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Modelling atomic and nanoscale structure in
the silicon–oxygen system through active
machine learning

Linus C. Erhard 1, Jochen Rohrer1 , Karsten Albe 1 &
Volker L. Deringer 2

Silicon–oxygen compounds are among themost important ones in the natural
sciences, occurring as building blocks in minerals and being used in semi-
conductors and catalysis. Beyond the well-known silicon dioxide, there are
phases with different stoichiometric composition and nanostructured com-
posites. One of the key challenges in understanding the Si–O system is
therefore to accurately account for its nanoscale heterogeneity beyond the
length scale of individual atoms. Here we show that a unified computational
description of the full Si–O system is indeed possible, based on atomistic
machine learning coupled to an active-learning workflow. We showcase
applications to very-high-pressure silica, to surfaces and aerogels, and to the
structure of amorphous silicon monoxide. In a wider context, our work illus-
trates how structural complexity in functional materials beyond the atomic
and few-nanometre length scales can be captured with active machine
learning.

Elemental silicon and its oxide, silica (SiO2), arewidely studiedbuilding
blocks of the world around us1: from minerals in geology to silicon-
based computing architectures; thin-film solar cells in which amor-
phous silicon is the active material2; or zeolite catalysts based on the
SiO2 parent composition3. Some of thesematerials have a single phase
and are precisely defined on the atomic scale, whereas others show
longer-ranging, hierarchical structures and varying degrees of dis-
order. For example, silica aerogels contain pores with sizes of
5–100 nm, leading to very low thermal conductivity and making
aerogels promising candidates for thermal insulation4. Under pres-
sure, SiO2 shows amorphous–amorphous transitions to structures
exceeding sixfold coordination5, crystallisation from the amorphous
phase under shock compression6, and conversely the formation of
complex disordered phases from crystalline SiO2

7. Beyond funda-
mental studies, there is much technological importance in
silicon–oxygen phases with nanoscale structure—the interface
between Si and SiO2 is essential in siliconmetal-oxide semiconductors,
and defects at this interface have been investigated for decades8–10.

A material in the binary silicon–oxygen system which is in fact
dominated by such interfaces is the so-called silicon monoxide (SiO).
The structure of SiOwas controversially discussed for long11,12; today, it
is known as a nanoscopic mixture of amorphous Si and SiO2

13–15. Initial
applications of SiO have been in protective layers for mirrors16 or
dielectrics for thin-film capacitors17; more recently, the same material
has emerged as a promising anode material for lithium-ion
batteries18,19. However, to be able to fully exploit SiO in next-
generation energy-storage solutions, it would be valuable to under-
stand the features of the nanoscopic structure on an atomistic level.

Todevelopatomic-scalemodels of complexmaterials such asSiO,
molecular-dynamics (MD) computer simulations have become a cen-
tral research tool.While there are now plenty of interatomic potentials
for silicon20–22 and silica23–25, the number of potentials for the mixed
(i.e., full binary) system is limited due to its chemical complexity26–29.
Alongside established, empirically fitted potentials based on physical
models, alternatives based on large datasets and machine learning
(ML) have emerged in recent years. These models have been fitted for
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silicon30 as well as silica31 and also for the more complex silica–water
system32. ML potentials promise the accuracy of first-principles
methods such as density-functional theory (DFT) for a small fraction
of the cost. ML potentials are now firmly established in the field of
computational materials science and their application to homo-
geneous phases has been well documented.

In the present work, we describe a unified computational model
for the Si–O system that we have obtained with the help of an active-
learning scheme for local environments. We extract representative
atomic environments from large-scale simulations and embed them in
a melt-quenched amorphous matrix, allowing us to sample repre-
sentative environments for the fitting of accurate ML potentials. Our
final model shows high accuracy across a wide configurational space
including high-pressure silica, silica surfaces, andmixtures of silica and
silicon. We showcase the usefulness of the method by creating fully
atomistically resolved, 10-nm-scale structure models of amorphous
and partially crystalline SiO.

Results
Active learning for nanoscale structure
Wehavedevelopedacomprehensivedataset of atomistic structures and
quantum-mechanical reference data for the binary Si–O system, as well
as an interatomic potential fitted to that database in the atomic cluster
expansion (ACE) framework33–35. We initialised the protocol with two
existing datasets for silicon (Bartók et al. 30) and silica (Erhard et al. 31)
respectively, and we then gradually explored the relevant configura-
tional space using the active-learning workflow illustrated in Fig. 1.
Quantum-mechanical reference ("training”) data for energies and forces
were obtained with the strongly constrained and appropriately normed
(SCAN)36 exchange–correlation functional for DFT, which shows good
performance for elemental silicon37 and the various silica polymorphs31.

Our active-learning workflow follows three main tracks: high-
pressure bulk silica, silica surfaces, and non-stoichiometric SiOx sys-
tems (Fig. 1a). The individual tracks are kept separate during initial
training, i.e., they do not share their newly generated training data;
however, in the end, all structures aremerged into one comprehensive
database.

