with
updatedwaveguide tapers and directional couplers for the amounts of
specified etch offsets. We observe minimal deviation of the transmis-
sion response from the ideal case with ± 10 nm over- and under-etch.
At ±20 nm, we observe more significant changes in the simulated
transmission responses, resulting from changes in the wavelength-
dependent phase profiles in waveguide tapers and the shifted
responses of the directional couplers, as expected. This is also
demonstrated inFig. 4g–i,whereweplot themean squared errorof the
resulting transmission with different over- and under-etch amounts.
The calculated error increases with larger over-/under-etch amounts,
indicating deteriorations in the resulting device performance. Func-
tionally, we note that all three devices can still work as intended, with
slightly inferior performancemetrics up to the simulated ± 20 nm etch
offsets.

Deep photonic network capability and fabrication robustness
The scalability of our deep photonic networks and the computational
efficiency of our underlying simulation/optimization framework can
provide highly capable networks with extremely large degrees of
freedom to design arbitrarily complicated optical devices. For this
architecture, the selection of the number of interferometric layers is a
major design choice that determines the number of degrees of free-
dom for the network. While the trainability and capability of the
resulting network increase with the number of layers at first, each
additional layer also introduces additional propagation loss due to the
waveguide bends addedwith each layer. This trade-off between device
capability and insertion loss can bemodeled by analyzing devices with
different numbers of layers trained for the same objective function-
ality. In Fig. 5a, we plot the final mean squared error in the simulated
transmission responses for different 50/50 power splitters designed

Fig. 2 | Optimization of an example 1-input 4-output photonic network. a The
1 × 4 network structure is created with the desired number of layers, randomly-
intialized custom waveguide tapers (red rectangles), and a target transmission
response for input-output pairs. The mean squared error is computed from the
difference between the calculated and target transfer functions, by summing over
the specified wavelength range. The network parameters are trained iteratively
through a backpropagation algorithm using the gradient of this error with respect
to the design parameters denoted by x in the custom waveguide tapers. Other

network components including the directional couplers and input/output layers
are not trainable. b Evolution of a custom waveguide taper throughout optimiza-
tion of the deep photonic network, where its geometry is shown at random initi-
alization, at iteration 20, and at the end of optimization. Fixed widths (wdefault) and
trainable widths (w1,w2,…,wξ) are marked with red and blue circles along the
taper, respectively. At each iteration, an additional straight waveguide of length
Ladd is inserted at the end of the custom taper in order to achieve matching Lmax =
10 μm lengths for all tapers.
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with numbers of layers ranging fromM = 2 toM = 60. As expected, the
simulated error in the transmission response initially decreases and
reaches aminimumwith networks of 3 and 4 layers. However, with the
increasednumber of layers, the accumulation of insertion loss through
additional layers outweighs the benefits of increased network cap-
ability, and results in a larger calculated error and an inferior trans-
mission response.

Similarly, while longer networks with more interferometric layers
can provide larger degrees of freedom and more complex optical
capabilities, they are also less robust to fabrication variations. Similar
to the added optical loss, errors in the phase profiles add up through
the additional layers and negatively affect the resulting device per-
formance. We analyze the fabrication tolerance of 50/50 splitters
constructed from different numbers of layers in Fig. 5b, where the
mean squared error is plotted as a function of the etch offset. The
results demonstrate that longer networks (with greater numbers of

layers) are more sensitive to fabrication-induced changes due to the
accumulation of phase and coupling errors within consecutive MZIs.
For instance, while the minimum error calculated is similar for 3-layer
and 4-layer splitters, the 4-layer network exhibits significantly worse
performancewith etchoffsets reaching ± 20nm.This analysis serves as
an important guideline towards determining the appropriate number
of layers for the design of specific structures using the demonstrated
custom networks. Similar analyses for the 75/25 power splitter and the
spectral duplexer can be found in Supplementary Section 3.

