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Imputation of plasma lipid species to
facilitate integration of lipidomic datasets
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Study Investigators*, Corey Giles 1,2,3,11 & Peter J. Meikle 1,2,3,10,11

Recent advancements in plasma lipidomic profiling methodology have sig-
nificantly increased specificity and accuracy of lipid measurements. This
evolution, driven by improved chromatographic and mass spectrometric
resolution of newer platforms, has made it challenging to align datasets cre-
ated at different times, or on different platforms. Herewepresent a framework
for harmonising such plasma lipidomic datasets with different levels of gran-
ularity in their lipid measurements. Our method utilises elastic-net prediction
models, constructed from high-resolution lipidomics reference datasets, to
predict unmeasured lipid species in lower-resolution studies. The approach
involves (1) constructing composite lipid measures in the reference dataset
that map to less resolved lipids in the target dataset, (2) addressing dis-
crepancies between aligned lipid species, (3) generatingpredictionmodels, (4)
assessing their transferability into the targe dataset, and (5) evaluating their
prediction accuracy. To demonstrate our approach, we used the AusDiab
population-based cohort (747 lipid species) as the reference to impute
unmeasured lipid species into the LIPID study (342 lipid species). Furthermore,
we compared measured and imputed lipids in terms of parameter estimation
and predictive performance, and validated imputations in an independent
study. Our method for harmonising plasma lipidomic datasets will facilitate
model validation and data integration efforts.

Plasma lipidomic profiling has become increasingly prevalent over the
last decade, providing insights into previously unrecognised biological
phenomena. Along with this rise in published work, the technology
and methodology to perform plasma lipidomics has evolved sig-
nificantly. The number, specificity, and accuracy of lipid measure-
ments have increased greatly, along with throughput and
robustness1–4.

Current lipidomic assays are able to measure a large number of
lipids (over 700) from a diverse array of classes (40 or more). Prior

assays generallymeasured a smaller panel (about 300) of lipids, froma
more selective number of classes. Despite the apparent similarities
between platforms, it is often a challenge to closely align measure-
ments. Due to improved chromatographic separation or increased
mass spectrometer resolution, the level of granularity in newer plat-
forms is often much higher. This means that older measurements can
be composite measures of multiple lipid species that are entirely
resolved in modern platforms. Using datasets with different numbers
of lipid species and different levels of granularity presents a particular
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challenge when building risk predictionmodels and validating them in
different studies or when integrating data across population-based
cohorts. Analysts are faced with a difficult choice between building
models with a reduced number of lipid species common to all datasets
or discarding older datasets and accepting reduced power and
validation.

Here, we propose a framework for harmonising plasma lipidomic
datasets producedwith different levels of chromatographic resolution
and mass accuracy. The principle behind our approach is a prediction
(imputation) of the concentration of unmeasured lipid species in the
target dataset, using a referencedataset. This approach relies primarily
on the stable correlation structure across plasma lipidomic profiles,
found both within and between lipid classes3,5. This allows us to build
accurate predictive models for individual lipid species based on the
more detailed lipidomic profiles in the reference dataset, anduse them
to predict the concentration of unmeasured lipid species in less
detailed target dataset.

To demonstrate our approach, we used a large reference dataset,
the AusDiab cohort6 (n = 10,339), profiled with a contemporary, com-
prehensive lipidomic platform (747 lipid species) to impute unmea-
sured lipid species in anolder, less comprehensivelyprofiled study, the
LIPID trial7,8 (n = 5991, two timepoints; 342 lipid species). We further
validated lipid imputations in another comprehensively profiled and
ethnically distinct cohort, the San Antonio Family Heart Study
(SAFHS)9 (n = 2595, with 5590 complete observations of 795 lipid
species across different phases of data collection).

Results
Lipidomic analysis of the AusDiab, LIPID and SAFHS studies
Our reference dataset, the AusDiab study, is a population-based cross-
sectional survey and a prospective cohort study aimed at estimating
the prevalence of diabetes mellitus, and its associated risk factors in
the Australian adult population. The LIPID study is a randomised
clinical trial designed to assess the effectiveness of pravastatin in
reducing coronary mortality in individuals with a previous history of
cardiovascular disease. The characteristics of individuals in the Aus-
Diab cohort and the LIPID trial are summarised in Supplementary
Table 1.

We measured 747 individual lipid species in the AusDiab cohort
and 342 in the LIPID trial in 2018 and 2014, respectively, with the main
difference between the assay methods being in the chromatographic
conditions. The AusDiab study was analysed using IPA/ACN chroma-
tography with a dual column system and the solvent consisting of
isopropanol, acetonitrile and water, whereas the LIPID study utilised
THF chromatography with a single column and the solvent based on
tetrahydrofuran, methanol and water. In both studies, assay perfor-
mance was monitored using plasma quality control (PQC) samples.
However, PQC samples were from different batches, and in the Aus-
Diab we also included additional reference samples from the National
Institute of Standards and Technology (NIST, SRM 1950).

Lipid analysis for the SAFHS was performed under similar condi-
tions as the AusDiab analysis (see Methods section). We obtained
complete measurements of 795 individual lipid species in the SAFHS
cohort, but for the validation purpose in this study we only focused on
700 lipid species that overlapped between the AusDiab and SAFHS
cohorts.

Nomenclature alignment of lipid species across theAusDiab and
LIPID studies
The naïve method of aligning platforms involves matching each lipid
species by name to the single best possible match in the reference
data. However, as the chromatographic separation of lipid species has
improved over the years, what was regarded as a single lipid in older
analyses could be represented as a combination of multiple isomeric
lipid species in later analyses. This implies that some lipid species in

the target data should bemapped to a compositemeasure (linear sum)
of two or more lipid species in the reference data. Supplementary
Data 1 providesmapping between all lipids inour target data (the LIPID
trial) and either the single best possible match or the composite
measures created for this purpose in the reference data (the AusDiab
cohort). Overall, 225 lipid species in the LIPID uniquely mapped to a
single lipid species in the AusDiab dataset. There were 70 species that
each mapped to 2 lipid species in the AusDiab dataset, 12 species that
each mapped to 3 lipid species in the AusDiab dataset and the
remaining 35 lipid species did not map well to any lipid species mea-
sured in the AusDiab study. A total of 176 lipid species in the AusDiab
reference dataset contributed to building 82 composite lipids that
were mapped to the LIPID study. Together with 225 individually
matching lipid species, this gave us a set of 307 lipidmeasures to build
models for predicting 346 lipid species measured in the AusDiab, but
not in the LIPID study, and to expand the 82 composite lipids into 176
lipid species as measured in the AusDiab study (Supplemen-
tary Data 2).

Identification of discrepancies between aligned lipid species
When aligning lipid species between datasets, some lipid species dis-
played dissimilar variation due tomethodological differences between
platforms, different lipidome predictors or incorrect annotations.
Such discrepancies in measurements or annotations can lead to local
differences in the lipid correlation structure between the reference
and target datasets, which in turn violates an important assumption for
the successful prediction of lipid concentrations. To identify dis-
cordant lipid species and remove them prior to building predictive
models, we used differences in the partial correlation coefficients of
corresponding lipid species between the two datasets.

