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Genetic influences on circulating retinol and
its relationship to human health

William R. Reay 1,2,3 , Dylan J. Kiltschewskij 1,2, Maria A. Di Biase3,4,5,
Zachary F. Gerring 6, Kousik Kundu 7,8, Praveen Surendran9,10,11,
Laura A. Greco 1,2, Erin D. Clarke 12,13, Clare E. Collins12,13, Alison M. Mondul14,
Demetrius Albanes15 & Murray J. Cairns 1,2

Retinol is a fat-soluble vitamin that plays an essential role in many biological
processes throughout the human lifespan. Here, we perform the largest
genome-wide association study (GWAS) of retinol to date in up to 22,274
participants. We identify eight common variant loci associated with retinol, as
well as a rare-variant signal. An integrative gene prioritisation pipeline sup-
ports novel retinol-associated genes outside of the main retinol transport
complex (RBP4:TTR) related to lipid biology, energy homoeostasis, and
endocrine signalling. Genetic proxies of circulating retinol were then used to
estimate causal relationships with almost 20,000 clinical phenotypes via a
phenome-wide Mendelian randomisation study (MR-pheWAS). The MR-
pheWAS suggests that retinol may exert causal effects on inflammation,
adiposity, ocular measures, the microbiome, and MRI-derived brain pheno-
types, amongst several others. Conversely, circulating retinol may be causally
influenced by factors including lipids and serum creatinine. Finally, we
demonstrate how a retinol polygenic score could identify individuals more
likely to fall outside of the normative range of circulating retinol for a given
age. In summary, this study provides a comprehensive evaluation of the
genetics of circulating retinol, as well as revealing traits which should be
prioritised for further investigation with respect to retinol related therapies or
nutritional intervention.

Vitamin A is an essential micronutrient that is involved in a range of
important biological processes, including, vision, immune function,
cell division, and neurodevelopment1,2. Vitamin A does not refer to a
single compound, but rather to a group of compounds that encom-
passes retinol (all-trans retinol), retinoids (metabolites of retinol, such
as retinaldehyde and retinoic acid), and provitamin carotenoids (beta-
carotene, alpha-carotene, and beta-cryptoxanthin). Retinol is the form
of vitamin A dietarily consumed from animal products, along with
retinyl ester3, while plant-based materials contain precursors termed
carotenoids that can be converted to retinaldehyde4. Retinoic acid, an
oxidised form of retinaldehyde, is a particularly potent signalling
molecule that regulates the expression of thousands of genes after

binding to nuclear receptors including the retinoic-acid receptor and
retinoid-X receptor subgroups5,6.

The majority of dietary retinol is delivered to the liver, which
is the primary organ responsible for its storage and metabolism.
Retinol binding protein 4 (RBP4) is the major systemic transpor-
ter of retinol after hepatic secretion, facilitating delivery of reti-
nol throughout the body3,7,8. RBP4 in turn complexes with the
tetramer protein transthyretin (TTR), which stabilises circulating
RBP4 and reduces renal filtration9. Notably, retinol can also be
delivered directly to target tissues through other mechanisms,
such as its postprandial packaging into lipid chylomicrons, as
reviewed elsewhere3.
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The role of retinoid-related interventions in human disease for
individuals who are not retinol deficient has been of long-standing
interest. Synthetic retinoids that are structurally similar to retinol/
retinoic acid are approved for dermatological indications (e.g., ada-
palene) and some cancers (e.g., bexarotene)10,11, as well endogenous
retinoids including all-trans retinoic acid (tretinoin) and 13-cis retinoic
acid (isotretinoin) used in dermatology. There is also continued
interest in repurposing both endogenous and synthetic retinoids
across a range of other indications, including neuropsychiatry2,12.
Currently, retinol supplementation is not specifically indicated unless
an individual is deficient, which is rare in high-income countries,
though much more common in low-income countries. Numerous
observational or randomised controlled studies have explored the
effects of supplementation, a high vitamin A diet, and/or measured
circulating retinol in a variety of disease contexts. However, the data
from these efforts have often either been null or conflicting between
studies12–16. Despite this, recent observational evidence suggests a
relationship between a greater circulating retinol abundance and
lower mortality in a large, prospective 30-year follow-up study17.

