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Walking modulates visual detection
performance according to stride cycle phase

Matthew J. Davidson 1 , Frans A. J. Verstraten 1 & David Alais1

Walking is among our most frequent and natural of voluntary behaviours, yet
the consequences of locomotion upon perceptual and cognitive function
remain largely unknown. Recent work has highlighted that although walking
feels smooth and continuous, critical phases exist within each step for the
successful coordination of perceptual and motor function. Here, we test
whether these phasic demands impact upon visual perception, by assessing
performance in a visual detection task during natural unencumbered walking.
We finely sample visual performance over the stride cycle as participants walk
along a smooth linear path at a comfortable speed in a wireless virtual reality
environment. At the group-level, accuracy, reaction times, and response like-
lihood show strong oscillations, modulating at approximately 2
cycles per stride (~2Hz) with a marked phase of optimal performance aligned
with the swing phase of each step. At the participant level, Bayesian inference
of population prevalence reveals highly prevalent oscillations in visual detec-
tion performance that cluster in two idiosyncratic frequency ranges (2 or 4
cycles per stride), with a strong phase alignment across participants.

It is vital for our survival to correctly perceive and act within a
dynamic environment. While the world is self-evidently dynamic, so
too is the perceptual observer. In a typical day, we may make over
150,000 saccades, 15,000 head-turns and take several thousand
steps1–3. To test perceptual processes in contexts that are closer to
which evolution has optimised them, we need to take experiments
out of darkened, static laboratories and into more complex, active
situations. Here we examine the influence of the active observer
during walking and test continuous visual performance, specifically
focusing on the time-course of performance within the stride cycle.
Despite the thousands of steps we take each day, the influence of
locomotion upon perception is largely unexplored and within-gait
modulations have received no attention. Previously, the technical
limitations of controlling an environment for active perception
have been high, but here we use wireless and position-tracked vir-
tual reality to probe visual detection performance continuously
during locomotion. We find that walking entrains rhythmic changes
to perceptual performance within each stride cycle, despite the
seemingly continuous and effortless nature of this everyday
behaviour.

Studies examining the effects ofwalking and exerciseon cognitive
function have usually focused on changes i performance over an
extended period of activity rather than effects occurring within the
stride cycle. These studies have found that when various forms of light
exercise and stationary conditions are compared, periods ofmoderate
exercise can induce small increases in performance on cognitive tasks
(reviewed in4) and in neuroplasticity5. Others have focused on how the
presence of a dual-task during walking affects gait parameters such as
speed and variability6. More recent reports have demonstrated that
walking or light exercise can enhance visual processing relative to
stationary conditions7–12. These results echo earlier work in animal
models which has demonstrated how locomotion elevates the
response gain of early visual processing areas—potentially providing a
mechanism for enhanced performance on visual processing tasks13–17.
Critically, however, most of these studies have focussed on average
performance over the exercise period or immediately after exercise
and have not studied temporal changes within the stride cycle.

There are a variety of findings that suggest visual performance
might vary over the stride cycle. Recent investigations have demon-
strated that responses to visual information depend on the phase of
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human locomotion18–21. Humans capitalise on the pendulum-like
momentum of each step when planning subsequent footsteps22, and
visual information about the upcoming terrainmust be receivedwithin
a critical windowprior to heel strike for smooth locomotion to occur21.
In addition, eye-movements20,23–25 and the accuracy of visuomotor
coordination26 also show a coupling to the phase of locomotion.
Together, there are a range of dynamic demands that occur with each
step which may result in modulations of visual processing while
we walk.

Here we introduce a method that allows us to finely sample per-
formance in a simple visual detection task while walking to test for
modulations over the time-course of the stride cycle. During natural
unencumbered walking, we found that average accuracy, reaction
times, and the likelihood of manual responses on a visual detection
task all oscillated within the stride cycle in primarily two frequency
bands (~2 and 4Hz). These findings show that the continuous demands
of walking impose rhythmic changes on both sensory processing and
manual responding with every step. In doing so, we also validate our
fine-sampling approach that will enable further investigation of
stride cycle modulations of perception and performance.

Results
We examined performance on a simple visual detection task during
natural walking within a wireless virtual reality environment. Partici-
pants responded as quickly and accurately as possible to brief targets
appearing within a circular annulus that drifted slowly and randomly
around the screen (see example video and Fig. 1). Below, we first

compare average performance between walking and stationary con-
ditions before turning to our main focus, which was whether perfor-
mance would modulate relative to the phase of the stride cycle.

Walking increases the threshold for visual target detection
Throughout the experiment, a continuous adaptive staircase proce-
dure was implemented which manipulated target contrast to maintain
participant accuracy at approximately 75%. Confirming this, average
accuracy was close to 75% and not significantly different between
stationary (M=0.74, SD =0.03) and walking conditions (M=0.75,
SD =0.03, t(35) = −0.99, p = 0.32, d = −0.16, 95% CI [−0.01, 0.004], two-
tailed). The stationary condition, however, was clearly easier for par-
ticipants because the staircase settled at a lower average target con-
trast (M= −7.12 dB, SD =0.24) than in thewalking condition (M= −6.87,
SD =0.50; t(35) = −4.07, p <0.001, d = −0.70, 95% CI [−4.08, −4.06],
two-tailed).

