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A metagenomic catalog of the early-life
human gut virome

Shuqin Zeng1,2, Alexandre Almeida 3, Shiping Li1,2, Junjie Ying1,2, Hua Wang1,2,
Yi Qu1,2, R. Paul Ross 4, Catherine Stanton4,5, Zhemin Zhou 6,
Xiaoyu Niu 2,7 , Dezhi Mu 1,2 & Shaopu Wang 1,2

Early-life human gut microbiome is a pivotal driver of gut homeostasis and
infant health. However, the viral component (known as “virome”) remains
mostly unexplored. Here, we establish the Early-Life Gut Virome (ELGV), a
catalogof 160,478non-redundantDNAandRNAviral sequences from8130gut
virus-like particles (VLPs) enriched or bulk metagenomes in the first three
years of life. By clustering, 82,141 viral species are identified, 68.3%ofwhich are
absent in existingdatabases builtmainly fromadults, and64 and8 viral species
based on VLPs-enriched and bulk metagenomes, respectively, exhibit poten-
tials as biomarkers to distinguish infants from adults. With the largest long-
itudinal population of infants profiled by either VLPs-enriched or bulk
metagenomic sequencing, we track the inherent instability and temporal
development of the early-life human gut virome, and identify differential
viruses associated with multiple clinical factors. The mother-infant shared
virome and interactions between gut virome and bacteriome early in life are
further expanded. Together, the ELGV catalog provides the most compre-
hensive and complete metagenomic blueprint of the early-life human gut
virome, facilitating the discovery of pediatric disease-virome associations in
future.

A healthy gut microbiome is important for optimum health through-
out life. In particular, the early-life human gutmicrobiome plays a vital
role in thematuration of the gutmicrobiome, the immune system, and
overall health early and later in life1–3. Disturbances of the early-life
human gut microbiome have been implicated in different pediatric
diseases, such as necrotizing enterocolitis, inflammatory bowel dis-
eases, malnutrition, and obesity4,5. Until now, the bacteria colonizing
the human gastrointestinal tract (termed the “bacteriome”) have been
intensively studied from infancy to adulthood and to old age, and a
broad picture of the composition and metabolic functions of the

bacteriome as well as its disease-associated biomarkers have been
extensively inferred6–8.

Within the gut microbiome ecosystem, apart from the bacterial
component, an immense number of viruses (termed the “virome”) are
present and profoundly interact with the other microbial commu-
nities, including bacteria, archaea, and eukaryotes9–12. Bacteriophages
(or phages) constitute the majority of the gut virome and infect the
bacteria in a lytic and/or temperate-specific manner, thus being
involved in an interactive networkbetween the bacteriomeand human
health4,13,14. While the gut viruses colonize the human host from birth
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simultaneously with the bacteriome15, our knowledge of the dynamics
of the viromeand their interactionswith thebacteriomeearly in life are
largely lagging behind. Thus, further studies are needed to fully deci-
pher the intricate and mutualistic relationship within the human gut
microbiome and their impacts on health and disease.

Recent studies have improved our understanding of the gut vir-
ome composition by generating comprehensive viral genome data-
bases, such as the Gut Virome Database (GVD)16, the Gut Phage
Database (GPD)17, theMetagenomic Gut Virus (MGV) catalog18, and the
CenoteHumanViromeDatabase (CHVD)19 using either large-scale bulk
metagenomes or virus-like particles (VLPs) enriched metagenome
sequencing. These databases not only revealed a number of unknown
viral genomes that expanded the diversity of the human gut virome,
but can now be used as informative annotation resources for future
alignment-based studies. However, all these databases were mainly
reconstructed with adult fecal metagenomes, resulting in a lack of
representation of early-life viral sequences and limiting their applica-
tion in the early-life human gut virome research.

Noteworthily, since the first report on the gut virome of a new-
bornpublished over a decade ago20, specific properties of the early-life
humangut virome incomparison to thatof adults havebeennoteddue
to their rapid evolution, including the total VLPs, the diversity, the
dominant taxa, and the dynamic succession of the gut virome15,21.
Nevertheless, the origin of early-life human gut microbiome remains a
matter of debate. The microbes shared by mothers and infants has
been well described at different taxonomic resolutions and microbial
genes, however most studies thus far have solely focused on the
bacteria22–25. It was shown that the maternal gut bacteriome exhibited
higher prevalence and abundance in the early-life human gut bacter-
iome, exhibiting stable colonization in the gastrointestinal tract of
their offspring compared to strains from other sources26. Similarly, a
few studies have attempted to identify the shared viruses by mothers
and their offspring, revealing a number of pioneering early-life human
gut phages potentially deriving from the mothers27,28. However, given
the limited sample size of mother-infant dyads, to what extent the
mother-infant shared viruses contribute to the overall composition of
the early-life human gut virome and the shaping factors remain largely
unanswered.

Here, we established the Early-Life Gut Virome (ELGV) catalog
of humans, a genomic database containing 160,478 non-redundant
viral sequences curated from 8130 fecal VLPs-enriched or bulk
metagenomic samples collected from human subjects over the first
three years of life. Of note, the ELGV represents over 82,000 can-
didate viral species, providing a unique perspective into the com-
position and longitudinal succession of the early-life human gut
virome and the contribution of shaping factors. We further extrac-
ted viral sequences from fecal metagenomic samples from mothers
of included infants and additionally unrelated adults to examine the
shared and unique viruses frommother-infant pairs or the early life
of humans. We thus expect that the ELGV catalog will pave the way
as a resource for better viral discovery and further research towards
uncovering the hidden associations of the virome with health and
disease in early life.

Results
Reconstruction and characterization of the ELGV catalog
covering DNA and RNA viruses
To comprehensively characterize the human gut virome early in life,
we analyzed 8130 public fecal metagenomes from infants under three
years old, including both 1865 VLPs-enriched and 6265 bulk meta-
genomes spanning 35 studies with a collection of multiple clinical
factors that have been well-documented to influence the composition
of early-life human gut bacteriome, including delivery mode, gesta-
tional age at birth, and feeding pattern at sampling (Fig. 1a; Supple-
mentary Data 1).

Given the challenge of identifying viruses in fecal metagenomic
samples due to their low abundance, we employed three independent
viral identifiers with different algorithms, including
VirFinder29,VIBRANT30, and VirSorter231 (see “Methods”). The obtained
viral sequences (n = 3,375,049) were then combined per sample and
quality checked by CheckV32, resulting in 625,512 viral sequences
longer than 3 kbp. The filtered viral sequences were dereplicated
across fecal samples and studies into 160,498 DNA and RNA viral
sequences.

To estimate howmany viral operational taxonomic units (vOTUs)
our catalog represented, the ELGV catalog was clustered at 95% aver-
age nucleotide identity (ANI) over 85% alignment fraction (AF) of the
shorter sequence33. This resulted in 82,152 vOTUs corresponding
approximately to a species-level clustering, which were then tax-
onomically annotated as described below in detail. Notably, we found
that 11 vOTUs were assigned to the viral families of Phycodnaviridae
(n = 5 with eight viral sequences), Mimiviridae (n = 4 with eight viral
sequences), and Marseilleviridae (n = 2 with four viral sequences),
which likely represent contaminants or misclassifications, as pre-
viously suggested16,34. Therefore, we manually removed these vOTUs
and their viral sequences, resulting in 82,141 vOTUs containing 160,478
viral sequences, henceforth referred to as the ELGV catalog (Fig. 1b;
Supplementary Data 2 for viral sequences, Supplementary Data 3 for
vOTU representatives). Among them, 27.0% vOTU representatives
were obtained from VLPs-enriched metagenomes, and 13.1% vOTU
representatives were categorized as high quality based on the MIUViG
quality tiers33 (Fig. 1c). The vOTU representatives had a median length
of 8281 bp (interquartile range, IQR = 4,579–20,650 bp), and 36,059
vOTU representatives had a length >10 kbp. Among these, 10,787
vOTU representatives (containing n = 61,192 viral sequences) were
categorized to be complete or high-quality (>90% completeness),
10,508 vOTU representatives (n = 23,804 viral sequences) were esti-
mated to be medium-quality (50–90% completeness), 60,787 vOTU
representatives (n = 75,399 viral sequences) were low-quality genomes
(<50% completeness), and 59 vOTU representatives (n = 83 viral
sequences) as “not-determined” (Fig. 1b). The proportion of the pro-
viruses was 7.80%, and themajority of vOTU representatives were with
temperate lifestyle accounting for 68.4% (Fig. 1c).

