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Quantifying the adaptive landscape of
commensal gut bacteria using high-
resolution lineage tracking

Daniel P. G. H. Wong1 & Benjamin H. Good 1,2,3

Gut microbiota can adapt to their host environment by rapidly acquiring new
mutations. However, the dynamics of this process are difficult to characterize
in dominant gut species in their complex in vivo environment. Here we show
that the fine-scale dynamics of genome-wide transposon libraries can enable
quantitative inferences of these in vivo evolutionary forces. By analyzing
>400,000 lineages across four human Bacteroides strains in gnotobiotic mice,
we observed positive selection on thousands of cryptic variants — most of
whichwere unrelated to their original gene knockouts. The spectrumof fitness
benefits varied between species, and displayed diverse tradeoffs over time and
in different dietary conditions, enabling inferences of their underlying func-
tion. These results suggest that within-host adaptations arise from an intense
competition between numerous contending variants, which can strongly
influence their emergent evolutionary tradeoffs.

The mammalian gut is home to a diverse microbial community com-
prising hundreds of coexisting strains. High rates of turnover endow
these communities with a capacity for rapid evolutionary change.
Time-resolved sequencing has started to illuminate this process, with
several recent studies in mice1–7 and humans8–14 documenting genetic
variants sweeping through local populations of gut bacteria on time-
scales of weeks and months. This strain-level variation can alter
metabolic phenotypes2,15–17, influencing the breakdown of drugs18 and
the invasion of external strains4,19. Yet despite their importance, the
evolutionary drivers of this in vivo adaptation—and their dependence
on the host environment—are only starting to be uncovered.

Traditional sequencing approaches have a limited ability to
address these questions since they can only observe the handful of
lineages that manage to reach appreciable frequencies within a host.
By this time, successful lineages have often acquired multiple distinct
mutations4,8,14. This makes it difficult to resolve their underlying fitness
benefits or the pleiotropic tradeoffs that they encounter in different
host conditions2. It also prevents us from observing the other con-
tending mutations that—through a combination of luck and merit—
were outcompeted before they were able to reach appreciable fre-
quencies within their host.

Barcoded lineage tracking provides a powerful alternative,
enabling quantitative fitness measurements of thousands of indepen-
dent mutations within a single population20. However, existing meth-
ods for high-throughput isogenic barcoding require specialized
genetic tools and have previously been limited to laboratory strains of
yeast20,21 and E. coli22. Here we show that similar evolutionary infer-
ences can be obtained from genome-wide transposon insertion
sequencing (Tn-Seq) libraries23–27, which are routinely employed in
functional genomics settings. Tn-Seq libraries are traditionally used to
identify conditionally essential genes in various bacterial species and
environments23–25,28, including several recent in vivo studies in gnoto-
biotic mice17,26,29,30. We aimed to exploit this same technique as a crude
form of genetic barcoding, by focusing on the vast majority of Tn
insertions that fall in genes without obvious growth defects. We rea-
soned that the fine-scale dynamics of these lineages could provide a
scalable approach for measuring in vivo evolutionary forces in com-
plex communities like the gut microbiota.

Here we illustrate this approach by analyzing the dynamics
of >400,000 lineages from a previous transposon screen of four
human Bacteroides strains in gnotobiotic mice. We uncover evidence
for positive selection on thousands of cryptic variants—most of which
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are unrelated to their original gene knockouts. We develop a mathe-
matical framework for quantifying this adaptive landscape, and how it
varies across different bacterial species, hosts, and dietary conditions.
We showhow the statistical features of this landscape can shed light on
the functional targets of within-host adaptation and the evolutionary
tradeoffs that emerge among successful lineages. Together, these
results demonstrate that lineage tracking can be a powerful tool for
resolving the dynamics of within-host evolution.

Results
Fine-scale dynamics of Tn-Seq lineages reveal rapid in vivo
evolution
To illustrate our approach, we reanalyzed data from a previous
transposon screen of multiple commensal gut bacteria in gnotobiotic
mice29. Tn-Seq libraries of four human Bacteroides strains—B. cellulo-
silyticus (Bc), B. ovatus (Bo), and two strains of B. thetaiotaomicron (Bt-
VPI and Bt-7330)—were combined with 11 other species and gavaged
into 20 individually cagedmice. Mice weremaintained on either a low-
fat/high-plant polysaccharide diet (LF/HPP), a high-fat/high-sugar diet
(HF/HS), or alternating sequences of the two (HLH/LHL) for 16 days,
with Tn-Seq measurements performed on fecal samples collected at
three timepoints (Fig. 1a). In their original study, Wu et al.29 used these
data to show that ~10–30% of gene knockouts displayed a consistent
fitness cost in at least one of the diets during the first 16 days of
colonization. After excluding the Tn insertions in these and other
“fitness determinant” genes, we identified a collection
of ~60,000–150,000 mutants in each library that were suitable for
high-resolution lineage tracking (Fig. 1b; see the “Methods” section). By
monitoring the relative frequencies of these Tn lineages over time, we

sought to quantify the additional evolutionary forces that acted within
these populations during the first two weeks of colonization.

Consistent with previous observations in other bacterial
species1–4, we found that a handful of lineages expanded to inter-
mediate frequencies (>1%) in vivo by day 16 (Fig. 1c–f), indicating rapid
positive selection on a subset of the lineages. Inmostof these cases,we
observed that the other Tn insertions in the same genes declined over
the same time interval (Fig. 1g and Supplementary Fig. 1). This suggests
that the fitness benefits of the expanding lineages did not derive from
their original Tn insertions, but rather from secondary mutations [or
other forms of heritable phenotypic variation31] that accumulated at
other loci. The total abundance of the expanding lineages was similar
across mice in the same dietary conditions, even when the relative
order of the lineages varied. However, we observed large variations
across the different diets and even larger variations between the Bac-
teroides species. For example, the highlighted lineages in the HF/HS
diet in Fig. 1c–f accounted for ~50% of the Bt-7330 and Bo populations
on day 16 but comprised amuch smaller fraction in Bc and Bt-VPI. This
shows that the apparent rates of adaptation (as measured by the
expansion of the largest Tn-Seq lineages) can vary between closely
related commensal gut species, and even between strains of the same
species.

The differences between species were much less pronounced on
day 4, with no individual lineage reaching >5% frequency, and most
remaining <0.01% (Fig. 1c–f). While low read counts make it difficult to
follow these lineages individually, we reasoned that their collective
behavior could still encode information about the evolutionary forces
operating on these shorter timescales. As a first step, we focused on
the subset of lineages that were present at a given frequency f0 in the
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Fig. 1 | Collective behavior of Tn lineages reveals rapid in vivo evolution in
gnotobiotic mice. a Schematic of Tn-Seq experiment in ref. 29. Mutant libraries of
4 Bacteroides strains and 11 other species were introduced in gnotobiotic mice fed
different diets. b Number of Tn lineages included in analysis (see the “Methods”
section). c–f Frequency trajectories of the 10 largest lineages at day 16 in two mice
in each diet. g Frequency trajectories of all Tn lineages in three representative Bt-
VPI genes in a single HF/HS mouse. Most lineages in BT0238 expand, implying a
beneficial effect of the gene knockout. In other genes (e.g. BT2178 and BT3041),

single lineages diverge in frequency. h Schematic of the evolutionary null model
(see the “Methods” section), where neutral lineages decline due to both competi-
tion with fitter lineages and stochastic fluctuations from genetic drift. i–l Dis-
tribution of lineage read counts on day4 for lineageswith similar initial frequencies
in the input library,measured in the four fixed-dietmice in (b–e). Gray distributions
show the null expectation from sequencing noise alone (see the “Methods”
section).
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initial library and examined the distribution of their frequencies at day
4 (Fig. 1h–l). In the simplest evolutionary null model (see the “Meth-
ods” section), the typical frequencies of these neutral lineages would
decline due to competition with fitter variants in the population, as
well as from stochastic fluctuations from genetic drift and sequencing
noise (Fig. 1h; Supplementary Notes 1–3).

