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Metal-free photocatalytic cross-electrophile
coupling enables C1 homologation and
alkylation of carboxylic acids with aldehydes

Stefano Bonciolini1,7, Antonio Pulcinella1,7, Matteo Leone 1,2, Debora Schiroli1,3,
Adrián Luguera Ruiz 1,4, Andrea Sorato 1, Maryne A. J. Dubois5,
Ranganath Gopalakrishnan 5, Geraldine Masson 2, Nicola Della Ca’ 3,
Stefano Protti 4, Maurizio Fagnoni 4, Eli Zysman-Colman 6,
Magnus Johansson 5 & Timothy Noël 1

In contemporary drug discovery, enhancing the sp3-hybridized character of
molecular structures is paramount, necessitating innovative synthetic meth-
ods. Herein, we introduce a deoxygenative cross-electrophile coupling tech-
nique that pairs easily accessible carboxylic acid-derived redox-active esters
with aldehyde sulfonyl hydrazones, employing Eosin Y as an organophotoca-
talyst under visible light irradiation. This approach serves as a versatile, metal-
freeC(sp3)−C(sp3) cross-couplingplatform.Wedemonstrate its synthetic value
as a safer, broadly applicable C1 homologation of carboxylic acids, offering an
alternative to the traditional Arndt-Eistert reaction. Additionally, our method
provides direct access to cyclic and acyclic β-arylethylamines using diverse
aldehyde-derived sulfonyl hydrazones. Notably, themethodology proves to be
compatible with the late-stage functionalization of peptides on solid-phase,
streamlining the modification of intricate peptides without the need for
exhaustive de-novo synthesis.

In drug discovery, the 3D structureof proteins is crucial for the success
of drugs. The increased use of sp3-hybridized carbon atoms (Fsp3) is
key, as it correlates with a drug’s effectiveness and safety1. This trend,
known as ‘Escape from Flatland’2, involves increasing Fsp3 in drugs for
better alignment with protein structures, enhancing selectivity and
efficacy3. This strategy improves target interaction and reduces side
effects, balancing effective treatment with minimal negative effects.

Historically, classical cross-coupling reactions have been a linch-
pin in synthetic chemistry, enabling the straightforward construction
of C(sp2)–C(sp2) bonds and thereby propelling the production of

planar, biaryl structures. This entrenched reliance on cross-coupling
has inadvertently sculpted a discernible bias in small molecule drug
design, steering the generation of libraries that predominantly feature
structurally analogous, two-dimensional compounds4. While there
have been laudable strides made within the domain of C(sp3)−C(sp3)
cross-coupling, contemporary methodologies are oftentimes plagued
by several pragmatic limitations5,6. They typically necessitate sizable
excesses of one coupling partner and frequently hinge upon non-
abundant starting materials, such as air- and moisture-sensitive alkyl
organometallics, thereby constraining the reaction scope and
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practicality in a drug discovery context. Consequently, the quest for
alternative strategies that circumvent these limitations while facilitat-
ing the construction of three-dimensional molecular structures per-
sists as an imperative in medicinal chemistry research7.

In recent years, nickel-mediated cross-electrophile (XEC) coupling
has emerged as a potent strategy for constructing C(sp3)−C(sp3)
bonds, utilizing various native and bench-stable aliphatic coupling
entities, thus circumventing the use of moisture-sensitive organome-
tallic species8–16. Despite substantial strides within this sphere,
exploiting varied, ubiquitous functional groups such as aldehydes as
coupling partners has lingered in a state of underdevelopment. Tra-
ditionally, aldehydes have been harnessed as carbonyl electrophiles
with Mg or Li-based organometallic species or within Nozaki−Hiyama
−Kishi (NHK) type reactivity to yield alcohols17,18, yet their employment
to forge C(sp3)−C(sp3) bonds via a reductive deoxygenative pathway
remains, to our knowledge, uncharted. A pioneering approach, that
enables the direct coupling of sp2 and sp3 electrophiles, such as alde-
hydes and carboxylic acids, heralds an attractive disconnection in the
cross-electrophile coupling domain (Fig. 1A). Aryl sulfonyl hydrazones
are considered as a bench-stable, activated form of aldehydes due to
their known propensity to undergo both radical and polar addition,