To explore the taxonomic annotation of vOTUs, we first com-
pared the vOTU representatives to the viral proteins from the UniProt
Knowledgebase (UniProtKB) and then assigned each vOTU repre-
sentative at the family level that is most prominently used15,18 with the
voting approach by Demovir (see “Methods”). A total of 46 viral
families were annotated covering 52,224 vOTUs containing 119,126
viral sequences, and the other vOTUs (36.4% of total) without family
annotationswere eitherwithout a hit toUniProtKB (n = 28,694, termed
as the “unmatched”) or failed to assign a family name due to the voting
approach (n = 1223, termed as the “unassigned”), highlighting the
incompleteness and knowledge gap of the current taxonomy of early-
life human gut virome. Among the taxonomically assigned vOTUs in
the ELGV catalog, 99.6% (n = 52,030 vOTUs) were bacteriophages, and
the other vOTUs (0.4%, n = 194 vOTUs) represented eukaryotic viruses
(Supplementary Data 3). Most of the vOTUs were annotated to
Siphoviridae family (n = 40,491 with 92,661 viral sequences), followed
by Myoviridae (n = 5690 with 13,720 viral sequences), Peduoviridae
(n = 2024 with 4777 viral sequences), Podoviridae (n = 1409 with 3303
viral sequences), andMicroviridae (n = 1046with 1636 viral sequences)
(Fig. 1d). Three RNAviral families, includingCaliciviridae (n = 14with 16
viral sequences), Picornaviridae (n = 10 with ten viral sequences), and
Astroviridae (n = 3 with three viral sequences), were detected. In par-
allel, we also adopted the approach from ref. 18 to cluster the species-
level vOTU representatives into higher ranking clades (i.e., genus and
family levels) based on the pairwise average amino acid identity (AAI)
and gene sharing, which resulted in 11,413 genus-level vOTUs and 1238
family-level vOTUs. Rarefaction analysis of the total number of viral
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sequences against the number of vOTUs indicated that the number of
families and genera discovered was close to saturation (Fig. 1e). This
was not the case when looking at the species level, mainly due to the
presence of rare vOTUs with single member (n = 62,537) (Supple-
mentary Fig. 1a). When only considering 19,604 vOTUs consisting of at
least two conspecific viral sequences (totaling 97,941 viral sequences),
a closer saturation was achieved for each taxonomic rank (Fig. 1e).

Taken together, the established ELGV catalog revealed massive
hidden viral diversity early in life, as most of the ELGV catalog could
not be assigned to an existing viral family and genus. Thus, the ELGV
could facilitate future investigations of the early-life human gut
microbiome, likely serving as a comprehensive alignment resource to
facilitate the discovery of more viruses.

Temporal development of the early-life human gut virome
To reveal the dynamics of the human gut virome early in life, the
quality-controlled reads fromeachmetagenomeweremapped back to
the 82,141 vOTU representatives to calculate the relative abundance of
each vOTU in fecal samples (see “Methods”). A previous study has
indicated differences in the composition of gut virome from VLPs-
enriched or bulk metagenomes, as the former captures infecting
viruses or integrated prophages while the latter targets free or active
viruses16. We, therefore, analyzed VLPs-enriched or bulkmetagenomes
separately thereafter to comprehensively reveal properties of the
early-life human gut virome by different sequencing approaches.

As expected, themapping rate from VLPs-enrichedmetagenomes
was higher (two-sided Wilcoxon test, P < 2.2e-16) than that of bulk
metagenomes (n = 1865, median = 13.8%, IQR = 3.99–32.4% for VLPs vs.
n = 6265, median = 2.14%, IQR = 1.50–2.91% for bulk; Supplementary
Fig. 2a). Given the potential influence of the infant age and sequencing
depth on the resulting gut virome composition, we further limited the

infant age covered by both VLPs-enriched and bulkmetagenomes (i.e.,
frombirth to twoyears old).Wedid observe that the number of vOTUs
per million sequenced reads after VLPs enrichments (median = 14.5,
IQR = 3.41–43.1) was higher (two-sided Wilcoxon test, P < 2.2e-16) than
that of bulk (median = 4.94, IQR = 2.70–9.37) (Supplementary Fig. 2b).

A total of 28,531 and 64,934 vOTUs were respectively detected in
1682 VLPs-enriched and 6205 bulk metagenomes, with a median rela-
tive abundance of 218 and 298 reads per kilobase per million mapped
reads (RPKM) (IQR = 99–564 RPKM for VLPs and IQR= 111–854 RPKM
for bulk), which were used for subsequent analyses. We found that
11,458 vOTUs were recovered by both approaches, indicating that
40.2% of vOTUs from VLPs-enriched metagenomes could be captured
with bulk metagenomic sequencing (Supplementary Fig. 2c). Further-
more, based on fecal samples that were processed by both VLPs-
enriched and bulk metagenomic sequencing from ref. 15, 2234 vOTUs
were captured by both approaches, accounting for 41.7% of VLPs and
34.7% of bulk (Supplementary Fig. 2c). The richness of vOTUs from
bulk metagenomes was found to be higher (two-sided Wilcoxon test
blocked by “study”, P < 2.2e-16) than that of VLPs-enriched metagen-
omes (median = 79; IQR = 50–130 for bulk; median = 32; IQR = 8–81 for
VLPs). Both sequencing approaches showed great viral variability
among samples as only small parts of vOTUs were populated with a
prevalence ≥5% (n = 66 for VLPs and 284 for bulk) and 1% (n = 990 for
VLPs and 1561 for bulk) (Supplementary Fig. 2d, e). Moreover, the gut
virome profiled by VLPs exhibited higher (two-sided Wilcoxon test,
P < 2.2e-16) variability than that of bulk based on these vOTUs at a
prevalence ≥5% or 1%, which was also confirmed when analyzing the
fecal samples that were processed simultaneously by both VLPs-
enriched and bulk sequencing15.

We next examined the dynamics of the virome diversity by stra-
tifying the metagenomes into discrete time points (months 0, 1, 3, 6,
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Fig. 1 | Reconstruction and characterization of the early-life human gut virome
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160,478 viral sequences, representing 82,141 viral OTUs. b The distribution of
82,141 vOTU representatives plotted by their length and GC content. Bar plots on
the top and right side show the distribution of the length and GC content,
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12, 24 for VLPs and bulk, and month 36 additionally for bulk) early in
life. The overall richness of the early-life gut virome dynamically
increased (linear mixed modeling with “study” as random factor,
P =0.003 for VLPs and P < 2e-16 for bulk) as infants aged (Fig. 2a). We
further confirmed that this increase in the alpha diversity of viromedid
not correlate with sequencing depth (Supplementary Fig. 3a). When
stratifying the vOTUs based on their lifestyles for both VLPs and bulk,
the proportion of temperate viruses in the infant gut decreased (linear
mixedmodelingwith “study” as randomfactor,P =0.002 for VLPs, and
P =0.003 for bulk), while the proportion of lytic viruses increasedwith
infant age, which were also observed only with complete and high-
quality vOTU representatives (Supplementary Fig. 3b, c). The
Bray–Curtis distances based on the relative abundance of vOTU
representatives indicated a strong longitudinal shift of early-life
human gut virome with infant age (PERMANOVA, 1000 permuta-
tions, with “study” as a block factor, P =0.001 for VLPs or bulk; Fig. 2b).
We further investigated the individuality and stability of the viral
profiles within and between subjects based on Bray–Curtis distances
over time. The similaritieswithin subjects fromeither VLPs-enrichedor
bulk metagenomes were higher (two-sided Wilcoxon test blocked by
“infant age”, P < 2.2e-16) than that between the subjects throughout

time, particularly in the first year of life (Fig. 2c). Notably, variations in
the early-life gut virome between subjects gradually decreased as
infants aged, which was indeed consistent with other members of gut
microbiome, e.g., the bacterial community early in life25.

To characterize the composition of the early-life human gut viral
community, we summed the relative abundance of individual vOTU
representatives in the same family rank for each metagenome to
reflect the viral temporal changes at the family level. A total of 42 viral
families from 1682 VLPs-enriched metagenomes with ≥1 vOTU
detected accounted for 87.9% of total abundance (median,
IQR = 61.6–98.8%); while 37 families from bulk metagnomes
accounted for a lower relative abundance (median = 41.4%,
IQR = 31.3–53.6%), indicating more unclassified viruses were cap-
tured by bulk metagenomes (Supplementary Fig. 4a). Notably, nine
viral families that were absent in bulkmetagenomes were detected in
VLPs-enriched metagenomes, including all three RNA viral families
Astroviridae, Caliciviridae, and Picornaviridae. There were also four
viral families that were detected by bulk metagenomes but missed in
VLPs-enriched metagenomes, including Anaerodiviridae, Mesyanzhi-
novviridae, Vilmaviridae, and Zierdtviridae (Supplementary Fig. 4b).
In VLPs-enriched metagenomes, the most abundant families in the
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fidence interval. d Dynamics of the relative abundance of viral families in the first
two (VLPs, top) or three (bulk, bottom) years of life. Only the viral families with a
prevalence >1% in VLPs-enrichedmetagenomes are plotted. For better visualization
of the changes of each viral family, viral families are stratified into three groups
basedon themean relative abundanceof VLPs-enrichedmetagenomes at each time
point (i.e., maximal mean relative abundance ≤1% (left, n = 12, red), maximal mean
relative abundance >1% and <40% (middle, n = 11, light green), maximal mean
relative abundance ≥40% (right, n = 2, dark green)). The bar plot shows the pro-
portion of relative abundance of all 25 viral families, which are indicated in the
legend on the right side. The P values were obtained with linear mixed modeling
with “study” as random factor. ****P <0.0001, ***P <0.001, **P <0.01, *P <0.05.
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first two years of life included Microviridae, Siphoviridae, and Myo-
viridae, however,Microviridae had a lower (two-sided Wilcoxon test,
P < 0.05) relative abundance in bulk metagenomes that were domi-
nated by Siphoviridae,Myoviridae, and Peduoviridae (Supplementary
Data 4). When partitioning the fecal samples into discrete time
points, we observed the dynamic successionof each individual family
over time, with 7 and 21 families changing significantly from VLPs-
enriched and bulk metagenomes, respectively (linear mixed model-
ing with “study” as random factor, P < 0.05; Supplementary Data 4).
Out of 42 viral families with a prevalence >1%, 25 families accounted
for >99% of viral abundance in 1608 VLPs-enrichedmetagenomes. Of
these, five families with significant changes and only Microviridae
increased in abundance as infants aged (Fig. 2d). When examining
these 25 viral families in bulk metagenomes, 21 families were detec-
ted and accounted for >99% of viral abundance in 5990 bulk meta-
genomes. Of these, 14 families had a statistically significant
difference (P < 0.05) in their abundance as infants aged, with half of
the families increased, such as Adenoviridae, Duneviridae, and For-
setiviridae; and the other half decreased, such as Siphoviridae, Myo-
viridae, Microviridae, and Peduoviridae. Furthermore, the mean
relative abundance of Forsetiviridaewas sparse with <0.3% in the first
12 months, but steadily increased to 0.97 % and 1.24% at months 24
and 36, respectively. Of note, we also found that some families
reached the peak in relative abundance at months 1 or 3 (i.e., Myo-
viridae, Peduoviridae, Rountreeviridae, Siphoviridae) and afterward
decreased gradually, showing that certain viral taxa did not change
uniformly early in life (Fig. 2d).