The observed distributions were largely consistent with this pre-
diction. We found that the aggregated dynamics were remarkably
similar across mice in the same diet, and to a lesser degree, between
diets as well (Fig. 1i–l). However, we once again observed dramatic
differences between the Bacteroides species. By day 4, most lineages
remained close to their initial frequencies in Bo and Bt-VPI, while the
majority of lineages substantially declined in Bc and Bt-7330. These
differences could not have been caused by genetic bottlenecks, since
we found that many of the same lineages were consistently present—
and often expanded—in multiple independent mice (Fig. 2a). These
correlations indicate that the collective behavior in Fig. 1i–l is not only
driven by positive selection, but also that many of the causative var-
iants must have been present in the initial Tn-Seq library prior to
colonization of the mice. Such pre-existing variants have also been
observed in other neutral barcoding systems4,20–22,32, and are thought
to arise from the multiple rounds of outgrowth and altered environ-
mental conditions that are imposed during library creation20,21.

Regardless of their source, we note that the apparent rates of
adaptation in Fig. 1i–l are different from those in Fig. 1c–f. For example,
Bc showed the strongest signatures of positive selection on day 4 but

had the smallest number of high-frequency lineages on day 16. Bo
exhibited the opposite trend. This shows that the dynamics of com-
mon variants do not necessarily reflect the broader adaptation
occurring within these populations at lower frequencies.

Contrasting the spectrum of adaptive lineages in different gut
species
To quantify this adaptive landscapemore systematically, we sought to
infer the fitnesses of the adaptive lineages driving the dynamics in
Figs. 1 and 2a. The low read counts and fluctuating environmental
conditions in this dataset make it difficult to apply existing
methods20,21, which assume that the fitness benefits of each lineage are
constant andwell-sampled acrossmultiple consecutive timepoints.We
therefore turned to a cross-validation approach that took advantage of
the large number of biological replicates and the high levels of pre-
existing variation implied by Fig. 2a.

To implement this approach, we first ranked each lineage by its
average fold change across a subset of the mice on a given diet (the
“discovery” cohort), and we compared this ranking to the average
relative fitness in a held-out “validation” cohort from the same diet
(Fig. 2b; see the “Methods” section).We reasoned that if the expanding
lineages were driven by selection on preexisting variants, then their
fitness in the validation cohort should be consistently positive as well.
Figure 2c shows an example of this approach for the Bc populations in
the HF/HS diet between days 0 and 4. While the fitnesses of the indi-
vidual lineages were noisy as expected, we nevertheless observed a
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Fig. 2 | Positive selection on thousands of lineages that are unrelated to their
original gene knockouts. a Joint distribution of day 4 read counts for a subset of
Bc lineages in two representativemice. Lineageswere drawn fromanarrow rangeof
initial frequencies in the input library (gray regions). b Schematic of cross-
validation approach to detect adaptive lineages. c, f Average relative fitness in
validationmice (n = 4) for the fittest 20,000 lineages in the discovery cohort (n = 5)
in Bc (c) and Bt-VPI (f). Lines denote running averages of 100 lineages (orange) or

their corresponding gene complements (green) (see the “Methods” section). Tri-
angles indicate the 10 largest lineages in the HF/HS mice on day 16. d, g Fitness
distribution of adaptive lineages inferred from panels c and f (see the “Methods”
section) along with corresponding estimates for the LF/HPP diets (n = 4 discovery,
n = 3 validation). e,hGroups of adaptive lineages continue to expand over time in 5
HF/HS mice. Colored lines are the total frequency of lineages in ranks indicated
in (e).
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clear enrichment in positive relative fitness among the top ~15,000
lineages (out of the ~90,000we examined). By inverting the rank-order
curve in sliding windows, we can obtain a self-consistent estimate for
the distribution of fitnesses of the adaptive lineages that is robust to
the presence of sampling noise (Fig. 2d, Supplementary Fig. 2; see the
“Methods” section). These results suggest that >10% of the lineages in
Bc experienced strong positive selection during the first four days of
colonization (see the “Methods” section; Supplementary Note 4). This
cohort continued to expand over the next 12 days (Fig. 2e), suggesting
that the fitness benefits of these lineages were not confined to this
initial time interval.

In principle, these in vivo fitness benefits could be caused by the
gene-knockout effects of the original Tn insertions. Under this
hypothesis, we would expect that the other lineages with insertions in
the samegene should alsoexpandover the same time interval (Fig. 2b).
Surprisingly, however, we observed no strong correlation between the
relative fitnesses of the putatively adaptive lineages in Bc and the fit-
nesses of their corresponding “gene complements” (Fig. 2c, see the
“Methods” section). This suggests that their in vivo fitness benefits
were caused by secondary mutations (or other forms of heritable
genetic variation) that accumulated in the library prior to colonization.
Our analysis shows that the fitness benefits of these mutations are
large by evolutionary standards (>10% per day), and are comparable to
the “fitness determinants” detected in the original transposon screen
(Supplementary Fig. 3). We also observed considerable variation in
fitness within the subset of adaptive lineages (Fig. 2c, e and Supple-
mentary Fig. S4) suggesting that their benefits derived from different
underlying mutations.

Similar signatures were present in the other diets and other Bac-
teroides species, though the number and magnitudes of the fitness
benefits were somewhat different (Fig. 2f, g and Supplementary Figs. 5
and 6). For example, the number of strongly expanding lineages in Bt-
VPIwas lower than in Bc. Many of these lineages were also clustered in
the same genes (e.g. BT0238 in Fig. 1g), suggesting that their fitness
benefits were caused by their original Tn insertions. However, even in
this case, we found that loss-of-function variants accounted for only a
small fraction of the putatively adaptive lineages since thousands of
other lineages expanded by similar amounts (Supplementary Fig. 4).
Bo and Bt-7330 showed similar trends (Supplementary Fig. 5). In each
of these cases, we found that the largest lineages at day 16 were enri-
ched among the putatively adaptive mutations at day 4. Interestingly,
however, these eventual winners were not necessarily the fittest
lineages early on, suggesting that further mutations or environmental
shifts were required to reach their dominant frequencies. This high-
lights how chance and competition among numerous low-frequency
variants can play an important role in determining which mutations
rise to appreciable frequencies within a host.

Pleiotropic fitness tradeoffs across time and between diets
Wenext examined how this adaptive landscape varied over time and in
different dietary conditions. The large number of pre-existing variants
revealed by Fig. 2 provides a unique opportunity to address this
question, by asking how the fitnesses of the same lineages co-vary
across other diets and time intervals28,33,34.

Despite broad differences in the shape of the adaptive spec-
trum across diets (Fig. 2d, g and Supplementary Fig. 6), we observed
that the relative fitnesses of these lineages were remarkably con-
sistent across the HF/HS and LF/HPP diets during the first four days
of colonization (Fig. 3a, h–k and Supplementary Fig. 7). This indi-
cates that the thousands of adaptive lineages we observed in Fig. 2c,
f were not specific to the host diet. Intriguingly, the in vivo relative
fitnesses in Bc were also highly correlated with in vitro fitnesses
measured in several media (Supplementary Fig. 8), suggesting that
they were also not specific to the complex features of their host
environment.

In contrast, we found that the relative fitnesses of the lineages
were only weakly correlated across time intervals in each of the Bac-
teroides species (Fig. 3b, h–k). This lackof correlationwasnotdrivenby
the absence of selection at later times: Fig. 3h–k and Supplementary
Fig. 9 show that the relative fitnesses during days 4–10 were still
comparatively well correlated within the same diet. Instead, these
results indicate that the selection pressures shifted over time, poten-
tially driven by the rapid changes in the host environment or the sur-
rounding microbial community. For example, the initial colonization
of a germ-free gut could favor variants that are better able to survive
the transit through the stomach or expandmore rapidly in the cecum,
while a fully saturated gut could select for variants that are beneficial
during nutrient-limited competition.