ultimately yielding deoxygenated, cross-coupled products upon
thermal decomposition of alkylated hydrazide intermediates
(Fig. 1B)19–28. Utilizing abundant aliphatic carboxylic acids activated as
NHPI-based redox-active esters (RAEs) to serve as sp3 electrophiles,
and employing visible light-mediated decarboxylation to yield carbon-
centered radicals29–32, we envisioned a trapping mechanism with
aldehyde sulfonyl hydrazones to, upon sulfinate and dinitrogen
extrusion, afford the coveted product (Fig. 1C). In this study, we realize
such a metal-free cross-electrophile coupling, leveraging Eosin Y as an
economical organophotocatalyst under visible light irradiation33.

Illustrating the potential of our synthetic strategy becomes par-
ticularly appealing when reflecting upon the strategic C1 homologa-
tion of carboxylic acids, traditionally achieved through the Arndt-
Eistert reaction34–37. Although this protocol, developed in the 1950s,
bears chemical reliability, significant limitations persist, particularly
those pertaining to the generation, purification, and utilizationof toxic
and explosive diazomethane, hindering its widespread adoption and
applicability. While flow technology has provided a partial answer to
these safety challenges38, a truly general and practical alternative for
such transformation has been elusive39. Indeed, polar variants such as
the Kowalsky Ester homologation suffer from the use of organolithium
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bases, strongly limiting the substrate scope of the transformation and
its scalability40,41. For seminal radical variants, Barton proposed a
photoinduced C1 homologation of N-hydroxy-2-thiopyridone esters,
although this strategy suffered from low functional group compat-
ibility, a narrow scope, and requisite lengthy synthetic sequences42,43.
In this context, we present the utilization of ethyl glyoxalate-derived
sulfonyl hydrazone 2a as a bench-stable and easy-to-handle crystalline
radical acceptor to realize the C1 homologation of carboxylic acids
undermild conditions (Fig. 1D). As a subsequent, potent application of
this synthetic paradigm, our attentionwas drawn by the synthesis ofβ-
arylethylamines, a prevalent structural motif within numerous drugs
and natural products44. Although various synthetic routes have been
delineated, an intuitive retrosynthetic strategy entailing a cross-
coupling reaction between a benzyl electrophile and α-amino
nucleophile has remained underrepresented44–46. We posit that the
advanced cross-electrophile coupling between NHPI esters and alde-
hyde sulfonyl hydrazones will provide a straightforward and direct
route for the efficient preparation of substituted cyclic and acyclic
β-arylethylamines (Fig. 1E). Concluding with a third robust synthetic
application of this strategy, themethodology demonstrates significant
utility in the late-stage functionalization (LSF) of peptides on solid-
phase, enabling the modification of complex peptides under mild
conditions and obviating the need for tedious de-novo synthesis
(Fig. 1F)47–49.

Results
Reaction optimization
We initially commenced to develop a direct decarboxylative C1
homologation, beginning withN-Boc (L)-Proline, but weweremet with