Regarding how the proportion of viruses with different lifestyles
changed early in life from 5 or 14 altered viral families in either VLPs-
enriched or bulk metagenomes, we found that there was a significant
(linear regression, P <0.05) decrease in the proportion of temperate
viruses from two viral families, i.e., Peduoviridae and Siphoviridae in
both approaches. In contrast, the proportion of temperate viruses
from Microviridae in both approaches, and ten families such as Dune-
viridae and Salasmaviridae increased in bulk metagenomes (linear
regression, P <0.05) over time (Supplementary Fig. 4c).

Factors shaping thedevelopment of early-life humangut virome
To determine the extent to which clinical factors affect the early-life
human gut virome, we gathered all metadata available from the
included studies, including delivery mode, gestational age at birth,
feeding pattern at sampling, and geographical location (i.e., categor-
izing by country where the fecal samples were collected). Although
these factors have been extensively linked to the development of the
early-life human gut bacteriome25,35–37, their relationship with the
overall development of the early-life human gut virome, which factor
plays a greater role in shaping the gut virome composition, and viral
members associated with each factor are poorly understood.

We thus firstly performed both the PERMANOVA and MANTEL
analyses based on Bray–Curtis distances to estimate the effect size and
correlation coefficient, respectively, of all metadata factors. Both
analyses revealed a significant (FDR <0.05, 1000 permutations, with
“study” as a block factor for PERMANOVA) contribution and correla-
tion between the early-life human gut virome development and all
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investigated factors except for influences of delivery mode and
gestational age on the gut virome profiled by VLPs (Fig. 3a for PER-
MANOVA analysis and Supplementary Fig. 5a for MANTEL analysis).
Among them, infant age and geographical location at sampling
accounted for the highest viral taxonomic variation in both approa-
ches (5.7% and 13.3% for VLPs; 7.8% and 5.2% for bulk; Fig. 3a), which
was comparable to the similar analysis conducted for the gut bacterial
development early in life35. Notably, we found that gestational age,
delivery mode, and feeding pattern at sampling had systematic effects
on the overall composition of the viral community based on bulk
metagenomes with 2.4%, 1.6%, and 1.1% of variance, respectively,
reflecting the sequence of factors that the newborn was exposed to at,
or soon after, birth. Notably, gender was also observedwith significant
influences on the structure of gut virome early in life identified by both
approaches.

When stratifying the infant age into discrete windows, we
observed a time-dependent effect size of these factors along with the
infant age (Fig. 3b), whichwas similar to what was previously observed
for the early-life human gut bacteriome36. In the first year of life,
delivery mode, gestational age, and feeding pattern at sampling
exhibited significance (FDR <0.05) and greater effect size on the
development of the early-life human gut virome, but their pre-
dominancewas changed based onbulkmetagenomes. At birth (month
0), delivery mode explained the greatest amount of variance (3.8%),
but its influence gradually decreased until month 24. Gestational age
predominated the variance at month 1 (3.5%) and month 3 (4.5%). The
effect size of feeding pattern at sampling (i.e., exclusive, partial or
without breastfeeding) increased along with the increased duration of
feeding, and exhibited comparable effect size as delivery mode and
gestational age at month 3, and a larger effect than deliverymode and
gestational age at month 12 when half of fecal samples analyzed at this
timepoint were collected from breastfed infants, which was also
ascertained based on VLPs-enriched metagenomes. Meanwhile, the
geographical location was strongly associated with the early-life
human gut virome from month 6 for both VLPs-enriched and bulk
metagenomes (19.4% for VLPs and 5.3% for bulk at month 6; 35.2% for
VLPs and 13.3% for bulk at month 24), indicating the role of environ-
mental factors in determining the gut viromedevelopment later in life.
These findings demonstrated that while multiple factors could influ-
ence the development of early-life human gut virome, the dominance
of factors with strong effects changed along with the infant age.

We further found that infants born vaginally had higher (two-
sided Wilcoxon test blocked by “study”, P =0.004) richness (i.e.,
number of vOTUs) than infants born by C-section based on bulk
metagenomes, and infants fed exclusively by breast milk had lower
number of vOTUs than those fed partially (two-sided Wilcoxon test
blocked by “study”, P < 0.05) or without breast milk (two-sided Wil-
coxon test blocked by “study”, P < 2.6e-7) for both VLPs-enriched and
bulk metagenomes. We did not observe significant differences (two-
sidedWilcoxon test blockedby “study”, P >0.05) between infants born
full-term or preterm for both approaches (Supplementary Fig. 5b, c).

To clarify how the specific viruses in early life are associated with
these three factors, we employed a linear mixed modeling as imple-
mented in MaAsLin238 taking “subjects” as a random effect based on
the relative abundance of vOTUs at the family level (see “Methods”).
We did not observe any families significantly (q < 0.25) associated with
delivery mode, gestational age, and feeding pattern at sampling based
on VLPs-enriched metagenomes, while some significant families were
identified from bulk metagenomes (Fig. 3c–e). More specifically, bulk
metagenomes from infants born by C-section (taking vaginal delivery
as reference inMaAsLin2model)were enriched (q < 0.25) with the viral
families Herelleviridae and Podoviridae although they only accounted
for an average of 1.39% in relative abundance of the early-life human
gut virome. In contrast, infants born vaginally harbored higher
(q < 0.25) abundanceofMicroviridae,Autographiviridae, Forsetiviridae,

and Siphoviridae, and these families comprised an average of 39.1% in
relative abundance (Fig. 3c). Notably, these differential commensal
viral families were mainly observed at month 0 and 1, and some taxa
persisted into later life. Regarding the influence of gestational age
(taking full-term born infants as reference in MaAsLin2 model) on the
individual viral families, we found Myoviridae was enriched in infants
born pretermwith an average of 5.95% in relative abundance; while the
families Microviridae and Autographiviridae were depleted (Fig. 3d).
We also compared exclusive or partial breastfeeding to non-breast
milk feeding (as reference in MaAsLin2 model), and found that exclu-
sive and partial breastfeeding enriched (q <0.25) for Peduoviridae,
Autographiviridae, Drexlerviridae, Myoviridae, and Microviridae, but
decreased Siphoviridae abundance in infants (Fig. 3e). There was over
40% of vOTUs without an assignment for the viral family, we thus
wondered if a finer association existed between all the vOTUs and
clinical factors irrespective of their taxonomic affiliation. We found
three (all positive) and 27 vOTUs (14 positive and 13 negative) thatwere
significantly (q <0.25) associated with delivery mode and feeding
pattern at sampling, respectively, based on VLPs-enriched metagen-
omes (Supplementary Data 5). In cases of bulk metagenomes, apart
from vOTUs belonging to the viral families observed above, additional
vOTUs that failed to be assigned taxonomically were influenced by
delivery mode, gestational age, and feeding pattern at sampling
(Supplementary Fig. 6; Supplementary Data 5). For example, 200
vOTUs were associated (q <0.25) with delivery mode (93 positive and
107negative)when analyzing all fecal samples together, and 143of 200
were not assigned at the family level, such as vOTU_30363,
vOTU_55926, and vOTU_54931 being positively associated with C-sec-
tion, and vOTU_36740, vOTU_18175, and vOTU_52214 being negatively
associated with C-section (Supplementary Fig. 6a).

Host prediction and close interactions between the gut virome
and bacteriome early in life
We next sought to link each vOTU to its potential host by extracting
the Clustered Regularly Interspaced Short Palindromic Repeats spacer
sequences (CRISPR spacers) from the 32,277 early-life human gut
microbial genomes (i.e., ELGG catalog) that were assembled from the
6122 bulk metagenomes39, and then compared CRISPR spacers to
vOTU representatives to determine the host-virus connections.