The single subtracks are further divided into stages. In the first
stage, we added initial structures, e.g., for crystalline high-pressure
polymorphs or surface models. In the next stage, we fitted moment
tensor potential (MTP) models38 to the database and used these MTPs
to explore configurational space in MD and to identify new structures
by active learning39. Energies and forces for new structures were
computed with DFT and added to the database. This process was
iterated until the extrapolation threshold (Supplementary Note 1B)
was not exceeded during the MD trajectories anymore.

The third stage, highlighted in red in Fig. 1a, is themost important
part of our workflow, and is based on large-scale simulations in each
track. We used 2–4 MTPs trained on the same database to estimate a
per-atom committee error, as is commonly done for neural-network
potentials40. For atoms with high uncertainty (Supplementary
Note 1C), we extracted the environments into smaller, “DFT-sized” cells
by an approach that we call amorphous matrix embedding (Fig. 1b).
After identifying an atom with high uncertainty, we cut out a cube
containing the corresponding environment of the atom. This cube has
a sizewhich is feasible forperformingDFTcomputations; it is generally
chosen larger than twice the cut-off of the potential. After extracting
the cube, the atoms within the cut-off radius of the atom with high
uncertainty are kept fixed. The remaining structure ismelted in anML-
MD simulation to create an amorphous matrix and smooth bound-
aries. Details of the procedure canbe found in SupplementaryNote 1C.
We note very recent, related approaches to isolating fragments for
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Fig. 1 | An active-learning workflow for complex atomistic structures.
aOverviewof the procedure to obtain the database. Aftermerging structures from
the Si-GAP-18 (ref. 30) and SiO2-GAP-22 (ref. 31) databases, the process was split
into three tracks, aiming to describe high-pressure ("High-p'') silica, silica surfaces,
andmixed Si–O systemswith different stoichiometric compositions. In each of the
tracks, small-scalemolecular dynamics (MD) simulations were used to sample new
structures by active learning38. In the last step, large-scale simulations were per-
formed,where atomswith high uncertaintywere recognised by a committee error.
b Schematic illustrating the concept of our amorphous matrix embedding

approach. First, weextract thewider environment of an atomwith high uncertainty
(indicated using a colourbar with red shading: note the “Large-scale simulation” is
merely a schematic sketch). Thenwe keep the atomof interest, as well as the direct
environment fixed, and we melt and anneal the outer environment (indicated by
blurring the region outside the “Fixed” sphere). As a result, we obtain a small-scale
structural model which has the atom of interest and its local environment
embedded into an amorphous matrix. This sample can be fed into the training
database.
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active learning based on minimising the uncertainty for boundary
atoms41,42.

The final database was obtained by merging the data of all tracks
together, including some additional samples such as clusters and
vacancies. This database contains 11,428 structures with a total of ≈1.3
million atoms (Supplementary Table 1). For validation, we held out 5%
of these structures from training, selected at random.

Performance
The final potential is a complex non-linear ACE model, obtained by
summation of one linear and seven non-linear ACE terms (Methods).
This approach allows a more flexible description than just a linear or
Finnis–Sinclair-like embedding, at only moderately higher computa-
tional expense. The resulting potential has a test-set root mean square
error (RMSE) of 16.7meV atom−1 for energies and 306meV Å−1 for
forces. Theseerrors are averagedover the full dataset, however, and so
they are not in themselves sufficient to characterise the quality of the
potential. For example, they refer to a highly heterogeneous set of
structures, with target energy values spanning more than 8 eV atom−1,
and a range of forces of 40 eV Å−1 covered by the database. Further-
more, the numerical accuracy of the potential in certain parts of con-
figurational space (e.g., crystalline polymorphs) is far more important
than in others (e.g., liquid and amorphous structures).

In Table 1, we therefore show the performance of our model on
different separate test sets. The complex non-linear ACE is compared
to our previous silica GAP model described in ref. 31 ("SiO2-GAP-22” in
the following), and also to simpler ACE models fitted to the new
database using linear and Finnis–Sinclair-like embeddings, respec-
tively. Indeed, the complex non-linear ACE potential is the only one
among the three which achieves comparable errors to SiO2-GAP-22 for
amorphous and crystalline silica structures. In contrast, for amorphous
elemental silicon,mixed-stoichiometry as well as high-pressure phases
the complex non-linear ACE is significantly more accurate than SiO2-
GAP-22, since these structures are not part of the GAP database. This
table therefore indicates the main challenge – and its solution – in the
present model compared to the previous GAP: both are highly accu-
rate for crystalline (≈1meV atom−1) and bulk amorphous (≈5meV
atom−1) SiO2, but our ACE model caters to a much wider range of
scenarios outside of the 1:2 stoichiometric composition.