Multi-objective design capabilities
In addition to creating a single device with a single optical function-
ality, our design framework is also capable of utilizing multi-objective
capabilities to create devices with more complex optical functional-
ities. We use this particular approach to demonstrate the design of
deep photonic networks with more advanced capabilities including

Fig. 3 | Optimization and final simulation results of power splitter and spectral
duplexer deep photonic networks. The mean squared error (MSE) versus itera-
tion throughout optimization of a a 50/50 power splitter with 3 layers of MZIs (72
trainable parameters, 240 μm device length), b a 75/25 power splitter with 3 layers
of MZIs (72 trainable parameters, 240 μmdevice length), and c a spectral duplexer
with 6 layers of MZIs (144 trainable parameters, 480 μm device length). All three
devices converge in several hundred iterations, within 1-2 minutes.
d–f Transmission at the designated output port of each device as a function of
wavelength. The evolution of this transmission through the iterative training

process enables all three devices to achieve near-perfect transfer functions by the
end of optimization. g–i Transmission spectra for each output during optimiza-
tions show gradual convergence to the target transfer functions indicated by the
circles. The power splitters are optimized with 32 evenly-spaced wavelengths
between 1400-1600 nm, and the duplexer is optimized with 21 wavelengths
between 1450-1630 nm with a target cutoff at 1550 nm. Magnitude of the electric
field at three differentwavelengths obtained from3D-FDTD simulations confirming
broadband and flat-top operation for j the 50/50 power splitter, k the 75/25 power
splitter, and (l) the spectral duplexer.
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built-in tolerance against fabrication variations as well as scalability
through different optical transfer functions across a larger number
input-output pairs. For achieving fabrication tolerance, we simulta-
neously optimize the optical response ofmultiple different versions of
a network, each one resulting from a different over-etch or under-etch
scenario. Moreover, we also configure a photonic network as a com-
bination of multiple different power splitters, in which the optical
response depends on what port the optical input is received at. In this
case, we define amore general figure of merit as a mean squared error
including all possible combinations of fabrication variations and input
ports as JðxÞ= 1

Q

P
Ω

P
Δw

P
λjTcalculatedðΩ,Δw,λ,xÞ � T targetðΩ,λÞj2 where

the width offset parameter Δw represents the over-etch or under-etch
perturbations in waveguide widths, and Ω indicates the input port
selection, which now dictates the type of optical operation applied on
the input signal. Consequently, the target transfer function Ttarget(Ω, λ)
is now also a function of Ω. For this more general figure of merit, Q is
the updated total number of combinations of all wavelengths, etch-
offsets, and input port specifications.

This formulation allows us to design networks with more complex
relationships between input-output pairs while simultaneously achiev-
ing tolerance against fabrication variations. We showcase this capability
by designing a fabrication-tolerant photonic network with two inputs
and three outputs, with a combined power splitter functionality, as
illustrated by the device schematic in Fig. 6a. The target functionality for

this device is configured such that light entering the center input is
separated equally between the three outputs (1/3, 1/3, 1/3), whereas the
light entering the top input is separated equally between only the top
and bottomoutput ports (1/2, 0, 1/2) throughout the entire C-band. This
network is constructed from four consecutive layers of interferometers
as shown, resulting in a total footprint of 8 × 320 μm2.

For analysis of fabrication-tolerant design capability, we demon-
strate the performance of networks designed both without and with
tolerance to fabrication errors. The evolution of figures of merit
throughout the optimization processes are plotted in Fig. 6b, c. In
Fig. 6c, five different Δw offsets (-20 nm, -10 nm, 0 nm, 10 nm, 20 nm)
were considered. In this fabrication-tolerant design, as the optimizer
takes into account not a single network but five different networks
simultaneously, the resulting figure of merit effectively includes opti-
mizing the transfer function of a total of 5 × 4 = 20 MZIs. From this
perspective, device optimization under fabrication errors inherently
involves scaling to a larger number of interferometers, simply by the
nature of this target functionality. While scaling in such artificial
dimensions has obvious practical differences from spatial scaling in
network depth or width, the resulting fabrication tolerance capability
can be considerably more important for usability in application set-
tings. For this specific example, the final figures of merit for the ideal
and fabrication-tolerant networks were 1 × 10−5 and 5 × 10−5, respec-
tively. As anticipated, the fabrication-tolerant device yields slightly