While titrating contrast tomaintain overall accuracy at 75%, target
contrast on individual trials was presented at ±3 intensity levels
centred on the estimate required for 75% performance to allow psy-
chometric functions to be fitted over 7 contrast levels. Psychometric
fits to participant accuracy revealed that the accuracy difference
between standing and walking conditions was driven by a change in
threshold (t(35) = −3.50, p =0.0013, d =0.61, 95%CI [−3.51, −3.49], two-
tailed). There was no statistically significant change in the slope para-
meter between stationary and walking conditions (t(35) = −1.92,
p =0.063, d = −0.45, 95% CI [−0.03, 0.001], two-tailed). Interestingly,
reaction times to targets were faster on average in walking compared
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Fig. 1 | Environment and trial structure. a Third-person view of the virtual
environment. Participants were positioned behind a virtual grey screen displaying
the target stimulus. During the trial, the screen progressed with smooth linear
locomotion at a constant velocity, in line with a small walking guide (three-
dimensional animated game object). The avatar shown is for illustrative purposes
only and was not present during the experiment. b The visual detection task
required participants to monitor a drifting circular annulus. Small target ellipses
(~1.7 d.v.a, 20ms duration, illustration not to scale) appeared with a variable inter-
trial interval (ITI), responses were provided via right trigger click. c Example data

from a single walking trial. The three-dimensional head position is recorded at
90Hz (shown in magenta). Walking produces a stereotyped sinusoidal pattern of
headmotionon the vertical axis (head height, 2Dprojectionon thebackwall shown
in grey). Peaks and troughs in head height correspond to the swing and stance
phases of each step, respectively (see Methods). d (Left) Average detrended head
height for each participant over their respective stride cycle. (Right) Distribution of
average stride cycle duration across participants. Our primary interest was whether
the timing of target onset relative to stride cycle phase would modulate task
performance.

Article https://doi.org/10.1038/s41467-024-45780-4

Nature Communications |         (2024) 15:2027 2

https://vimeo.com/913149178


to stationary conditions (t(35) = 2.47, p = 0.018, d =0.41, 95% CI [2.46,
2.48], two-tailed). There was also an inverse relationship between
reaction times and accuracy across intensity levels, indicating partici-
pants were more accurate when responding quickly. A 2 × 7 repeated
measures ANOVA (walking condition × contrast level) indicated main
effects of condition (F(1,35) = 6.12, p =0.018, ηp

2 = 0.15) and contrast
(Mauchly’s test of sphericity violated, Greenhouse–Geisser corrected,
F(2.70, 94.26) = 118.60, p < 0.001, ηp

2 = 0.77) with no statistically sig-
nificant interaction (F(3.23, 113.10) = 2.07, p =0.10, ηp

2 = 0.06). Figure 2
displays a summary of this data.

Performance oscillates within the stride cycle
We next compiled the hundreds of detection data points (M = 885.52,
SD = 63.33 per participant) into a single stride cycle in order to test for
temporalmodulations of visual performance. For this analysis, we first
epoched all walking trials into stride cycles (two sequential steps) by
running a peak-detection algorithm on the head height time-series
recorded on each trial. This analysis revealed that step and stride
durations varied across participants (step duration M=0.59 s, SD =
0.034; stride M= 1.18, SD =0.069). Supplementary Fig. 4 visualises an
example participant and the group-level stride cycle variability. As is
common in gait-based research, we next resampled all strides to
1–100% stride completion to facilitate within- and across-participant
averaging for ourmain effect of interest—whether the relative phase of
an individual’s stride cycle would modulate visual detection perfor-
mance. Target onsets, which were presented at random times, could
thus be allocated to a position relative to the stride within which it
occurred (from 1 to 100%; see Fig. 3a–c for key stages of thisworkflow).
In effect, the hundreds of data points are pooled into a single, densely
sampled stride that can be resolved into fine time bins (e.g. 2.5% bin
width in Fig. 3) and reliably analysed for temporal modulations. Fig-
ure 3c plots target density over the stride cycle and validates our
random-probing and stride epoching procedure as the distribution is
flat with ~18 (M= 17.84, SD = 1.2) targets falling in each bin.

The stride cycle analysis revealed clear oscillations in perfor-
mance on the visual detection task. Figure 3d–f displays the group
average results (N = 36) when binned into 40 linearly spaced, non-
overlapping bins. The solid curves display the best-fitting first-order
Fourier model (see Eq. 1). Figure 3g shows the goodness-of-fit (R2) for
all Fourier frequencies in the range from 0.2 to 10 cycles per stride
(cps; in steps of 0.2 cps). For accuracy, the best-fit to performanceover
the stride cycle was at 1.93 cps (R2 = 0.48), and group-level fits were
above the 95th percentile of the R2 distribution obtained by permu-
tation (n = 1000) for the range 1.80–2.20 cps. For reaction times, the
best-fitting oscillation was at 2.02 cps (and was significant over the
range 1.60–2.40 cps), and for manual response likelihood, the best-
fitting oscillation was at 1.90 cps (significant from 1.60 to 2.20 cps).

We performed several control analyses to confirm these oscil-
lations were driven by the stride cycle. We first examined perfor-
mance with respect to trial-onset, using clock-time (rather than
stride cycle) as our reference for entrainment. For this analysis, we
averaged each of the behavioural variables considered based on
consecutive 1 s epochs in both the walking and standing data.
Although these 1 s epochs are a rough approximation of average
stride duration in our sample, the fit-strength of Fourier models was
far weaker than that based on stride alignment (Supplementary
Fig. 5). As expected, equivalent results were found in the same
analysis applied to standing trials (Supplementary Fig. 6). These
results provide complementary evidence that stride phase aligns
the modulations in behavioural performance we report, rather than
an alternative explanation based on trial-time.