We identified bacterial hosts for 18% of 82,141 vOTUs (n = 14,684),
and the most common phylum host was Firmicutes/_A/_C (n = 10,175),
followed by Actinobacteriota (n = 2688), Bacteroidota (n = 1256), Pro-
teobacteria (n = 590), and Verrucomicrobiota (n = 191) (Fig. 4a). The
most common bacterial family host included Lachnospiraceae
(n = 4029), Bifidobacteriaceae (n = 2569), Veillonellaceae (n = 1410),
Clostridiaceae (n = 1099), and Bacteroidaceae (n = 903), all represent-
ing the most abundant bacterial families detected by MetaPhlAn 440

from the 6265 metagenomes early in life (Supplementary Fig. 7a). Of
the vOTUs whose hosts were predicted at the genus level, most of
them (91.1%; n = 13,378) were hosted by only one genus, whereas the
other vOTUs (8.9%; n = 1306) were predicted to infect multiple genera
(Supplementary Fig. 7b). The early-life humangut bacteriome is known
to differ from that of adults, particularly the Bifidobacterium genus
with higher relative abundance and prevalence in infants23. As expec-
ted, we observed that themajority of early-life human gut vOTUs were
hosted by Bifidobacterium (n = 2565), predominantly including Bifido-
bacterium longum (n = 1198), Bifidobacterium pseudocatenulatum
(n = 1197), Bifidobacterium adolescentis (n = 1064), and Bifidobacterium
kashiwanohense (n = 989) (Fig. 4a). Of note, 120 vOTUswere predicted
to be hosted by Escherichia coli, the species represented by the largest
number of genomes in the ELGG catalog.

Given the impact of the gut virome diversity on the gut bacter-
iome and vice-versa in adults11,41, we examined the temporal correla-
tion between the composition of early-life human gut virome and
bacteriome, which thus far is not clearly understood. To address this,
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we focused on the bacteriome of 141 fecal samples that were simul-
taneously processed by using both VLPs-enriched and bulk metage-
nomic sequencing from ref. 15. and 6066 fecal samples that were only
subjected to bulk metagenomic sequencing to compare with the cor-
responding virome in each sample according to different sequencing
approaches. The alpha diversities of gut virome and bacteriome (i.e.,
richness) at the species level showed significant correlations (linear
regression, adjusted R2 = 0.04 and P =0.005 for VLPs, and adjusted
R2 = 0.56 and P < 2.2e-16 for bulk; Fig. 4b), which was expected for a
lower correlation coefficient for VLPs than that of bulk due to differ-
ences in sequencing approaches. This significant correlation between
the gut virome and bacteriome profile early in life was also observed
for the beta diversity based on Bray–Curtis distances (linear regres-
sion, P < 1.6e-6 for VLPs and P < 2.2e-16 for bulk; Supplemen-
tary Fig. 7c).

To further explore specific bacteria-virus associations, we com-
pared the relative abundance of each virus and its predicted bacterial
host at the family level given the confident resolution of the viral family
assignment. A total of 25 families detected by both viral host predic-
tion and MetaPhlAn 4 from 120 fecal samples that were sequenced by
both approaches were used for this part of analyses. Meanwhile, 32
families from 3398 fecal samples that were solely sequenced by bulk
were used for comparisons.Wefirst leveraged the Procrustes analysis42

to compare the overall distribution of the gut virome and bacteriome
based on the Bray–Curtis distances. We found a significant correlation
with coefficient r = 0.84 (P = 1e-04) for bulkmetagenomes (Fig. 4c), but
not for VLPs-enriched metagenomes (P = 0.58). Regarding the corre-
lations between individual families, a total of 19 (18 positive and 1
negative) and 545 (311 positive and 234 negative) significant

correlations (Spearman correlation, FDR <0.05) between the gut vir-
ome and bacteriome were observed for VLPs-enriched and bulk
metagenomes, respectively (Fig. 4d, e). Notably, 7 and 31 viral families
showed significant positive correlations in relative abundance with
their predicted bacterial hosts for VLPs-enriched and bulk metagen-
omes, respectively (Fig. 4d, e). Among them, we found that five viral
families from VLPs-enriched metagenomes (except Lachnospiraceae
and Bacteroidaceae) and 29 viral families from bulk metagenomes
(except Ruminococcaceae and Tannerellaceae) showed the strongest
correlation with their predicted bacterial host than other bacterial
hosts (ranging fromSpearman’s ⍴ =0.48 for Eubacteriaceae to 0.29 for
Peptoniphilaceae for VLPs; from 0.87 for Bifidobacteriaceae to 0.049
for Desulfovibrionaceae for bulk).

We further built the co-occurrence networks at the species level
for VLPs-enriched and bulk metagenomes, involving 1031 vOTUs and
356bacterial species for VLPs with ≥1% prevalence, and 283 vOTUs and
159 bacterial species with ≥5% prevalence, respectively. The resulting
network from VLPs-enriched metagenomes consisted of 996 nodes
and 4301 edges with significant positive correlations (Spearman cor-
relation, Spearman’s ⍴ ≥0.6, FDR <0.05). Among them, 89% (n = 887)
of nodes were from vOTUs, and 6.6% (n = 285) of edges were con-
nected by vOTUs and bacterial species (Supplementary Fig. 8a). The
bacterial species with the highest number of connections with the
virome included Bacteroides timonensis, Dorea formicigenerans, and
Blautia schinkii, and all edges from44 bacterial species and 693 vOTUs
were connected with the virome (Supplementary Fig. 8b, c; Supple-
mentary Data 6). With bulkmetagenomes, 79% (n = 192 of 242 in total)
of nodes from the network were from vOTUs, and 23% (n = 102 of 436
in total) of edges were connected by vOTUs and bacterial species
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teriome. a The proportion of the top five predicted hosts at various taxonomic
ranks. b Comparisons of alpha diversity (richness, left for VLPs, and right for bulk)
between the early-life human gut virome and bacteriome at the species level. The P
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(Supplementary Fig. 8d). The bacterial species with the highest num-
ber of connections with the virome included Faecalibacterium praus-
nitzii, Anaerostipes hadrus, and Blautia wexlerae, and all edges from 30
bacterial species such as Phocaeicola vulgatus, B. longum, and Sta-
phylococcus epidermidis were connected with the virome (Supple-
mentary Fig. 8e). vOTU_64450 and vOTU_34897 had the highest
number of connections with 19 and 18 edges, respectively, followed by
vOTU_69856, vOTU_28728, and vOTU_36740, while vOTU_46177 had
the highest number of connections with bacterial species with six
edges (Supplementary Fig. 8f). Overall, these results highlight the close
interconnection and frequent co-occurrence between specific viral
and bacterial taxa early in life.

A set of viruses shared by paired mother–infant dyads
To fully decipher the shared and unique properties of mother-infant
virome particularly early in life, we analyzed all fecal samples from
mothers whose infants were included in the reconstruction of the
ELGV catalog. As a result, 373 paired mother-infant dyads including
460 maternal fecal bulk metagenomes (covering pregnancy, delivery,
and postpartum) and 1000 infant fecal bulk metagenomes (ranging
from birth to the first two years of life) were analyzed (Supplementary
Data 7). Additionally, we also collected the VLPs-enriched metagen-
omes from 26 paired mother-infant dyads from ref. 27, including 26
maternal and 48 infant samples (Supplementary Data 7). All the
maternal gut metagenomes were assembled, and the viral sequences

were predicted using the same approach applied for the infant meta-
genomes, which resulted in qualified 83,543 maternal viral sequences
for bulk and VLPs-enriched metagenomes. Based on CheckV estima-
tion, the median length of maternal viral sequences was 6083 bp
(IQR= 4025–12,458bp), and 4134 viral sequences were categorized to
be complete or high-quality (>90% completeness), 6250 viral sequen-
ces were estimated to be medium-quality (50–90% completeness),
73,107 viral sequences were low-quality genomes (<50% complete-
ness), and 52 viral sequences as “not-determined” (Supplemen-
tary Fig. 9a).

BasedonVLPs-enrichedmetagenomes, we clustered 656 qualified
mother-infant viral sequences into 511 vOTUs at 95%ANIover 85%AFof
the shorter sequence33. Among them, 199 and 307 vOTUs were
exclusively represented by viral sequences from mothers and infants,
respectively, and only five vOTUs were shared by mothers and their
paired or unpaired infants (Fig. 5a). After excluding vOTUs exclusively
containing viral sequences from the unpaired mother-infant dyads,
four vOTUs were shared by two paired mother-infant dyads (hereafter
referred to as shared-vOTUs; Fig. 5a), belonging to Siphoviridae (n = 3)
and Podoviridae (n = 1). Apart from the assembly-based approach, we
furthermapped the quality-controlled reads frommothers and infants
to ELGV representatives to calculate the relative abundance of each
vOTU representative. We found that maternal gut viromes differed
from infant gut viromesbasedonBray–Curtis distances (PERMANOVA,
1000 permutations, P = 0.001) but the average richness between
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mothers and infants was comparable (two-sided Wilcoxon test,
P =0.84), which was consistent with reports from the original
publication27 (Fig. 5b). Only two paired mother-infant dyads were
found to share vOTUs from the reads-based mapping, and one pair of
them (C047) was also observed from the assembly-based approach.