Partial correlation – or conditional correlation in the context of a
multivariate normal set of random variables – represents the strength
of linear association between two variables when the effect of the
remaining variables in the set is removed or controlled for. It avoids
spurious correlations often seen when Pearson correlation is used in
themultivariable setting.We assess the concordance between a pair of
corresponding lipids in different datasets by calculating total squared
distance between their partial correlation vectors in the two datasets.
Here, the partial correlation vector of a lipid is a vector of partial
correlations of that lipid with all other lipids individually. A large dis-
tance between a pair of corresponding partial correlation vectors in
the reference and target dataset indicates the discrepancybetween the
association patterns of the corresponding lipid in the two datasets.
This, in turn, signals that such a lipid will not be a suitable predictor in
the predictive models applied on both datasets.

We used the following heuristics when determining a discrepancy
threshold that warrants the removal of a lipid from the predictor set.
Focusing on lipids shared between the reference (AusDiab) and target
(LIPID) data, we identified and provisionally removed the most dis-
cordant lipid between the two datasets, as judged by the distance
between its partial correlation vectors. In a sequential process, the
partial correlation distances were recalculated after each lipid species
removal and the process of the provisional removal continued until all
remaining lipid species had between-data distances smaller than 2
median absolute deviations (MAD) from themedian distance. We then
used graphical methods (Fig. 1) to identify an optimal threshold for
removing discordant lipids by analysing the distribution of the partial
correlation distances between corresponding lipids (Fig. 1a) and
average, per lipid, distance between the partial correlation matrices
(Fig. 1b) of the two datasets. The former is well suited for identifying,
on an individual lipid level, when to stop the provisional removal
process i.e., when the distribution of the partial correlation distances
shows no apparent outliers. The latter can be used to detect, on a
global level, when the average distance between the two datasets is
flattening and further removal of discordant lipids is having

Article https://doi.org/10.1038/s41467-024-45838-3

Nature Communications |         (2024) 15:1540 2



diminishing return in terms of bringing the correlation structures of
the two datasets closer together. In the depicted case, we used 2.5
MAD from the median distance as an optimal threshold for removing
discordant lipids. This resulted in the removal of the 13 most dis-
cordant lipids from the predictor set (Supplementary Table 2).

Furthermore, partial correlation coefficients were useful for
visualising association networks between lipids in the two datasets,
comparing associationsbetween lipid families anddetecting anymajor
discrepancies from the expected correlation structure. Figure 2 shows
the lipid association networks for the AusDiab and the LIPID studies in
which only the top 1000 associations were retained in each. The lipid
associations that appear in the top 1000 in both datasets are high-
lighted as blue edges. Overall, this demonstrates very similar associa-
tion patterns between lipid species and families in the two studies. In
particular, we observed strong association between LPC and PC, LPE
and PE, LPI and PI, DG and TG and between LPC and CE classes, the
latter correlating specific fatty acid species across these classes. In
addition, we used the Louvain community detection algorithm10 to
demonstrate that the modularity of lipid association networks largely
overlapped with distinct lipid classes and created similar patterns of
lipid class associations in the two datasets (Supplementary Fig. 1).

Assessing transferability of predictive models from the refer-
ence to target study
To ensure successful transfer of predictive models from the reference
(AusDiab) to target (LIPID) study, we first focused on the lipids mea-
sured in both datasets (matching lipids) as a form of validation. In this
setting we can build models in the reference dataset, use them to
predict the matching lipid concentrations in both the reference and
target dataset, assess the prediction accuracy against observed, con-
ceptually masked, lipid measurements and, most importantly, com-
pare the accuracy of predictions between the reference and target
dataset. Ideally, theprediction accuracy for the equivalent lipid species
in the two datasets would be very similar, indicating a perfect trans-
ferability of predictive models from the reference to target study.

We employed elastic-net regression models (α =0:1) to predict
individual lipid concentrations using the remaining matching lipids as

well as age, sex, BMI and lipid-lowering treatment as predictors. In
addition, we examined the effect of removing discrepant lipid species
from thepredictor set on theprediction accuracy and transferability of
models from the AusDiab reference to the LIPID study. The prediction
accuracy was assessed as the strength of Pearson correlation between
observed and predicted lipid concentrations. Figure 3a demonstrates
that the removal of the most discrepant lipids, based on the partial
correlationmeasure described above, also eliminated themost poorly
predicted lipids in the LIPID study. Furthermore, a small improvement
in the accuracy of predictions was achieved, relative to the reference
AusDiab dataset, for a fraction of the remaining lipids (Fig. 3b). For
most lipid species, the prediction accuracy in the LIPID study was
comparable to the accuracy achieved in the AusDiab reference, where
models were developed. This indicated that models built using the
AusDiab study could be safely transferred to the LIPID study to predict
the remaining unmeasured lipid species. Given the large sex dis-
crepancy between the two datasets, we also investigated the effect of
sex stratification on the predictionmodels.We observed no significant
difference in the accuracy of mixed sex and sex-stratified predictive
models (Supplementary Fig. 2), indicating that the correlation struc-
ture between and within lipid classes is sufficient to capture sex-
dependent fluctuations in lipid concentrations.

Next, we demonstrated transferability and robustness of our
imputation approach in situations where the two studies have sig-
nificantly different clinical features, some of which could be highly
predictive of the lipidome. To this end, we utilised the fact that par-
ticipants in the AusDiab and LIPID studies are very different in their
usage of lipid-lowering medications. While only 8.4% of AusDiab par-
ticipants reported taking any lipid-lowering treatment, 50% of patients
in the LIPID trail were taking pravastatin at the followup and 0% at the
baseline (as a part of run-in phase). Knowing that pravastatin and
similar lipid-lowering medications have significant and specific effects
on lipidome, we wanted to compare the accuracy of imputations
between placebo- and pravastatin-randomised patients at different
timepoints. As above, we built predictive models for individual
matching lipids in the AusDiab, one at the time, using the remaining
matching lipids, and employed them to predict corresponding

Fig. 1 | Identifying the discordant lipid species between the AusDiab and LIPID
studies. a The distribution of the squared Euclidean distance between partial
correlation vectors of corresponding lipid species in AusDiab and LIPID—ameasure
of discordance between identical lipid species in the two datasets. After each cal-
culation, the most discordant lipid was removed from both datasets and partial
correlation matrices as well as distances between corresponding lipids

recalculated. Facet labels indicate the number of lipids removed at the time. b The
average squared distance between the remaining pairs of corresponding lipid
species in AusDiab and LIPID after the removal of the most discordant lipid at each
point. Dashed lines at 9 and 13 mark the points at which further removal of lipids
would stop according to the rules of 3 and 2.5 MAD deviation from the median
distance respectively. Source data are provided as a Source Data file.
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individual lipids in the LIPID study. This time, the focus waswidened to
also include the follow-up timepoint, and accuracy of predictions was
assessed within distinct subsets: placebo and pravastatin-randomised
patients either at the baseline (when neither group is exposed to any
lipid-lowering treatment) or at the followup (when only pravastatin

group was exposed to treatment). Figure 4 demonstrates very similar
accuracy of lipid predictions across these four groups, using two dif-
ferent views: focusing on the comparisonof two randomisationgroups
at a particular timepoint (Fig. 4a, different patients, same timepoint),
or of two timepoints for a particular randomisation group (Fig. 4b,

Fig. 3 | Positive effect of removing discordant lipid species on the transfer-
ability of predictive models from the AusDiab to LIPID study. a Scatter plots
comparing the accuracyof lipid predictions inAusDiab and LIPID—before and after
exclusion of 13 most discordant lipids from the models. Only lipids measured in
both datasets were included in the analysis. Each dot represents prediction accu-
racy for a particular lipid species, assessed as the correlation between predicted
and measured (conceptually masked) lipid concentrations within a given study.
AusDiab predictions were assessed on a hold-out set; LIPID predictions were

assessed on all observations. Individual lipid species (blue) and composite lipids
(red). The line of an equivalent prediction accuracy in AusDiab and LIPID is shown;
Thin lines mark the departure of 0.3, in correlation, from the equivalency line.
b Improvement in the prediction accuracy relative to AusDiab: Absolute difference
in accuracy of lipid predictions between AusDiab and LIPID after the removal of
discordant lipids was subtracted from the corresponding absolute differenceprior
to the removal of any lipids. Source data are provided as a Source Data file.