Consistent with this hypothesis, we found that the relative fit-
nesses in later time intervals were only weakly correlated across diets
(Fig. 3c, h–k), suggesting that host diet can have a substantial impact
on selection at later times. Across the larger set of adaptive lineages,
we identified hundreds of individual examples with strong fitness
tradeoffs in different dietary conditions (Fig. 3d–f and Supplementary
Fig. 10; Supplementary Note 5) Some lineages expanded 10-fold in LF/
HPP, but were neutral or deleterious in HF/HS (Fig. 3d, e); other
lineages displayed the opposite trend (Fig. 3f). These same lineages
exhibited diverse behaviors in other time intervals as well. For exam-
ple, while the example lineages in Fig. 3d, e displayed similar tradeoffs
between days 4-10, only one of them expanded between days 0-4,
while the other was effectively neutral. Conversely, the lineages in
Fig. 3e, f were both effectively neutral between days 0–4 but exhibited
opposing tradeoffs betweendays 4–10. This diverse rangeofbehaviors
provides further evidence that the adaptive lineages were driven by
different underlying mutations, which can be differentially amplified
by specific sequences of environments.

Despite these strong tradeoffs for individual lineages, our broader
characterization revealed no strong evidence for a global tradeoff in
the underlying fitness landscape. We found that many individual
lineages consistently expanded in both diets (Fig. 3g and Supple-
mentary Fig. 10), demonstrating that it is possible for evolution to
improve fitness in both environments simultaneously. The lone
exception was the comparison with the effective fitness during Tn
library generation (see the “Methods” section), which was anti-
correlated with in vivo fitness in Bc and Bt-7330 (Supplementary
Fig. 11). These limited anti-correlations suggest that the long-term
tradeoffs observed at the population level2 might not necessarily
reflect an underlying physiological constraint, but may actually be an
emergent property of their in vivo evolutionary dynamics33.

A striking example of this behavior is illustrated by the handful of
lineages that reached the largest frequencies by the end of the
experiment. These lineages provide a proxy for the mutations that are
likely to dominate the population at long times. We found that the
largest lineages in the constant diets exhibited an apparent fitness
tradeoff in Bc, with higher fitnesses in their home environment and
average fitnesses in the other (Fig. 3c). In contrast, the alternating diets
consistently selected for lineages that were fitter in both environ-
ments, despite their lower overall representation in the underlying
fitness distribution (Fig. 3c and Supplementary Fig. 12). This illustrates
how clonal competition and fluctuating selection pressures combine
to determine the emergent fitness tradeoffs within a population.

Discussion
Together, these results show how the fine-scale dynamics of genome-
wide transposon libraries can enable quantitative inferences of in vivo
evolutionary forces. We found that the early stages of colonization can
be dominated by intense competition between thousands of adaptive
variants — most of which would not be observed with traditional
whole-genome sequencing approaches.While we have observed these
dynamics in native human gut strains, it is possible that the high rates
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of adaptation we observed here could be driven by the novelty of the
murine host or the comparatively low diversity of the artificial gut
community. Our approach could be used to test these hypotheses in
future experiments, by examining how the spectrumof fitness benefits
differs in communities with higher levels of taxonomic diversity35.

A key limitation of this approach is that it does not provide direct
information about the genetic targets of adaptation. Future experi-
ments could begin to map these molecular drivers by isolating and
sequencing a subset of the adaptive lineages36, though this would
require a substantial sequencing effort, involving hundreds of isolates,
to thoroughly sample the adaptive diversity in each population (Sup-
plementary Fig. 13; Supplementary Note 6). Figure 3 also suggests that
it may be possible to cluster the phenotypic impacts of these variants
directly, by examining their pleiotropic tradeoffs across a large panel
of environmental conditions28,30 (Fig. 4a). For example, using the
existing environments in Fig. 3, we can identify subsets of adaptive
lineages whose pleiotropic tradeoffs strongly resemble the gene-level
profiles of unrelated genes (Fig. 4b, c; see the “Methods” section). This
suggests that the fitness benefits of these lineageswere caused by loss-
of-functionmutations in the associated genes orpathways, providing a
link to their underlying function.

Using this approach, we identified a cluster of 235 adaptive
lineages inBt-VPI that strongly resembled loss-of-functionmutations in
the polysaccharide utilization locus PUL66 (Fig. 4b), which encom-
passes genes BT3698-3705 that are responsible for starch

metabolism37–39. The disruption of PUL66was previously shown to be a
fitness determinant in the HF/HS diet in the original Tn-Seq screen29;
Fig. 4b shows that ΔPUL66-like phenotypes are also easily accessible
via secondarymutations (though they are still not the fittest lineages in
the population). A contrasting example is provided by the BT0238
gene (Fig. 4c), which encodes an anaerobic sulfatase-maturating
enzyme (anSME) that is important for the utilization of mucin and
other sulfated hosts glycans40–42. While the disruption of BT0238 pro-
vided significantly largerfitness benefits thanΔPUL66 in theHF/HSdiet
(equivalent to an extra ~8-fold increase by day 16), we observed only a
handful of adaptive lineages that exhibited fitness profiles similar to
ΔBT0238 (Fig. 4c). The larger number of ΔPUL66-like lineages allowed
them to collectively account for a larger fraction of the Bt-VPI popu-
lation at the end of the experiment (~3% vs. <1%), despite their smaller
initial fitness benefits. This illustrates how differences in mutational
accessibility can play a crucial role in determining the phenotypic
response of an evolving population.

In addition to these annotatable examples, we also identified
recurrent targets of selection whose fitness profiles were distinct from
any gene-level knockouts (Fig. 4d, e and Supplementary Fig. 15; see the
“Methods” section). These novel phenotypic clusters were particularly
prevalent in Bc, which exhibited larger numbers of adaptive lineages
(and fewer beneficial gene knockouts) compared to Bt-VPI. These dif-
ferent examples in Fig. 4 and Supplementary Fig. 15 show how the
secondary mutations identified by our approach can illuminate

Fig. 3 | Selection pressures shift over time to reveal diet-dependent fitness
tradeoffs. a–c Joint distribution of relative fitnesses in (a) HF/HS vs. LF/HPP diets
over days 0-4, (b) days 0–4 vs. 4–10 in the HF/HS diet, and (c) HF/HS vs. LF/HPP
diets over days 4–10; triangles indicate the 10 largest lineages at day 16 in the HF/
HS (orange), LF/HPP (blue), or alternating (purple) diets. d–g Example lineages
with strong fitness tradeoffs in different in vivo and in vitro conditions; circles

indicate independent mice or in vitro cultures. Mice fed alternating diets are
grouped with their respective diet at each time interval. h–k Pearson correlation
coefficients of relative fitness values of lineages across different pairs of environ-
ments (see the “Methods” section). Symbols denote individual pairs of biological
replicates.T1 = days0–4;T2 = days 4–10; Lib. librarycreation, Arab. arabinose; Gluc.
glucose; Xyl. xylose.
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regions of the adaptive landscape that are not accessible via traditional
knockout screens.

Much of our analysis has been made possible by the presence of
standing genetic variants, which appear to dominate the dynamics
over the timescaleswehave considered.Whilepre-existing variants are
also observed in other neutral barcoding systems4,20–22,32, it remains
unclear whether the higher rates we observed here are driven by
specific features of the Tn-Seq protocol in ref. 29 (e.g. antibiotic
selection or aerobic conjugation) or the increased importance of non-
point-mutation processes (e.g. phase variation) that occur at high rates
in some Bacteroides species43–45. In either case, the phenotypic diver-
sity revealed by our analysis shows that these standing variants are not
all caused by a single high-rate mutation (e.g. self-diploidization in
ref. 36), but instead comprise a broader adaptive landscape that can
drive in vivo evolution.

Finally, while we have focused on the dominant signals of selec-
tion on standing variants, it is possible to extend our approach to
identify signatures of de novomutations (Fig. 5a, b and Supplementary
Fig. 16; see the “Methods” section) and rates of genetic drift (Fig. 5c–e
and Supplementary Fig. 17; see the “Methods” section) by examining
the deviations around this dominant trend. Taken together, these
results suggest that future applications of genetic barcoding—com-
bined with quantitative evolutionary modeling—could be a promising
tool for resolving in vivo evolutionary forces in complex microbial
communities.