failure to produce the desired product 3 (see Supplementary Infor-
mation, Section 5.1). This result was linked to the noted sensitivity of
aldehyde sulfonyl hydrazones to bases, which are indispensable to
promote the decarboxylation process21,50. Consequently, our investi-
gation focused on the use of well-established N-(acyloxy)phthalimides
(NHPI-based esters) as redox-active esters (RAEs) in an effort to side-
step the necessity for bases during the decarboxylative generation of
nucleophilic carbon radicals. An exhaustive screening of all reaction
parameters (see Supplementary Information, Section 5.2) led us to
discover that the targeted homologated product 3 could be obtained
in excellent yields (Table 1, Entry 1, 90% yield)when a dichloromethane
(0.1M) solution composed of ethyl glyoxalate-derived 4-
trifluoromethyl-phenyl sulfonyl hydrazone 2a (1.0 equiv.) as the radi-
cal acceptor, N-Boc (L)-Proline RAE 1a (1.0 equiv.) as the radical pre-
cursor, Hantzsch ester (HE, 1.5 equiv.) as the reductive quencher, and
disodium Eosin Y (EYNa2, 10mol%) as the photocatalyst was irradiated
with blue LEDs (40W Kessil, 456 nm, PR160L) for 12 h. The yield
reflects the one obtained for the final product 3, achieved when the
hydrazinyl intermediate was swiftly subjected to cleavage conditions
in ethanol, according to our previous report27. Evaluating a two-step
one-pot procedure, with trifluorotoluene as the solvent, revealed
diminished yields of 3 (Table 1, Entry 2). Surprisingly, an excess of
radical acceptor 2a did not markedly influence the reactivity (Table 1,
Entry 3). Noteworthy is the underperformance of more expensive
organophotoredox catalysts like 4CzIPN, 3DPA2FBN or the widely-
used transition-metal based photocatalyst Ru(bpy)3PF6 (Table 1,
Entries 4–6)51,52. HE played a major role in the transformation, as other
reductive quenchers, such as DABCO, DIPEA, or tetramethylguanidine
entirely inhibited the reaction (see Supplementary Table 5).

Table 1 | Optimization of the photochemical step for the C1 homologation of RAE 1a

Entry Deviation Yield of 3a

1 None 90%

2 Trifluorotoluene as solvent 60%

3 2 equiv. 2a 81%

4 4CzIPN 5mol% as PC 61%

5 3DPA2FBN 5mol% as PC 53%

6 [Ru(bpy)3](PF6)2 1mol% as PC 66%

7 No EYNa2 n.d.

8 No EYNa2, 390 nm 40%

9 Dark n.d.
aYields were determined by 1H NMR using trichloroethylene as external standard (0.2mmol scale, 0.1M). See Supplementary Information for experimental details.
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Remarkably, incorporating acidic additives, such as HFIP, TFA, and
various amino acids, did not substantially impact the reactivity (see
Supplementary Tables 3 and 8). Control experiments conducted to
explore the formation of donor-acceptor complexes between RAE 1a
andHE,performed at456and390nmwithout EYNa2, either yieldedno
product or achieved lower yields (Table 1, Entries 7–8), underscoring
the crucial role of the photocatalyst in photoinitiating the reaction,
thus securing higher yields53,54. Running the reaction in the dark
resulted in the quantitative recovery of all starting materials (Table 1,
Entry 9). Notably, applying the optimized conditions to the less elec-
trophilic 4-CF3-benzaldehyde-derived sulfonyl hydrazone 2c as the
radical acceptor yielded the corresponding β-arylethylamine product
46 in a 58%NMRyield. Additional screening of reactionparameters did
not produce any enhancements in yield (see Supplementary Informa-
tion, Section 5.3).

C1 homologation substrate scope
Having established optimal reaction conditions, we next investigated
the scope of the photochemical C1 homologation of RAEs derived
from readily available carboxylic acids (Fig. 2). As expected, N-Boc
protected cyclic amino acids afforded the desired products (3–5) in
good yields. Moreover, linear proteogenic amino acids underwent
homologation to the respective ethyl esters (6–13) under the stan-
dardized reaction conditions. Noteworthy is the performance of
challenging substrates, such as the redox-sensitive methionine and
thiophene-derived amino acid, which, despite providing the target

compounds (8 and 10), did so in somewhat attenuated yields. The
protocol’s generality was highlighted through the homologation of
sterically hindered cyclic tertiary amino acids, producing the target
products in synthetically useful yields (14–16). A subsequent exam-
ination of various inactivated primary, secondary, and tertiary RAEs
revealed that all coupled with glyoxalate-derived sulfonyl hydrazones
2a, presenting moderate to good yields (17–22). In a particularly
notable development, two dipeptides underwent photochemical
homologation, yielding the targeted homoproline-analogues
(23–24)55. Importantly, the mild conditions of this photocatalytic C1
homologation protocol facilitated the conversion of natural products
like biotin and enoxolone—each harboring different sensitive func-
tional groups—to their corresponding ethyl esters (25–26), not
accessible by the aforementioned methods.