Fig. 2 | Partial correlation networks between lipid species in the AusDiab and
LIPID studies, presented in a circle layout.Only lipids measured in both datasets
were included in the analysis and the 1000 strongest associations are shown for
each dataset. 683 edges highlighted in blue appear in top 1000 edges in both
correlation networks. The legend shows a colour code for different lipid classes: CE
cholesteryl ester, Cer ceramide, COH free cholesterol, DG diacylglycerol, dhCer
dihydroceramide, GM3 GM3 ganglioside, HexCer monohexosylceramide, Hex2Cer
dihexosylceramide, Hex3Cer trihexosylceramide, LPC lysophosphatidylcholine

and lysoalkylphosphatidylcholine (LPC(O)), LPE lysophosphatidylethanolamine,
LPI lysophosphatidylinositol, PC phosphatidylcholine, alkylphosphatidylcholine
(PC(O)) and alkenylphosphatidylcholine (PC(P)), PE phosphatidylethanolamine,
alkylphosphatidylethanolamine (PE(O)) and alkenylphosphatidylethanolamine
(PE(P)), PG phosphatidylglycerol, PI phosphatidylinositol, PS phosphatidylserine,
SM sphingomyelin, TG triacylglycerol. Source data are provided as a Source
Data file.
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same patients, different timepoints). Furthermore, by repeating the
same analysis after removing all non-lipid predictors from the models
(age, sex, BMI, lipid-lowering medication), we achieved very similar
results (Supplementary Fig. 3). This demonstrates predominant role of
the lipid species and transferability of their correlation structure to
achieve consistent accurate imputations across groups of cohorts with
very different phenotypes.

After assessing transferability of the predictive models for indi-
vidual lipids in terms of accuracy, we alsowanted to assess the stability
or precision of their predictionswhen the number of lipid predictors in
the model was reduced. This was done to ensure that the removal of a
larger number of discordant lipids, and therefore further reduction of
the predictor set, in this or other studies, will not adversely affect the
accuracy and precision of predictions. To this end, we compared

analyses in which 90, 75, 50 or 25 percent of the matching lipids were
used to predict the remaining target lipid species. We randomly sam-
pled individual targets and various reduced predictor sets to achieve
10 predictions of each target lipid. As above, we used Pearson corre-
lation between observed and predicted concentrations for each lipid
to measure prediction accuracy across resamples. Figure 5a shows the
range of prediction accuracy for lipids in the AusDiab reference (blue)
and the LIPID study (red), as the number of the predictor lipid species
in models was reduced. When 10 to 25% of lipid predictors were
excluded, we saw only a small decline in both the accuracy and pre-
cision of predictions in the LIPID study for most lipids. Figure 5b
directly compares the average accuracy of lipid predictions in the
AusDiab and LIPID studies, across all random predictor samplings. In a
similar analysis, we trained models on progressively reduced sample

Fig. 4 | Transferability of predictive models despite differential use of lipid-
lowering treatments in the AusDiab and LIPID study. a Scatter plots comparing
the accuracy of lipid predictions in the LIPID study between placebo and
pravastatin-randomised patient groups, at baseline (when neither group received
treatment) and followup (when only pravastatin group was exposed to the treat-
ment). Each dot represents prediction accuracy for one of 294 lipid species,
assessed as the correlation between predicted and measured (conceptually
masked) lipid concentrations within a given treatment group and timepoint subset.

Blue dots indicate no exposure to pravastatin in either compared subset, green
dots indicate pravastatin exposure in one of the two subsets. The line marks an
equivalent prediction accuracy in two given subsets. Only lipids measured in both
datasets were included in the analysis, and 13most discordant lipids were excluded
from the models. b Comparing the accuracy of lipid predictions in the LIPID study
betweenbaseline and followup, in placebo randomised (neither timepoint received
treatment) and pravastatin-randomised patient group (only follow-up subset was
exposed to the treatment). Source data are provided as a Source Data file.
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size, instead of reduced predictor set (Supplementary Fig. 4a, b). The
results indicated that 1000 ormore observation was sufficient to build
very stablemodels. Even themodels built using only 200 observations
at the time were surprisingly stable for most but not all lipid species.

Overall, the analysis demonstrated a good transferability of the
elastic-net regression models for the prediction of lipid species.
Although the LIPID trial is anthropometrically and clinically very dif-
ferent from our reference cohort (Supplementary Table 1), we showed
a satisfying level of prediction accuracy and precision, when approxi-
mately 220 or more predictor lipid species and 1000 or more training
observations were used to build predictive models.

Assessing the prediction accuracy of missing lipids in the
reference study
To examine howwell the lipid species notmeasured in the LIPID study
(the missing lipids) could be predicted, we first cross-validated their
prediction in the reference AusDiab study, where the accuracy of
predictions could be assessed against the observed lipid concentra-
tions. Only if a lipid had been accurately predicted in the reference
study, the corresponding model was used to predict the lipid in the
LIPID study.

Here, the predictive model for an individual missing lipid was an
elastic-net regression model that incorporated 294 concordant
matching lipids aswell as age, sex, BMI and lipid-lowering treatment as
the predictors. We followed a 10-fold cross-validation approach when

assessing accuracy of prediction in the reference study, so that each
lipid species was predicted once for every observation (individual). In
addition to tuning the regularisation parameter λ (determining the
extent of regularisation), we also tuned the elastic-net parameter α
(determining the type of regularisedmodel) on a limited range (0, 0.1,
0.25, 0.5, 0.75) for each individual missing lipid. As the measure of
predictionaccuracy, we used the Pearson correlation between a full set
of observed and predicted concentrations for each lipid.

Figure 6. shows very good prediction accuracy for the majority of
lipid species. Lipids showing a correlation of less than 0.6 between
predicted and observed values in the reference study were considered
suboptimal prediction targets and were not predicted in the LIPID
study. Supplementary Table 3 lists the 26 lipid species that were
excluded from the prediction targets.

Imputation and validation of imputed data
After excluding the 13 suboptimal predictors from the matching lipid
species and the 26 suboptimal prediction targets from the missing
lipids, we were able to predict 413 unmeasured lipid species in the
LIPID studyusing 294 lipid species sharedby the twodatasets aswell as
age, sex, BMI and lipid-lowering treatment as predictors. Each
unmeasured lipid was predicted using the elastic-net model with the
elastic-net and regularisation penalties that achieved the best predic-
tion accuracy for that lipid in the cross-validation analysis
described above.