Methods
Data and preprocessing
Raw data were obtained from a previous study29, in which trans-
poson libraries of 4 human Bacteroides strains (Bc, Bo, Bt-VPI, and Bt-
7330) were combined with 11 other species and gavaged into gno-
tobiotic mice. Transposon libraries were created using the same
protocol29, which included 6 h of mating under aerobic conditions
and 2 days of growth on antibiotic-treated plates (50 μg/mL ery-
thromycin and 200 μg/mL gentamicin). Multi-taxon transposon
insertion sequencing (InSeq) was performed on each input library
(with 23–41 technical replicates per species), as well as on fecal
samples taken on days 4, 10, and 16; we focused on the 16 replicate
mice that had sufficient InSeq data at all 3 timepoints. One of the
species (Bc) was also assayed in a variety of in vitro conditions. The
full list of samples and technical replicates is provided in Supple-
mentary Data 1.

Raw sequencing reads were mapped to reference genomes for
each of the 4 Bacteroides strains. After removing the transposon
sequence, each read was matched to its corresponding insertion
location on the reference genome using a custom Python script
(Supplementary Code 1). Only exactmatches were retained, and reads
that matched to multiple locations were excluded. We assumed that
eachunique location ℓ corresponded to a distinct lineage founded by a
single transposon insertion event, and we calculated the total number
of reads Rℓ,s corresponding to lineage ℓ in sample s.

Fig. 4 | Inferring the functional targets of adaptation using pleiotropic fitness
tradeoffs across many environmental conditions. a Fitness profiles of adaptive
lineages across environments can be used to identify clusters of phenotypically
similar lineages (see the “Methods” section). b, c Groups of adaptive lineages in Bt-
VPI that resemble loss-of-function mutations in other genes. Left panels show the
location of the target gene (inner ring, black) relative to unrelated Tn lineages
(colors). Middle panels show the estimated fitness profiles (solid curves, see the
“Methods” section) across in vivo environments (diet + time interval); for clarity, at
most 5 representative lineages are shown for each cluster. Green bands denote the

interquartile (b) or full (c) ranges among all lineages in the cluster, and black bands
are the range of knockout profiles from a random two-part split of data (see the
“Methods” section). Right panels show fold-change of the same knockout in in vitro
conditionsmeasured in another study30.d, e Examples of novel phenotypic clusters
in Bc that do not resemble any gene knockout. Fitness profiles are the same as in
(b, c); green bands represent the full range. In both examples, the best-matching
gene (black, see the “Methods” section) is >30 kb away from any lineage in the
cluster.
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Toarrive at a conservative set of quasi-neutral Tn lineages for each
Bacteroides strain, we removed from downstream analysis all lineages
whose corresponding transposons fell within or 100bp upstream of
any of the “fitness determinant” genes previously identified by Wu
et al.29. Most of these gene knockouts had deleterious fitness effects,
though a small fraction were beneficial (see Tables S4A-B, S9A-B, S14A-
D of ref. 29). Thisfiltering step left a total of n = 418,879 lineages across
the four libraries (88,396 in Bc; 117,020 in Bo; 150,849 in Bt-VPI; and
62,614 inBt-7330),whichweused for all of our subsequent analysis.We
estimated the relative frequencies of these remaining lineages using
the plug-in estimator,

f̂ ‘,s =
R‘,sP
‘0R‘0 ,s

, ð1Þ

where the denominator sums over all of the filtered lineages within a
given Bacteroides strain. This renormalization scheme ensures that the
relative fitnesses inferred in our later analyses are independent of the
fitness determinant genes examined in ref. 29. (The exceptions are
Fig. 4 andSupplementary Figs. 3, 14, and 15,which compare the relative
fitnesses of the fitness determinant genes identified byWu et al.29 with
the additional adaptive lineages identified in the present work.)

Model of evolutionary dynamics
We assumed that the temporal dynamics of the Tn lineages could be
described by a simple evolutionarymodel, in which the lineages within

a given mouse m competed with each other as a well-mixed popula-
tion. The frequencies of rare lineages (fℓ,m≪ 1), measured with respect
to the subpopulation of filtered lineages, are then described by a sys-
tem of coupled stochastic differential equations,

∂f ‘,m
∂t

= ½s‘,mðtÞ � XmðtÞ�f ‘,m +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΛmðtÞf ‘,m

q
� η‘,mðtÞ , ð2aÞ

where ηℓ,m(t) is a Brownian noise term with mean zero and variance
one46, and Λm(t) is the strength of genetic drift in mousem at time t47.
Each lineage ℓ has instantaneous fitness sℓ,m(t), while XmðtÞ is themean
fitness of the filtered lineages,

XmðtÞ=
X
‘

s‘,mðtÞ � f ‘,mðtÞ : ð2bÞ

Equation (2) is a time-dependent generalization of the branching
process model employed in previous in vitro lineage tracking
studies20,21. The additional time dependence accounts for shifting
selection pressures and population bottlenecks that might arise in
more complex in vivo settings (e.g. due to changes in the host
environment or in the composition of surrounding community). In
Supplementary Note 1, we show that this model is robust to the
exclusion of certain lineages (i.e. those falling in fitness determinant
genes), provided that XmðtÞ and Λm(t) refer to the subset of retained
lineages.
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Inferring drift in history-dependent variation across mice 

Fig. 5 | Signatures of de novo mutations and genetic bottlenecks from the
variability across replicates. a Examples of Tn lineages that expanded in one HF/
HS mouse (orange) but not in others (black). The ratio between the largest and
second-largest frequencies defines a divergence score (Δℓ) that can signal the
acquisition of a beneficial mutation (see the “Methods” section). b Distribution of
divergence scores onday 16 for all lineages that reached>0.1% frequency in at least
one HF/HS mouse (green), versus a random set of noise-matched controls (gray;
see the “Methods” section). The enrichment of large divergence scores in Bo, Bt-
VPI, and Bt-7330 (but not Bc) suggests that de novomutations play a greater role in
some species than others. c–e Measuring genetic bottlenecks in the presence of
widespread fitness variation. c Population genetic theory predicts that for a given
current frequency, lineages that expanded more rapidly in the recent past will
exhibit more variation across replicates since they had a smaller size at the initial
timepoint (f0); by contrast, sampling noise at the current timepoint is conditionally

independent of f0.dAnexample of this signature inBc, showing the variance inday
4 frequency across LF/HPP mice for lineages with similar mean frequencies
(7× 10�5 ≤ f 1 ≤8× 10�5) but different values of f0. Points denote means and boot-
strapped standard errors of different initial frequency bins (33–256 lineages per
bin, 1063 total), while inset shows the full distributions. The significant correlation
with f0 is consistent with genetic drift (one-sided p < 10−4, permutation test; see the
“Methods” section). e Inverting the regression in (d) yields an estimate of the
effective population size Neτe, where τe is the effective generation time (see the
“Methods” section). Symbols denote least-squares estimates and standard errors
(see the “Methods” section) for Bc populations obtained from different final fre-
quency ranges (ordered left to right from smallest to largest, representing
669–6391 lineages). For comparison, shaded regions denote a range of estimates
obtained from STAMPR51.
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The deterministic component of Eq. (2) depends on the time-
dependent fitness of the lineage, sl,m(t), and the mean fitness of the
population, XmðtÞ. Previous lineage tracking studies have sought to
decompose these contributions using a pre-defined or inferred set of
neutral lineages20,21,48. Identifying such neutral lineages is difficult in
our present dataset, due to the large fraction of non-neutral variation
present in these libraries. Instead, we worked directly with relative
fitness x‘,mðtÞ � s‘,mðtÞ � XmðtÞ, which measures the instantaneous
growth rate of a lineage as it competes with its surrounding popula-
tion. We also defined a time-averaged version of the relative fitness
over a given time interval t0 ≤ t ≤ t1:

χ‘,m,t0 :t1
=

1
t1 � t0

Z t1

t0

½s‘,mðtÞ � XmðtÞ�dt , ð3Þ

which was the focus of our downstream analysis.