Figure 2 shows the phase diagram of SiO2 calculated by ther-
modynamic integration43,44 using the ACE potential compared to a
CALPHAD phase diagram from the literature45. The ACE and CAL-
PHAD predictions agree well throughout, and for the boundary
between quartz and coesite we observe almost quantitative

agreement. In contrast, the cristobalite and tridymite phases seem
to be over-stabilised. At 0 GPa, the melting point is notably over-
estimated (about 2400 K, compared to ≈2000 K experimentally45);
moreover, the phase stability regions of both phases are more
extended than in the reference. To illustrate the sensitivity of
the analysis to small errors in predicted energies, we added a
fictitious energy penalty of 5meV atom−1 for cristobalite and tridy-
mite (Supplementary Fig. 1a); in this case, the transition lines agree
much better with the CALPHAD reference than before. Further
numerical tests showed that the tridymite–cristobalite transition
line, in particular, is strongly affected by small shifts in energy
(Supplementary Fig. 1b–f). We thus conclude that the quantitative
deviation seen in Fig. 2 is due to the inaccuracy of the underlying
exchange–correlation functional, rather than indicating a short-
coming of the ACE approach. This is an example of themore general
problem that any issues with the ground-truth method (e.g.,
numerical instabilities) will translate into the ML model.

High-pressure structural transitions of SiO2

Figure 3 characterises high-pressure properties of silica. In Fig. 3a, we
show energy–volume curves of α-quartz, coesite, stishovite, α-PbO2-
type, and pyrite-type silica as predicted by our ACE model and com-
pared with DFT data, with which they agree well. In addition, we tested
the behaviour of the model for rosiaite-type silica, which was recently
observed in experiment46 and predicted theoretically47 for direct
compression of α-quartz. In contrast to the structures mentioned
before, this particular polymorph is not part of the training database.
Nevertheless, the ACE model reproduces DFT data for this structure
similarly well as for the other polymorphs.

Figure 3b shows an enthalpy–pressure diagram at 0K. For lower
pressures, there is a transition from α-quartz to coesite between 2.5
and 3.0GPa, consistent with the predicted phase diagram (Fig. 2),
followed by a transition to stishovite at 5.5–6.0 GPa. At higher pres-
sures of ≈110GPa, we observe the transition from stishovite to α-PbO2-
type silica. Experimentally, rather than stishovite (rutile type), the
structurally closely related CaCl2 (distorted rutile) type polymorph of
silica is stable. The transition from CaCl2- to α-PbO2-type silica was
observed at 120GPa and 2400K48. Given that our enthalpy data cor-
respond to a temperature of 0 K, both values agree well with each
other. For the transition of α-PbO2- to pyrite-type silica, our ACEmodel
predicts a pressure of ≈246GPa, in good agreement with the experi-
mentally determined transition pressure of ≈260GPa at 1800K49.
Finally, rosiaite-type silica46 is correctly identified as metastable over
the pressure range studied.

Table 1 | ML model performance

SiO2-GAP-22
(ref. 31)

Si–O ACE models
(This work)

Linear
(N = 1)

Finnis-Sinclair-like
(N = 2)

Complex
(N = 8)

ΔE ΔF ΔE ΔF ΔE ΔF ΔE ΔF

SiO2 crystals 1.0 0.08 0.8 0.07 1.1 0.06 0.9 0.05

a-SiO2 (CHIK-MD) 3.7 0.19 4.1 0.27 5.1 0.27 2.2 0.19

a-SiO2 (GAP-MD) 1.1 0.10 10.3 0.13 9.8 0.12 4.6 0.10

a-SiO2 (ACE-MD) 4.0 0.17 8.0 0.28 7.4 0.26 3.2 0.18

a-SiO2 surfaces 14.9 0.18 21.4 0.21 18.0 0.18 4.7 0.16

a-Sia >1600 >3.2 115.8 0.38 53.9 0.34 51.5 0.26

a-SiOx
a >4200 >3.5 37.8 0.71 35.0 0.64 38.0 0.43

high-p a-SiO2
a 122.7 0.87 15.1 0.48 5.6 0.36 4.6 0.24

We report energy (ΔE) and force (ΔF) root mean square error (RMSE) values in meV atom−1 and eV Å−1 on different test sets. We characterise three ACE models, fitted to the same dataset but with
increasing model complexity (Methods). ‘a’ indicates amorphous structures. The CHIK25 and GAP31 generated structures are taken from ref. 31. An extended version of this table with additional
information can be found in Supplementary Table 3.
aStructural models generated using ACE-MD.
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Figure 3c shows the pressure evolution of the average coordi-
nation number (CN) of silicon atoms in amorphous silica, extracted
from an MD simulation at room temperature and under isostatic
pressure. The ACE results agree well with experiment up to about
50 GPa5,50, and with ab initio MD51 results over the whole pressure
range. The good agreement with experiment is particularly pro-
nounced for the data from ref. 50. Above 50GPa, our model under-
estimates the average CN: at 175 GPa the experimental estimate is
about 7; the ACE simulation predicts it to be 6. Importantly, this does
not mean that there are no 7-fold coordinated environments, but
there remain some 5-fold coordinated atoms as well, lowering the
average (Fig. 3d). A possible reason for the good agreement with
the ab initio result, but the deviation from experiment, might
be the limited time scales in our simulations, which hinder a com-
plete transition into higher-coordinated environments. Moreover,
we note that computed X-ray-Raman spectra of the ab initio struc-
tures from ref. 51 are in good agreementwith experiment indicating a
lower CN. OtherMD simulations also showed slightly lower CNs than
the experimental values52. Figure 3e shows three different 7-fold
coordinated environments extracted from the simulations.