Fig. 5 | Transferability of lipid prediction models from the Ausdiab to LIPID
study - the effect of trainingmodelswith reduced subsetsof lipid species. aThe
accuracy of lipid predictions, measured as the correlation between observed and
predicted concentrations, inAusDiab (blue) and LIPID (red). Themean and rangeof
correlations are shown, corresponding roughly to accuracy and precision, across
n = 10 predictions of each individual lipid based on random subsamples of lipid
predictors. Facet labels indicate the percentage of the initial lipid species retained
in the predictor set when building models in AusDiab. 90, 75, 50 and 25% corre-
sponds to 265, 220, 147 and 74 predictor lipids, respectively. Only lipids measured

in both datasets were included in the analysis. AusDiab predictions were assessed
on a hold-out set (n = 1986 observations); LIPID predictions were assessed on all
baseline observations (n = 5991). b Scatter plots of the average accuracy of lipid
predictions in AusDiab and LIPID, across 10 random subsamples of lipid predictors
for each target lipid. Individual lipid species (blue) and composite lipids (red). The
line of an equivalent prediction accuracy for a lipid in AusDiab and LIPID is drawn,
as well as the departure of 0.3, in correlation. Source data are provided as a Source
Data file.
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In addition to the single best prediction for each lipid, we also
created 10 sets of stochastic predictions for each lipid (multiple
imputations). This has been done in an effort to emulate the classic
multiple imputation approach used for the imputation of data missing
completely at random, or at random11,12 and to compare validations of
lipid species imputed in these two different ways. The aim was to
confirm that no significant bias or underestimation of variability has
been introduced in the downstream estimation or prediction proce-
dures when using our single best prediction approach. Each of the
multiple predictions were created with their own noise - normal noise
with variance equal to the mean cross-validation error of the best-
fitting model for that lipid. In this way, more uncertainty in the pre-
dictionwas added to lipid specieswith less accuratemodels andhigher
cross-validation error.

To validate the predicted lipid species and compare themwith the
original lipid species in the LIPID study, we employed two types of
assessment: (a) univariate associations of each lipid species with inci-
dent cardiovascular events; and (b) comparative assessment of the
prediction accuracy for several anthropometric and clinical variables,
when various sets of the original, imputed and multiple imputed lipid
species were used as predictors. In the validations which included
multiple imputed lipids, we performed analysis (estimation or pre-
diction) with each of the 10 stochastic imputations separately, then
pooled the results (parameter estimates or measures of predictive
accuracy) according to the Rubin’s rules13,14.

Figure 7. shows univariate association of lipid species with the
cardiovascularmortality over six years of followup for the lipid species
originally measured in the LIPID trial and those imputed. Although
they represent non-overlapping lipid species, the measured and
imputed lipids reveal similar patterns of association with cardiovas-
cular mortality across lipid classes, where they overlap. As expected,
the pooled analysis of multiple imputed lipids showed similar point
estimates to those obtained in the single best prediction analysis and
similar but slightly smaller number of lipid species significantly asso-
ciated with cardiovascular mortality. To provide further validation of
our imputation approach, we performed the same association analysis
focusing on the imputations of measured lipid species in the LIPID
study (Fig. 8). In this setting, each individual measured lipid was con-
ceptually masked and predicted using the remaining measured lipids
as predictors. It was then possible to directly compare associations of
the same set of measured and imputed lipid species with cardiovas-
cular mortality and confirm their near-identity.

Next, we compared the ability of the measured and predicted
lipids, as well as their combination, to predict several common vari-
ables such as cholesterol, systolic bloodpressure (SBP), cardiovascular
death and nonfatal stroke in the LIPID dataset (Table 1). In addition to
lipids, each model also included age, sex and BMI in the predictor set.
The prediction accuracy was similar when the measured or imputed
lipid species were used to build prediction models, or when the
combination of these two sets was used, despite different number of
lipid species being used in these models. This indicated that no addi-
tional informationwas imposedontopredicted lipid species that could
bias their associationswith other, non-lipid variables.When comparing
the models based on singly best imputed and multiple imputed lipids
in terms of their average prediction accuracy and its standard error,
there were instances when either the former or the latter were more
similar to the models based on measured lipids. Therefore, no sys-
tematic bias or inflated confidence in the predictions was introduced
under the models using singly best imputed lipids.

Finally, we employed our imputation approach to impute lipid
species into another, ethnically distinct, target study the San Antonio
Family Heart Study (SAFHS)9,15. Unlike the AusDiab, our reference
study whose participants are predominantly of European origin, the
SAFHS comprises solely of Mexican Americans participants. The two
studies had 700 matching lipid species in common. This gave us an
opportunity to conceptually mask a set of lipid species in the SAFHS
similar to the set ofmissing lipid species in the LIPID trial, impute them
using the models based on the remaining matching lipid species and
objectively validate the accuracy of imputations by comparing
observed (unmasked) and predicted lipid concentrations. Like in our
earlier efforts,wefirst looked for anydiscrepancies between the sets of
matching lipids to be used as predictors in themodels and removed 12
discordant lipid species between AusDiab and SAFHS (Supplementary
Fig. 5). We then focused on imputation of masked lipid species in
SAFHS for which we could build sufficiently accurate predictive
models in the AusDiab reference (lipid species showing correlation
greater than 0.6 between their observed and predicted AusDiab con-
centrations). This gave us a set of 304 matching lipid species to build
elastic-net regressionmodels (α =0:1) in the AusDiab reference, and to
predict concentrations of 384masked lipid species, one at the time, in
both the AusDiab and SAFHS studies. The true accuracy of predictions
was assessed as the strength of correlation between observed and
predicted lipid concentrations. Figure 9 demonstrates that, despite
very different ethnic backgrounds, imputation models transferred
seamlessly from the AusDiab reference to the Mexican American
SAFHS cohort, achieving excellent accuracy of imputations for the
majority of lipid species and strong linear relationship between
imputation accuracies in the two studies.

Discussion
Our aim was to design a strategy for harmonising lipidomic datasets
produced using comparable lipidomic platforms that differ in their
degree of isomeric separation and number of lipid species measured.
This task is of a particular interest in association and prediction stu-
dies, when building inferential or predictive models and validating
them across studies with different levels of granularity in their lipid
measurements. Our approach of predicting (imputing) missing lipid
species into a data with fewer measured lipids or lower degree of
isomeric separation uses the regularised elastic-net regression and
relies on the stable correlation structure, within and between lipid
classes, across different lipidomic datasets.