Model of sampling noise from sequencing
We assumed that the observed read counts Rℓ,s were generated from
the within-host dynamics in Eq. (2) through an additional sampling
process, which encapsulates the combined effects of cell sampling,
PCR amplification, and DNA sequencing. We assumed that this sam-
pling process is unbiased, so that given a true frequency f ‘,ms

ðtsÞ in
fecal sample s of mousems at time ts, the average number of observed
read counts is given by

hR‘,sjf ‘,ms
ðtsÞi =Ds � f ‘,ms

ðtsÞ , ð4Þ

whereDs is the total coverageof sample s. Similarly, the variancecanbe
written in the general form

VarðR‘,sjf ‘,ms
ðtsÞÞ= κs � Ds � f ‘,ms

ðtsÞ , ð5Þ

where κs is a constant that describes the deviations from simple Pois-
son sampling. While the full distribution of the sampling process can
be complicated, we follow previous work and assume that it can be
approximated by a second branching process20,21. In Supplementary
Note 2, we show that this sampling process combines with the within-
host dynamics in Eq. (2) to produce an effective branching process
with mean and variance:

hR‘,si=Ds � a‘,ms
ðtsÞ ,

VarðR‘,sÞ=D2
s � a‘,ms

ðtsÞ
κs

Ds
+ 2b‘,ms

ðtsÞ
� �

,
ð6aÞ

where the functions aℓ,m(t) and bℓ,m(t) are defined by

a‘,mðtÞ= f ‘,mðt0Þ � e
R t

t0
x‘,mðt0 Þdt0 ,

b‘,mðtÞ= e
R t

t0
x‘,mðt 0 Þdt 0

Z t

t0

dt0
Λmðt0Þ

2
e
�
R t0

t0
x‘,mðt00 Þdt 00

:
ð6bÞ

Equation (6) links the observed read counts Rℓ,s to the underlying
evolutionary parameters Λm(t), sℓ,m(t), and XmðtÞ in each mouse. All
analyses were derived by considering different limits of this
basic model.

Distributions of lineage frequency shifts over time
The theoretical predictions for the lineage frequency shifts in Fig. 1h
were derived from the branching process model in Eq. (6) (Supple-
mentary Note 3). To compare these predictions with the data, we
tabulated the empirical distributions of day 4 read counts for the
subset of lineages in each mouse whose day 0 frequencies fell in the
range 10/Dm,4 ≤ f0 ≤ 15/Dm,4 (Fig. 1i–l). These day 0 frequencies were

estimated by pooling all but one of the technical replicates of the input
library. As a comparison, we performed the same procedure on the
remaining input replicate to obtain an empirical null distribution
showing the effects of technical noise alone (Fig. 1i–l). Deviations from
this null distribution suggest that the observed dynamics are driven by
the evolutionary forces of natural selection and/or genetic drift.

The joint distribution in Fig. 2a was computed using a similar
procedure. We identified a subset of lineages with similar initial fre-
quencies, 2 × 10−5 < f0 < 3 × 10−5 in the input library, andmeasured their
day 4 read counts in a pair of mice in the same diet. Under our simple
model above, this joint distribution should factor into a product of the
two marginal distributions [p(R1,R2) ≈ p(R1)p(R2)], regardless of their
individual locations or widths. The strong correlations in Fig. 2a indi-
cate departures from this simplemodel, in which a substantial fraction
of the focal lineages have non-zero fitnesses that are shared across
independent mice.

Estimating relative fitnesses from read count trajectories
We estimated the relative fitnesses in Eq. (3) by pooling observations
from multiple replicate mice in the same environment e. For a given
cohort of mice M, we estimated the time-averaged relative fitness
using the plug-in estimator,

χ̂‘,e,t0 :t1 =
1

t1 � t0
log

max �f ‘,Mðt1Þ, minf 1
DMðt1Þ ,

�f ‘,Mðt0Þg
n o

max �f ‘,Mðt0Þ, minf 1
DMðt0Þ ,

�f ‘,Mðt1Þg
n o , ð7aÞ

where �f ‘,MðtÞ is the weighted average of the lineage’s frequencywithin
the cohort,

�f ‘,MðtÞ �
P

m2MR‘,ðm,tÞP
m2M,‘0R‘0 ,ðm,tÞ

� R‘,Mi

DMi

, ð7bÞ

andDMðtÞ is the total coverage of the library across the cohort ofmice,

DMðtÞ �
X

‘,m2M
R‘,ðm,tÞ : ð7cÞ

When �f ‘,Mðt0Þ and �f ‘,Mðt1Þ are both greater than zero, Eq. (7) reduces
to the standard log-ratio estimator, χ̂ ≈ 1

t1�t0
log �f ‘,Mðt1Þ=�f ‘,Mðt0Þ. On

the other hand, if either of the frequencies are zero, the minf�g terms
act like an effective pseudocount, which is conservatively biased to
assign zero relative fitness to lineages with sufficiently low frequency
[e.g. f(t0) < 1/D(t1)].

We used a similar approach to estimate relative fitnesses in the
in vitro environments (Fig. 3h–k and Supplementary Fig. 8).Wu et al. 29

completed the Bc library in 5 in vitro growth media; 2 independent
cultures were inoculated in each medium, and 3 aliquots were
sequenced from each culture after reaching stationary phase. We
estimated the relative fitness in each independent culture using Eq. (7);
since no explicit time interval was reported, we set t1−t0 = 1 to reflect
the duration of a typical overnight culture.

We also defined a special in vitro environment representing the
library creation process. We assumed that all of the Tn lineages were
initially founded by unique insertion events in a single cell so that their
frequencies in the input library reflect the differential growth that
occurred during the library creation process.We estimated the relative
fitness in this effective environment using Eq. (7) with a uniform initial
frequency,

f ‘,Mðt0Þ �
1P
‘1

, ð8Þ

and an arbitrary time interval t1−t0 = 1.
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Cross-validation procedure
We adopted a cross-validation approach to distinguish genuine
selection on adaptive lineages from biological or technical sources
of noise. We split k mice that were maintained in the same dietary
environment e into equally sized discovery (MDe

) and validation
(MVe

) cohorts. The replicate measurements of the input library
were also evenly divided between the two cohorts. We used this
partitioning to generate independent estimates of the relative fit-
ness of each lineage in the discovery and validation cohorts. We
ranked each lineage by its fitness in the discovery cohort, and
examined how the fitnesses in the validation cohort varied as a
function of their rank ρ(ℓ) in the discovery cohort (Fig. 2c, f and
Supplementary Fig. 5). Since the two cohorts have independent
sources of technical and biological noise, systematic correlations
between these two quantities can be used to distinguish genuine
fitness differences from statistical fluctuations in read counts.

To increase the signal-to-noise ratio, we restrictedour attention to
lineages with initial frequencies >10−6.5 (equivalent to ~10 reads in the
pooled input library in each species). In addition, we only examined
lineages with a minimum number of expected reads in the validation
cohort:

minfDMVe ,0
,DMVe ,1

g �maxf�f ‘,MDe ,0
, �f ‘,MDe ,1

g> 5: ð9Þ

These filters were used to generate the rank-ordered fitness distribu-
tions in Fig. 2c, f and Supplementary Figs. 5–7.

To distinguish systematic trends from the noisy estimates of
individual lineages (Fig. 2), we coarse-grained groups of lineages based
on their relative fitness rank, ρ(ℓ), in the discovery cohort. For a given
range of ranks ρ0 ≤ ρ ≤ ρ1, we defined the coarse-grained frequency
�f ρ0 :ρ1 ,MðtÞ by summing over the individual lineage frequencies in
Eq. (7b):

�f ρ0 :ρ1 ,MðtÞ �
X

ρ0 ≤ ρð‘Þ≤ ρ1

�f ‘,MðtÞ : ð10Þ

Under the simple model in Eq. (2), this coarse-grained frequency will
grow as

hf ρ0 :ρ1 ,Mðt1Þi = �f ρ0 :ρ1 ,Mðt0Þ � exp �χρ0 :ρ1 ,e,t0 :t1
� ðt1 � t0Þ

h i
, ð11Þ

where �χρ0 :ρ1 ,e,t0 :t1
is the average relative fitness,

�χρ0 :ρ1 ,e,t0 :t1
=

1
t1 � t0

log

P
ρ0 ≤ ρð‘Þ≤ ρ1

�f ‘,Mðt0Þ � exp χ‘,e,t0 :t1 � ðt1 � t0Þ
h i

P
ρ0 ≤ρð‘Þ≤ρ1

�f ‘,Mðt0Þ

0@ 1A : ð12Þ

Positive values of �χρ0 :ρ1 ,e,t0 :t1
indicate that at least some lineages in

the coarse-grained grouping have positive relative fitness. We
estimated this coarse-grained relative fitness in the validation
cohort using an analogous version of Eq. (7), in which f ‘,MðtÞ is
replaced by f ρ0 :ρ1 ,MðtÞ. The orange (HF/HS) and blue (LF/HPP) lines
in Fig. 2c, f and Supplementary Figs. 5–7 show the coarse-gained
relative fitnesses in the validation cohort in sliding windows of 100
consecutive ranks. The consistently positive values observed at
lower values of ρ(ℓ) indicate that many of the underlying lineages
had positive relative fitness.