Population prevalence of stride cycle oscillations
In addition to the group-level test of oscillations in performance based
on the stride cycle, we tested the population prevalence of stride cycle
oscillations within our sample. Qualitative observations of our data
showed someparticipant-level Fourierfits occurredoutside the group-
level best fit of approximately 2 cps. We therefore formally quantified
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Fig. 2 | Comparison of detection, hit rate and reaction time when standing and
walking. a On average, no statistically significant difference in accuracy between
conditions as a result of the adaptive staircase procedure. Orange colours indicate
standing, and green indicates walking. Grey lines link participant data; circles dis-
play the groupmean, and error bars display ±1 SEMcorrected forwithin-participant
comparisons86.b Psychometric fits to hit-rate data for each condition. The staircase

mean for each condition is indicated M, and contrast steps (see Methods) are
indicated numerically in the range of −3 to +3. Vertical error bars represent ±1 SEM
for hit rate, and horizontal error bars represent ±1 SEM for adaptive target contrast.
c Reaction times for correct detection decreased when walking, compared to
standing (colours as in (a)), and d reaction times decreased as accuracy improved
over the psychometric function.
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the prevalence of significant oscillations in the 0.2–10 cps range per
individual participant.

Consistent with the group-level results, we found oscillations at
approximately 2 cps were the most prevalent in the sample. For
example, for oscillations in accuracy, 12 of 36 participants had strong
fits at approximately 2 cps that exceeded the 95% confidence interval
of their shuffled data, rejecting the null at the participant level null-
hypothesis significance test (NHST). Similar results were found for
reaction time (n = 13/36 NHST at 1.5–2.5 cps) and response likelihood
(n = 17/36 at 1.5–2.5 cps). Notably, a large proportion of our sample
exhibited significant oscillations at higher frequencies, particularly at
approximately 4 cps (accuracy n = 13/36; reaction times n = 14/36;
responses n = 9/36 at 3.5–4.5 cps). Subsequent analysis indicated these
individual-level oscillations, though idiosyncratic, were highly reliable.
Few participants displayed significant oscillations in multiple fre-
quency bands on any one measure (accuracy n = 4; reaction times
n = 2, responses n = 3). Most displayed the same individual oscillation
across all three measures, with few having different oscillations across
performance measures (n = 3/36). Figure 4a–f displays a summary of

this data, showing the strength of individual participant Fourier fits at
each frequency in cycles per stride. A small subset of participants
demonstrated no significant oscillation on each measure (accuracy
n = 6, reaction times, n = 3; responses n = 3 see Fig. 4g–i).

We proceeded by formally quantifying the population prevalence
of these oscillations using Bayesian inference. Bayesian inference of
population prevalence provides an estimate of an effect’s within-
participant replication probability and is particularly useful when
examining effects which may be heterogeneous27,28. This method
returns the maximum a posteriori (MAP) estimate of the population
prevalence and a 95% confidence interval within which the MAP
resides. For example, the prevalence estimate for oscillations in
accuracy at 2 cps is 0.32 (MAP), with a 95% highest posterior density
interval (HPDI) between [0.18, 0.49], indicating a 95% probability that
the population prevalence of oscillations in accuracy at 2 cps exceeds
0.18. Similar results were found for reaction time (2 cps, MAP =0.30,
[0.16, 0.47]) and response likelihood (2 cps, MAP =0.41, [0.26, 0.58]).
Given the idiosyncratic yet reliable presence of oscillations, the Baye-
sian estimate for any oscillations in each of our measures over the
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Fig. 3 | Performance oscillates within the stride cycle. a An example trial from
one participant displaying the position-tracked vertical head height over time
whose peaks and troughs are used to define the steps of a stride cycle. Target
onsets are displayed with black arrows, and red markers indicate the behavioural
outcome of the task (Hit, Miss). b To allow pooling of data over participants, each
stride (two steps) was resampled to a normalised range of 1–100%. The approx-
imate swing and stance phases of the stride cycle are displayed above the x-axis.
c Target presentation density was approximately uniform over the stride cycle,
validating the random-probing and stride epoching procedure. d–f Group level
data (N = 36) showclear oscillations over the stride cycle for detection accuracy (hit
rate), reaction time, and the likelihood of manual responses. The best-fitting first-
order Fourier model is shown in each figure and approximated 2 cycles per stride

(i.e. the step rate). Individual data points (grey) are shown for 10% increments over
the stride cycle. g Permutation testing of the best-fitting Fourier models. The
observed data in c–f were fitted with a single-component Fourier model at all
frequencies between 0.2 and 10 cycles per stride (in steps of 0.2 cps), and
goodness-of-fit (R2) was calculated. The prominent peaks at approximately 2 cps
show that the best fits, whether for accuracy (blue), reaction times (red), or
responses (magenta), occur at approximately 2 cycles per stride and far exceed the
95% permutation confidence interval calculated using the maximum test statistic
across all frequencies perpermutation (dotted lines and grey shading). Thesepeaks
did not co-occur with the above-chance fluctuations in the likelihood of target
presentation, which is shown by the grey line.
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range of 0.2–10 cps was high. For accuracy, 29/36 participants
demonstrated oscillations in the 0.2–10 cps range (MAP =0.82, [0.68,
0.93]), 33/36 participants displayed oscillations in reaction times
(MAP =0.91 [0.79, 0.98]), and 32/36 for oscillations in response like-
lihood (MAP =0.88, [0.75, 0.96]). Figure 4j–l displays the prevalence
estimates for oscillations at 2, 4, and any cycles per stride for each of
our dependent measures.