To achieve the maximum possible isomeric separation in the
imputed lipid species, equivalent to that found in the reference data,
we looked for sets of lipid species in the reference data that best
represent a single lipid in the less resolved target data. By establishing
a mapping between these composite lipids (sum of two or more lipid
species) in the reference data and their counterparts in the target data,

Fig. 6 | Accuracy of predicting lipid species not measured in the LIPID study,
within AusDiab data. Histogram of correlations between observed and predicted
lipid species. Glmnetmodel for each lipidwas built using AusDiab data and included
age, sex, BMI, lipid-lowering treatment and 294 compatible lipid species measured
in both datasets as predictors. Predictions are assessed against 10 hold-out sets in a
10-fold cross-validation setting. Source data are provided as a Source Data file.
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we improved the quality of predictors in our models. In addition, we
were able to more accurately predict an expanded set of lipid species,
which now included species that formed composite lipids in the
reference data. In the case of the LIPID study, where we found 82
composite lipids corresponding to 176 lipid species in the AusDiab
study, this led to a high-confidence prediction of additional 94 lipid
species into the LIPID study. This approach requires careful annotation
and mapping of lipid species and composite lipids. It may not be
possible to map all lipids between datasets, however incorrect anno-
tations should be identified and removed as donewith discordant lipid
species in this study.

Our prediction approach relies on the stable correlation structure
within and between lipid classes, which is expected to be consistent
between the reference and target data. To ensure this was the case
within a subset of lipids common to both datasets (matching lipids)
and that they can be used as reliable predictors in our models, we
implemented a simple screeningmethod based on partial correlations
between matching lipids. Here, a measure of difference in the partial
correlations of a lipidwith other lipids between twodatasets is taken as
a measure of dissimilarity of the equivalent lipids between these two
datasets. Based on this, we designed a dynamic and visual method for
detecting and eliminating the most dissimilar lipid species, which
would otherwise negatively affect our predictive models. We found
that this approach performed better in identifying truly discordant
pairs of corresponding lipids in two datasets than the similar approach

based on Pearson correlations. It also performed better than the
approach focusing on the differences between multiple regression
parameters in two datasets (data not shown) – likely due to symmetry
and the scaled nature of the partial correlation coefficients.

Despite the considerable difference between the AusDiab, LIPID
and SAFHS studies in terms of age, sex distribution, LDL/HDL ratio,
ethnicity and cardiovascularhealth of theparticipants,we showedvery
similar lipid correlation structure between them and achieved similar
levels of predictive accuracy for most lipid species that the studies
have in common. Furthermore, we demonstrated robustness of our
imputation approach even in situations when participants were very
different in terms of their exposure to lipid-lowering medications.
Despite specific effects of such treatments on the lipidome, we
achieved very similar accuracy of lipid predictions in treated and non-
treated groups of patients, and in the same group of patients before
and after treatment. Thus, the correlation structure between and
within lipid classes alone was sufficient to capture and reflect a sig-
nificant heterogeneity of conditions affecting the lipidome between
the two studies. Similarly, we have been able to replicate the success of
our imputation approach into the ethnically distinct (Mexican Amer-
ican) SAFHS cohort. The importance of validating the accuracy of
imputations with this additional study was two-fold. First, because the
reference and SAFHS study had a large number of individually
matchingmeasured lipid species in common, it was possible tomask a
similar set of lipids in the SAFHSas thosemissing in the LIPID study and

Fig. 7 | Univariate association of measured and predicted missing lipid species
with cardiovascular death outcome. Logistic regression of cardiovascular mor-
tality at 6 years followup against individual lipid species—either those measured in
the LIPID trial at baseline, or themissing lipids imputed. Data are presented as odds
ratio point estimates (dots) and 95% confidence intervals (n = 5991 observations). P
values were based on the Wald test, two-sided, and adjusted for multiple com-
parisons using Benjamini–Hochberg correction. Estimates for themultiple imputed
lipids were derived by pooling 10 such logistic regression estimates according to
Rubin’s rules. AC acylcarnitine, CE cholesteryl ester, Cer ceramide, COH choles-
terol, DEdehydrocholesterol, dhCer dihydroceramide, DGdiacylglycerol, GM1GM1

ganglioside, GM3 GM3 ganglioside, HexCer monohexosylceramide, Hex2Cer
dihexosylceramide, Hex3Cer trihexosylceramide, LPC lysophosphatidylcholine,
LPC(O) lysoalkylphosphatidylcholine, LPC(P) lysoalkenylphosphatidylcholine, LPE
lysophosphatidylethanolamine, LPE(P) lysoalkenylphosphatidylethanolamine, LPI
lysophosphatidylinositol, PC phosphatidylcholine, PC(O) alkylphosphatidylcho-
line, PC(P) alkenylphosphatidylcholine, PE phosphatidylethanolamine, PE(O)
alkylphosphatidylethanolamine, PE(P) alkenylphosphatidylethanolamine, PG
phosphatidylglycerol, PI phosphatidylinositol, PS phosphatidylserine, SHexCer
sulfatide, S1P sphingosine 1 phosphate, SM sphingomyelin, TG triacylglycerol,
TG(O) alkyl-diacylglycerol. Source data are provided as a Source Data file.
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perform the ultimate assessment of the accuracy of their imputations--
comparison between measured and imputed concentrations. Second,
it was possible to demonstrate transferability of such imputation
methods between different ethnic groups. However, it is important to
note that while some difference in the distribution of lipidomic pre-
dictors is tolerable, caution must be applied with the imputation of
lipid species in situationswhereonly one studyharbours a conditionor
treatment that affects the lipidome in a way that disrupts the corre-
lation structure. In such cases, it is important to remove anydiscordant
lipid species and ensure the lipids correlation structure is comparable
between the studies, as we have done in this study.

When assessing the predictive performance of our final models
using cross-validation within the reference dataset (the AusDiab
cohort), there were only 26 lipids which could not be predicted with
the sufficient accuracy (correlation between the observed and pre-
dicted values greater than 0.6). Consequently, these lipid species were
not predicted into the target dataset (the LIPID study). Some of the
hard-to-predict lipid species came from lipid classes (Sph, S1P, SHex-
Cer, Cer and DE) that were either absent or sparsely represented in the
predictor set common to both the AusDiab and LIPID, which might
explain the difficulty of predicting them accurately.

We provided an extensive validation of imputed lipid species by
assessing their associations with a clinical outcome variable, cardio-
vascular mortality over 6 years of followup. It is difficult to compare
the association of imputed andmeasured species with any outcome at
the individual lipid level, as they are non-overlapping sets. However,

we were able to confirm that the measured and imputed lipids exhibit
the same direction of association with cardiovascular mortality within
lipid classes (when they belong to the same class). In addition, we
performed the same type of validation after conceptuallymasking and
imputing the measured lipid species, one at the time. In this case, the
associations between cardiovascular mortality and either imputed
measured or truly measured lipids species were nearly indistinguish-
able. Furthermore, the associations of truly measured lipid species
with cardiovascular mortality were more similar to those of singly
imputed measured than to multiple imputed measured lipid species.
This indicated that no concerning level of bias was introduced into
estimates and no concerning underestimation of variability of esti-
mates was introduced with our single best imputation approach.
Indeed, we have been using large datasets and hundreds of lipid vari-
ables in our prediction models, giving us ability to create very realistic
imputations.