Alkylation substrate scope
We next aimed to explore further the generality of our developed
reaction conditions, applying them to the cross-electrophile cou-
pling of RAEs, derived from a diverse set of carboxylic acids, with
various aldehyde-derived sulfonyl hydrazones (Fig. 3).We envisioned
providing streamlined access to cyclic and acyclic β-arylethylamines,
thereby presenting a new, intuitive radical disconnection for practi-
tioners in the field44. Regarding the scope of the α-amino RAEs, a
myriad of medicinally pertinent cyclic structures—encompassing
azetidine, piperazine, indoline, and isoquinoline—were successfully
coupled, achieving synthetically useful yields in all cases (27–33)56.
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Significantly, the methodology enabled the conversion of even
challenging tertiary RAEs, facilitating the creation of quaternary
centers, albeit with somewhat reduced yields (34–36). Beyond cyclic
structures, the protocol also exhibited proficiency with a range of
linear amino acids, yielding the corresponding β-arylethylamines in
moderate to good isolated yields (37–41). An assessment of the sul-
fonyl hydrazones scope indicated optimal performance with
electron-poor groups (see Supplementary Information, Section 11).
Noteworthily, the metal-free nature of the protocol tolerated halo-
genated arenes and heterocycles, providing convenient handles for
subsequent synthetic elaboration (30, 47, 48, 50–53). A noticeable
limitation of the scope was observed: electron-rich sulfonyl hydra-
zones yielded only traces of the desired product, with a notable
reduction of the carboxylic acid. Additionally, under slightly mod-
ified reaction conditions (see Supplementary Table 7), unactivated
aliphatic aldehyde-derived sulfonyl hydrazones acted as effective
coupling partners, delivering alkylated secondary amines in

synthetically useful yields, and underlining the method’s simplicity
and versatility (54–58).

Late-stage modification of peptides on solid phase
Having demonstrated the generality of the photochemical cross-
electrophile coupling between sulfonyl hydrazones and RAEs, we
turned our inquiry toward the potential extension of this protocol to
facilitate the late-stage functionalization (LSF) of more complex
molecules, such as peptides. Given the increasing prominence of
peptides as therapeutic modalities, the development of methods
capable of functionalizing extensive amino acid sequences directly on
resin becomes especially valuable, enabling the generation of diversity
without necessitating the development of de-novo synthetic
methods57,58. Moreover, on-resin modification brings forth substantial
practical advantages, addressing key challenges related to purification
and solubility that are often encountered in peptide chemistry in
solution. Specifically, considering the well-documented compatibility
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of redox-active ester synthesis with solid-phase approaches47,59,60, and
the mild basic condition of our two-step protocol, we hypothesized
that adapting this photochemical transformation to heterogeneous
conditions on resin would be an attainable objective.

At the outset of our investigation, a sensitivity/robustness
screening was undertaken to determine which amino acids would be
compatible with our reaction conditions and, consequently, could be
possibly incorporated into the peptide sequence (see Supplementary
Information, Section 5.4). Pleasingly, all screened amino acid residues,
when added as additives, did not interfere with the model reaction.
Following a minor re-optimization of the reaction parameters and
modification of the experimental setup (see Supplementary Informa-
tion, Sections 7.1–7.4), we discovered that crude peptides, synthesized
using Rink Amide resin via SPPS, could be readily engaged in the
photocatalytic alkylation (Fig. 4). Illustratively, heptapeptide P1 was
subjected to LSF, yielding the corresponding homoproline-containing
analogue 59 in a 28% isolated yield after 21 steps from resin loading
(74% LCAP for the decarboxylative alkylation step, with LCAP defined
as LC Area % of the product peak in the ultra-performance liquid
chromatography (UPLC) chromatogram of the reaction crude. See
Supplementary Information, Section 7.5, Supplementary Fig. 20).
Highlighting the efficacy of our method, a 28% yield robustly demon-
strates the potential of our cross-electrophile coupling for synthesiz-
ing complex structures with high selectivity and notable yield
conservation. Similarly, a late-stage incorporation of a benzylic unit
was accomplished efficiently, demonstrating utility in the context of
lipophilicity modulation (60) (72% LCAP for the decarboxylative

alkylation step, See Supplementary Information, Section 7.5, Supple-
mentary Fig. 22). To our delight, a derivative of afamelanotide—a
therapeutic peptide indicated for patients affected by erythropoietic
protoporphyria—was also successfully engaged in the protocol,
affording derivative 61 in an overall 9% yield from resin loading (71%
LCAP for the decarboxylative alkylation step. See Supplementary
Information, Section 7.5, Supplementary Fig. 24)61.