We performed additional exploratory analyses to investigate
whether these idiosyncratic frequencies correlated with raw
stride cycle duration. One possibility is that these oscillations are not
determined by stride cycle but a more general oscillator such as clock
time, which, when resampled over different stride-lengths could result
in the variability in peak cps we observe. As a toy example, a single
oscillator at 4Hz could be captured as a 2 cps or 4 cps oscillation
within individualswith a 500ms vs 1000ms stride length, respectively.
In our data, we observed no statistically significant correlation
between the across-participant stride length and the strength of 2 cps
fits, the strength of 4 cps fits, nor the frequency of maximum fit
strength for any of our dependent variables (Supplementary Fig. 7).
Thus, it is the phaseof the stride cycle thatmatters, not the duration of
each step. Consistent with our hypotheses, we found significant

negative correlations between the frequency of perceptual oscillations
(in Hz) and stride cycle duration. Supplementary Fig. 8 demonstrates
this covariation and that participants with shorter stride cycle dura-
tions had faster perceptual oscillations. As a result, when aligned by
phase, clear groupeffects emerge. Together, these results indicate that
significant oscillations in visual detection task performance occur in
over 80% of our sample, depending on the phase of an individual’s
stride cycle, and with stable idiosyncratic frequencies in performance
per participant.

Oscillations in performance are phase-aligned across
participants
Our previous analyses demonstrated that oscillations in visual detec-
tion performance are highly prevalent within our sample and occur at
stable idiosyncratic frequencies per participant. We next inspected
whether the phaseof these oscillationswould also be consistent across
participants. For this analysis, we included only the subset of partici-
pants that displayed significant oscillations when compared to their
shuffled likelihood, and below focus on those participants with oscil-
lations in the 1.5–2.5 cps range (accuracy data n = 12, reaction times
n = 13, response likelihood n = 17). The best-fitting Fourier model was
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Fig. 4 | Populationprevalence of performanceoscillations over the stride cycle.
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participant-level data between 0.2 and 10 cps (in steps of 0.2). The strength of the
participant-level Fourier fit was compared to the 95% Confidence Interval of per-
muted data per participant (see Methods). For accuracy, 12/36 participants
demonstrated significant oscillations at approximately 2 cps. b, c Display the same
result for reaction time and response likelihood oscillations at 2 cps, respectively.
d–f Independent subsets of participants with significant oscillations between 3.5

and 4.5 cps. g–i Remaining participants with significant oscillations either above
5 cps (n = 5, 6 and 7 out of 36 for accuracy, reaction time and responses, respec-
tively), shown in red. Overlaid in dark grey are the fits for participants with no
significant oscillation at any frequency (n = 6, 3, 3 for accuracy, reaction time and
responses, respectively). j–l Bayesian estimates of population prevalence for
oscillations at 2 cps (purple), 4 cps (pink), or any frequency in the range of
0.2–10 cps (black). Circular markers display the maximum a posteriori estimate of
prevalence (MAP), and error bars display the 95% highest posterior density interval
(HPDI) (see Methods).
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calculated per participant, and the phase was retained for subsequent
tests of non-uniformity. Figure 5 displays the phase results and shows
the individual data are tightly clustered in the phase. Optimal accuracy
(Fig. 5a) and reaction time (C) occur in the approximate swing phaseof
the stride cycle, while response likelihood (E) entrains to the time of
heel strike. Rayleigh’s test confirmed that each of these phase dis-
tributions were non-uniform (accuracy; Z = 3.62, p = 0.023, k =0.45;
reaction time; Z = 3.59, p =0.024, k =0.47; response Z = 4.73,
p = .007, k =0.47).

Discussion
We investigated whether the natural phases of human locomotion
alter performance on a simultaneous visual detection task. Participants
walked along a straight path in a wireless position-tracked virtual
reality environment and responded as quickly as possible to brief
visual targets presented at random intervals as they walked. Offline
analysis of head height data was used to define the start and end of
each stride cycle and to determine the timing of the target relative to
stride onset. Pooling over many trials and dividing the data into fine
time bins, we confirmed that targets occurred uniformly across the
stride cycle. However, analysing accuracy, reaction time and manual
response likelihood revealed clear oscillations in all three performance
measures that were systematically linked to the phase of locomotion.
Further analyses of individual participants confirmed that these group-
level performance oscillations were present in a large proportion of
our sample, predominantly at either 2 or 4 cycles per stride (cps).
While the frequency of 2 or 4 cps was idiosyncratic, there was a strong

consistency within participants so that the same frequency was seen
for a given participant across the three performance measures.

Together, these results reveal systematic modulations of visual
performance within the stride cycle. This work also validates our
approach as a viable method that will enable further research into
stride cycle modulations of perception and performance in vision and
other sensory modalities.

What might underlie these oscillations in performance during
locomotion? It is important to note that oscillations are a ubiquitous
feature in neuroscience, in both the brain and behaviour29. Prior work
has established that performance on a visual detection task waxes and
wanes over time (see30,31 for reviews). These behavioural oscillations
are in the theta or low alpha range (4–10Hz), and have been variously
linked to the reallocation of attention32–34 to perceptual sampling35, or
to decisional processes36. Often in these studies of behavioural oscil-
lations, a salient transient stimulus is used to ‘reset’ the phase of
ongoing oscillations37,38so that they can be probed from a known and
repeatable temporal reference point. For example, this approach has
been used to reveal oscillations in perceptual sensitivity in both vision
and audition36,39, and counterphase oscillations that have been linked
to the reallocation of attention29,40,41.