When conducting the analyses on bulk metagenomes, all mother-
infant viral sequences (n = 130,206) were clustered into 43,829 vOTUs.
4566 vOTUs were found to be shared by mothers and their paired or
unpaired infants, and 1669 vOTUs of them were shared-vOTUs,
including 5490 shared events (defined as the frequency of shared-
vOTUs) from 273 paired mother–infant dyads involving 329 mother
and 611 infant metagenomes (Fig. 5a; Supplementary Data 8). When
clustering the mother-infant viral sequences at a higher level (100%
ANI over 100% AF) implying the identical strain (referred to as strain-
vOTUs), a larger number of 111,599 strain-vOTUs were formed, and
1704 strain-vOTUs of them were shared by the paired mother-infant
dyads, including 2792 shared events from 235 paired mother-infant
dyads involving 280 mother and 509 infant metagenomes. After stra-
tifying the maternal fecal samples by sampling time, i.e., pregnancy,
delivery (≤7 days after birth), and postpartum (>7 days after birth), 191
and 341 shared-vOTUs were from the maternal metagenomes col-
lectedduringpregnancyandpostpartum, respectively. Themajority of
shared-vOTUs (n = 1450) with 4278 shared events were observed
between infants and their paired mothers at delivery, correlating with
thenumber ofmaternalmetagenomes included (n = 334 fromdelivery,
n = 50 from pregnancy, and n = 75 from postpartum), which was thus
used for subsequent analyses.

When taxonomically annotating the shared-vOTUs from bulk
metagenomes of infants and their mothers at delivery based on the
UniProtKB and Demovir, most of shared-vOTUs were classified into
Siphoviridae family (n = 952 shared-vOTUs with 3153 shared events),
Myoviridae (n = 114 shared-vOTUs with 237 shared events), Peduovir-
idae (n = 49 shared-vOTUs with 104 shared events), and Podoviridae
(n = 22 shared-vOTUs with 52 shared events), and the other viral
families contained <10 shared-vOTUs. Among the viral families,
shared-vOTU_200was themost dominant viral species with 123 shared
events in Siphoviridae family, shared-vOTU_4069 (n = 12 shared
events) for Myoviridae, shared-vOTU_4800 (n = 7) for Peduoviridae,
and shared-vOTU_544 (n = 13) for Podoviridae (Fig. 5c).

Additionally by employing a network-based gene-sharing
approach of vConTACT243 with all 130,206 mother-infant viral
sequences from bulk metagenomes as input, a total of 10,744 viral
clusters (VCs) were generated, containing 69,857 viral sequences from
mothers or infants (Supplementary Fig. 9b). Among these VCs, 1058
VCs were shared with 2992 shared events across 297 paired mother-
infant dyads, of which 919 shared-VCs with 2359 shared events were
observed from infants and their paired mothers at delivery. Of these
shared-VCs, only 123 shared-VCs contained genomes from mother-
infant shared viral sequences and viral RefSeq, which thus were
assigned to viral families of Myoviridae (n = 58), Podoviridae (n = 34),
Siphoviridae (n = 26), and Microviridae (n = 2), and the predominant
genera of Lambdavirus (n = 18), Peduovirus (n = 14), and Felsduovirus
(n = 12) based on the vConTACT2 analyses (Supplementary Fig. 9c).We
then compared the shared events discovered by the shared-vOTUs and
shared-VCs, and found comparable results, where 2373 shared events
from 890 shared-VCs were confirmed by 902 shared-vOTUs with
2273 shared events (Fig. 5d), further confirming thepresenceof virome
shared by mother and infant early in life.

We also aimed to determine the influence of available metadata
variables including infant age, delivery mode, gestational period,
feeding pattern at sampling, and gender on the shared-vOTUsbetween
infants and their pairedmothers at delivery. Due to the limited number
of shared-vOTUs from VLPs-enriched metagenomes, we focused on
bulkmetagenomes and found that the shared-vOTUs accounted for an
average of 11.5% of the total vOTUs found in infant bulkmetagenomes.

We found that C-section delivery was strongly associated with a lower
number of shared-vOTUs (mean = 1.17 vs. 5.76 from infants born vag-
inally; two-sided Wilcoxon test blocked by “study”, P = 6.4e-30) in
infants with an overall comparison (Fig. 5e) or in a longitudinalmanner
along with the infant age (Fig. 5f). Other factors with significant asso-
ciations included infant age (Kruskal–Wallis test blocked by “study”,
P = 1.0e-6) and gestational age (two-sided Wilcoxon test blocked by
“study”, P = 0.041) (Supplementary Fig. 9d). The number of shared-
vOTUs increased as infants aged (mean = 3.54 at month 0 vs. mean =
11.37 at month 24). Infants born full-term had a higher number of
shared-vOTUs compared to thosebornpreterm (mean= 4.70 vs. 0.36).
No statistical differences were observed among female or male infants
(two-sided Wilcoxon test blocked by “study”, P =0.63) and feeding
pattern at sampling (Kruskal–Wallis test blocked by “study”, P = 0.28)
(Supplementary Fig. 9d).

Identification of specific viruses abundant in the early-life
human gut virome
Compared to the metagenomes that were used to generate other
existing viral databases (i.e., CHVD, GPD, GVD, and MGV), 5068
metagenomes (1089 for VLPs and 3979 for bulk) distributed across
20 studieswere unique to the ELGV catalog (SupplementaryData 9). In
order to explore the uniqueness of the early-life human gut virome, we
further clustered the ELGV representatives to other databases with
viral representatives mainly compiled from the adult gut including
CHVD (n = 45,033), GPD (n = 142,809), GVD (n = 33,242), and MGV
(n = 54,118) and viruses from RefSeq (n = 14,814). We applied the same
filtering criteria as the ELGV catalog to these viral databases for an
accurate comparison, which resulted in a reduced number of viral
representatives for each database, i.e., CHVD (n = 40,203), GPD
(n = 124,775), GVD (n = 16,379), and MGV (n = 46,464) and viruses in
RefSeq (n = 8879). Notably, among the generated 184,507 vOTUs
clustered at 95%ANI and 85%AF of the shorter sequence, 56,131 vOTUs
from the ELGV catalog (68.3%) did not cluster with any viral genomes
from the other databases (Fig. 6a; Supplementary Data 9). The largest
vOTUs overlap between ELGV and other databases were with GPD
(n = 5325), followedbyMGV (n = 1412),whichwasexpecteddue to their
large size. Surprisingly, there were only 23 vOTUs shared by all data-
bases, indicating the specificity of each database, which however may
also be attributed to differences in the algorithms for identification
and filtration of viral sequences.

Whether and what viruses that are specifically present in early life
remain open. Considering the high inter-individual variability in the
early-life humangut virome,weprimarily focusedon the vOTUs if their
prevalence exceeded 2% across 1682 VLPs-enriched metagenomes
with a relative abundance >0.01 (1%) in at least onemetagenome, while
the threshold valueswere ten-fold increased for bulkmetagenomes up
to >20% and >0.10 given there was a lower inter-individual variability
and larger sample size (n = 6205). This resulted in 407 vOTUs from
VLPs-enrichedmetagenomes, which accounted for an average relative
abundance of 33.7% (median = 21.2%; IQR = 1.77–62.3%) with a pre-
valence ranging from 2.02% to 20.1%, and 335 vOTUs exclusively
belonged to the ELGV catalog. To check their specificity for the early-
life human gut virome, we quantified their relative abundance in 521
adult VLPs-enriched metagenomes (Supplementary Data 10), and
found that 111 of 139 significantly differential vOTUs (MaAsLin2 with
age (infants vs. adults) as fixed effect, q < 0.25) were lower in adults
than that of infants (an average of relative abundance of 6.58% vs.
17.4%; Fig. 6b). With bulk metagenomes, we obtained 28 vOTUs that
accounted for an average relative abundance of 14.5% (median = 12.1%;
IQR = 5.72–20.2%) with a prevalence ranging from 23.4% to 32.7%
(Supplementary Fig. 10). Among them, 24 vOTUs belonged to the
vOTUs that ELGV uniquely had, and the other four vOTUs overlapped
with GPD (vOTU_24266, vOTU_49416, vOTU_18175), GVD
(vOTU_46816), and MGV (vOTU_49416). When comparing with 510
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adult bulk metagenomes (Supplementary Data 10), all 28 vOTUs dif-
fered significantly (MaAsLin2, q < 0.25) between adults and infants,
with the relative abundanceof 24 being higher in infants (an average of
1.52% vs. 13.0%; Fig. 6e).Moreover, given additional bulkmetagenomes
of infants are publicly available, we further quantified all 28 vOTU
representatives in another 302 infant bulk metagenomes from five
studies that were not used to build the ELGV catalog (Supplementary
Data 11), and found that all 28 vOTUs were present with compara-
ble relative abundances, averaging 13.9% (median = 10.6%;
IQR = 3.25–18.7%; Fig. 6e).