Furthermore, we used a combination ofmeasured and imputedor
multiple imputed lipids to predict several numerical or categorical
variables in the LIPID study and to compare the accuracy and precision
of the predictions with those based solely on measured or imputed
lipid species. The important outcome of such analysis was to verify
that no significant departure in either accuracy or precision of pre-
dictions was noted when those different subsets of lipid variable were
used. This confirmed that no additional informationwas imposed onto
predicted lipid species that could bias their associations with other,
non-lipid variables. Further research is needed to validate the use of

Fig. 8 | Univariate association of truly measured lipid species and their pre-
dicted concentrations with cardiovascular death outcome. Logistic regression
of cardiovascular mortality at 6 years followup against individual lipid species—
either thosemeasured in the LIPID trial at baseline, or the same lipids imputed.Data
are presented as odds ratio point estimates (dots) and 95% confidence intervals
(n = 5991 observations). P values were based on the Wald test, two-sided, and
adjusted for multiple comparisons using Benjamini–Hochberg correction. Esti-
mates for the multiple imputed lipids were derived by pooling 10 such logistic
regression estimates according to Rubin’s rules. CE cholesteryl ester, Cer ceramide,

COH cholesterol, dhCer dihydroceramide, DG diacylglycerol, GM3 GM3 ganglio-
side, HexCer monohexosylceramide, Hex2Cer dihexosylceramide, Hex3Cer tri-
hexosylceramide, LPC lysophosphatidylcholine, LPC(O)
lysoalkylphosphatidylcholine, LPE lysophosphatidylethanolamine, LPI lysopho-
sphatidylinositol, PC phosphatidylcholine, PC(O) alkylphosphatidylcholine, PC(P)
alkenylphosphatidylcholine, PE phosphatidylethanolamine, PE(O) alkylpho-
sphatidylethanolamine, PE(P) alkenylphosphatidylethanolamine, PG phosphati-
dylglycerol, PI phosphatidylinositol, PS phosphatidylserine, SM sphingomyelin, TG
triacylglycerol. Source data are provided as a Source Data file.
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imputed lipid species in clinical risk prediction for the purpose of
improved risk stratification.

These results clearly demonstrate the power of this approach to
impute lipid species across datasets and so facilitate data sharing and
integration. It is worthnoting thatplasma lipidsmaywell be abest-case
scenario because of the very strong correlation structure that existed
both within and between lipid classes/subclasses. This is driven to a
large extent by the interaction of the fatty acid metabolic pathways
(lipogenesis, n3 and n6 fatty acid metabolism) and complex lipid
pathways (phospholipid, sphingolipid, sterol and glycerolipid)
whereby the fatty acid products from the synthesis pathways are
incorporated as substrates into the complex lipid pathways creating
these strong correlations both within and across lipid classes/sub-
classes that support thepredictivemodels.Where such correlations do
not exist, we see poorer performance of the models and so for
many metabolites that do not share these common pathways we
expect this approach to have limited utility. While the limitations of
this imputation approach appear to be dependent on appropriate
representation of the lipid classes of interest and a stable correlation
structure across datasets, the ability to impute across lipidomic plat-
forms of different modalities (i.e. reverse phase vs. HILIC vs. direct
infusion) has yet to be formally tested and will require further analysis
and validation.

Despite our success in accurately imputing lipid species across
cohorts with different exposure to lipid-modifying treatments or dif-
ferent ethnicity, we would like to reiterate the notion that the best and
most sensible imputation results are achieved when the reference and
target studies are not very different with regards to relevant lipidome
predictors. Importantly, all imputed lipids should be clearly reported/
labelled as such (ideally with the estimated imputation accuracy) and a
clear explanation of the imputation methodology.

In summary, we established a robust workflow for harmonising
lipidomic datasets with different numbers of lipids species and dif-
ferent degrees of isomeric separation. This approach provides the
opportunity to integrate plasma lipidomic datasets containing differ-
ent lipidmeasures, acquired on similar platforms over the past decade
or more. Such datasets can now be used to increase power for asso-
ciation analyses, which will be particularly important for GWAS where
large datasets are required. The approach will also provide the
opportunity for validation of predictive models across datasets even
when some features of the models are absent from one dataset. As we
move closer to clinical applications of lipidomic-based risk scores, our
ability to integrate such population and clinical datasets will be a great
advantage.

Methods
This study used samples stored in the AusDiab and LIPID biobanks,
whichwas approved by the Alfred HumanResearch Ethics Committee,
AlfredHealth, Melbourne, Australia (project approval numbers,

Fig. 9 | Validation of lipid imputations in SAFHS—a Mexican American cohort,
very different from the predominantly European descent AusDiab reference.
Scatter plots comparing the accuracy of lipid predictions in AusDiab and SAFHS.
Each dot represents prediction accuracy for a particular lipid species, assessed as
the correlation between predicted and measured (conceptually masked) lipid
concentrations within a given study. Models were built using the AusDiab data to
predict a similar set of lipids as those missing in the LIPID study for which accurate
prediction models could be built in the reference AusDiab study (correlation
between observed and predicted AusDiab concentrations above 0.6). AusDiab
predictionswereassessedonahold-out set; SAFHSpredictionswere assessedonall
observations. The line of an equivalent prediction accuracy in AusDiab and SAFHS
is shown; Thin linesmark the departure of 0.2, in correlation, from the equivalency
line. PC phosphatidylcholine, LPC lysophosphatidylcholine, NL neutral loss, sn
stereospecific numbered (configuration of glycerol derivatives), TG triacylglycerol.
Source data are provided as a Source Data file.

Table 1 | Comparative ability ofmeasured andpredicted lipids
alone or together to predict commonly reported numerical
and categorical variables

Target variable Data set Accuracya 95% CI SE

Systolic blood
pressure

Measured 0.28 0.256–0.303 0.0128

Imputed only 0.284 0.268–0.299 0.0085

Measured + imputed 0.285 0.257–0.312 0.0154

Multiple impu-
ted onlyb

0.277 0.255–0.298 0.0117

Measured +multiple
imputedb

0.277 0.26–0.294 0.0092

Cholesterol Measured 0.826 0.818–0.833 0.0123

Imputed only 0.822 0.811–0.834 0.018

Measured + imputed 0.825 0.812–0.837 0.0204

Multiple impu-
ted onlyb

0.775 0.764–0.785 0.0132

Measured +multiple
imputedb

0.818 0.806–0.83 0.0186

Cardiovascular
death

Measured 0.723 0.705–0.74 0.0088

Imputed only 0.72 0.7–0.74 0.0102

Measured + imputed 0.724 0.709–0.74 0.008

Multiple impu-
ted onlyb

0.7 0.681–0.719 0.0096

Measured +multiple
imputedb

0.71 0.691–0.73 0.0098

Stroke Measured 0.529 0.503–0.554 0.013

Imputed only 0.536 0.515–0.557 0.0108

Measured + imputed 0.543 0.51–0.576 0.0169

Multiple impu-
ted onlyb

0.542 0.479–0.605 0.0321

Measured +multiple
imputedb

0.527 0.476–0.579 0.0262

Source data are provided as a Source Data file.
aPrediction accuracywas assessedas thecorrelationbetweenobservedandpredicted values for
the numerical variables (SBP and Cholesterol) and as the area under receiver operating curve
(AUROC) for the categorical variables (Cardiovascular death and Stroke).
bAssessments based on multiple imputed data represent the average measure of prediction
accuracy in which prediction accuracies from 10 stochastically imputed datasets were pooled
using Rubin’s rules commonly used in multiple imputation approaches.
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AusDiab: 41/18, LIPID: 85/11 and 376/22). Studies were conducted in
accordance with the ethical principles of the Declaration of Helsinki.
No participant compensation was provided. Further validation was
performed on the San Antonio Family Heart Study (SAFHS), which was
reviewed and approved by the Institutional Review Board at the Uni-
versity of Texas Rio Grande Valley (IRB-18-0245, IRB-18-0255 and IRB-
18-0406). The participants provided their written informed consent to
participate in this study.