Behavioural oscillations can also be revealed by using an action at
the start of the presentation period to reset the phase of neural
oscillations. Actions as simple as reaching ormaking a button press are
sufficient to provide a time-zero point from which underlying oscilla-
tions can be probed over time42–45. Our work, though, has extended
this line of research to identify oscillations in performance that are
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Fig. 5 | Participant-level oscillations in performance are clustered in phase.
a For participants with significant oscillations in accuracy at approximately 2 cycles
per stride (n = 12), the Fourier series model at 2 cycles per stride is displayed. To
ease the interpretationof differences inphase, participant-level data is expressed in

relative change from their mean ((X-Mean)/Mean). The vertical grey shaded region
notes the time at which the phase distribution in (b) corresponds to, and b displays
the polar plot of phase across participants. c, d Reaction time data (n = 13).
e, f Response onset likelihood (n = 17).
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synchronised to the rhythmic action of locomotion. On average, our
participant group exhibited best-fitting Fourier frequencies which
spanned the range of 1.93–2.02 cycles per stride (Fig. 3d–f). This raises
the possibility that the act of taking a step resets the phase of neural
oscillations and creates a repeatable reference point that causes an
underlying oscillation to be revealed at approximately the step rate. It
remains to be seen whether the oscillations we have described co-
occur with slower endogenous brain rhythms, as has been the case for
previous work investigating the fast-scale oscillations at higher rates in
performance linked to attention and perceptual sampling46. Similarly,
reaching behaviour has been shown to reset the phase of endogenous
oscillations43,47,48 and the ballistic movements generating locomotion
may reset or entrain neural oscillations relevant to behavioural
performance49.

One interpretation of the oscillations observed in perception and
attention is that they arise naturally as a kind of reverberation fre-
quency. On this view the period length reflects the time taken for
signals to feed forward to higher-level areas and then feed back to
sensory levels. A similar pattern could arise in locomotion at a lower
frequency governed by the step rate. Locomotion obviously involves
feedforward motor signals, but the control of locomotion is not pos-
sible without neural and mechanical feedback50,51. There are also
numerous findings in rodents showing that locomotion elevates sen-
sory cortical response gain generally and visual cortical activity
specifically13,15–17,52–54. It is not known yet whether these condition-
average elevations interact with the phases of the stride cycle, but this
established link between locomotion and visual cortical activity raises
a testable and more specific proposition that the stride cycle may
modulate activity in visual cortex and thus produce oscillations in
visual performance entrained to each step.

Also relevant to the present work are recent studies investigating
brain–body coupling in the context of perception and motor com-
mands. The rhythmic influences of the cardio-respiratory system, for
example, are increasingly recognised to contribute to variability in
perceptual task performance55–64. Our findings extend this line of work
by showing how steady-state locomotion also rhythmically alters
sensory performance and that these effects are highly prevalent and
idiosyncratic. Notably, heart-rate65–67 and respiration68–70 also show
coupling to walking behaviour—leaving open the possibility that the
oscillations we describe may also be synchronised with the cardio-
respiratory or other bodily systems63. One intriguing possibility is that
the variations in idiosyncratic peak frequency we report are not cou-
pled to stride cycle duration (cf. Supplementary Fig. 4) but cardior-
espiratory exertion. Future studies can individually calibrate walking
speeds, aswell as experimentally decouple the cardio-respiratory cycle
from the stride cycle (such as while carrying a backpack or during
inclined walking), to investigate this potential confound.

Similarly, recent work has identified that the timing of blinks and
saccades also entrain to the rhythm of footfall23, and that faster per-
ceptual fluctuations may be time-locked to saccade offset71. In our
data, theoccurrenceof saccades andblinkswas relatively sparse owing
to the smooth-pursuit nature of our task, yet future work could
quantify the relative contribution of saccades to these oscillations
using tasks that evoke large eye movements—for example, by pre-
senting targets that vary unpredictably in peripheral eccentricity to the
left or right of fixation.

The relative timing of the modulations in visual task performance
we report is also noteworthy for other reasons. Previous work has
indicated how the subjectively smooth nature of walking is never-
theless supported by phasic periods of enhanced sensory demand. In
particular, after toe-off in the early phase of the step cycle and prior to
heel-strike, the predictability of head movements is at their lowest72,
leading to an increase in theweighting of vestibular signals tomaintain
balanceandposture73,74. Indeed, it iswell established that the evolution
of locomotion required the widespread coordination of a host of

bodily systems75,76. In animal models, a key result from this research is
that although walking may appear smooth and continuous, there are
phasic periods within each step cycle that ballistically determine an
ongoing step trajectory (reviewed in75,76).

In summary, while an increasing body of work has compared
stationary conditions to light exercise or continuous walking7–11,77, we
havedemonstrated that reliablemeasurements canbemadewithin the
stride cycle. In the current paper, this has revealed clear changes in
visual performance linked to the phase of the stride cycle. These
findings open many research possibilities concerning, for example,
how and where attention is allocated over the stride cycle, whether
visual modulations occur uniformly over the visual field, and whether
performance on auditory or tactile tasks will also modulate with
locomotion.