Mechanistic investigations
In our pursuit to elucidate the mechanism, we executed a series of
experiments to explore the radical pathway and identify the catalytic
species facilitating thephotochemical transformation.Confirmationof
the radical nature of the reaction was achieved through radical trap-
ping and radical clock experiments (Fig. 5A)62. Indeed, ESI-HRMS ana-
lysis substantiated the formation of TEMPO adduct 62, while GC-MS
analysis convincingly demonstrated carbon radical formation through
the production of 64 via a 5-exo-trig radical cyclization.

In light of these observations and based on the reported Single
Electron Transfer (SET) mechanism of EYNa2, we propose the ensuing
catalytic cycle (see Fig. 5B)63,64. Upon absorption of visible light, the
triplet excited state of EYNa2 is reductively quenched by the sacrificial
electron donor HE to generate HE+‧. Following the findings of Over-
mann andKönig65–67, the redox-active ester is subsequently reducedby
the EYNa2 radical anion, thereby completing the catalytic cycle and
yielding the nucleophilic alkyl radical 66 upon decarboxylation. The
emergent alkyl radical is then captured by the electrophilic site of
sulfonyl hydrazone, resulting in the formationof the hydrazinyl radical
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intermediate 67. Finally, a plausible Hydrogen Atom Transfer (HAT)
step from HE+‧ or neutral HE to 67 is considered, generating the pyr-
idium co-product 68 and the targeted product 69.

Scale up
Finally, we demonstrate the scalability of our photochemical C1
homologation using flow technology (Fig. 5C). In batch settings above
1mmol, the heterogeneous reactionmixture led to a significant drop in
yield of the desired product 3 (see Supplementary Information, Sec-
tion 9.1). Suspecting non-uniform irradiation and limited light pene-
tration at larger scales, we transitioned the photochemical alkylative
step to continuous flow68–70. After an extensive optimization con-
ducted at 0.2mmol scale (see Supplementary Information, Sec-
tion 9.2), we established conditions for the protocol using a Vapourtec
UV-150 photochemical flow reactor (ID: 0.8mm; V = 3.33mL, flow
rate = 0.412mLmin−1, τ = 8min) set at 30 °C, irradiated with 60W
450nm LEDs. Subsequent thermal cleavage of the alkylated hydrazide
intermediate yielded the targeted C1 homologated product in 60%
isolated yield.

Discussion
In summary, we have developed a visible light mediated metal-free
cross-electrophile coupling approach that stands as a powerful and
versatile C(sp3)−C(sp3) cross-coupling platform. It combines car-
boxylic acid-derived redox-active esters with aldehyde sulfonyl
hydrazones, utilizing Eosin Y as an efficient organophotocatalyst
under visible light, leading to the desired cross-coupled products
through subsequent fragmentation. Our approach provides a safer
alternative to the traditional Arndt-Eistert reaction for C1 homo-
logation of carboxylic acids and enables direct synthesis of cyclic and
acyclic β-arylethylamines using diverse aldehyde-derived sulfonyl
hydrazones. Furthermore, the method proves also effective for late-
stage functionalization (LSF) of peptides on solid-phase. Given these
capabilities, we are confident ourmethod will enable the exploration
of sp3-hybridized molecules in contemporary drug discovery and
development.

Data availability
The data supporting the results of the article, including optimization
studies, experimental procedures, compound characterization, late
stagemodification of peptides on solid phase,mechanistic studies and
scale-up procedures are provided within the paper and its Supple-
mentary Information. Additional data are available from the corre-
sponding author upon request.
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