A CN of 7 in amorphous silica might be surprising, since silicon is
sixfold-coordinated in all crystalline silica polymorphs that are stable
in this pressure range. However, the pyrite-type phase, which becomes
thermodynamically stable at ≈240–260GPa, contains silicon atoms
with a 6+2-fold environment. A recent study found certain, but limited,
similarities between these 7-fold environments in glassy and pyrite-
type silica52.

In Supplementary Fig. 2, we show two additional structural fin-
gerprints which have been commonly analysed in experiment: the
position of the first sharp diffraction peak and the Si–O bond length.
For both cases, our simulations show good agreement with
experiment.

SiO2 surfaces and aerogels
Figure 4 tests the ability of the potential to accurately predict surface
energies. We begin with validation for different α-quartz surfaces: we
created surface slabmodels, relaxed them with the ACE potential, and
evaluated the energetics, and therefore the surface energy per area,
with DFT single-point computations (Fig. 4a). The ACE results agree
well with DFT, especially considering that the training database does
not contain all the surface terminations shown. The ACE model is also
able to predict the stability of the reconstructed α-quartz (001) surface
(Supplementary Fig. 3a, b). Whilst these surface energies can be
computed with DFT, realistic amorphous surface energies are much
more difficult to obtain, due to the required system sizes. Therefore,
Fig. 4b validates the potential on 125 small-scale surface structures of
amorphous SiO2, each containing 192 atoms. The surface models are
created based on bulk structures from ref. 31; the latter had been
generated in melt–quench simulations with different interatomic
potentials and therefore span a range of energies. Regardless of the
starting structure, the ACE model captures the surface energy for all
slab models very well: the total RMSE is about 0.01 eV/Å2, and only a
slight underestimation compared to DFT is seen. Moreover, there are
no clear outliers although the various surface energies indicate a large
diversity of the surface structures.

The amorphous surfaces shown are already very complex, but in
reality they are often not flat as here. They have curvature, for example
when occurring inside pores, and such complex structures can no
longer be directly validated with DFT. Figure 4c therefore shows how
well atomic environments in various porous amorphous structures are
covered by the dataset. These structures were prepared by straining
amorphous structures at elevated temperatures to the desireddensity.
To validate the performance of the potential on this model, we show
the linear extrapolation grade according to the maxvol selection41,53.
An extrapolation grade above 1 corresponds to atomic environments
that have not been covered in the training database. This does not
mean that the potential is no longer reliable, as there is a certain range
of more or less reliable extrapolation, but as the extrapolation grade
increases, non-physical behaviour and failure of the potential becomes
more andmore likely39. For all porous structures, regardless of density,
we find that the maximum extrapolation value is less than 1. Thus, we
observe no pronounced extrapolation in any of the cases considered,
indicating an accurate description of the potential for a variety of
curved surfaces. In Supplementary Fig. 3e, f, we demonstrate the
effectiveness of the ACE potential in reconstructing artifical amor-
phous surfaces. To this end, we cut out a spherical cavity from an
amorphous bulk structure. Upon heating, the amount of incorrectly
arranged atoms near the surface (<3Å) decreases over time, indicating
that the surface atoms are undergoing significant reconstructions.

Elemental silicon
Whilst our ACEmodel is designed for the binary Si–O system, we show
in Table 2 the performance for diamond-like elemental silicon com-
pared to both DFT and experiment. The bulk modulus is very well
reproduced, whereas the vacancy formation energy is underestimated
by about 30%. The experimental surface energies arewell recoveredby
the ACE model, but this may be partly due to serendipity, because the
SCAN ground-truth data show poorer quality (Table 2). Moreover, the
potential captures the reconstruction of the diamond-type silicon
(100) surface (Supplementary Fig. 3c, d). We also computed the linear
thermal expansion coefficient of diamond-type silicon in the quasi-
harmonic approximation, finding almost perfect agreement between
the ACE prediction and experiment; in particular, the unusual negative
expansion coefficient below 130K is reproduced (Supplementary
Fig. 4). Finally, melt–quench simulations were performed to generate
a-Si structures (Supplementary Fig. 5). The agreement with the
experimental structure factor is as good as that for a GAP-18-generated
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in different colours emphasises the stability regions of different phases. Source
data are provided as a Source Data file.
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structure from ref. 54. In addition, we are able to achieve lower
quenching rates with the ACE than with the GAP, and for quenching
rates as low as 1010 K s−1, we observed crystallisation.