Distinguishing gene-level and lineage-level fitness effects
We used a similar coarse-graining procedure to estimate the relative
fitness of the gene complement of each lineage (Fig. 2b). The gene
complementwasdefined for a focal lineage ℓ if its transposon insertion
fell in the coding region or <100bp upstream of an annotated gene. In
this case, the gene complement Gð‘Þwas defined to be the collection of
all other lineages (excluding the focal lineage) that also fell within the

same gene as ℓ. This collection of lineages defines a coarse-grained
frequency,

�f Gð‘Þ,MðtÞ=
X
‘02Gð‘Þ

�f ‘0 ,MðtÞ , ð13Þ

which represents the total frequency of all of the other lineages
associated with the same gene. If the relative fitness of lineage ℓ was
caused by the gene knockout effect of the original Tn insertion, then
the dynamics of the gene complement �f Gð‘Þ,MðtÞ should be statistically
similar to the dynamics of the focal lineage �f ‘,MðtÞ. We tested this
hypothesis by estimating the relative fitness of the gene complement
of each lineage using an analogous version of Eq. (7), with �f Gð‘Þ,MðtÞ
replacing �f ‘,MðtÞ. The green lines in Fig. 2c, f and Supplementary Fig. 5
show sliding averages of the gene complement fitnesses in the vali-
dation cohort (calculated using the same coarse-graining scheme
described above) as a function of the relative fitness rank of the focal
lineage in the discovery cohort.

Validation using simulations
To confirm that our filtering and cross-validation procedure could
consistently estimate lineage fitnesses in a population, we simulated
lineage dynamics in “biological replicates” under conditions mimick-
ing our experiments. First, we generated an empirical distribution of
lineage fitnesses during days 0–4 by averaging across the 9 mice fed
the HF/HS diet in this interval in the dataset using Equation (7). These
inferred fitnesses, along with the input frequencies, were used to
initialize 9 identical populations. We then simulated these populations
for 40 generations (~4 days) under a Wright–Fisher model with a fixed
population size Ne = 108. Finally, to generate simulated sequencing
libraries,wemodeled the sampling and sequencing of eachpopulation
as a sequence of two Poisson sampling steps, each equal to the
empirical sequencing depth at day 4 (which varied across Bacteroides
species and mice). We then performed the filtering and cross-
validation procedures described above to produce rank-order curves
from these simulated populations (Supplementary Fig. 2). We also
performed the same procedure on simulated populations with zero
fitnessdifferences between lineages. These simulations confirmed that
our cross-validation approach could reliably distinguish the presence
or absence of fitness variation in a population.

Measuring the distribution of relative fitnesses
Our simulations showed that the coarse-grained rank order curves
reliably estimated the ground truth rank order curves in each of the
scenarios we considered. This implies that the distribution of esti-
mated relative fitnesses among coarse-grained lineages approximates
the true distribution among individual lineages.

For visual clarity, we report smoothed distributions after applying
Gaussian kernel density estimation to the set of coarse-grained relative
fitnesses using the stats.gaussian_kde() function in the SciPy
library49, with a bandwidth equal to 0.3 times the standarddeviation of
the coarse-grained lineages. The results are shown for both simula-
tions (Supplementary Fig. 2) and the observed data (Supplementary
Fig. 6). In SupplementaryNote 4,wepresent analternative approach to
count the total number of adaptive lineages, without coarse-graining.

Inferring fitness tradeoffs across environments
To estimate the joint distributions of relative fitnesses across a pair of
environments and/or timepoints (Fig. 3a–c and Supplementary Fig. 9),
we began by splitting the samples into non-overlapping cohorts for
each of the two environments, e1 and e2. This division ensured that
statistical fluctuations in one environment did not influence relative
fitness estimates in the other environment.We used Eq. (7) to estimate
the relative fitness in each environment for all lineages that satisfied
Eq. (9) in at least one of the two environments.
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The pairwise correlations in Fig. 3h–k were estimated from a sin-
gle biological replicate in each environment, and Pearson correlations
were computed for different pairs of biological replicates. However, to
avoid biases from our plug-in estimator, in each pair we calculated the
correlation only among lineages measured at non-zero frequency in
both time points in each replicate.

We defined a lineage as exhibiting a fitness tradeoff if its relative
fitness χ‘,e,t0 :t1 had opposite signs in a pair of environments or time
intervals. Several example lineages from Bc with large tradeoffs, con-
sistently observed across replicate mice, are illustrated in Fig. 3d–g. In
Supplementary Note 5, we generalize the cross-validation approach
above to infer the presence of hundreds of lineages with fitness tra-
deoffs across diets, as well as “generalist” lineages with diet-
independent fitnesses (Supplementary Fig. 10).

Identifying clusters of phenotypically similar lineages
We used the fitness measurements across multiple environmental
conditions to identify clusters of phenotypically similar lineages
(Fig. 4). Thebasic algorithm isoutlinedbelow; further discussion of the
intuition behind this approach can be found in Supplementary Note 6.

Identifying adaptive lineageswith knockout-likemutations. We first
searched for adaptive lineages whose fitness profiles (i.e., the joint
fitness across multiple environments) resembled one of the loss-of-
function variants from theoriginal Tn-Seq screen29.We identified these
“knockout-like” lineages by comparing the relative fitness profiles of
individual Tn lineages (measured across the panel of in vivo environ-
ments defined below) against the gene-level profiles of unrelated
genes.Beneficial lineageswhosefitnessprofiles closelymatchedoneof
the gene-level profiles and had no gene-level signal of their own were
classified as knockout-like lineages, whose secondarymutationsmight
have occurred within the associated gene (or within its associated
operon or molecular pathway).

To define our set of environments, we took advantage of the fact
that the in vivo selection pressures varied over time and across host
diets (Fig. 3). We therefore split the data into Nenv = 10 in vivo
environments, each of which was a combination of a time interval
(Days 0–4, 4–10, or 10–16) and aparticular host–diet history (LF/HPP,
HF/HS, LHL, HLH). Since LF/HPP and LHL shared the same host–diet
history up to day 4 (and likewise HF/HS and HLH), we treated these
cases as the same environment between days 0–4. (In the case of Bc
the list of environments was augmented with the in vitro
environments.)

We defined the coarse-grained fitness profile of a set of lineagesL
as the vector of log-fold-changes, in each environment,

WL = We1
,We2

, . . . ,WeNenv

� �
� log

f L,e1,1
f L,e1,0

, log
f L,e2,1
f L,e2,0

, . . . , log
f L,eNenv,1
f L,eNenv ,0

0@ 1A ,

ð14Þ

where f L,ei,j represents the jth timepoint of the ith environment in a
particular cohort of replicates Mei

, such that

�f L,ei,j =
X
‘2L

�f ‘,Mei
, ð15Þ

where �f ‘,Mei
is defined in Eq. (7b). Except where noted, fitness pro-

files were measured using every replicate available in each envir-
onment. Because we are interested in the fitness profiles of
beneficial gene knockouts, we measured these frequencies with
respect to the whole library, including the fitness determinant
genes identified by Wu et al.29; this differs from our analysis in the
rest of the study, which excluded lineages that fell in these genes.
We measured the similarity between two fitness profiles using the

Euclidean distance,

dðWL,WL0 Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ek

ðWL,ek �WL0 ,ek
Þ2

s
: ð16Þ

Othermetrics, e.g. correlation coefficients, did not qualitatively impact
the results.