To further test whether these 407 or 28 vOTUs could be used as
biomarkers to distinguish the human gut virome according to the host
age, we performed predictions using a random forest classifier. With
VLPs-enriched metagenomes, we randomly selected half of infant or
adult metagenomes from each study and then combined for classifier
training and the other half for testing, which resulted in prediction
performancewith area under the receiver operating curve (AUC) score
of 0.84 (Fig. 6c). In cases of bulk metagenomes, we thus performed
two-level (i.e., discovery and independent validation cohorts) predic-
tions. In the discovery prediction cohort, similar to VLPs-enriched
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metagenomes, half of infant or adult metagenomes for training, and
the second half for testing the classifier. In the independent validation
prediction cohort, the second half of adult metagenomes (i.e., that
were not used for classifier training in discovery prediction) together
with newly obtained 302 infant metagenomes (i.e., that were not used
for classifier training and building ELGV catalog) were used for testing
the classifier trained in the discovery prediction. We observed the
close prediction performance with a high AUC score of 0.978 and
0.989 for discovery and validation, respectively (Fig. 6f). We then
tested how many of the vOTU representatives of the early-life human
gut virome were necessary to achieve the comparable predictive per-
formanceby training the classifiermodel with different number of top-
ranking features that were chosen based on themean decrease in GINI
from the classifier trained with the full set of features. The results
showed that using as few as 64 vOTUs for VLPs (Fig. 6d) and eight for
bulk (i.e., vOTU_33846, vOTU_49416, vOTU_36740, vOTU_18175,
vOTU_40124, vOTU_43585, vOTU_60588, and vOTU_74435; Fig. 6g,
Supplementary Fig. 10) achieved AUC=0.84 for VLPs and AUC>0.97
in both discovery and validation cohorts for bulk. Notably, four vOTUs
were overlapped by VLPs and bulk, including vOTU_49416,
vOTU_36740, vOTU_18175, and vOTU_40124, leading to AUC>0.95 in
both discovery and validation cohorts for bulk but only AUC =0.53 for
VLPs. Therefore, these results highlighted that similar to the early-life
human gut bacteriome, the early-life human gut virome also had spe-
cific properties and differed from that of adults.

After exploring the functional potential of these 407 or 28 vOTUs
by mapping their representatives against KEGG44, COG45, and Pfam46

databases,we observed that 34.6%of total genes (1655of 4785 genes in
total) for VLPs or 71.5% for bulk (123 of 172 genes in total) had a match
to at least one of these databases (Supplementary Data 12). Among
those matched genes, the most common functions were replication,
recombination and repair, cell wall/membrane/envelope biogenesis,
and transcription for both approaches, and nucleotide transport and
metabolism inparticular for bulk fromCOGannotation; andmetabolic
pathways (ko01100, map01100) for both approaches, DNA replication
(ko03030, map03030) and homologous recombination (ko03440,
map03440) for VLPs, purine metabolism (ko00230, map00230) and
pyrimidine metabolism (ko00240, map00240) for bulk based on
KEGG annotation. In addition, a large number of genes were homo-
logous to capsid proteins (PF02305) and phage integrase family
(PF00589) for VLPs, and proteins of glutaredoxin (PF00462), helix-
turn-helix (PF01381), and ribonucleotide reductase (PF02867,
PF00317, PF00268) for bulk in the Pfam database.

Discussion
With the growing volume of metagenomic sequencing data from the
human gut microbiome, the integrative analysis of combined datasets
has a high chance to provide more valuable insights and resources for
future studies. The existing gut viral databases generated from the
pooled VLPs-enriched and bulk metagenomes greatly expand our
knowledge of the gut viral composition and evolution, which however
mainly focus on adults. The comprehensive metagenomic landscape
of the early-life human gut virome is poorly understood, limiting the
evaluation and discovery of the specific viruses early in life and their
roles with pediatric diseases. In the present study, a viral catalog with
160,478 genomic sequences exclusively targeting the early life of
humans has been generated from 1865 VLPs-enriched and 6265
bulk human gutmetagenomes in the first three years of life, estimated
to cover 82,141 species-, 11,413 genus-, and 1238 family-level vOTUs.
Notably, the accumulation analysis of vOTUs indicated an approaching
asymptote at the family and genus levels. By leveraging this newly
established early-life human gut virome catalog, we have addressed
open questions concerning the temporal composition and develop-
ment trajectory of early-life humangut virome, clinical factors strongly
associated with the early-life human gut virome, interactions between

early-life human gut virome and bacteriome, the status of mother-
infant shared viruses, and a core set of early-life human gut viruses
differing from adults, under different circumstances of sequencing
approaches of VLPs-enriched or bulk metagenomes.

Numerous studies have indicated that the early-life human gut
bacteriome exhibits different properties in terms of composition and
functions when compared to that of adults, and these differences
gradually decrease as infants grow, becoming closer to adult-like by
about three years of life23,36,39,47. However, the maturation dynamics of
the early-life human gut virome are still underexplored48. Since phages
account for the highest proportion of viruses in the gut34, it is specu-
lated that the development of the early-life human gut virome is clo-
sely correlated with the dynamics of bacteriome early in life. We thus
analyzed the early-life human gut virome with a large-scale infant
population by the ELGV catalog created in the current study, and
found that in line with the bacteriome, the richness of viral species
increased in the first three years of life. In contrast, the proportion of
temperate viruses gradually decreased, partially supporting the
hypothesis that the composition of the early-life human gut virome is
likely dominated by lysogenic induction from the pioneer bacteria4.
We also observed that the early-life human gut virome showed great
inter-individual variations that gradually decreased as infants grew,
and revealed that clinical factors (i.e., delivery mode, gestational age,
and feeding pattern) shifted the dominance in sequence to drive var-
iations in the early-life human gut virome throughout time. Of note,
the factors investigated here have been extensively documented to
influence the bacteriome early in life, but the exactmechanism has yet
to be established. We further found positive correlations between the
early-life human virome and bacteriome in their diversities and abun-
dances, which is in accordance with similar findings in adults11. How-
ever, the bacterial hosts of virome early in life aremainly composed of
Bifidobacterium species, whichare known as themost dominant taxa in
infants. These results indicate the potential roles of the virome in
shaping the bacteriome early in life, but future research is needed to
explore the underlying regulatorymechanisms. A recent study carried
out in vitro and in vivo revealed that the gut environment might
influence the interactions between bacteria and phages by regulating
bacterial gene expressions involved in functions including bacterial
receptor biosynthesis and biofilm formation49. These findings raise the
questionwhether transition from the aerobic/facultative anaerobic gut
environment early in life to strict anaerobic conditions later in adult-
hood could influence the coexistence of phages and bacteria.

The shared gut microbes by mothers and their infants are well-
documented with multiple lines of evidence at various taxonomic
resolutions, particularly at the strain and single nucleotide poly-
morphism (SNP) levels22,26,50. These sharedmicrobes are thought to be
involved in the development and establishment of the early-life human
gutmicrobiome and the offspring’s health26,51,52. However, whether the
maternal gut virome can also be shared with their infants and to what
extent are largely unknown. Based on our findings from the largest
population of mother–infant dyads, mothers and their infants did
share some viral members, consistently indicated by two different
cluster algorithms, i.e., ANI comparingwith different clustering criteria
and whole genome gene-sharing networks. However, it has to be
mentioned that the lack of data on the viral profiles of other body sites
(e.g., breast milk, oral cavity, and skin) and shared environments by
mothers and infants hindered us from further confirming the viruses
that are uniquely contributed by the maternal gut. The extent of viral
sharing between mothers and infants was shown to be affected by
various factors, including infant age, gestational age, and delivery
mode, expanding the previous findings mainly focusing on the
mother-infant shared gut bacteriome25,26. Ultimately, how the shared
virome affects the composition and development of the early-life
human gut bacteriome remains to be further investigated. Vatanen
et al. reported that the mother-infant shared viruses were likely to
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mediate mother-to-infant gene transfer between strains that were not
vertically transmitted24. Moreover, interactions of these maternal
microbes and their functions in infants’ health are just beginning to be
studied51,52. Given the gut bacteriome has been suggested to be a vital
contributor for various human diseases35,53, the potential roles of the
viruses that infect these bacteria shouldbe further investigated54. It has
to be mentioned that the majority of gut viruses of infants we dis-
covered belong to phages, and the shared status of eukaryotic viruses
by mother–infant dyads has been largely overlooked. A recent study
found distinct evolutionary patterns between phages and eukaryotic
viruses in infants, where only the phage composition was found to
become increasingly similar to their mothers as the infant aged28.
Therefore, deeper insights into the dynamics and shared status of
eukaryotic viruses are needed.

Although there is a high inter-individual variation of the gut vir-
ome in both infants and adults55, we found that the early-life humangut
virome contained a number of viral specieswith higher prevalence and
abundance compared to adults, highlighting various viral taxa that are
depleted throughout life. Importantly, we developedmachine learning
models with these viruses that were able to distinguish infants from
adults with an average performance of >0.80 AUC for VLPs-enriched
metagenomes and >0.97 for bulk metagenomes. Meanwhile, near-
maximal accuracies were achievedwith as few as64 and8 viral species,
highlighting their age-dependent specificity. Further, exploring the
utility of the gut virome as biomarkers of disease is a promising pro-
spect to develop new diagnostic and treatment approaches. For
example, Kaelin and colleagues identified viral signatures from the
early-life human gut virome that preceded NEC onset in preterm
infants5, however whether these viruses participated in the patho-
genesis of NEC remains unclear. It thus will be of interest to uncover
more associations of the early-life human gut virome with various
pediatric diseases and then mechanisms in detail by using our newly
established early-life human gut virome catalog.