Methods
Participants
This research complies with all relevant ethical regulations and was
approved by the University of Sydney Human Research Ethics Com-
mittee (HREC 2021/048). We recruited 45 healthy volunteers via con-
venience sampling, 7 of whom were excluded for incomplete data
collection that either resulted from wireless signal drop-out or hard-
ware malfunction. One more was excluded on the basis of eye-
movement data (detailed below), and another for an error in eye-
movement calibration. The remaining 36 volunteers included 22
females (Mean age = 19.6, SD = 2.6)with normal or corrected to normal
vision. No statistical method was used to predetermine the sample
size. The experiments were not randomised as all participants com-
pleted the same design without unique group assignments, and as
such, the experiments were not blinded to allocation during experi-
ments and outcome assessment. Sex and/or gender were determined
based on self-report and were not considered in the experimental
design, which focused on within-participant modulations over the
stride cycle. All participants were recruited from the University of
Sydney undergraduate psychology cohort, provided informed con-
sent prior to participation, and received either course credit or 20AUD
per hour of their time.

Apparatus and virtual environment
The virtual environment was built in Unity (version 2020.3.14f1) incor-
porating the SteamVR Plugin (ver 2.7.3; SDK 1.14.15), on a DELL XPS
8950, with a 12th Gen Intel Core i7-12700K 3.60GHz processor, running
Microsoft Windows 11. The virtual environment consisted of an open
simulated woodland, sparsely populated with trees, as we have used
previously26. Participants walked along a simulated 9.5m track wearing
the HTC Vive Pro Eye with an integrated head-mounted display (HMD)
and a wireless adapter kit (130 gram weight) and carried two wireless
hand-held controllers. The HMD houses two 1440× 1600-pixel (3.5”
diagonal) AMOLED screens with a 110° field of view refreshed at 90Hz.
The HMD also integrates Tobii eye-tracking technology, from which we
recorded gaze origin and gaze direction information using the native
SRanipal SDK (v1.1.0.1). During the experiment, the three-dimensional
coordinates of the HMD, gaze-origin, gaze-direction and hand-held
controllers were sampled at 90Hz resolution, using five HTC Base Sta-
tions (v 2.0). Participant responses were collected from the wireless
controllers and for self-pacing at the onset of each trial using a trigger
button beneath the right index finger.

At the start of each trial, the starting position was indicated by a
large red “X” on the ground. The red X positioned participants in line
with a walking guide, which was a small cube (0.1m on a side) at
approximately waist height. The cube had a directional arrow on the
superior face displaying the required direction of motion on walking
trials or a stop signal on stationary trials. Positioned above the
walking guide on each trial was a rectangular screen (35 cm width,
20 cm height). The average Euclidean distance between our
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participants’ HMD and the virtual screen was 52 cm, resulting in an
average screen size of 37.2° × 21.8° of visual angle The vertical centre
of the screen was calibrated to 80%of the height of each participant’s
standing HMD location. This height calibration standardised the
approximate viewing angle to the screen across participants. In the
centre of the screen was a circular annulus (11 cm diameter, 12.1°)
which indicated the boundary of the region to monitor for potential
target appearances. Within this circular region, targets were briefly
flashed with a grayscale contrast that was titrated using an adaptive
staircase to standardise performance across participants to
approximately 75% (see “Staircase procedure” below). The screen
colour was uniform grey (RGB 0.4, 0.4, 0.4), and the target shapewas
a small ellipse, 1.5 cm in length on its long axis (subtending 1.66°),
tilted at ±45° from vertical.

Procedure and task stimuli
Upon arrival, the participants readover the information sheet, became
familiar with the testing area, and had the chance to ask questions
before providing informed consent. They were given a brief overview
of the wireless virtual reality equipment, hand controllers, and battery
pack before beginning the first practice block which was always the
stationary condition.

Each experiment contained 10 experimental blocks, with 20 trials
per block. Each trial was 9 s in duration, spent either standing still or
walking the 9.5mdistance at a steady speed, with the smooth duration
and speed of travel set by the walking guide. On stationary trials,
participants stood motionless for 9 s, while on walking trials, the
walking guide progressed at a smooth speed of 1.1m/s. The order of
the first two blocks was pre-set (stationary, walking), after which the
remaining 8 blocks were randomised (two stationary and six walking
blocks). Through pilot testing, we observed that accuracy quickly
settled to approximately 75% in both conditions due to our adaptive
staircase procedure, and consequently increased the trial count for the
walking condition to enabledetailed stride cycle-based analyses,which
was our main focus of interest (see “Performance relative to
stride cycle” below).

Within each9 s trial, we carefully spaced target presentation times
to enable sequential responses per trial. A maximum of eight targets
were presented within each trial, with a minimum inter-trial interval
(ITI) of 0.8 s. Each target was 20ms in duration with a titrated contrast
determined by adaptive staircase (see “Staircase procedure” below).
The spacing of targets was relative to predefined anchor points (e.g.
target 1 at 1.1 s, target 2 at 2.3 s …), with an additional jitter (±0.5 s) to
decrease the predictability of target onset within each trial (while
ensuring the minimum ITI was satisfied). To further decrease the
predictability of target onset times, each target had a 10% chance of
being withheld from presentation, resulting in a range of actual target
presentation counts per trial per participant (Min =0, Max = 8,
M=6.99, SD =0.07), as well as increased range of inter-trial intervals
overall (M =0.92 s, SD =0.10 s). This procedure resulted in an average
of 507.66 stationary targets per participant (SD = 68.87) and 884.13
walking targets per participant (SD = 60.42). Importantly, this target
presentation methodology resulted in an approximately uniform dis-
tribution of target onsets over the stride cycle (Fig. 3).