Next, we curated a reference list of strongly beneficial gene
knockouts. We measured the coarse-grained fitness profile WGð;Þ of
every gene G using the Tn lineages falling in G. The notation Gð;Þ
indicates that, unlike the gene complement in Eq. (13), no Tn lineages
were excluded from this coarse-grained fitness profile. We restricted
our attention to gene knockouts that exhibited a fold change >10 in at
leastone environment (i.e.,maxek W Gð;Þ,ek> ln 10), or a fold change >5 in

at least two environments. Many of these could be driven by the
expansion of a Tn lineage that had acquired an adaptive secondary
mutation. Hence, for each of the remaining gene knockouts, we re-
calculated a set of “leave-one-out” fitness profiles across all Gð‘Þ, each
excluding a single lineage ℓ in the gene:

SWG = fWGð‘Þ; ‘ 2 Gð;Þg: ð17Þ

If a single adaptive lineage drove the coarse-grained fitness of a gene, its
exclusion should dramatically reduce the corresponding leave-one-out
fitness profile of the gene. Conversely, if the gene’s coarse-grained
fitness profile was driven by many similar lineages, then leaving out any
one lineage should not dramatically change the knockout fitness profile.
Based on this logic, we removed from consideration any gene that
contained a leave-one-out fitness profile that did not exhibit a fold-
change> 5 in one environment or a fold-change>3 in two environments.
This procedure eliminated a majority of the remaining genes; visual
inspection of individual lineage trajectories confirmed that nearly all
were driven entirely by the behavior of single Tn lineages (e.g. Fig. 1g).

We next identified lineages with similar fitness profiles to the
remaining high-quality beneficial gene knockouts. We deemed a line-
age ℓc to resemble the knockout of a particular gene ifdðW‘c

,WGð;ÞÞ<d*.
We chose a distance threshold d* = 2, which gave visually well-defined
clusters and was consistent with the typical distance between well-
measured lineages and their own coarse-grained gene knockouts
(d≃ 2−3). For each of the strongly beneficial gene knockouts, we
computed Eq. (16) for candidate lineages that were measured in every
environment and were located >100 kb from the target gene.

After assembling a preliminary cluster of knockout-like Tn linea-
ges for each target gene,we checkedwhether these clusterswere likely
to have been driven by secondary mutations, as opposed to the direct
effects of Tn insertions in other functionally related genes. To be
conservative, if an off-target gene was represented by multiple linea-
ges in a given cluster, we removed those lineages from the cluster,
since there is a chance that they couldbedrivenby thedirect effectof a
Tn insertion in a gene that is functionally related to the target gene.
This filter removed some lineages from larger clusters like PUL66
(Fig. 4a), though the number of multiply-represented genes in these
clusters was consistent with a null expectation in which knockout-like
lineages were randomly distributed across the genome.

The results of this pipeline are shown for two example Bt-VPI
genes in Fig. 4a, b; several others are shown in Supplementary Fig. 14.
Additional checks against noise-driven clustering and plotting details
are discussed after the next section.

Identifying novel clusters of secondary mutations. Loss-of-function
mutations will likely comprise only a fraction of the adaptive
landscape2. The phenotypic effects—and therefore fitness profiles—of
other variants may be qualitatively distinct from any gene knockout.
To identify recurrent selection on such novel and strongly beneficial
secondary mutations, we reversed the approach used in the previous
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section: we clustered individual lineages based on their own fitness
profiles and then looked for clusters of similar lineages that were dif-
ferent from every gene-level profile.

To identify novel lineage clusters, we first curated a large list of
well-measured and highly fit lineages in each Bacteroides library. We
only considered lineages that had a measurable fitness in all environ-
ments (i.e. were present in at least one of the two-time points com-
prising the environment), and had large positive fitnesses in at least
one environment, maxek W ‘,ek

> ln 10. We applied bottom-up hier-
archical clustering on the resulting lineages using the Agglomer-
ativeClustering() function from the Scikit-learn library50. We used
an average linkage criterion with the distance metric Eq. (16) and a
maximum merge distance of ϵ = 4. For each resulting high-fitness
cluster, Cν , we defined the cluster-averaged profile as

WCν =

P
‘2CνW‘P
‘2Cν 1

: ð18Þ

Since the initial high-fitness filtering omitted many adaptive lineages,
we remapped all remaining lineages with fitness measurements in all
environments to their nearest high-fitness cluster. For each lineage ℓ,
we found its distance-minimizing cluster Cμ:

Cμ = argmin
Cν

dðW‘,WCν Þ : ð19Þ

If this distance-minimizing cluster had d < ϵ, the lineage was added to
the cluster. After adding all such lineages, average profiles WCν were
recalculated over the augmented clusters.

We applied several stringent filters to discard clusters plausibly
composed of lineages that acquired “knockout-like” secondary muta-
tions discussed above. We excluded from further consideration clus-
ters of size k > 1 if any gene was represented by more than
maxf1,blog10ðkÞcg} lineages in the cluster since this should be rare for
randomly distributed lineages (<1%). We also excluded clusters with
only one lineage, since these could in principle be driven by a site-
specific effect of its Tn insertion.

Finally, we directly compared the remaining clusters to gene
knockout profiles. To prevent single lineages with strongly beneficial
secondary mutations from biasing the measured gene profiles, we first
compared the leave-one-out profiles in Eq. (17) for each gene: if k-means
clusteringwith k = 2 isolated a single outlyingprofile, the corresponding
lineage was removed and the gene profile was re-estimated. We then
randomly partitioned the remaining Tn lineages in each gene into two
equal-sized sets, and measured gene fitness profilesWð1Þ

G andWð2Þ
G from

the coarse-grained frequencies of the two subsets. We did not further
consider the minority of genes with unmeasured fitnesses in either
subset. We computed, for each cluster Cν and gene G, the distance
DCν ,G � dðWCν

, 12 ðW
ð1Þ
G +Wð2Þ

G ÞÞ (excluding fromWðiÞ
G any lineage that was

shared between Cν and G). The use of the subset-averaged gene profile
1
2 ðW

ð1Þ
G +Wð2Þ

G Þ reduced the influence of any adaptive secondary muta-
tions that hadnot beenfilteredout in theprevious step (these replicates
were also used to check against ascertainment bias, below). Clusters
with large values of DCν ,G across all genes G were candidates for “novel”
phenotypic clusters. Examples in several species (Fig. 4c, d and Sup-
plementary Fig. 15) show the identified clusters and their most similar
looking genes (i.e., those with smallest DCν ,G).

Controlling for ascertainment bias during clustering. For both novel
and gene knockout-like clusters, we checked that our results did not
arise from ascertainment biases arising from the clustering of thou-
sands of noisy lineage profiles. Biological replicates were split in each
environment into M1 and M2, representing two independent sets of
replicates across environments. For each lineage, we computed fitness
profiles WðM1Þ

‘ and WðM2Þ
‘ , constituting independent measurements of

the fitness profile that should be similar to one another, as well as to
other WðMiÞ

‘0 in the cluster. We calculated the unweighted average of
the two replicate profiles, hW‘i= 1

2 ðW
ðM1Þ
‘ +WðM2Þ

‘ Þ, for each lineage.
The interquartile range of 〈Wℓ〉 among co-clustered lineages is repre-
sented by the green shaded bands in Fig. 4 and Supplementary Figs. 14
and 15; if a cluster had fewer than 10 lineages, the full range is plotted
instead. Similarly, the black-shaded regions in Fig. 4 and Supplemen-
tary Figs. 14 and 15 represent the spread between Wð1Þ

G and Wð2Þ
G ,

described in the previous subsection.

Signatures of additional de novo mutations
To identify signatures of de novo mutations, we focused on the fact
that de novo mutations would initially arise within a single Tn lineage
within a single mouse. If any of these mutations survives genetic drift,
it should sweep through its Tn lineage and continue to spread through
the population, leading to a lineage trajectory that diverged from the
other biological replicates, as in Fig. 5a.