Currently, twomain approaches exist for studying the viral profile
within a microbiome: VLPs-enriched metagenomic sequencing and
bulk metagenomic sequencing. Both approaches have pros and cons.
For instance, VLPs-enriched metagenomes may skew viral profiles and
abundances due to incomplete removal of cellular organisms and
exclude large viruses by size filtration and whole-genome amplifica-
tion. On the other hand, the use of bulk metagenomes may miss low-
abundance viruses, especially if samples are not sequenced at suffi-
cient depth18,56. By conducting similar analyses fromVLPs-enriched and
bulk metagenomes separately, we observed comparable results in
profing of the human gut virome early in life, such as the increased
alpha diversity and decreased inter-individual variability. There was a
proportion of ~40% viruses that overlapped by VLPs-enriched and bulk
metagenomes sequenced from either the same fecal samples or the
combined metagenomes, which is higher than the proportion (~10%)
previously estimated in adults16. We propose that this inconsistency
may be attributed to the host age, as a relatively simple gut viromewas
found early in life and gradually becomes diverse later in life4. Addi-
tionally, the RNA viral families were as expected only detected in VLPs-
enriched metagenomes. Viral families from VLPs-enriched metagen-
omes were mainly dominated byMicroviridae and Siphoviridae, which
is consistent with the findings from Walters et al.28; whereas the
abundance of Microviridae was much lower in bulk metagenomes.
Moreover, VLPs-enriched metagenomes revealed larger viral varia-
bility between samples, whichmaypartly explain the lower association
of the gut virome with clinical factors (e.g., delivery mode and gesta-
tional age) and an increased number of predictive features that were
necessary to distinguish the gut virome from infants and adults.

Although the current study has advanced our understanding of
the gut virome in early life both in depth and breadth, there are several
limitations that need to be addressed in the future. First, the majority
of gut metagenomes are still from bulk metagenomic sequencing,

whichmeans some low-abundant viruses present in the infant gutmay
be underrepresented in the ELGV catalog. Furthermore, the applica-
tion of VLPs enrichment procedures may be necessary for the dis-
covery of active viruses that do not integrate into the host genome.
Additionally, although RNA viruses represent a minor fraction in the
infant gut virome15,21,57, they have been largely excluded from the ELGV
catalog due to limited metatranscriptomic sequencing data available
from the infant gut.With an increasing volumeof viral sequencing data
from the infant gut microbiome, an expanded integrated and unified
viral catalog including DNA and RNA viruses from early life should be
then generated.

In summary, the established early-life human gut virome catalog
including the largest number of infant fecal samples in this study
comprehensively expands our knowledge of the viral diversity present
in the first few years of life, providing more insights into its diversity
and the factors that shape the human gut virome composition
throughout time. Beyond this study, having the ELGV catalog can aid
infant gut virome research serving as a resource, and facilitate to
uncover the hidden associations between the gut virome and infant
health.

Methods
Publicly available early-life human gut metagenomic datasets
and assembly
PubMed with terms “(infant) AND ((gut) OR (enteric) OR (intestine))
AND (virome)” were combined to search studies that included fecal
virome sequencing data from infants (up to October 2023). Datasets
were subsequently manually curated to remove studies that did not
correctly match the relevant metadata or did not have any sequencing
data available. After this selection process, nine studies including 1865
VLPs-enriched metagenomes were retrieved. In addition, 143 bulk
metagenomes were added from one of the nine studies (ref. 15) as
these samples were processed by using both VLPs and bulk metage-
nomic sequencing. We further used all bulk metagenomes (n = 6122)
that were used to build the catalog of early-life human gut genomes
(i.e., the ELGG catalog, ref. 39) for mining the viral sequences (Sup-
plementary Data 1). In total, 8130 fecal metagenomes (1865 VLPs-
enriched and 6265 bulk metagenomes) were globally distributed
among 15 countries across five continents. All collected metagenomes
were quality-controlled and decontaminated of human genomic DNA
(hg19 human reference genome) by KneadData v0.7.2 with default
parameters. The quality-controlled reads (1.36 × 1011 paired reads, 86%
of the raw sequencing reads) were assembled with MegaHIT v1.1.358

(default parameters except option “-min-contig-len 1000”), generating
32,647,394 contigs with a total length of 1.80 × 1011bp and an average
N50 of 36,915 bp.

Viral sequence prediction from early-life human gut
metagenomes
To maximize the discovery potential of new putative viral sequences
from the early-life humangutmetagenomes, three viral detection tools
(i.e., VirFinder v1.129, VIBRANT v1.2.130, and VirSorter2 v2.2.331) relying
on different algorithms for viral detection were run on the contigs
fromeachmetagenome. VirFinder discriminates viral sequences based
on the different k-mer frequency signatures between viruses and hosts
using machine learning models trained with previously known viral
and host genomes. Only the putative viral sequences from VirFinder
with a score >0.9 and P < 0.01 were kept in order to retrieve high-
confidence predictions. In contrast to VirFinder, VIBRANT was
designed to utilize a hybrid machine learning and protein similarity
approach insteadof sequence features for viruses recovery, andwe ran
VIBRANT with default settings except “-f nucl”. VirSorter2 as the latest
viral identifier by integrating a collection of customized automatic
classifiers to improve the classification accuracy of all types of viruses,
which was run with default settings (including --include-groups
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dsDNAphage,ssDNA --min-score 0.5) with additional option “--keep-
original-seq”. Afterwards, all putative viral sequences from three viral
identifiers were combined on a per-sample basis, generating a number
of 3,375,049 viral sequences.

Thereafter, we ran CheckV v1.0.132 with “end_to_end” mode with
default settings on all 3,375,049 viral sequences, and those
(n = 625,512) including viral sequences and proviruses without the host
contamination,whichmet the following criteria (1)with higher number
of viral genes than host genes, (2) longer than 3 kbp, (3) the times the
viral sequences is represented in the contig less than/equal to one
(kmer_freq ≤ 1), and (4) without warning “>1 viral region detected” and
“contig >1.5× longer than expected genome length”, were kept for
further dereplication by CD-HIT-EST v4.8.159 in two steps. The first step
was to dereplicate on a per-sample basis, and afterwards, the cluster
representatives were dereplicated across all fecal samples, and both
stepswere runwith a global identity threshold of 99% (options “-c 0.99
-g 1 -M 0 -d 0 -n 10”). After the second dereplication, we obtained
160,498 viral sequences.

Clustering of viral sequences into vOTUs
Thenucleotide BLASTdatabaseof all 160,498 viral sequenceswas built
by makeblastdb (option “-dbtype nucl”) from blast v2.13.0, and the
pairwise comparisons were generated by blasting all viral sequences
all-against-all with blastn (option “-max_target_seqs 10,000”). After-
wards, two custom scripts (anicalc.py and aniclust.py) from the
CheckV repository (https://bitbucket.org/berkeleylab/checkv/src/
master/) were used to compute ANI and AF for clustering into
species-level vOTUs on the basis of 95% ANI and 85% AF of the shorter
sequence (options “-min_ani 95, -min_tcov 85, -min_qcov 0”)33. The
longest viral sequences were chosen as the cluster representatives of
vOTUs. The identical viral strains were identified with 100% ANI over
100% AF for mother-infant shared viruses analysis.

To further cluster the species-level vOTU representatives at a
genus- and family-level, we adopted the scripts developed by ref. 18
with a combination of gene sharing and AAI. Briefly, the open-reading
frames (ORFs) of the nucleotide vOTU representatives were predicted
by Prodigal v.2.6.360 with option “-p meta”, and totaling 1,844,038
ORFs were then subjected to all-versus-all alignments by blastp from
the DIAMOND v2.0.1561 (option “-evalue 0.00001, -max-target-seqs
10,000”). For each pair of alignments, the shared genes (e value <
0.00001) were kept to compute the percentage of shared genes and
their AAI.We considered genomes belonging to the same family if they
shared ≥10% or ≥8 genes, and ≥20% AAI (option “-min_percent_shared
10, -min_num_shared 8, -min_aai 20”) were kept, and a Markov Cluster
Algorithm (MCL) v14-137 inflation factor of 1.2 was then applied. At the
genus level, we used a threshold of ≥20% or ≥16 genes, and ≥50% AAI
(option “-min_percent_shared 20, -min_num_shared 16, -min_aai 50”)
were kept, and a MCL inflation factor of 2.0 was then applied.

Viral taxonomic annotation and lifestyle prediction
Taxonomy of viral sequences was annotated by mapping ORFs of
vOTU representatives to the viral protein database in UniProtKB
(including TrEMBL and Swiss-Prot; Release 2022_03) using blastp from
the DIAMOND with options “-evalue 0.00001, -max-hsps 1, -max-tar-
get-seqs 10000”. The corresponding taxonomic rank information was
collected from NCBI based on the taxonomic identifiers of proteins in
September of 2022. Afterwards, the family-level taxonomic annota-
tions were assigned to viral sequences using Demovir R script (https://
github.com/feargalr/Demovir) with default parameters and the upda-
ted database as described above using a voting approach to assign a
taxonomy to each viral sequence.

Additionally, the resulting protein sequences of viral sequences
from mother-infant dyads were used as input for vConTACT243 clus-
tering with the default RefSeq prokaryotic viral database “--db Pro-
karyoticViralRefSeq211-Merged”.

Viral ORFs of each vOTU representative were used to predict the
lifestyle of viruses as “Lytic” or “Temperate” using PHACTS62 with
default settings. Ten replicate PHACTS predictions were performed.