Fig. 4 | Experimental measurements and fabrication tolerance analysis of deep
photonic networks. a–c Measured transmission results together with transfer
matrices and 3D-FDTD simulations at the output ports of the power splitters and
the spectral duplexer. All three devices demonstrate agreement with simulation
results over wide bandwidths with flat-top and low-loss transmission responses.
d–f Transfer-matrix analysis of robustness against fabrication-induced variations
for 10 nm and 20 nm over-etch and under-etch cases for the three devices. All

components including directional couplers, S-bends, and waveguide tapers, are
uniformly modified in simulation with the indicated etch offsets. g–i Resulting
mean squared error in devices subject to over-etch and under-etch variations.
With ± 20 nm modification of the waveguide widths, the resulting error typically
increases by 1-2 orders of magnitude, corresponding to the changes in the simu-
lated transfer function of the respective devices.
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worse performance as evidenced by the larger figure of merit. More-
over, increased complexity due to the consideration of multiple
objectives for this device results in a greater number of iterations
needed for convergence. However, despite doubling the number of
iterations, we note that total optimization time recorded only increa-
ses by less than 5 seconds, underscoring the computational efficiency
of the design framework (more details can be found in Supplementary
Section 4). A comparison of performance for the two devices is shown
in Fig. 6d, e. Despite the slightly larger figure of merit for the
fabrication-tolerant network, both devices demonstrate near-perfect
transmissions under ideal fabrication conditions. However, under non-
zero Δw offsets, the fabrication-tolerant device maintains much flatter
transmission spectra on all of its output ports throughout the entire
C-band. This result demonstrates the ability of deep photonic net-
works to achievemore complex andmulti-functional capabilities while
simultaneously enabling much better robustness against fabrication
errors across all output ports, for all objectives, through the entire
design spectrum. We quantify these built-in fabrication tolerance
capabilities further in Fig. 6f by plotting the mean squared error as a
function of Δw for over-etch and under-etch scenarios ranging from

-20 nm to 20 nm. While the ideal device clearly achieves a better
absolute error under no fabrication errors (Δw =0), the fabrication-
tolerant network demonstrates larger tolerances by maintaining a
significantly lower figure ofmerit in case of non-zeroΔw. These results
also demonstrate the practicality of our design framework for inte-
gration in a wide variety of applications and fabrication platforms, by
giving system designers a choice in the final selection between dif-
ferent designs, which can be influenced by the specific fabrication
procedures used.

Discussion
Our design framework provides a computationally efficient, physically
accurate, and systematic methodology for creating deep photonic
network architectures for on-chip arbitrary optical systems. The
design framework is also capable of extended functionality for specific
output configurations enabling band-pass filters with different band-
widths (Supplementary Section 6) as well as devices with constant
dispersion profiles (Supplementary Section 7). For all of our demon-
strations, while we only focused on silicon-based devices, the pre-
sented methodology is applicable in a wide variety of material
platforms and spectral applications. Currently, each MZI in our deep
photonic networks is 80 μm long and 4 μm wide, due to size of the
directional couplers (Supplementary Section 1) and 10 μm-long cus-
tom tapers. Depending on the network width and depth, these
dimensions result in footprints from 960 μm2 to 1920 μm2 for our
experimentally demonstrateddevices, whichare either consistentwith
or smaller than thoseof integrated interferometermeshes in literature.
These include programmable3,7,35,36 photonic information processors
whose responses also require additional electrical system stability, as
well as meshes specifically targeting compact network structures with
typical reported optical subsystem footprints ranging from0.025mm2

tomultiple mm2 (not including electrical interfacing, metal routing, or
contacts)6,37–39. Moreover, our design framework also uniquely benefits
from its ability to effectively combine multiple functional devices into
a single photonic network, as demonstrated by the results in Fig. 6.
Even though more complex optimization objectives may require
longer devices with inherent size limitations (Supplementary Sec-
tion 8), such multi-functional integration presents an additional and
unique avenue towards achieving much higher on-chip integration
density, while still maintaining broad optical operation bandwidths.

