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Non-orthogonal optical multiplexing
empowered by deep learning

Tuqiang Pan 1,2,3, Jianwei Ye1,2,3, Haotian Liu1,2, Fan Zhang1,2, Pengbai Xu1,2,
Ou Xu1,2, Yi Xu 1,2 & Yuwen Qin 1,2

Orthogonality among channels is a canonical basis for optical multiplexing
featuredwith divisionmultiplexing, which substantially reduce the complexity
of signal post-processing in demultiplexing. However, it inevitably imposes an
upper limit of capacity for multiplexing. Herein, we report on non-orthogonal
optical multiplexing over amultimode fiber (MMF) leveraged by a deep neural
network, termed speckle light field retrieval network (SLRnet), where it can
learn the complicated mapping relation between multiple non-orthogonal
input light field encoded with information and their corresponding single
intensity output. As a proof-of-principle experimental demonstration, it is
shown that the SLRnet can effectively solve the ill-posed problem of non-
orthogonal optical multiplexing over anMMF, wheremultiple non-orthogonal
input signals mediated by the same polarization, wavelength and spatial
position can be explicitly retrieved utilizing a single-shot speckle output with
fidelity as high as ~ 98%. Our results resemble an important step for harnessing
non-orthogonal channels for high capacity optical multiplexing.

Multiplexing is a cornerstone for optical communication, where phy-
sical orthogonality among multiplexing channels is a prerequisite for
massively-encoded transmission of information1,2. For example, divi-
sion multiplexing becomes a canonical form for increasing the capa-
city of fiber communication, such as space division multiplexing1,3,4,
wavelength division multiplexing1,5, polarization division
multiplexing6,7 and mode division multiplexing5,8. However, the divi-
sion nature and the orthogonal paradigm of these multiplexing
mechanisms inevitably impose an upper limit of multiplexing
capacity1–10. If the orthogonal paradigm of optical multiplexing can be
broken, it could be a step forward for realizing non-orthogonal optical
multiplexing, which will become a promising way to meet the chal-
lenge of information capacity crunch. Considering the demultiplexing
ofmultiple orthogonal signals, the transmissionmatrixmethod11–15 can
tackle this issue even over a strongly scatteringmedium, such anMMF.
While non-orthogonal optical multiplexing over an MMF can be
referred to multiplexing input channels possessing non-orthogonal

polarizations, the same wavelength, and the same spatial position,
where their polarizations are even the same for the typical non-
orthogonal scenario. In this case, the inverse transmission matrix
method fails to decode the multiplexing signals with the same polar-
ization and wavelength using a single-shot intensity detection, as
schematically shown in Fig. 1a.

Recently, deep learning has been widely used in optics and pho-
tonics for inverse design of optical devices16,17 and computational
optics18–21. Specifically, deep neural network has been utilized to
improve the performance of orthogonal multiplexing over a multiple
scatteringmedium22–33. Todate, however, all the reportedmultiplexing
scenarios strictly rely on the physical orthogonality among multi-
plexing channels11–15,22–33. There is no attempt to leverage the nonlinear
modelling capability of deep learning to achieve the non-orthogonal
opticalmultiplexing over anMMF, resembling an alluring but still open
question. Unfortunately, even multiplexing of non-orthogonal chan-
nelsmediated by the samepolarization or wavelength in a singlemode
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fiber remains very challenging, which is due to the lack of effective
demultiplexing method or overburdened digital signal processing1.
Therefore, developing a new methodology for decoding information
encoded in non-orthogonal input channels is of vital importance for
the ultimate optical multiplexing.

In this work, we show that preliminary non-orthogonal optical
multiplexing through an MMF can be achieved empowered by the
SLRnet. As a proof-of-concept demonstration, multiplexing transmission
of information through anMMF, including general natural scene images,
uncorrelated random binary data and images not belong to the same
type of training dataset, can be realized utilizing non-orthogonal input
channels, as schematically shown in Fig. 1b, facilitating the realization of
non-orthogonal multiplexing transmission of optical information.
Building a complicated relationship between the non-orthogonal input
channels and the output through the data-driven technology, a well-
trained deep neural network can retrieve the encoded information of the
non-orthogonal channels merely using a single-shot output intensity.
Even non-orthogonal multiplexing channels sharing the same polariza-
tion, wavelength and input spatial region can be effectively decoded. It is
anticipated that our results would not only stimulate various potential
applications in optics and photonics, but also inspire explorations in
more broader disciplines of information science and technology.