Determining relative abundance of vOTU representatives in
metagenomes
The RPKM (reads per kilobase per million mapped reads) values were
used to represent relative abundances of viral sequences in the fecal
metagenomic samples estimated by CoverM v0.6.1 (https://github.
com/wwood/CoverM). The viral vOTU representatives (n = 82,141)
were used to build the mapping database with BWA v0.7.17-r1188, and
then the quality-controlled reads from each sample were mapped
using CoverM v0.6.1 with options “--mapper bwa-mem, --min-read-
aligned-percent 95, --min-read-percent-identity 90, --min-covered-
fraction 75, --methods rpkm” to keep high-quality mappings. During
themapping process, the quality-controlled readswere excluded if the
percent identity was less than 90%, and theminimumcoverage of each
vOTU representative for the threshold of presence was set to 75%63.
The obtained RPKM values of vOTU representatives within one meta-
genome were normalized by total RPKM value for the percentage
calculation. The mapping rate of quality-controlled reads in each
sample was also obtained from the output of CoverM.

Viral host prediction
The early-life human gut genomes (i.e., the ELGG catalog)39 were used
to predict CRISPR spacers by combining the results from CRT and
PILER-CR with default parameters using the script from ref. 18. The
ELGG contains 32,277 microbial genomes reconstructed from infants
in the first three years of life, representing 2,172 species. With this
approach, we identified 405,859 spacers from 17,837 genomes. The
predicted CRISPR spacers were then compared against viral vOTU
representatives from the ELGV catalog using blastn optimized for
short alignments with options “-evalue 0.0000001, -gapopen 10,
-gapextend 2, -reward 1, -penalty −1, -word_size 5, -perc_identity 100,
-max_target_seqs 10000”.

Comparisons to viral sequences from other databases
Viral sequences from four human virus databases, i.e., CHVD
(n = 45,033), GPD (n = 142,809), GVD (n = 33,242), andMGV (n = 54,118)
and viruses from NCBI RefSeq (release 214; n = 14,814) were obtained.
The quality of all viral sequences was assessed by CheckV using the
same criteria applied to generate the ELGV catalog. A nucleotide
BLAST database of all quality-controlled viral sequences was built and
pairwise comparisons were generated by an all-against-all blastn
search.

Taxonomic annotation of the bacteriome
Quality-controlled sequencing reads from bulk metagenomes were
taxonomically annotated at the species level by MetaPhlAn 4 v4.0.240

using the default settings, and the unclassified fraction was estimated
with option “--unclassified_estimation”. MetaPhlAn 4 uses ~5.1 million
unique clade-specificmarker genes identified from~1million reference
and metagenomic assembled genomes, including bacteria, archaea,
and eukaryotes.

Functional annotation of viral genomes
The ORFs of viral genomes were predicted using Prodigal with option
“-p meta”, and the genes were functionally annotated by eggNOG-
mapper v2.1.7 based on database v5.0.264,65 with default settings. The
functional annotations from KEGG44, COG45 and Pfam46 were obtained
from the the eggNOG-mapper results.

Statistical analysis
Effect size and correlation estimation The effect size (R2) and sig-
nificance of clinical factors were calculated with a cross-sectional and
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univariate PERMANOVA test with 1000 permutations based on
Bray–Curtis distance of relative abundance (expressed as percentage,
%) of vOTUs in each sample among samples using the “adonis2”
function from the R package “vegan” v2.6-466 with “study” as a block
factor. Considering the high inter-individual variability and to improve
computational efficiency, Bray–Curtis distances were only calculated
with 284 vOTUswith a prevalence ≥5% across 6205 bulkmetagenomes
and 990 vOTUs with a prevalence ≥1% across 1682 VLPs-enriched
metagenomes that contained ≥1 vOTU. Metagenomes without the
required metadata for the given factors were filtered before PERMA-
NOVA analysis. Correlations between clinical factors and viral struc-
ture reflected by Bray–Curtis distances were examined with the
function “mantel” from the R package “vegan” v2.6-4by calculating the
Spearman coefficient with 1000 permutations. The obtained P values
were corrected for multiple testing with the Benjamini–Hochberg
method using a False Discovery Rate (FDR) threshold of 5%.

MaAsLin2 analysis Associations between viral features (the rela-
tive abundance, %) and clinical factors (including delivery mode,
gestational age, feeding pattern at sampling, infant age, geographical
location, and gender) were estimated using amultivariate linearmixed
modeling as implemented in MaAsLin238. All investigated clinical fac-
tors were treated as fixed effects and infant agewas not includedwhen
fecal samples were stratified by infant age, with “subjects” as random
effect. A prevalence threshold of 1% and 5% was set for viral feature
selection from VLPs-enriched and bulk metagenomes, respectively,
and the normalized relative abundances with total sum scaling (TSS)
were then arcsin-square root-transformed (AST) before analyses. The
resulting associations were considered significant if q <0.25 was
reported.

Procrustes analysis The association between the composition (the
relative abundance, %) of the virome and its predicted bacterial host
was analyzed using the Procrustes correlation42. The viral and bacterial
abundancematrix at the family level were Hellinger-transformed, then
Bray-Curtis distances were calculated, respectively. Principal coordi-
nate analysis (PCoA) ordinations were generated, which were then
rotated by the function “procrustes” from the R package “vegan”. The
symmetric correlation coefficient and P value were calculated with
9999 permutations with the function “protest” from the R pack-
age “vegan”.

Correlation network analysis Spearman’s correlation coefficients
(⍴) based on the relative abundance (%) of bacteriome and virome of
each sample were obtained by the “corAndPvalue” function from R
package “WGCNA” v1.7167. Co-occurrence networks were constructed
based on the species of bacteriome and virome with a prevalence of
≥1% for VLPs-enriched metagenomes and ≥5% for bulk metagenomes.
Robust correlations with Spearman’s ⍴ ≥0.6 or ≤−0.6 and FDR <0.05
were used to construct networks, which have been used in the pre-
vious study68. The network was then built by using R package “igraph”
v1.3.569.

Random forest-basedmachine learning approachA set of 521 adult
gut VLPs-enriched metagenomes from six studies with
>100,000 sequencing reads were obtained and used for classifier
training and testing. An additional set of 302 infant (within one year
old) and 510 adult gut bulk metagenomes with >100,000 sequencing
reads were obtained from five studies, respectively, and used for the
classifier discovery and validation. These metagenomes were quality-
controlled using KneadData with default settings. The function ran-
domForest from the R package “randomForest” v4.7-1.1 was applied to
train the model with 1000 estimator trees70. Predictions and perfor-
mance metrics were estimated with the “predict” function, and func-
tions “prediction”, “performance” from theR package “ROCR” v1.0-1171.
The rank of predictive features by values of MeanDecreaseGINI was
obtained by the function “importance” from R package
“randomForest”.

Dynamic analysis of viral development To quantify the dynamics
of the early-life human gut virome throughout age, continuous infant
age if available were stratified into seven specific age periods, which
were chosen to both keep the maximal number of metagenomes for
each period and also reflect the early-life human gut viral develop-
ment. The six or seven age periods included for VLPs-enriched or bulk
metagenomes: month 0 (0–7 days; n = 111, median of days (MD) = 1,
IQR =0–2 days for VLPs; n = 1458, median of days (MD) = 4,
IQR = 2–7 days for bulk), month 1 (8–30 days; n = 97, MD= 21,
IQR = 14.5–28 days for VLPs; n = 1537, MD= 21, IQR = 14–22 days for
bulk), month 3 (31–90 days; n = 276, MD= 64, IQR = 44–90 days for
VLPs; n = 907, MD= 53.5, IQR = 41.5–78 days for bulk), month 6
(91–180 days; n = 346, MD= 120, IQR = 120–128 days for VLPs; n = 527,
MD= 122, IQR = 120–138 days for bulk), month 12 (181–360 days;
n = 841, MD= 360, IQR = 360–360 days for VLPs; n = 942, MD= 285,
IQR = 216–355 days for bulk), month 24 (361–720 days; n = 76, MD=
472, IQR = 398–524 days for VLPs; n = 699; MD= 510,
IQR = 405–669 days), month 36 (>720 days; no sample available for
VLPs; n = 120; MD=858, IQR = 799–1085 days). The linear regression
analyses were assessed with function “trendline_sum” from R package
“ggtrendline” with option “model = line2P and Pvalue.corrected
= FALSE”.

Blocked analysis with study To account for the potential het-
erogeneity between studies, the significance of individuality, sta-
bility, diversity, mother-infant shared status of the gut virome
between groups was examined using a blocked (by “study”) two-
sided Wilcoxon test for two-level comparisons and Kruskal–Wallis
test for three or more-levels comparisons implemented in the R
package “coin” v1.4-272. The longitudinal changes of features along
with the infant age were tested with linear mixed modeling with
“study’ as random factor. All statistical analyses have been stated in
the relevant context.

All other quantification and statistical methods have been pro-
vided in the relevant text, with P value or corrected P value (FDR value)
reported. A P value or FDR<0.05 was considered statistically
significant.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The ELGV catalog and representatives generated in this study have
been deposited in the link https://doi.org/10.6084/m9.figshare.
21901557.v2. Data supporting the findings are available within the
paper and additional files. Source data are provided with this paper.

Code availability
All the tools and scripts used for thedata analysis are publicly available,
and the version and parameters used have been indicated. The viral
detection and classification pipelines were adapted from: https://
github.com/alexmsalmeida/virsearch.
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