Compared to Si-GAP-1830, we observe higher errors with respect
to the reference data (Table 2). This is not a principal shortcoming of
ACE compared to GAP: it was already shown that it is possible to fit an
ACE potential with similar numerical accuracy as Si-GAP-18 to the same
training database34. Instead, the lower accuracymight be caused by the
extension of the database to a second element, compared to the Si-
GAP-18 one, and its strong focus on the SiO2 part of the configurational
space. We assume that this causes, in turn, a less accurate description
of the configurational space of the elemental species. Larger training
databases might help to overcome this issue in the future. Due to the
lower accuracy in reproducing the SCAN data, our potential has some
shortcomings for higher-pressure structures: the bc8 phase is erro-
neously predicted to be stable at elevated pressure (Supplementary
Fig. 6), and upon compressing a-Si we do not observe the eventual
crystallisation that is described by Si-GAP-18 (Supplementary Fig. 7)55.
We emphasise that very-high-pressure silicon phases were not the
scope of the present work – instead, we focus on the accurate
description of ambient-pressure silicon as a constituent part of mixed
binary phases and nanostructures.

SiO and mixed silicon–silica systems
Whilst the results so far have served to demonstrate the usefulness of
the approach – both in terms of development of datasets and the
fitting within the ACE framework – we are now able to study an actual
application problem. To this end, Fig. 5a shows structural models of
SiO. Experimentally, amorphous SiO is obtained by deposition of SiO
from the gas phase56. In contrast, we created our models by
melt–quench simulations. SiO phases are known to bemetastable with
respect to Si and SiO2. For example, a recent DFT-based crystal-
structure prediction study explored possible ordered phases of
homogeneous SiO, and found that these aremetastable compared to a
mixture of crystalline Si and SiO2

57. We verified that our ACE potential
similarly reproduces the metastability of the ambient-pressure phases
(Supplementary Fig. 9), and that it accurately predicts relevant Si–SiO2

interface energies (Supplementary Fig. 10). In good agreement with
these results, our melt-quenched structures show a clear segregation
between a-Si-like (blue) and a-SiO2-like regions (red). With decreasing
quench rate, the number of silicon grains decreases while their size
increases. Figure 5b shows the structure factor, S(q), for the structure
quenched with 5 × 1012 K s−1 (data for the other structures are shown in
Supplementary Fig. 11), which agrees best with the experimental data
from ref. 15. Figure 5c shows the ratio between the volume of the
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silicon grains divided by the interface area. In the approximation of
spherical particles, the grain diameter is d = 6 ⋅VSi,grains/Ainterface. From
this we can estimate average grain diameters between 24 and 54Å for
the tested quench rates. These grain diameters agree very well with
transmission electron microscopy measurements, which indicated
diameters of 30–40Å14.

Figure 5d shows the excess energies of the structures referenced
to to α-quartz and diamond-type silicon. The SiO structures were
relaxed by optimisation of the cell size as well as the atomic positions
at 0 K. As experimental reference, we show the standard enthalpy of
formation of SiO58. The structures generated using quench rates of
5 × 1012 and 2 × 1012 K s−1 have energies comparable to experiment.
Indeed, we can even create structures that are energetically more
favourable than in experiment, noting again that our procedure to

produce the structures deviates significantly from the experi-
mental one.

But is this really an improvement compared to existing, empiri-
cally fitted interatomic potentials? We tested the Munetoh potential59

and a charge-optimised many-body (COMB) potential29 for the same
procedure to generate structural models of SiO. The Munetoh
potential yielded a homogeneous structure without observable seg-
regation into silicon and SiO2, and the resulting structure factor
(Supplementary Fig. 11c) deviates strongly from experiment. For the
COMB potential, we observed pore formation at elevated tempera-
tures, finally resulting in a strongly increased simulation-cell size.
Therefore, we only equilibrated our best-matching structure at room
temperature and analysed the change in structure factor (Supple-
mentary Fig. 11f): again, we observed a strong deviation from experi-
ment, indicating that the structure is very different from the ACE
model prediction.

Crystallisation of silicon in amorphous SiO
Silicon in silicon monoxide is experimentally known to crystallise
above 850 °C60. Figure 6 illustrates simulations of such crystallisation
processes. The SiO structures shown in Fig. 5 were heated to 1400K,
causing the silicon-rich regions tomeltwhile the silicamatrix remained
solid. The structures were then quenched to 1200K within 20 ns
(Fig. 6a). Through this cooling process, we noticed crystallisation in
the silicon-rich regions of the SiO structure. Details are shown in
Supplementary Fig. 12, indicating how crystallisation starts from two
seeds, appearing shortly after each other and propagating throughout
the structure. Before thermal treatment, all structures show nearly no
sign of crystallinity, whereas afterwards, the structures with larger
silicon grains do (Fig. 6c–f). This also affects the structure factor: those
systems with no or only a small amount of crystallinity (quench rates:
1 × 1013 and 5 × 1012 K s−1) show structure factors that are still similar to
the experimental structure factor of SiO (Fig. 6g), whereas those with
larger amounts of crystalline silicon (1 × 1012 and 2 × 1012 K s−1) show
distinct S(q) peaks that indicate crystallinity (Fig. 6h). This comparison
allows us to exclude the occurrence of large amounts of crystalline
silicon in silicon monoxide samples, given the experimental S(q) (cf.
Fig. 6g and ref. 15).