Results
Principle
The single channel input-output relationship of an MMF can be descri-
bed by a transmission matrix, as shown by the following equation:

E
!

out =T E
!

in
ð1Þ

Here, T is the transmission matrix for a multiplexing channel
through theMMFwith a given input polarization and E

!
out and E

!
in are

the output and input light fields, respectively. Notably, E
!

in=out is a
complex number that contains both amplitude and phase information
encoded in space (i.e. X and Y dimensions), which can be expressed as:

E
!

in = aAðx,yÞejφðx,yÞ ð2Þ

In this equation, A(x, y) and φ(x, y) represent the amplitude and phase
distributions of the incident light field, respectively. a indicates the
unit vector of electric field. If there is only an input field, the

transmission matrix can be calibrated and the scrambled input wave-
front can be retrieved11,14,15.

If the incident wavefront is a superposition of multiple non-
orthogonal light fields, it becomes:

E
!

in =
Xn
i = 1

E
!

i =
Xn
i= 1

aiAiðx,yÞejφiðx,yÞ ð3Þ

where E
!

i is the ith incident light field. As shown in Fig. 1a, multiple
amplitude and phase encoded wavefronts with the same polarization
states are superimposed and coupled to the proximal end of theMMF,
resulting in a single speckle output at the distal end of the MMF. The
output speckle intensity recorded by the CMOS camera can be
expressed as follows:

I = j E!out j2 = j
Xn
i = 1

Ti E
!

ij2 =HðCnÞ,Cn = fðAi,φiÞ; i= 1,2,:::,ng ð4Þ

where H( ⋅ ) represents the mapping relationship between multiple
input light fields Cn and the single output speckle I of the MMF. Here,
Cn indicates n combinations of information encoded input amplitude
and phase. It should be pointed out that the transmission matrix Ti is
different even for the multiplexing channels with parallel polarization
because of the residual optical asymmetry during multiplexing and
coupling to the MMF, such as slightly different k-vectors of the
multiplexed beams. According to Eq. (4), the inverse transmission
matrix method cannot retrieve each E

!
i using a single-shot intensity

detection, as shown in Fig. 1a. Inorder to realize demultiplexingof non-
orthogonal signals through the MMF from a single-shot output
speckle, the inverse mapping H−1 of the above equation

H�1ðIÞ=Cn ð5Þ

should be obtained. There is no physics-based theory reported so far,
which can effectively obtain H−1 when n > 1.

In this case, data-driven deep learning methods become an
effectivemeans to solve this problemwheremultiple input E

!
i arenon-

orthogonal light fields with non-orthogonal polarizations, the same
wavelength, and the same spatial position. A typical supervised
learning method relies on a sequence of labelled data,
(Cnk, Ik), k = 1, 2, . . . ,K, to obtain the mapping function R by learning

Fig. 1 | Schematic of non-orthogonal optical multiplexing over an MMF. a The
non-orthogonal multiplexing information cannot be retrieved by the inverse
transmissionmatrixmethod using a single-shot intensity detection. b Schematic of

deep learning-based non-orthogonal multiplexing under multiple scattering of an
MMF. As long as the neural network is well trained, the information of each channel
can be retrieved utilizing the single-shot intensity output.
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from the training set Q = {(Cnk, Ik), k = 1, 2, . . . ,K}. It should be empha-
sized that the information encoded in non-orthogonal multiplexing
channels is effectively orthogonal in the labelling of Cnk. At the same
time, the residual asymmetry of the optical paths plays an important
role in the non-orthogonal optical multiplexing through theMMF. The
residual asymmetry will be leveraged by the multiple scattering of
MMF, which can facilitate the solution of multiple-to-one mapping
relationship. As a result, the following equation:

Rθ* = argmin
θ2Θ

jRθðIkÞ � Cnk j, 8ðCnk ,IkÞ 2 Q ð6Þ

is optimized, where Rθ is the mapping function determined by the
weight of deep learning network θ∈Θ and Θ is all possible weight
parameters of the network. The well trained Rθ* can retrieve the
information encoded in input amplitude and phase fCn utilizing the
output speckle I not belonging to Q, i.e., fCn =Rθ* ðIÞ. This neural net-
work builds an approximate relationship that maps the speckle
intensity at the distal end of theMMF to the distributions of amplitude
and phase for several input light fields at the proximal end of theMMF,
where the training of the network relies on the dataset using pairs of
output speckles and their corresponding input wavefronts. In other
words, the multiplexed non-orthogonal input light fields can be
demultiplexed by:

H�1ðIÞ≈Rθ* ðIÞ=fCn ð7Þ

Neural network architecture
According to the principle analysed above, deep neural network is
capable of retrieving non-orthogonal opticalmultiplexing signals from
a single speckle output of the MMF. As shown in Fig. 2a, multiple
amplitude and phase encoded information mediated by arbitrary
combinations of polarizations can be effectively retrieved by the
SLRnet after propagating in theMMF. Even the typical scenario of non-
orthogonal input channels with the same polarization, wavelength and
input spatial region can be explicitly decoded. This is enabled by a
deep neural network whose architecture is shown in Fig. 2b, which is a
variant of Unet according to the unique multiple scattering process of
the MMF. It consists of a fully connected (FC) layer and a ResUnet34,
whose main advantages over Unet are as follows: (1) a FC layer is
introduced before the input of Unet to enhance the fitting and gen-
eralization ability of the network. The introduction of the FC layer can
effectively undo the nonlocal dispersion of the MMF, which improves
the performance of demultiplexing multidimensional encoded infor-
mation using a single speckle output. The ResUnet is used for
denoising and post-processing the multiplexing information towards
the ground truth, which is similar to the convnet proposed recently25.
In addition, the convolutional layer can also facilitate themanipulation
of multichannel outputs in the non-orthogonal multiplexing without
increasing the training burden; (2) a large number of skip connections
are introduced in the encoder-decoder path to enhance the
degeneration-free propagation of data in the network (See “Methods"
section for details). To facilitate the experimental verification, n is
chosen as 2, where the non-orthogonal inputs contain two light field

Fig. 2 | The non-orthogonal opticalmultiplexing over anMMF enabled by deep
learning. a Non-orthogonal multiplexed information encoded in the amplitude,
phase and polarization dimensions are superimposed at the proximal end of the
MMF, resulting in a speckle output at the distal end of the MMF. Then the encoded
multidimensional information can be unambiguously retrieved from a single-shot
output speckle utilizing the SLRnet. The polarization states are outlined and the
same wavelength is used. The grids superimposed on the input information indi-
cate the information units in both amplitude and phase dimensions. b The

architecture of SLRnet is composed of a fully connected (FC) block, four residual
convolutional blocks with down sampling, three residual transposed convolutional
blocks with up sampling, and one output convolutional layer for channel com-
pressing. Skip connections are established among the first three down-sampling
and the up-sampling modules. The sizes of feature map for each block are marked
in the insets. ResConvResidual convolutional block, ResConvTResidual transposed
convolutional block, Conv Convolutional layer. All images are adopted from the
Fashion-MNIST dataset41.
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channels mediated by arbitrary polarization combinations. Each light
field channel is composed of spatially encoded information in both
amplitude A(x, y) and phase φ(x, y) dimensions, respectively, resulting
totally four multiplexing channels for transmitting independent
information. Supervised learning is applied during the training process
of the network. The speckle at the output of the MMF is used as the
input of the SLRnet, where the network outputs predicted four
matrices containing both the encoded amplitude and phase informa-
tion in two light field channels. It means that the encoded information
in non-orthogonal multiplexing channels is orthogonally labelled,
when the network is trained. This is the key point for decoding infor-
mation encoded in non-orthogonal channels.