During each trial, the target location was also manipulated to
increase engagement and attention to task. The circular annulus
defining the boundary for target appearances slowly drifted within the
confines of the background screen (speed range of 0.1–0.6m/s). Tar-
gets could appear anywhere within this circular boundary, excluding
regions that overlapped with the circular annulus. Supplementary Fig. 1
displays a summary of all target positions throughout the experiment.

Staircase procedure
Our adaptive staircase was an implementation of the QUEST
procedure78, programmed in C# for the Unity virtual environment.

Target contrast was adjusted on a single-trial basis separately for sta-
tionary andwalking blocks. For both staircases, we set the initial target
contrast to 0.45 (the background screen was 0.4). We set the initial
slope (β) parameter for QUEST at 3.5, standard deviation to 2, with a
lapse rate of 0.01 and floor at 0.5. Both staircases had a resolution of
0.004, ranging in contrast from 0.4 to 1.

The staircaseprocedure began after thefirst three trials of thefirst
practice block, which were omitted from further analysis. During these
first three trials, target contrast was set at the suprathreshold starting
parameter of 0.45 to familiarise participants with an easier version of
the task. For the remainder of the experiment, we additionally
manipulated target contrast by perturbing the QUEST staircase on a
target-by-target basis. As the QUEST procedure quickly converged to a
contrast value that approximated 75% accuracy, we selected each
target contrast from one of seven positions within the 25th to 75th
percentile of the prior probability density function. These positions
were selected to enable psychometric fits to participant data and
spaced at percentiles [25, 32.25, 37.5, 50, 62.5, 68.75, 75]. For simplicity,
we refer to these locations as [Q-3, Q-2, Q-1, Quest mean, Q + 1, Q + 2,
Q + 3] henceforth.

Psychometric fits
Using the dispersion of contrast intervals described above, we mod-
elled psychometric fits to participant data using a cumulative normal
distribution, implemented in the psignifit toolbox79. From each func-
tion, we retained the 50% threshold, fit width (difference between the
5th and 95th percentile of the data), and slope parameter. Figure 2
displays the average of participant fits during stationary and walking
conditions.

Eye movement data
We collected eye movements using the SRanpal SDK and integrated
Tobii eye-tracking technology. Eye movements were calibrated at the
start of each experiment using a 4-point calibration procedure fol-
lowing the manufacturer’s settings. Additional calibration was per-
formed after any change to the headset (such as after breaks or
betweenblocks).We recorded 3Dcoordinates of eye position andgaze
direction at each frame of all trials at 90Hz resolution and performed
the following preprocessing steps to identify and omit blinks from our
analysis.

First, whole-trial time-series of the eye position and gaze
direction data were tested for outliers. Blinks were identified using
gaze direction data on the basis of data discontinuities that excee-
ded ±0.8m. Raw time-series data was then interpolated from
−200ms before to +200ms after each blink, using amodified Akima
piecewise cubic Hermite interpolation. Identical windows were
interpolated for the gaze origin and gaze direction time series on
both axes. Overall, a low number of blinks were detected, with a low
participant average per 9 s trial (M = 1.12, SD = 1.08, range
0.035–4.05). Consequently, there was a low incidence of blinks
overlapping with target onset (within ±200ms; M = 0.07, SD = 0.13,
range 0–0.63). After interpolation, the vertical eye position data
was linearly detrended to enable averaging across participants of
different heights. Next, the cartesian coordinates of gaze direction
at target onset were converted to polar coordinates, centred on the
target’s location. All target events that appeared when the gaze
location exceeded 12.1° of visual angle from the target’s position
were excluded from further analysis. This procedure was in place to
ensure that participants were gazing within the approximate region
of the circular annulus when targets were presented. This proce-
dure identified one participant for exclusion based on a large
number of missed targets but otherwise demonstrated that parti-
cipants faithfully tracked the circular annulus with their gaze, as a
low number of targets were rejected on average per participant
(M = 57.47, SE = 30.2, approximately 4% of targets).
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Gait extraction from head-position data
We estimated the phases of the stride cycle by applying a peak-
detection algorithm to the time series of headpositiondata.Aswalking
results in near sinusoidal changes in the vertical centre of mass over
time, troughs on the vertical axis of head position correspond to when
both feet are placed on the ground during the double support stance
phase80–83. We epoched all individual steps based on these troughs and
normalised step lengths for stride cycle analysis by resampling the
time-series data to 200 points (1–100% cycle completion, in steps of
0.5%). We also visually inspected individual head-position time series
during pre-processing to identify trials for exclusion, basedonwireless
signal drop-out or poor performance of the peak-detection algorithm.
Over all participants, an average of 1.1 trials (SD = 1.3) were rejected in
this manner (range 0–5).

Performance relative to the stride cycle
Our main analysis compared performance on the visual detection task
relative to position in the simultaneously occurring stride cycle. To
accomplish this, all target onsetswere allocated to thepercentile (from
1-100 %) at which the target occurred in the simultaneous step (Sup-
plementary Fig. 2) or stride (Fig. 3). For single-step analyses, we aver-
aged performance within 20 linearly spaced bins (1–5%, 6–10% etc.,
with zero overlap). For the stride cycle, the same procedure was per-
formed over 40 linearly spaced bins.