Figure 6i shows that all structures are energetically more
favourable after the thermal treatment. However, even though one
might expect that the stronger crystallised structures gain more
energy, we observe no direct connection between the energy gain
and the level of crystallinity after heat treatment. The reason is likely
that for the fast-quenched structure (1 × 1013 K s−1), the silicon-rich
regions might be not perfectly arranged. Thermal treatment thus
lowers the interface energy and the internal energy of the amorphous
silicon region. For the crystallised structures there is, on one hand, an
energy gain due to crystallisation but, on the other hand, an energy
loss due to the higher interface energy between crystalline silicon
and the silicamatrix compared to that of a-Si and the silicamatrix (cf.
Supplementary Fig. 13). Based on these interface energies, we con-
structed a simple physically-based model (Methods) to calculate the
energy gain of a spherical silicon inclusion in an amorphous silica
matrix by crystallisation. This energy gain is shown in Fig. 6j for
interface energies taken from four pairs of manually constructed
interfaces. The difference between the models is rather small, indi-
cating that the minimum radius of a spherical inclusion has to be
around 9 Å to be energetically favourable in a crystalline state. We
note that the manually constructed models do not have the same
interface orientations as in the SiO structures and are also not per-
fectly relaxed, causing an overestimation of the interface energies –
as seen, for example, in the difference between the interface energies
of the SiO structures and of the manually constructed a-Si–a-SiO2

interface in Supplementary Fig. 13d. However, since for our model
the difference between the interface energy between a-Si–a-SiO2 and
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31,
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Source data are provided as a Source Data file.
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c-Si–a-SiO2 is the only relevant quantity, we assume that these effects
partially cancel.

Discussion
Understanding the microscopic nature of interfaces and nanos-
tructuredmatter is essential to advancingmaterials research. Here, we
have presented an active-learning scheme that we term “amorphous
matrix embedding” that can realistically represent environments from
large-scale simulations in DFT-accessible cells, enabling fast and
accurate atomisticmodelling of heterogeneousmaterials.We used the
approach to develop a general-purpose interatomic potential for bin-
ary Si–O phases with varied compositions that is able to describe the
trifecta of modelling challenges in this material system: very-high-
pressure phases (relevant to geology), surfaces (relevant to catalysis),
and mixed stoichiometric compositions with nanoscale heterogeneity
(relevant to battery systems).

Using the ACE approach, we observe a speed-up of about two
orders of magnitude compared to the more established GAP fra-
mework. This makes it possible to access long time scales and large

length scales with DFT-like accuracy. Of course, there are still some
shortcomings of this potential, e.g., the lower accuracy for
pure silicon compared to the state of the art – but this use-case is
not the focus of our work, as there are already competitive GAP and
ACE models available30,34. In our case, the quality of the underlying
meta-GGA datamight cause an outperformance compared to earlier
ML-potentials fitted with more economical GGA labels. The poten-
tial also underestimates the FSDP height of amorphous SiO2 (Sup-
plementary Fig. 14), as already observed for our earlier GAPmodel31.
Further research is required to identify the origin of this
underestimation.

We hope that our work, and the dataset and resources developed
therein, will advance the modelling of porous silica nanostructures as
well as of high-pressure silica. For the Si–SiO2 interface, alternative
interatomic potential models are scarce and the higher-quality
potentials come with an expensive charge-equilibration term. Our
tests showed that the ACE potential describes silicon monoxide in
much closer agreement with experiment than existing empirical
models. Additionally, we are able to generate crystallites in the SiO
matrix as observed experimentally, showing that the ACE potential can
be used for a wide range of applications in the Si–O system, including
both ordered and disordered structures.

We view the present database and ML potential model as a
starting point for wider-ranging studies in this important material
system. In the future, higher accuracy for the mixed system
might be achieved by using charge-equilibration schemes coupled
with ML potentials61. However, this would come with much
longer computing times as well as worse scaling for larger
systems. Moreover, in the future, we will include lithium in the
potential to investigate the battery performance of SiO on the
atomistic scale.

Methods
Machine-learning potential fitting
We used two frameworks for fitting ML potential models. While con-
structing the reference database, we usedMoment Tensor Potentials38

with active learning53 as implemented in the MLIP package39. For the

Fig. 5 | Nanoscale segregation in amorphous silicon monoxide. a Visualisation
of SiO structures generated by quenching from the melt at rates between 1013 and
1012 K s−1. Colour-coding is basedon the nearest-neighbour count up to 2.0Å, taken
to correspond to the Si–Ocoordinationnumbers,whichare four in SiO2 and zero in
elemental silicon. Accordingly, SiO2-like and Si-like regions are indicated in red and
blue, respectively. b Structure factor, S(q), as a function of the wave vector, q, for
the 5 × 1012 K s−1 simulation, determined at 300K. cRelation between grain volume,

V, of the silicon grains and the interface area, A, between silicon and silica. With
increasing quench rate, the grain size of the structures decreases. d Energy of the
SiO structures referenced to α-quartz and to diamond-type silicon (ΔE), compared
to the experimental standard enthalpy of formation for SiO58. The predictions
shown are robust with respect to system size (Supplementary Fig. 8). Source data
are provided as a Source Data file.