To examine the evidence for suchmutations,we ranked theday 16
frequencies of each lineage ℓ across all k = 5 mice in the HF/HS diet,
fℓ,1(16) ≥ fℓ,2(16) ≥… ≥fℓ,k(16). We defined a divergence metric Δℓ as the
ratio between the largest and second-largest frequencies,

Δ‘ �
f ‘,1ð16Þ
f ‘,2ð16Þ

: ð20Þ

Large values of Δℓ would be consistent with a beneficial mutation
occurring inmouse 1, butmay also be driven by biological or technical
noise. To mitigate noise, we restricted our attention to lineages that
reached >0.1% frequency in at least one mouse (which required that
they were sampled in at least 10 reads). We compared the observed
distribution of Δℓ values to a null distribution obtained from a random
set of lineages constructed to have a similar distribution of initial (day
0) frequencies, andmeasured at day 16 in at least twomice (Fig. 5b and
Supplementary Fig. 16).

Estimating the strength of genetic drift
To quantify the strength of genetic drift in vivo, we again focused on
the variation across replicates, defined by

V̂arðf̂ ‘ðtÞÞM2
=

1
jM2j � 1

X
m2M2

f̂ ‘,mðtÞ �
1

jM2j
X

m02M2

f̂ ‘,m0 ðtÞ
 !2

: ð21Þ

We considered a simple version of Eq. (2), in which the relative fitness
and strength of genetic drift are approximately constant over the
relevant time interval. This implies that χℓ,e(t) ≈ χℓ,e and Λm(t)≃ 1/Neτe
for each mouse m in environment e, where Ne is the effective popu-
lation size and τe is the effective generation time47. Given these
assumptions, the expectation of Eq. (21) can be written in the form

hV̂arðf̂ ‘ðtÞÞM2
i= 1

jM2j
X

m2M2

κm,t

Dm,t
� hf‘ðtÞi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

technicalnoise

+
t

Neτe
� hf‘ðtÞi hf‘ðtÞi=f‘ð0Þ � 1

� 	
log hf‘ðtÞi=f‘ð0Þ
� 	|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

geneticdrift

:

ð22Þ

which we derive in Supplementary Note 7. This shows that the
contributions to the variance from genetic drift and technical noise
can be distinguished by their different scaling as a function of 〈fℓ(t)〉
and fℓ(0). In particular, conditioned on the same expected final
frequency 〈fℓ(t)〉, lineages that began at smaller initial frequencies
(implying a higher fitness) should have a higher variation in final
frequency across replicates than those that began at larger initial
frequencies.

Tomeasure this correlation, we split replicatemice from the same
diet into two equal-sized cohorts,M1 andM2. We estimated themean
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frequency of each lineage at time t using the mice in M1, and we
estimated the variance at time t using themice inM2. Estimating these
quantities using separate cohorts prevents spurious, sampling-
induced correlations between the estimates of the first and second
moments. Based on these estimates, we selected lineages whosemean
f ‘,M1

ðtÞ fell within a narrow final frequency range (fmin(t), fmax(t)), and a
broad initial frequency range (fmin(0), fmax(0)).

We repeated this process across all possible partitions of themice
(of equal size), concatenating lineages and their partition-specific
estimated frequencies and variances. Combining all possible partitions
effectively averages over the randompartitions of replicatemice,while
self-consistently expanding the number of lineages included in
downstreamanalysis. However, most lineages pass filtering inmultiple
partitions, and frequency and variance estimates are correlated across
splits. To remove these latent correlations,we randomly downsampled
each lineage’s mean and variance estimates to those of a single parti-
tion Mð‘Þ

1 , Mð‘Þ
2 , which was included in the initial concatenation. This

concatenation-and-downsampling scheme generates a set of vectors
L= fW ,X ,Y g representing the initial frequencies and estimated final
frequencies and variances of included lineages, respectively:

W ‘ = f ‘ð0Þ,
X ‘ = f ‘,Mð‘Þ

1
,

Y ‘ =dVarðf ‘ðtÞÞMð‘Þ
2
:

ð23Þ

Based on these data, we formulated a test statistic for genetic drift
as follows. We grouped filtered lineages into non-overlapping initial
frequency bins bi spanning (fmin(0), fmax(0)). In each bin, we computed
the sample averages hW ‘ibi

, hX ‘ibi
, and hY ‘ibi

, excluding those lineages
whose variances Yℓ fell in the lowest and highest deciles of the bin bi.We
choose this trimmedmean to conservatively remove outliers thatmight
be driven by strong sequencing noise (e.g. PCR jackpots) or de novo
mutations. We estimated standard errors of the average variance in
each bin, σY ,bi

from 1000 bootstrap samples of the lineages within each
bin. We then defined the test statistic Ω̂ðLÞ as the inferred slope from
bootstrap uncertainty-weighted linear regression of the ‘Fano factor’
hY ‘ibi

=hX ‘ibi
against the initial frequency log hW ‘ibi

. Because drift is
stronger (and final frequency variation higher) in lineages beginning at
smaller initial frequencies, a negative slope indicates the effects of drift.

We compared theobserved test-statistic Ω̂ðLÞ against anempirical
null distribution obtained by randomly permuting the initial fre-
quencies across lineages in the same final frequency bin. This proce-
dure conserves both the numbers of lineages and distribution of initial
frequencies in each initial frequency bin bi, and should therefore
generate a null distribution of test statistics if the variance was inde-
pendent of initial frequency (as expected in the absence of drift). We
recalculated the test statistic Ω̂ for n = 104 such permutations, L0

i, and
estimated a one-sided p-value as

p=
1
n

X
i

IðΩ̂ðL0
iÞ≤ Ω̂ðLÞÞ : ð24Þ

As an example, we applied this approach to Bc lineages falling in a
narrow final (day 4) average frequency range in LF/HPP mice (Fig. 5d),
as well as for simulated data assuming a similar distribution of lineage
fitnesses (Supplementary Fig. 17). For clarity, we plot the variance
(rather than the Fano factor) as a function of the initial frequency.

One can invert the regression in Fig. 5d to estimate the effective
population sizeNeτe in the simplemodel in Eq. (22). Todo so,wedefine
α = {α1, α2} and g(w, x) as

gαðw, xÞ=α1 � x +α2 �
x½x=w� 1�
log½x=w� , ð25Þ

and minimize the uncertainty-weighted sum of squared residuals

α* = argminα

X
bi

1
σ2
Y ,bi

½hY ibi
� gαðhW ibi

,hXibi
Þ�2: ð26Þ

The bottleneck size inferred from the given collection of lineages L is
then given by Neτe = t=α

*
2, while the strength of sequencing noise is

reflected in Deff � 1=α*
1. We carried out this procedure using the

curve_fit() function from the SciPy library49. We also estimated the
uncertainties in these parameters, σNτ and σDeff

, using the diagonals of
the uncertainty matrix returned by the curve_fit() function. Fig-
ure 5e shows the inferred values ofNeτe for the Bc populations across a
range of final frequency windows, spanning (4 × 10−5, 8.5 × 10−5) and
(2.3 × 10−5, 4 × 10−5) in the LF/HPP and HF/HS diets, respectively. Only
regressions with relative uncertainty jσNτ=N̂τ j< 1, and effective
sequencing noise uncertainty jσDeff

=D̂eff j<0:25, are shown.
Further discussion of our algorithm and comparisons to previous

approaches for quantifying drift are described in Supplemen-
tary Note 7.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw sequencing data from the original Tn-Seq experiments were
downloaded from the European Nucleotide Archive, accession no.
PRJEB9434, and the raw data from the input libraries were obtained
from the authors of the original study [https://doi.org/10.1126/science.
aac5992]. Reference genomes for each of the 4 Bacteroides strains
were obtained from the National Center for Biotechnology Informa-
tion (accession no. PRJNA289334). Postprocessed data analyzed in this
paper are directly available on Github [https://github.com/bgoodlab/
adaptation_tnseq] and in Supplementary Code 1.

Code availability
All analysis and figure generation code is available on Github [https://
github.com/bgoodlab/adaptation_tnseq], as well as in Supplemen-
tary Code 1.
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