Our 50/50 and 75/25 power splitters demonstrate simulated 1dB
bandwidths of over 200 nm, and experimentally measured 1dB
bandwidths as wide as the entire measured spectrum of 120 nm. Both
devices operate with insertion losses below 0.61 dB. In comparison to
previous experimental demonstrations40–50, these metrics represent
the state-of-the-art performance in bandwidth, and illustrate compar-
able performance in insertion loss. Likewise, our duplexer demon-
strates better experimental performance than devices with similar
functionality9,14,51,52, with less than 0.66 dB insertion loss, flat-top
transmissions at both outputs, and a cutoff wavelength shift of only 5
nm. Despite the operation bandwidth reaching over 120 nm, this
achieved spectral shift is also similar to reported metrics from litera-
ture where specific cutoff wavelengths for resonators, filters, or
duplexers typically deviate from their targets by several nm9,14,51–54.
Depending on specific application requirements, this shift can be
compensated through standard thermal tuning mechanisms55,56.
Similarly, based on application needs, the roll-off between the two
bands may also be improved by optimizing with a tighter spectral
placement of transmission targets shown in Fig. 3(i). These previously
reported splitters and duplexers range approximately between 5 μm2

and 6 mm2 in footprint, depending on their operation principles and
constituent waveguide structures. While some of these previous
demonstrations using basic ring resonators53,54,57–59, Y-junctions44,50,60,61,
and subwavelength grating waveguides43,45,49,62 can achieve function-
ally similar operationwithin smaller footprints than our deep photonic

Fig. 5 | Influence of network size on final device performance. a Performance of
the 50/50 power splitter deep photonic network as a function of the number of
interferometric layers, which directly controls the number of trainable parameters.
The plotted mean squared error includes propagation loss in the directional cou-
plers and the S-bends extracted from their 3D-FDTD simulations. For each network
size, ten different randomly-initialized devices are optimized and depictedwith red
circles. b Robustness of device performance against fabrication-induced variations
with number of layers from M = 2 through M = 10. While increasing the number of
interferometric layers initially provides better-performing devices under ideal
fabrication conditions (Δw =0), longer devices perform worse under significant
fabrication variations due to accumulating phase errors.
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networks, their capabilities remain limited to well-defined and funda-
mental operations with potentially narrower operation bandwidths.
Even for devices obtained with free-form inverse-design
techniques9,13,14,40,45,63, the types, complexity, and bandwidth of possi-
ble optical operations are practically restricted by the inherent com-
putational difficulty of addressing complicated objectives that require
greater degrees of freedom and larger device sizes. In contrast, our
networks naturally scale to a greater number of input-output pairs,
with little change in their computational optimization performance
(Supplementary Section 4). As a result, deep photonic networks allow
for a wide and diverse array of demonstrated functional capabilities as
complex as arbitrary, multi-functional, and inherently fabrication-
tolerant power splitters, duplexers, band-pass filters, and dispersion
compensators. As such, these networks not only advance the state-of-
the-art in device performance, but also create new pathways for cus-
tom photonic system solutions.

In summary, our design framework enables highly scalable imple-
mentations of arbitrary transfer functions on-chip, by casting the pro-
blem of photonic design as a constrained optimization problem with
inherent fabrication compatibility. By integrating accurate waveguide
parameters and 3D-FDTD simulations into a physics-informed machine
learning architecture, this methodology enables rapid yet accurate
simulations of photonic devices and their scalable optimization. Our
modular network design allows for a large number of degrees of free-
dom through custom layers of MZIs, allowing for complex photonic
functionality, and therefore presents a tractable path forward for the
design of large-scale integrated photonic systems. Moreover, as our
computational design framework keeps track of complete phase

information through the individual network components, it allows for
the design of photonic networks with specific phase and dispersion
profiles as a part of their target functionality. Due to the availability of
rapid individual device simulations, our framework can also be config-
ured to enable future designs with on-chip amplifiers and lasers64,65,
electrically-interfaced modulators and detectors66, as well as structures
with robustness against fabrication-induced variations67. These cap-
abilities present exciting novel directions in the design of photonic
components with arbitrary transfer functions for use in next generation
optical communication applications, neuromorphic photonic informa-
tion processors, and medical/biological sensing.