Study populations
The AusDiab study started as a population-based cross-sectional sur-
vey of diabetes mellitus prevalence and associated conditions in the
Australian adult population. This provided the baseline for a pro-
spective cohort study aimed at identifying risk factors for diabetes
mellitus and cardiovascular disease. The baseline survey was con-
ducted between 1999 and 2000, with 11,247 participants aged 25 years
and over drawn from 42 randomly selected urban and rural areas
representing 7 states/territories of Australia, using a stratified cluster
sampling method. A detailed description of the study population,
sampling methods and response rates can be found elsewhere6. The
measurement of anthropometric traits, behavioural risk factors and
fasting serum clinical lipids was also reported16. Previously, we per-
formed a comprehensive plasma lipidomic analysis on a total of 10,339
AusDiab study participants3, as described below.

The LIPID study is a double-blind randomised clinical trial
designed to assess the effectiveness of pravastatin in reducing cor-
onary mortality in individuals with a history of cardiovascular disease
(myocardial infarction or hospital admission for unstable angina pec-
toris). 9,014 patients between 31 and 75 years of age, who had total
plasma cholesterol levels between 4 and 7mmol/L and fasting trigly-
cerides less than 5mmol/L, were randomised to pravastatin (40mg
daily) or placebo. The detailed description of the trial, which recruited
patients between 1990 and 1992 and had the median follow-up period
of 6 years, can be found elsewhere7,8. Plasma samples and clinical lipid
measurements were collected at baseline and the one-year followup.
We performed a detailed plasma lipidomic analysis on 5991 partici-
pants for whom baseline and/or one-year fasting plasma samples were
available17,18, as described below.

The San Antonio Family Heart Study (SAFHS) is a prospective
cohort study aimed at identifying genetic and environmental con-
tributions to cardiovascular risk factors in Mexican Americans. The
SAFHS enroled large, extended Mexican Americans families resid-
ing in San Antonio, TX, by way of the randomly selecting adult
Mexican American probands, without regard to disease. The
enrolment procedures, inclusion and exclusion criteria, and phe-
notypic assessments of the study participants have been previously
described9,19. This is an ongoing investigation with several phases of
data collection on 2595 individuals (qualifying first-, second- and
third-degree relatives of the proband and proband’s spouse as well
as spouses of these relatives). We performed a comprehensive
plasma lipidomic analysis on all SAFHS participants for whom
fasting plasma samples were available at any data collection phase15,
as described below.

Lipid extraction and liquid chromatography-mass spectrometry
Lipid extraction. The lipid extractions for the AusDiab, LIPID and
SAFHS studies was carried out using a single-phase butanol/methanol
method20. In brief, 10μL of plasma was mixed with 100μL of butanol/
methanol (1:1) with 5mM ammonium formate. A standard mix con-
taining internal standards (AusDiab: Supplementary Data 3, LIPID:
SupplementaryData 4)was included in the extraction solvent. Samples
were vortexed thoroughly, followed by sonication for 60min at room
temperature. Each sample was subsequently centrifuged (16,000× g,
10min at room temperature) and the supernatant containing the lipid
extract was collected and transferred into Teflon glass vials with 0.2ml

glass inserts. The extracts were stored at −80 °C until analysed by
liquid chromatography tandem mass spectrometry (LC-MS/MS).

AusDiab lipidomics. Lipid analysis for the AusDiab study was per-
formed by liquid chromatography electrospray ionisation tandem
mass spectrometry LC-ESI-MS/MS using an Agilent 6490 triple quad-
ruple mass spectrometer (QQQ) with an Agilent 1290 series HPLC
system and a ZORBAX eclipse plus C18 column (2.1 × 100mm× 1.8μm,
Agilent). Mass spectrometry analysis was performed in a positive ion
modewith dynamic scheduledmultiple reactionmonitoring (MRM) as
detailed in the Supplementary Data 3. Chromatographic separation
was carried out using a solvent system comprising of water: acetoni-
trile: isopropanol (Solvent A, 50:30:20%, solvent B, 1:9:90% both with
10mM ammonium formate) using a dual column setup. The column
temperature was set to 45 °C with a flow rate of 0.4mL/min.

Chromatographic conditions were as follows: starting at 15% sol-
vent B and increasing to 50% B over 2.5min, then quickly ramping to
57%B for 0.1min. For 6.4min, %Bwas increased to 70%, then increased
to 93% over 0.1min and increased to 96% over 1.9min. The gradient
was quickly ramped up to 100% B for 0.1min and held at 100% B for a
further 0.9min. This was a total run time of 12min. The column was
then brought back down to 15% B for 0.2min and held for another
0.7min prior to switching to the alternate column for running the next
sample. The column that was being equilibrated was run as follows:
0.9min of 15% B, 0.1min increase to 100% B and held for 5min,
decreasing back to 15%B over 0.1min and held until it was switched for
the next sample.

A 1μL injection was used for each sample and the following mass
spectrometer conditions were used: gas temperature, 150 °C; gas flow
rate, 17 L/min; nebuliser, 20 psi; sheath gas temperature, 200 °C;
capillary voltage, 3500V and sheath gas flow, 10 L/min. Given the large
sample size (n = 10,339), samples were run across several batches.

LIPID lipidomics. Lipid analysis for the LIPID study17 was performed
under similar conditions with the following differences: A shorter
column was utilised (ZORBAX eclipse plus C18 column (2.1 × 50mm×
1.8μm)) with solvents A and B comprising of tetrahydrofuran:
methanol: water in the ratio (20:20:60) and (75:20:5) respectively, both
containing 10mM ammonium formate. Column was heated to 40 °C
and the auto-sampler regulated to 25 °C. Lipid species were separated
under gradient conditions at a flow rate of 0.4mL/min. The gradient
was as follows: 0% solvent B to 40% solvent B over 2.0min, 40% solvent
B to 100% solvent B over 6.5min, 0.5min at 100% solvent B, a return to
0% solvent B over 0.5min then0.5min at0% solvent B prior to the next
injection (total run time of 10min per sample). Mass spectrometer
source conditions were the same as the AusDiab lipidomic analysis.
Given the large sample size (n = 5991 at baseline, n = 5782 at one-year
followup), samples were run across several batches.

Supplementary Data 1 and 2 summarise all lipid species measured
in the LIPID and AusDiab studies, respectively, as well as theirmapping
to the lipid species of the other study.