Table 2 | Properties of diamond-type silicon

This work Ref. 30

Property SCAN ACE PW91 GAP Expt.

Bulk
modulus

(GPa) 100.0 100.8 88.8 88.4 97.871

Vacancy Ef (eV) 4.09 2.80 3.67 3.61 472

γ100 (eV/Å2) 0.155 0.116 0.135 0.133 0.13373

γ110 (eV/Å2) 0.126 0.089 0.095 0.094 0.09473

γ111 (eV/Å2) 0.113 0.075 0.098 0.096 0.07773

We show values from density-functional theory (DFT) computations with the strongly con-
strained and appropriately normed (SCAN) exchange–correlation functional for reference, as
well those obtained with the complex atomic cluster expansion (ACE) potential; both compu-
tations are compared to the Si-GAP-18 Gaussian approximation potential model and the corre-
sponding DFT reference data (PW91), taken from ref. 30, and to experimental data ("Expt.”). Ef is
the vacancy formation energy. γ100, γ110 and γ111 are the surface energies of the diamond-type
silicon (100), (110), and (111) surfaces, respectively.
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final potential fit, we used the nonlinear Atomic Cluster Expansion
(ACE)33,34 as implemented in PACEMAKER35. For ACE, we tested a
range of combinations of embeddings, and found the following to be
suitable:

Ei =ϕ+
ffiffiffiffi

ϕ
p

+
X

i

ϕf i , ð1Þ

with ϕi being atomic properties, which are expanded by the ACE basis
functions (for details see ref. 33). The exponents of the embeddings
include fractional exponents and higher integer powers of
f i 2 1=8, 1=4, 3=8, 3=4, 7=8, 2

� �

. We found that especially fractions
between 0 and 1 improved the behaviour of the potential. This
approach goes beyond the previously suggested linear embedding
(only the first term) and Finnis–Sinclair (the first two terms) type
embedding34, and is referred to as “complex” embedding in Table 1.
For the expansion of the atomic properties ϕi we used 600 basis
functions with 5700 parameters. As radial basis we employed Bessel
functions. A κ value of 0.01, which gives the ratio between force and
energy weights value, was used during fitting. For optimisation we
used the BFGS algorithm for 2000 steps.

DFT computations
All DFT computations were performed using VASP62,63 and the
projector augmented-wave method64,65. We used the SCAN
functional36 with an energy cutoff of 900 eV and a k-spacing of
0.23 Å−1. Surface were performed with dipole corrections. We note
that these convergence parameters are optimised for silica; how-
ever, we found them to be also well converged formixed phases and
for pure silicon structures. Only for very-high-pressure silicon
allotropes, a higher k-spacing would provide a relevant advantage;
however, since these are not in the scope of the present work, we
neglect these inaccuracies.

MD workflows
Simulation protocols were implemented using the atomic simulation
environment (ASE)66 and the OVITO Python interface67. While optimi-
sation and small-cellMDwere partially performedwith ASE, large-scale
MDand statics simulationswere carried out using LAMMPS68. The time
step was 1 fs. For NVT simulations, we used a Nosé–Hoover thermostat
with temperature damping constant of 100 fs; for NPT simulations, we
added a Nosé–Hoover barostat with a pressure damping constant of
1000 fs.
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The colour coding indicates the type of structure recognised by polyhedral tem-
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c–f All structures from Fig. 5a after thermal treatment. g, h X-ray structure factors
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structures with high crystallinity, the structure factor containsmore distinct peaks.
iComputed energy of formationΔE for structures before and after heat treatment.
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Source Data file.
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For quench simulations we used the same protocol as in ref. 31.
This protocol starts with a randomisation part at 6000 K for 10 ps
(NVT). Afterwards the temperature is immediately reduced to
4000 K and held there for 100 ps (NPT, zero external pressure).
From there the melt is quenched with different quench rates to
300 K (NPT, zero external pressure). At this temperature the
structure is equilibrated for another 10 ps. In case of ‘hybrid’
simulations these quenches have been performed using the CHIK
potential25 and afterwards the structure has been equilibrated for
another 20 ps with the ACE potential.

As input for the compression simulations we generated amor-
phous structures using this quenching protocol with a quench rate
of 1013 K s−1 and only the ACE potential. The compression was per-
formed under isostatic conditions. In each step, the pressure was
initially increased by 1 GPa within 2.5 ps of simulation time, followed
by equlibration over 2.5 ps at the new pressure. This procedure was
iteratively repeated. Coordination numbers were determined after
equilibration.