Experimental results
The case when the length of MMF is 1 m is considered first. Figure 3a
presents the evolution of retrieved fidelity for two multiplexed light
field channels with arbitrary combinations of polarization states during
the training process of SLRnet. In total, there will be four encoded
channels in the amplitude and phase dimensions, where they can be
non-orthogonal depending on the polarization states. Here, the
retrieved fidelity is measured by Pearson correlation coefficient (PCC).
Twelve different combinations of polarization states, including linear,
circular and elliptical polarizations, are considered. In these cases, their
wavelengths are the same (See “Methods" section for details). As can be
seen from this figure, the evolutions of the retrieved PCC utilizing the
same training configuration of SLRnet are larger than 0.97 after 100
epochs, indicating the condition of Eq. (7) is approached, where
H�1ðIÞ≈Rθ* ðIÞ. At the same time, the evolutions of retrieved fidelity for
twelve multiplexed scenarios are basically the same, which showcases
excellent robustness of non-orthogonal multiplexing with respect to
arbitrary polarization combinations. In particular, the case of 0° & 0°
demonstrates the successfulmultiplexing using channels with the same
polarization, wavelength and input spatial region, validating the pro-
mising capability of non-orthogonal optical multiplexing. Furthermore,
Fig. 3b provides the retrieved fidelity in each amplitude and phase
multiplexing channel using different combinations of polarizations,
respectively. The averaged retrieved fidelity in the amplitude and phase
dimensions are almost the same ( ~ 0.98), which highlights the cap-
ability of SLRnet in demultiplexing information encoded in multiple
non-orthogonal input channels (see Supplementary Note 1 for the
results measured by structure similarity index measure (SSIM)).

To provide a sensory evaluation of the retrieved information
encoded in the wavefront, typical demultiplexing results for four
polarization combinations (0°&0°,0°& 10°, 0°&90°, and0°&Ellipse)
arepresented in Fig. 4. The corresponding input polarization states are
outlined in the figure. And the retrieved fidelitymeasured by SSIM and
PCC for all these cases are also provided, respectively. As can be seen
from these results, four grayscale imagesmultiplexed in the amplitude
and phase of the input wavefronts using the same polarization can be
effectively demultiplexed utilizing a single-shot speckle output. The
retrieved fidelity of other results under different combinations of
polarizations are similar, indicating the SLRnet enables the unprece-
dented multiplexing of non-orthogonal input channels even when the
encoded wavefronts are scrambled by the MMF. To further con-
solidate the superiority of SLRnet in amore realistic scenario, the non-
orthogonal optical multiplexing results using the same polarization
state over a 50 m MMF are presented (see “Methods" section for
details), as shown in Fig. 5. As can be seen in Figs. 4 and 5, the
demultiplexing results of the 1 m MMF is better than the 50 m case.
This is because the scattering properties of a longer MMF are much
easier to be affected by the environment. The demultiplexing perfor-
mance can be further improved by optimizing the network archi-
tecture. The high fidelity achieved for multiplexing non-orthogonal
channels utilizing the same polarization, wavelength and input spatial
position indicates that the SLRnet is an effective means for multi-
plexing non-orthogonal channels in an MMF.

In order to showcase the generality of the SLRnet for a diverse set
of images, various experimental results consideringmore complicated
grayscale encoded information from the CelebA face dataset35, ran-
dom binary data whose digital information is uncorrelated, general
natural scene images from the ImageNet database36, and snapshots in
Muybridge recordings not belong to the same type of training dataset
are presented (see Supplementary Note 2). Typical results for general
natural scene images are shown in Fig. 6a, where the achieved aver-
aged SSIM/PCC is 0.737/0.905. To further increase the modulation
precision of the wavefront, the information is only encoded in the
phase dimension of two non-orthogonal channels. The achieved
averaged fidelity is 0.819/0.945 (SSIM/PCC) as shown in Fig. 6b, which
is substantially improved compared with the complex modulation
case. At the same time, the achieved typical fidelity for images not
belong to the ImageNet database can be up to 0.907/0.986 (SSIM/
PCC), as shown in Fig. 6c, indicating the good generalization of the

Fig. 3 | Performance of the non-orthogonal multiplexing using the SLRnet.
a Averaged PCCs of the validation dataset during training procedures, where
multiplexing scenarios of two input channels over a 1 m MMF with arbitrary
polarization combinations are shown. The angles of polarizations with respect to

the horizon line are indicated. Here, circle and ellipse indicate circular and elliptical
polarizations, respectively. b The PCCs of retrieved information in different mul-
tiplexing channels at the final epoch. PCC Pearson correlation coefficient.
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SLRnet. All these results further validate that the SLRnet has an
excellent ability to retrieve multiplexed information encoded in the
non-orthogonal input channels.