SAFHS lipidomics. Lipid analysis for the SAFHS study15 was performed
under a similar set of conditions to the AusDiab study, adjusted for a
single-column setup. A ZORBAX eclipse plus C18 columns
(2.1 × 100 × 1.8μm, Agilent) was used heated to 45 °C. Mass spectro-
metry analysis was performed in both positive and negative ion mode
with dynamic scheduled multiple reaction monitoring mode. The
running solvent consisted of solvent A, 50% water: 30% acetonitrile:
20% isopropanol, containing 10mM ammonium formate and 5μM
medronic acid, and solvent B, 1% water: 9% acetonitrile: 90% iso-
propanol, and containing 10mM ammonium formate. The solvent
conditions were: Starting at 15% solvent B, increased to 50% over
2.5min, then to 57%over 0.1min, then for the next 7.4min increased to
70% B, 93% B over 0.1min, 96% B over 1.9min, then to 100% over
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another 0.1minandheld at 100%B for 0.9min for a total of 12min. The
solvent gradientwas then switchedback to 15%Bover0.2min andheld
at 15% B for 3.8min for a total run time of 16min a sample.

The following mass spectrometer conditions were used: gas
temperature 150 °C, gas flow rate 17 L/min, nebuliser 20 psi, sheath gas
temperature 200 °C, sheath gas flow 10 L/min, capillary voltage and
nozzle voltage of 3,500/1000V (positive) and 3000V/1500V (nega-
tive). Isolation widths for Q1 and Q3 were set to unit resolution in both
positive and negative mode (0.7 amu). Given the large sample size
(n = 5590 samples derived from 2595 individuals), samples were run
across several batches.

Lipidomic data pre-processing. To ensure the robustness of the lipid
measures, we employed state-of-the-art lipidomic profiling techni-
ques that are designed to capture a wide range of lipid species,
including those with lower abundances. Integration of the chroma-
tograms for the corresponding lipid species was performed using
AgilentMassHunter, version 8.0 for the LIPID, and version 9.0 for the
AusDiab and SAFHS studies. The relative concentration of lipid spe-
cies was determined by comparing the peak areas of each lipid in
each samplewith the relevant internal standard. Theup-to-date list of
transitions and standards are available on https://metabolomics.
baker.edu.au/. A median centring approach was carried out to cor-
rect for batch effect i.e. to remove technical batch variation using
PQC samples21. Briefly, the lipidomic data for each species in each
batch was aligned to the median value of that species for all the PQC
samples that were included in each run. PQC samples consisting of a
pooled plasma samples taken from healthy individuals and extracted
alongside the study samples were incorporated into the analysis at 1
PQC per 20 study plasma samples. Technical quality control (TQC)
samples were included in the runs every 20 samples to allow for the
assessment of technical variation arising from the mass spectro-
meter. These were pooled samples that were extracted indepen-
dently from the study samples and frozen in individual vials. The
PQCs enable monitoring of the extraction and mass spectrometry
run, while TQCs enable isolation of any issues to the mass spectro-
meter and were not used for any statistical analysis reported here.
NIST 1950 reference plasma samples (Gaithersburg, MD, USA) were
included for every 20 samples in the AusDiab and SAFHS studies (but
not in the LIPID study) to facilitate future alignment with other
studies.

Predictive models and statistical analysis
All predictivemodelling and analyses were performed using R (version
4.2.1)22. Elastic-netmodels were implemented in the glmnetpackage23.
In all analyses, lipid concentrations were log-transformed, mean
centred and scaled by the standard deviation. To predict missing lipid
species in the LIPID study, we built models for each individual lipid by
tuning the λ and exploring a limited range of the α parameter (0, 0.1,
0.25, 0.5, 0.75) using a cross-validation framework within the AusDiab
study. For the final prediction into the LIPID trial, we used the model
with the α parameter value that achieved the best cross-validation
predictive performance for that lipid and the largest λ parameter value
within one standard error of the minimum prediction error (lamb-
da.1se). All other evaluative models were built by tuning only the λ
parameter while keeping α parameter constant at 0.1 and predicting
outcomes with the λ parameter values corresponding to theminimum
cross-validation prediction error (lambda.min). For the evaluation of
predictive performance of models, we used Pearson correlation
between observed and predicted values for the numerical outcome
variables and the area under receiver operating curve (AUROC, C-
index) for the dichotomous outcome variables. The evaluations were
based on the 10-fold cross-validation approach: each fold of data was
predicted once, so that overall measure of predictive performancewas
based on predictions for all observations.

We performed two types of validation comparing the imputed
lipid species against those originally measured in the target dataset.
The estimation of univariate association between lipid species and
cardiovascularmortality was performedwith themeasured, imputed
andmultiple imputed lipids using logistic regression. In addition, the
evaluation of prediction accuracy for the selected variables was
performed with the indicated combinations of measured, imputed
and multiple imputed lipids using the elastic-net cross-validation. In
validation analyses that included multiple imputed lipid species,
either parameter estimation or evaluation of prediction accuracywas
performed separately on each dataset, and subsequently pooled
according to Rubin’s rules13,14. The quality of the pooled estimates
and the confidence intervals can be improved when pooling is per-
formed in a scale for which the distribution is close to normal. Thus,
we pooled parameter estimates from the logistic regression models
on their original scale, before expressing the result in terms of odds
ratios. Correlation coefficients were transformed using Fisher z
transformation14 and the result back-transformed using the following
formulas

zi =
1
2
ln

1 + ri
1� ri

� �
; �r =

e2�z � 1
e2�z + 1

ð1Þ

AUROC/C-index were pooled on their original scale. The final
point estimates andmeasures of prediction accuracy were the average
of multiple estimates. The standard errors were computed using both
the within and between imputation variance of the estimates. The
within imputation variance was simply average variance ofm separate
estimates p̂i,i= 1,:::,m

vW =
1
m

Xm
i = 1

cSE2

i ð2Þ

where SEi was either the standard error of parameter estimate for an
imputed dataset i or, in the case of the elastic-net predictive
performance measure, derived from cross-validations within an
imputed dataset i. Between imputation variance was the variance of
the estimates across m imputed datasets

vB =
1

m� 1

Xm
i = 1

p̂i � �p
� �2 ð3Þ

The total standard error of the estimate was then calculated as

SE�p =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vW + vB 1 +

1
m

� �s
ð4Þ

P values were adjusted for multiple comparisons (342 for mea-
sured and 413 for imputed lipid species) using the
Benjamini–Hochberg correction24.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Because of the participant consent obtained as part of the recruit-
ment process for the AusDiab and LIPID studies, it is not possible to
make data publicly available (including the individual deidentified
data). Individual-level AusDiab data are available for analyses that
do not conflict with ongoing studies, through application to the
study lead Professor Jonathan Shaw and the AusDiab Study Com-
mittee (Email: Jonathan.Shaw@baker.edu.au). The timeframe for
response to such requests is within two months. Individual-level
LIPID data are available for analyses that do not conflict with
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ongoing studies, through application to the study lead Professor
John Simes and the LIPID Study Investigators (Email: John.Si-
mes@sydney.edu.au). The timeframe for response to such requests
is within twomonths. The SAFHS anthropometric and genomic data
are publicly available through dbGaP (accession numbers:
phs001215.v4.p2, phs000847.v2.p1, phs000462.v2.p1), whereas
lipidomic data are available from J.E.C., (Email: joanne.curra-
n@utrgv.edu) via a material transfer agreement for work consistent
with the informed consent. The summary statistics for the AusDiab
and LIPID studies are provided in the Supplementary files. Data
generated in this study are provided in the Source Data file. Source
data are provided with this paper.

Code availability
Source code for this project is available on the GitHub repository
(https://github.com/BakerMetabolomics/LIPID_imputation).
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