Genetics provides a powerful tool to better characterise the fac-
tors that influence the abundance of circulating retinol in serum.
Moreover, genetic variants associated with retinol can be utilised to
understand potential causal relationships with human health and dis-
ease, which may be informative for supplementation, dietary inter-
vention, or repurposing retinoid pharmacotherapies18,19. Family
studies have suggested that circulating retinol is significantly
heritable20, albeit estimated in small sample sizes. Similarly, dedicated
genome-wide association studies (GWAS) of circulating retinol have
also been limited to verymodest sample sizes21,22. In 2011,Mondul et al.
published findings of twogenome-wide significant loci associatedwith
retinol (N = 5006).These lociwereplausiblymapped to the genesRBP4

and TTR, respectively, which form the primary serum retinol transport
complex22. There has been comparatively little progress in further
characterising the genetic architecture of retinol since that time rela-
tive to other micronutrients like vitamin D, for which large sample size
GWAS (N > 400,000) have been released and extensive post-GWAS
analyses performed23,24. The recent adoption of untargeted high-
throughputmetabolomics platformswith coverage for retinol in some
existing genotyped cohorts presents a new opportunity to boost
statistical power.

In this work, we perform the largest GWAS of circulating retinol
to-date (Fig. 1). We identify novel loci that are associated with retinol
beyond the RBP4:TTR transport complex, including signals that plau-
sibly are involved in pathways such as lipidmetabolism. These data are
leveraged to investigate the effect of retinol on thousands of human
health phenotypes, revealing relationships of potential clinical
significance.

Results
The commonand rare variant genetic architecture of circulating
retinol
We integrated common and rare variant data from up to 22,274 indi-
viduals of European ancestry in our discovery meta-analyses to esti-
mate genetic effects on circulating retinol (Fig. 2A, B,OnlineMethods).
Firstly, variants from the INTERVAL and METSIM studies were meta-
analysed (NMeta = 17,268 – termed METSIM+ INTERVAL, Fig. 1, Online
Methods). After harmonisation, there were 8,173,975 common and
5,091,050 rare [minor allele frequency (MAF) < 1%] overlapping var-
iants between INTERVAL and METSIM, respectively. As retinol effect
sizes were estimated in the same units in both studies [plasma stan-
dard deviation (SD) units, quantified by the same instrument], we
conducted both a fixed-effects inverse-variance weighted (IVW)

Fig. 1 | Overview of study design for the genome-wide meta-analysis of circu-
lating retinol. In this study, we used three input datasets – INTERVAL, METSIM,
and ATBC/PLCO. Our primary meta-analysis was INTERVAL meta-analysed with
METSIM. These two studies measured plasma retinol using the same platform and
both had excellent genome-wide coverage that allowed the analysis of millions of
overlapping common and rare variants. ATBC + PLCO was imputed using a much
older imputation panel (HapMap2) and even after summary statistics imputation
there were markedly fewer variants available. As a result, we performed a separate
meta-analysis that included ATBC+PLCO,which had a larger sample size but fewer
variants available genome-wide. This dual strategy was adopted to balance variant

coverage (METSIM + INTERVAL), which improves discovery power, with the power
afforded by increased sample size (METSIM + INTERVAL +ATBC + PLCO). Replica-
tion for the lead SNPs was then attempted in up 1635 participants in TwinsUK, with
replication performed at each of the three-retinol measurement timepoints,
respectively, for the twin pairs separated. Several post-GWAS analyses were then
performed. These included: estimates of heritability and polygenicity, gene prior-
itisation, causal inference, signature mapping, polygenic score development for
circulating retinol, as well as the integration of this retinol polygenic score with
normative modelling derived deviations.
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Fig. 2 | Common variant influences on circulating retinol. a Manhattan plot of
the meta-analysis of common variants shared between the INTERVAL and METSIM
cohorts (Stouffer’s sample size weighted meta-analysis). Variant-wise -log10
P-values for association are plotted,with the dotted red line denoting genome-wide
significance. The closest genic transcription start site is labelled for each lead SNP.
Constituent GWAS performed using multiple-linear regression. b Manhattan plot,
as above, for the larger sample sizemeta-analysis that includes the ATBC and PLCO
cohorts, but with fewer variants available for meta-analysis. Constituent GWAS
performed using multiple-linear regression. c Estimates of SNP heritability of reti-
nol (h2), with the error bars denoting the standard errors of the estimates. The first
two panels denote estimates using the BLD-LDAKmodel and the LDAK-thinmodel,
respectively, both using LD tagging files from the Great British ancestry