Discussion
We demonstrate a concept of non-orthogonal optical multiplexing
over an MMF empowered by deep learning utilizing the SLRnet. Up to

five optical degrees of freedom with non-orthogonal combinations of
amplitude, phase, polarization and two-dimensional space (X and Y)
are utilized for the non-orthogonal multiplexing, where the multi-
plexed information in the proximal end of MMF can be effectively
demultiplexed using a single-shot speckle output at the distal end of
MMF. The experimental results reveal that the proposed SLRnet can
achieve high-fidelity ( ~ 98%) retrieval of multidimensional light field

Fig. 5 | Results of non-orthogonal multiplexing over a 50 m MMF. The ground
truths, the speckle output and the corresponding retrieved light field information
by the SLRnet using a single-shot speckle output are shown, where their

corresponding SSIM and PCC are given, respectively. Colorbars are also provided
for the grayscale images encoded in the amplitude and phase dimensions. These
images are adopted from the Fashion-MNIST dataset41.

Fig. 4 | Results of non-orthogonal multiplexing over a 1 m MMF. The ground
truths, the speckle output and the corresponding retrieved light field information
by the SLRnet using a single-shot speckle output are shown, where their

corresponding SSIM and PCC are given, respectively. Colorbars are also provided
for the grayscale images encoded in the amplitude and phase. These images are
adopted from the Fashion-MNIST dataset41.
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transmitted over an MMF. The performance of SLRnet is comparable
to or even exceeding the reported results of orthogonal optical mul-
tiplexing in optical degrees of freedom, fidelity and spatial channel
numbers (see Supplementary Note 3 for more details). At the same
time, both the training and validation datasets contain the influence
from the environment (see Supplementary Note 4 for more details).
According to the retrieved results demonstrated above, the trained
SLRnet possesses certain robustness against the perturbation from the
environment. More robust demultiplexing can be achieved by using
joint training of data collected at different environments27,29. If more
than two input channels are involved in the non-orthogonal optical
multiplexing, the total amount of data should be increased for
achieving similar fidelity.

Although the proposed concept of non-orthogonal optical mul-
tiplexing over an MMF cannot be directly used inmedical diagnosis at
this stage, which generally requires unity fidelity, the non-orthogonal
multiplexing of uncorrelated binary digital information with high
accuracy indicates a step forward for realizing non-orthogonal multi-
plexing transmission of optical information through an MMF. It is
anticipated that our results could not only pave the way for harnessing
the high throughput MMFs for communication and information pro-
cessing, but also might provide a paradigm shift for optical multi-
plexing in optics and beyond, which can substantially improve the
degrees of freedom and capacity of optical systems.

Furthermore, light has many physical quantities that can be used
to encode information. It is also anticipated that more optical degrees
of freedom can be used for non-orthogonal optical multiplexing, such
as the wavelengths and orbital angular momentum. There is room for
optimizing the performance of deep neural network, where the
achieved fidelity, efficiency and generalization should be further
improved. Recent studies have shown that transformer structures
based on self-attention mechanism may achieve higher fidelity. And

thenetwork basedon theprior Fourier transformcan result in superior
external generalization37. There are still challenges to overcome in this
data-driven approach. A typical one is the ability to multiplex infor-
mation with higher capacity will require exponentially increasing
amounts of data (see Supplementary Note 2). Adding a physically-
informed model of the MMF system in the deep neural network could
be an effective solution for this challenge, which would also boosting
the demultiplexing fidelity24,25. In addition, incorporating transfer
learning could substantially reduce the amount of data required for
training.

Methods
Experimental setup
Amonochromatic laser with a power of 50mW (λ = 532 nm,MSL-S-532
CH80136, CNI) is used as the light source (see Supplementary Note 5
for more details regarding to the experimental setup), where it can be
generalized to other wavelengths. The horizontal polarized laser beam
is collimated and expanded by an objective lens (Obj1) and a lens (L1).
Then it is divided into two beams of the same size using a dual-channel
diaphragm. A phase-only spatial light modulator (SLM, PLUTO-NIR,
Holoeye) is used for realizing amplitude and phase modulations
simultaneously, whichwill be elaborated in the following. L2, iris and L3
constitute a 4f filtering system, and the first-order diffracted light is
selected at the focal plane to obtain the targeted amplitude and phase
encoded light field. Awave plate is used to adjust the polarization state
for one of the laser beams while the other beam keeps the horizontal
polarization state unchanged. They are coherently superimposed with
a non-polarized beam splitter cube (NPBS), forming two collinear
beams with arbitrary polarization combinations. Then, two multi-
plexed laser beams are coupled into an MMF by an objective lens
(Obj2). And the outgoing light field from the MMF is collected by
another objective lens (Obj3), where the output speckle is recorded by