We analysed detection accuracy and reaction time relative to the
point of target onset within each stride cycle, as well as response
likelihood (the frequency of self-initiated responses to targets). For
each dependent variable, we tested for a significant oscillation via a
two-step procedure. At the group level, we fit a sequence of Fourier
seriesmodelswithin a forced frequency range, stepping from0.2 to 10
cycles per stride in 0.2 increments, using MATLAB’s curve fitting
toolbox and the equation:

f ðtÞ=a0+a1 × cosðwtÞ+b1 × sinðwtÞ=A cosðwt +ϕÞ ð1Þ

Where w is the periodicity (cycles per stride) t is time, a1 and b1 are
cosine and sine coefficients, and a0 is a constant. The resulting sinu-
soidal fit has amplitude A and phase ϕ. The routine implements a non-
linear least squaresmethod thatminimises the summed squares of the
residuals over 400 iterations. For each forced fit at each frequency, we
retained the goodness of fit (R2) as our critical value. Figure 3 visualises
the goodness of fit for each Fourier series model on the observed
group-level data, with clear peaks at approximately 2 and 4 cycles per
stride. Next, we performed a non-parametric shuffling procedure to
assess the likelihood of these fits occurring by chance. Specifically, for
each participant, we shuffled the data allocated to each percentile bin
at random (without replacement), before repeating the group-level
analysis and fitting procedure described above. This shuffling
procedure was repeated 1000 times, and the distribution of R2 values
at each frequency from shuffled data served as the null distribution for
the strength of sinusoidal oscillations at chance—when the temporal
order of the stride cycle had been destroyed via shuffling. We
compared the observed R2 value to a null distribution created by
retaining themaximumR2 value across all frequencies per permutation
and interpreted the presence of a significant oscillation when the
observed R2 value exceeded this critical value (effectively controlling
for multiple comparisons).

We performed a series of additional analyses to further explore
these oscillations in performance. We note that our main results of
oscillations in performance also occur at the minimal width of 100
bins per step cycle. Supplementary Fig. 2 also displays that the
result is present in single-step cycle analyses and that clear oscil-
lations are present without any averaging (i.e. individual bins for
targets at 0.5% increments of the stride cycle). We next examined
whether mechanical artefacts may be contributing to these effects.

Given the decrease in detection accuracy around the time of footfall
(during the loading phase of the stride cycle), one specific possi-
bility is that the impact of footfall drives a mechanical distortion
through the HMD. We hypothesised that if footfall was introducing
a mechanical perturbation to the HMD and subsequent visual dis-
play, then the time series of pupil origin should show an increase in
variability at this same time. However, no statistically significant
increase in the variability of pupil origin was observed, indicating
minimal displacement of the HMD during this phase of the stride
cycle. Instead, we see clear evidence of an active compensation of
gaze direction to account for changes in head position, as has been
reported in other studies24,25. Supplementary Fig. 3 displays this
result. We also note that transient mechanical distortions cannot
account for the higher frequency oscillations in a large portion of
our sample (see Fig. 4) or the existence of counterphase modula-
tions in performance in a subset of participants (i.e. separated from
the time of heel-strike (see Fig. 5).

We also repeated our main analysis to test for oscillations in
performance when aligning to trial-onset, using clock-time as the basis
of our Fourier fits. This allowed us to test for oscillations in standing
data, as well as to compare whether the goodness-of-fits obtained
when testing cycles per stride exceeded those we couldmeasure when
testing cycles per Hz. The results of this analysis are displayed in
Supplementary Figs. 5 and 6.

Participant-level analysis and Bayesian population prevalence
We additionally performed the same fitting procedure on individual
participant data to test for the presence of a significant oscillation
between 0.2 and 10 cycles per stride per participant. Performing
participant-level null-hypothesis significance testing (NHST) also
enabled a test of Bayesian inference of population prevalence—a
recently proposed alternative to the population average effect
size27. Bayesian inference of the population prevalence has several
advantages compared to the group-level binary result of a NHST27,28

and is particularly powerful when investigating effects that may be
heterogeneous within a particular sample. After quantifying the
proportion of participants that have a significant effect, thismethod
estimates the population prevalence (within-participant replication
probability) and quantifies the maximum a posteriori (MAP) esti-
mate from this posterior distribution. Importantly, Bayesian pre-
valence provides both the most likely value of the population
parameter, but also an explicit estimate of uncertainty within which
the population prevalence resides. Here, following the recommen-
dations of Ince et al.28, we report the MAP and the 95% highest
posterior density intervals (HPDI). These intervals provide the range
within which the specified population parameter resides with 95%
probability.

From the individual-level fits, we also compared the phase dis-
tributions of oscillations across participants and tested for phase
clustering using Rayleigh’s test of non-uniformity84. From these tests,
we report the test statistic (Z), p-value and circular variance (k). Fig-
ure 5 displays the individual level fits (when significant) and phase
distributions for performance oscillations at 2 cycles per stride.

Data analysis
All analyses were performed in MATLAB (ver 2022a) or JASP
(0.16.3.0). For each t-test and ANOVA reported, the data met the
assumptions of normality and assumptions of equal variances
unless otherwise stated. All statistical tests used were two-tailed
unless otherwise stated. Psychometric fits were performed using the
Psignifit toolbox79. We have implemented ColorBrewer85 and Per-
ceptually Uniform Colormaps (https://bids.github.io/colormap/) to
aid in data visualisation. The 3D avatar was placed in the Unity
environment for illustration purposes only and is available from
www.passervr.com.
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw and processed behavioural data generated in this study have
been deposited in a public database (https://doi.org/10.17605/OSF.IO/
8DJTQ) on theOpen Science Framework and can be accessedusing the
link https://osf.io/8djtq/.

Code availability
Analysis codes to reproduce the analyses andmainfigures are available
in the public repository (https://doi.org/10.17605/OSF.IO/8DJTQ) and
can be accessed using the link (https://osf.io/8djtq/).
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