participants in the UK Biobank. The last panel estimates heritability using the LDSR
model with LD from the 1000 genomes European participants. Estimates were for
the METSIM+ INTERVAL meta-analyses (Stouffer’s and IVW), as well as the larger
meta-analysis including ATBC/PLCO. d Empirical Bayes’ estimation of non-null
effects on retinol genome-wide, stratifiedby bins of ascendingly sorted LD score by
magnitude. The LD score bins were different for each panel – 1000 bins, 1000
genomes European LD scores (top left); 5000 bins, 1000 genomes European LD
scores (top right); 1000 bins, UKBB white British LD scores (bottom left); 5000
bins, white British LD scores (bottom right). Each point represents the proportion
of non-null effect sizes for that bin, with the trendline estimated using a generalised
additive model for the relationship between ascending LD score bin and the pro-
portion of non-null effects.
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meta-analysis and a sample-size weighted meta-analysis of Z scores
(Stouffer’s method). Secondly, we conducted an additional meta-
analysis (NMeta = 22,274) which also included data from two other
studies (ATBC and PLCO), termed the METSIM+ INTERVAL +ATBC +
PLCO meta-analysis. However, there were markedly fewer variants
available in this meta-analysis after imputing the ATBC and PLCO
summary statistics and harmonising with METSIM+ INTERVAL (NVar =
3,896,351, Online Methods). As a result, we focused on the METSIM+
INTERVAL meta-analysis as the primary discovery dataset.

Considering common variants from the HapMap3 panel (MAF >
0.05, outside of themajor histocompatibility complex (MHC) region),
we observed a relatively subtle inflation of retinol signals across the
genome as indexed by the mean χ2 statistic, with mean χ2 values
around 1.03-1.04, regardless of the meta-analysis considered (Supple-
mentary Data 1). Common variant SNP heritability (h2

SNP) was firstly
estimated using the linkage disequilibrium (LD) score regression
(LDSR) approach and the 1000 genomes European reference panel.
SNP heritability point estimates from this approach were between 6%-
7% and nominally statistically significant (P <0.05), although with
somewhat large standard errors (2.6%-3.2%) (Fig. 2C, Supplementary
Data 2). SNP heritability estimates of circulating retinol increased to
between 10%-13%, but were still noisy, using two alternate models to
estimate h2

SNP and theUKBiobank (UKBB) as the LD reference (Fig. 2C,
Online Methods, Supplementary Data 2). Partitioned h2

SNP across tis-
sues and cell-types demonstrated nominal enrichment in logical con-
texts given the known biology of retinol homoeostasis such as liver,
adipose, pancreas, and blood (Supplementary Fig. 1). The somewhat
large h2

SNP standard errors are likely a product of sample size; how-
ever, we then conducted further analysis to explore the extent of the
polygenic signal associated with retinol across the genome using an
Empirical Bayes’ method (Online Methods). This method was utilised
to model the number of non-null effects on retinol genome-wide
stratified by bins of LD scores that index the extent of LD any given
variant exhibits with other variants (Fig. 2D). Across all LD score bins,
we estimated that the mean fraction of common variants across the
genome with non-null effects on retinol was between 1.4% to 2.4%,
depending on themodelling parameters used. In linewith expectation,
the proportion of non-null retinol effects was very high (> 50%) when
considering the variants thatdisplay themost extensive LD (highest LD
score bins). The application of these analyses to two GWAS of another
vitamin (25-hydroxyvitaminD3) with either comparable ormuch larger
sample sizes23,25, suggested that the less-polygenic architecture of
retinol observed in this study may become more diffuse across the
genomewith greater sample sizes, in linewithmany other quantitative
traits (Supplementary Fig. 2). However, we caution that further inves-
tigationwill be required as these data become available to confirm this.