Methods
Numerical simulations
The effective indices of silicon strip waveguides were extracted using
Silicon Photonics Toolkit33, an automatic differentiation-compatible
open-source software package for the design of integrated photonic
structures. This package enables fast lookup and evaluation of
waveguide parameters on the 220 nmSOI platform, which is critically
important for the rapid and scalable evaluation of our optical
transfer functions. In our deep photonic networks, optical responses
of the other components including directional couplers and wave-
guide bends were extracted from 3D-FDTD simulations performed
with a maximum spatial discretization of 17 nm in all three dimen-
sions. These responses including both amplitude and phase infor-
mation were then linearly interpolated at 1000 wavelengths between
1.2 μm and 1.7 μm. The resulting interpolations were implemented as
automatic differentiation-compatible lookup functions, and used

Fig. 6 | Multi-objective optimization of a deep photonic network withmultiple
different power splitter capabilities and tolerance against fabrication varia-
tions. a Schematic drawing of the 2-input, 3-output deep photonic network with 4
layers of interferometers. The network acts as a 1 × 3 splitter for the center input
(green arrows), and as a 1 × 2 splitter for the top input (red arrows). The mean
squared error throughout optimization of the network with 144 trainable para-
meters for b the ideal device and c the fabrication-tolerant device. Convergence is
achieved in less than one minute for both devices. d, e Transmission at the

designated output ports of ideal (blue) and fabrication-tolerant (orange) devices as
a function of wavelength. Solid lines indicate performance under no fabrication
variations, and shaded areas indicate deviation from this performance in case of
over-etch andunder-etch variations of up to 20nm. fMeansquarederror subject to
over-etch and under-etch variations for both devices. With ±20 nmmodification of
waveguide widths, the resulting error is more than 10x better for the fabrication-
tolerant device than the ideal device.
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during the performance evaluation of the constructed photonic
networks.

Numerical optimization framework
Our deep photonic network optimization framework was built on an
open-source, end-to-end deep learning library68, enabling the use of
state-of-the-art machine learning software constructs as well as
access tomodern hardware accelerators including GPUs and TPUs. In
this framework, we model each interferometric structure as part of a
physics-informed artificial neural network, and evaluate the ampli-
tude and phase profiles of the transfer functions between each input/
output pair using the automatic differentiation-compatible functions
described above. This modular and highly parallelizable architecture
allows for serial, parallel, or even residual types of connections
between interferometric layers, which can also be used for con-
structing more complicated network topologies. The trainable
parameters of our networks are iteratively optimized using adaptive
moment estimation34. During the optimizations, the learning rate was
progressively reduced from 3 × 10−3 to 10−4 for ease and speed of
convergence. For the design of the power splitters and the spectral
duplexer, we used batch sizes of 32 and 21, respectively. A relative
convergence was used for the stop condition of optimizations (see
Supplementary Section 4 for details). All optimizations were per-
formed using a single Tesla V100 GPU.

Device fabrication
After optimization, the final designed devices were converted to mask
layouts using capabilities implemented in our design framework,
through anopen-source layout construction software library69. Grating
couplers were added at the inputs and outputs of the network in order
for on- and off-chip light coupling. The devices were fabricated using
standard 193 nm CMOS photolithography techniques on the SOI
platform with a 220-nm-thick silicon device layer through IMEC’s
multi-project-wafer foundry service.

Experimental measurements
For experimental characterization of deep photonic networks, our
measurement procedures include standard steps to remove any losses
due to on- and off-chip coupling of optical signals through grating
couplers such as reflections70 or potential mismatches between fiber,
grating, or waveguide modes71. Our reported insertion losses refer to
only the additional losses through the photonic networks themselves,
after these grating coupler losses have been removed. The coupling
losses have beenmeasured at four separate fiber zenith angles between
8∘ and 14∘, using grating coupler test structures on the same chip as the
measured deep photonic networks, and then combined together in
order to accurately characterize as wide a measurement bandwidth as
possible. All measurements have been performed using a continuous-
wave tunable laser source (Santec TSL-710), an optical power meter
(SantecMPM-210), and a polarization controller. The tunable sourcewas
operated using a wavelength sweep from 1480 nm to 1600 nm with a
sampling rate of 40 ps to obtain the transmission characteristics of the
measured structures. The spectral oscillations in our experimental
measurements indicate presence of well-known Fabry-Perot inter-
ference due to reflections at fiber-to-chip interfaces72. These reflections
are an inherent result of characterizing the devices on their own, with
grating couplers directly connected to the inputs and outputs of our
deep photonic networks. As parts of a larger photonic system, the
networks can be directly connected by waveguides to other upstream
anddownstreamon-chip devices, eliminating potential reflections at the
grating interfaces and any associated spectral oscillations.

Data availability
The data that support the findings within this manuscript are available
from the corresponding author upon request.
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