The aerogel structures were created by a similar protocol as in
ref. 31. An initial structure was randomised at 6000K for 10 ps,
instantly cooled to 4000K and kept there for 100 ps. From this tem-
perature, the liquidwas cooled to 300Kwith a quench rate of 1013 K s−1.
During the equilibration at 4000K and up to half of the quenching
process, the cells were additionally extended to the desired density.

The mixed structures were created using the same protocol as
in ref. 31 for producing amorphous structures. The volume of the
silicon grains was determined within OVITO by creating bonds
between silicon and oxygen atoms (cut-off: 2 Å) and deleting all
atoms which have more than one such bond. This deletes the whole
silica matrix. The interface area and volume is then determined by
using the ConstructSurfaceMesh modifier (Gaussian density
method, resolution: 50, radius scaling: 100%, isovalue: 0.1) on the
remaining atoms.

Phase diagram calculations
Thermodynamic integration was carried out as implemented in
calphy43,44. We used 50,000 equilibration steps, 800,000 switching
steps for the switching to the Einstein crystal, aswell as 300 steps/K for
the thermodynamic integration to calculate the temperature depen-
dence. Due to numerical issues, we fixed the spring constants of the
Einstein crystal to 2 eV Å−2 for oxygen and 4 eV Å−2 for silicon. We
carefully checked the influence of this constraint on the final results
and found it to be negligible. More details on the phase diagram cal-
culations can be found in Supplementary Note 2.

Structure factors
Faber–Ziman structure factors were obtained by summation of the
Fourier transformations of the partial radial distribution functions
calculated with OVITO. The corresponding partial structure factors
were weighted by atomic form factors taken from ref. 69. For the high-
pressure structures, we used a cut-off radius of 20Å for the radial
distribution function, and analysed a single snapshot (without time
averaging). For the SiO structures, we used a cut-off of 80Å and an
average over 10 snapshots.

Surface energies
In these calculations we consider only stockiometric slabs. The surface
energies, γ, were calculated as

γ =
Eslab � N � Eref

A
, ð2Þ

where A is the total surface area (at the top and bottom of the slab
combined), N is the number of particles in the slab, Eref is the bulk

reference energy and Eslab is the potential energy of the slab. The slab
energies for Table 2, Fig. 4a (relaxed), and Supplementary Fig. 3 have
been calculated for DFT- and ACE-relaxed structures. For Fig. 4b, we
used theACE-relaxed structures also todetermine theDFT single-point
surface energy. The reference energy for the α-quartz surface is the
energy of the optimised α-quartz unit cell per atom, and the reference
energy for the diamond surface is obtained for the optimised
diamond-type unit cell. The reference energy of the amorphous
sample is the bulk energy of the same relaxed amorphous structure
without surfaces.

Enthalpy and structural analysis at high pressure
The enthalpy H is given by

HðpÞ= EðV Þ+pðV Þ � V , ð3Þ

where E is the internal energy, p is the pressure, and V is the volume.
The volume dependence of the energy was determined by a
Birch–Murnaghan fit to the energy–volume curve of each polymorph.
p(V) was given by the corresponding derivative. The energy-volume
curveswere calculatedby varying the volumeby±20% forα-quartz and
coesite, by ±25% for stishovite and ±30% for all other phases. The
corresponding structures were structurally optimised, allowing
changes of the positions as well of the box shape, however keeping
the volume fixed. For the analysis of the compressionMD simulations,
coordination numbers were determined by integrating over the first
peak of the partial Si–O radial distribution function. The Si–O bond
distances are given by the first peak position of the partial Si–O radial-
distribution function.

Interface energy model for the SiO crystallisation
We build a interface energy based model for a spherical inclusion of
silicon with radius r within an amorphous SiO2 matrix. The energy
difference between the crystallised silicon and the amorphous silicon
is given by,

ΔE =4πr2ðγc�Si�a�SiO2
� γa�Si�a�SiO2

Þ � 4πr3ðEa�Si � Ec�SiÞ
3V atom

: ð4Þ

Here, γa�Si�a�SiO2
is the interface energy between amorphous

silicon and amorphous silica, γc�Si�a�SiO2
is the interface energy

between crystalline silicon and amorphous silica, Ea−Si is the energy of
the corresponding amorphous silicon structure (cf. Supplementary
Table IV), Ec−Si is the energy of crystalline silicon, and Vatom is the
volume per atom. Details about the interface energies we used can be
found in Supplementary Note 2.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The potential parameter files, the reference data with SCAN labels, and
additional supporting data (including LAMMPS scripts and input con-
figurations) generated in thus study are openly available in the Zenodo
repository at https://doi.org/10.5281/zenodo.1041919470. Source data
are provided with this paper.

Code availability
The codes for potential fitting and evaluation are publicly available
and were used as provided by their respective authors, without
modification. Custom-written Python scripts for data analysis are
provided together with the corresponding data in the Zenodo
repository.
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