Next, we processed the common variant results of both meta-
analyses to identify genome-wide significant loci associated with cir-
culating retinol (PGWAS < 5 × 10−8). In the primary discovery meta-
analysis (METSIM+ INTERVAL, Stouffer’smethod), weuncovered eight
genome-wide significant loci, six of which were not reported in the
previous Mondul et al. retinol GWAS (Table 1). The absolute value of
the effect sizes (β) of these lead SNPs were between 0.066 and
0.172 SD in circulating retinol per effect allele, as derived from the IVW
meta-analysis. We observed minimal heterogeneity between the two
cohorts for these lead SNPs, although heterogeneity was slightly more
marked for rs6601299 (Supplementary Fig. 3,4). Replication was then
attempted in the TwinsUK cohort (N up to 1635, Online methods).
Considering the mean association across all timepoints retinol was
measured, as well as the twin pairs separately, 7 out of the 8 lead SNPs
in the loci had effect sizes in the same direction, which was greater
than expected by chance alone (Binomial P =0.035, Supplementary
Data 3). Of these, the TTR, GCKR, FOXP2, and PPP1R3B lead SNPs,
denoted as such based on their closest TSS, were at least nominally
significant at one or more of the measured timepoints.

We also investigated the effect of retinol-associated lead SNPs on
factors associated with dietary intake of retinoids. Using a GWAS of
retinol intake derived from a self-reported 24-hour dietary recall in the
UKBiobank (UKBB,N = 62,991)26, we foundnoevidence to suggest that
any of the effect of these genetic signals on circulating retinol is
mediated through influencing dietary intake behaviours (Supplemen-
tary Data 4, Supplementary Fig. 5).

In the larger sample-size meta-analysis with fewer variants avail-
able across all input datasets (METSIM+ INTERVAL +ATBC + PLCO),
six of the eight genome-wide significant loci from the smaller meta-
analysis were available to test for association. Five of the six loci
available became more statistically significant in this larger meta-ana-
lysis, whilst the chromosome 8 locus obtained a very similar level of
statistical significance in both meta-analyses (Table 2). It should be
noted that there was relatively large heterogeneity for the lead SNP at
the TTR locus on chromosome 18 locus between cohorts (Supple-
mentary Fig. 6). This was due to a more significant association in the
ATBC+ PLCO GWAS, although this region was still very strongly
associated in both METSIM and INTERVAL in the same direction
(Supplementary Fig. 6).

We also estimated rare variant (frequency <1%) effects on circu-
lating retinol using variants available in theMETSIM+ INTERVALmeta-
analysis. Despite relatively low power to detect rare variant associa-
tion, we identified a genome-wide significant rare variant signal on
chromosome five (chr5:86765041:T:C, dbSNP ID: rs138675130) asso-
ciated with reduced circulating plasma retinol per C allele (−0.441 SD,
SE = 0.0709, P = 6.37 × 10−9). There was no significant heterogeneity

Table 1 | Genome-wide significant common loci associated with retinol (METSIM+ INTERVAL)

Lead SNP (Stouffer) Locus Closest
Gene (TSS)