Fig. 6 | Results ofnon-orthogonalmultiplexingof generalnatural scene images
and imagesnotbelong to the ImageNet database over a 1mMMF. aThe ground
truths, the speckle outputs, and the corresponding retrieved light field information
by the SLRnet are shown,where their corresponding SSIM andPCC are given.bThe
corresponding results for the non-orthogonal multiplexing of phase encoded
information. The images in (a) and (b) are from the ImageNet database36. c The

results for the non-orthogonal multiplexing of phase encoded information using
snapshots of Muybridge recordings from the 1870s that marked the historically
important breakthrough of the first ever high-speed photography images. These
images are not belong to the ImageNet database used for the training of the neural
network.
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a CMOS camera (MER-231-41U3C-L, Daheng Imaging). The captured
speckles are translated to grayscale images. Two kinds of MMFs are
tested: one is 1m (Newport, diameterϕ = 400 μm,NA =0.22) while the
other one is 50m (YOFC, diameterϕ = 105 μm,NA = 0.22). BothMMFs
are step-index MMFs.

Data acquisition and preprocession
The parameters of all used datasets and their corresponding averaged
fidelity are summarized in Supplementary Note 6. Each dataset is divi-
ded into a training set (90%) and a validation set (10%). The data in the
validation set is uniformly sampled in its corresponding dataset. The
resolution of the speckle output fed to the network is 200×200. All the
images encoded in the amplitudedimension are scaled from0-1 to 0.2-1.

Amplitude and phase modulation scheme
Toachieve simultaneous phaseand amplitudemodulations of the light
field by a phase-only SLM, a complex amplitudemodulation algorithm
based on phase-only hologram coding is used38. The amplitude infor-
mation is encoded into the phase information bymodifying the spatial
diffraction efficiency, where the target light field information is
obtained by filtering.

Network structures
The proposed SLRnet consists of a FC layer and a ResUnet. In the FC
block, a linear layer and an adaptive average pooling layer are used to
control the size of the layer’s output. The linear layer can increase
fitting and generalization abilities of the network. At the same time, the
ResUnet introduces abundant skip connections to the Unet structure
and accelerates the training process of network34. In this case, the
ResUnet consists of four parts, including residual convolutional blocks
(ResConv), residual transposed convolutional blocks (ResConvT), an
output convolutional layer (Conv), and skip connections, as shown in
Fig. 2b. The ResConv achieves downsampling feature extraction by
using a convolutional layer with a stride of 2, while ResConvT achieves
upsampling reconstruction by using a transposed convolutional layer
with a stride of 2. And there are skip connections between every two
symmetrically arranged ResConv and ResConvT for concatenating
channels. Finally, the channel matching output is carried out through
the Conv with the convolution kernel size of 1 × 1. After adding batch
normalization to the convolution layer of ResConv and ResConvT, the
convergence of network training is faster. At the same time, adding
a Rectified LinearUnit (ReLU) activation function introduces nonlinear
factors to enhance the fitting ability of the network (see Supplemen-
tary Note 7 for detailed structure).

Training configuration
The SLRnet is implemented using python 3.9.13 in PyTorch 1.13.0. It is
trainedwith the AdamWoptimizer39, an improved version of the Adam
optimizer with better generalization performance. The initial learning
rate is set at 2 × 10−4, rising to 1 × 10−3 after five epochs of warm-up, and
subsequently dropping to 0 at the last epoch according to the cosine
annealing schedule (see Supplementary Note 8 for the learning rate
curve). This is an advanced learning rate adjustment strategy40, where
its loss function value during the training process does not fluctuate
significantly. The total training epoch is set to 200 to ensure that the
training is converged. Mean absolute error is selected as the loss
function to train the network.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The example dataset for the non-orthogonal multiplexing of phase
encoded information is available at: https://doi.org/10.5281/zenodo.

10391031. Any additional data are available from Yi Xu (yix-
u@gdut.edu.cn) upon request. Source data are provided with
this paper.

Code availability
The Python codes used in this paper are available at https://doi.org/10.
5281/zenodo.10391031.
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