EA/NEA EAF NFE/FIN Z PGWAS PHet Reported by Mondul
et al.22

rs1260326 2:27598097-27752871 GCKR T/C 0.409/0.358 6.242 4.32e−10 0.023 No

rs34898035 2:122078406-122084285 TFCP2L1 A/G 0.042/0.027 −5.677 1.37e−8 0.190 No

rs11762406 7:114014488-114286611 FOXP2 A/C 0.092/0.085 −5.526 3.28e−8 0.104 No

rs6601299 8:9167797-9224907 PPP1R3B T/C 0.17/0.10 −6.197 5.76e−10 0.004 No

rs10882283 10:95295876-95360964 RBP4 A/C 0.622/0.664 9.789 1.26e−22 0.192 Yes

rs12149203 16:79696939-79756197 MAF C/G 0.708/0.726 5.668 1.45e−8 0.841 No

rs1667226 18:29134171-29190174 TTR A/T 0.481/0.507 −8.405 4.27e−17 0.06 Yes

rs6029188 20:39142516-39234223 MAFB A/G 0.637/0.662 −5.908 3.47e−9 0.147 No

Lead SNP based on statistical significance from sample size weighted (Stouffer) meta-analysis. Loci boundaries as defined by FUMA (hg19 coordinates). Constituent GWAS was performed using
multiple linear regression. The closest gene by transcription start site (TSS) is listed. EA = effect allele, that is, allele to which the effect size relates, NEA = non-effect allele. The effect allele frequency
(EAF) is given from gnomAD v2.1.1 for non-Finnish Europeans (NFE) and Finnish Europeans (FIN). Z-score from the Stouffer meta-analysis. The PGWAS (statistical significance of association) and PHet
(Heterogeneity between input effect sizes P value derived from Cochran’s Q) are also from the Stouffer meta-analysis. Bolded loci are known retinol signals. The far right column denotes whether
they were genome-wide significant in the previous Mondul et al. retinol GWAS (ATBC+ PLCO)22.
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between the contributing studies for this signal. The frequency of this
C allele in Europeans (gnomADv.3.1.2) ranges from0.5% in non-Finnish
Europeans to 0.8% in Finns, and whilst it is marginally rarer in Africans
and South Asians, it is entirely absent in the East Asian and Middle
Eastern populations in the gnomAD database. The variant is intergenic
and in FinnGen release 8, the C allele was associated at phenome-wide
significance (P < 1 × 10−5) with increased odds of benign neoplasm of
the eye and adnexa, as well as whooping cough. The closest canonical
transcription start site to this variant is that ofCOX7C, which encodes a
subunit of a terminal component of the mitochondrial respiratory
chain. We also uncovered several suggestively significant rare variant
signals (P < 1 × 10−5), including three non-synonymous variants in the
genes FREM2, NAXD, and CHD1 (Supplementary Data 5). Of these, the
rare NAXD non-synonymous allele suggestively associated with lower
retinol (rs3742192) had some in silico evidence to suggest deleter-
iousness (Supplementary Data 5), although it is classed as benign in
ClinVar. Finally, to boost power, we also statistically aggregated rare
variants to genes (Online Methods). There were no significant retinol
genes after Bonferroni correction of these gene-level association
results (P < 3.02 × 10−7); however, there were two novel suggestively
associated genes (P < 3.02 × 10−5), GALM and ZDHHC18 (Supplemen-
tary Data 6).

Prioritisation of retinol-associated genes reveals mechanisms of
genetic influence on circulating retinol
In common variant loci, prioritising causal genes canbe difficult due to
confounding factors like linkagedisequilibrium. For circulating retinol,
we employed a multi-faceted approach to prioritise genes that are
confidently associated. Firstly, we sought to interrogate the eight
genome-wide significant loci uncovered in the main discovery meta-
analysis (METSIM+ INTERVAL) to uncover plausible causal genes. This
was achieved by adapting an integrative pipeline developed in pre-
vious work that considers annotation, probabilistic finemapping,
integrative scoring, and in silico prediction (Online Methods, Supple-
mentary Data 7). We describe these results further for each locus in
supplementary note 1 but summarise the prioritisation evidence
forthwith. There was quite consistent evidence in four loci for a likely
causal gene (GCKR, FOXP2, RBP4, and TTR). RBP4 (chromosome 10
locus) and TTR (chromosome 18 locus) were previously associated
with retinol in the only other dedicatedGWASof this trait and form the
complex that transports retinol in serum22, thereby, having a direct
biological link to retinol abundance. GCKR, a gene encoding a protein
that binds to and regulates the keymetabolic enzymeglucokinase, was
confidently the causal gene for the locus on chromsome 2 with the
rs1260326 lead SNP. This gene is known to have a large and varied
metabolic association profile due to the role of glucokinase in gly-
caemic and lipid-related processes, amongst others27–29. Interestingly,
the lead SNP (rs1260326), and most likely causal variant derived from
probabilisticfinemapping, was a commonmissense allele, whereby the
retinol increasing T allele corresponds to a substitution of leucine for
proline in the GCKRprotein. Previous experimentalwork suggests that
this variant impacts GCKR affinity for glucokinase27,30.

The transcription factor gene FOXP2 was also strongly supported
by multiple lines of evidence as a causal gene for the locus on chro-
mosome seven. The role of this gene in the brain and in relation to
neurological phenotypes like language has been extensively studied31,
but less so in the periphery despite relatively high expression across
many different systemic tissues. Therefore, we analysed RNA-
sequencing data of FOXP2 overexpression in a cell-line not derived
from the central nervous system (human osteosarcoma epithelial cell
line) and revealed the transcriptional correlates of FOXP2 over-
expression were enriched for a broad range of pathways related to
factors including extracellular matrix biology, glycosylation, and
interleukin signalling, amongstmany others (Supplementary Data 8-11,
Online Methods)32. Ta
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The remaining four loci exhibited less clear evidence of which
gene to prioritise, although all point to potentially interesting func-
tional mechanisms. On chromosome eight, there is some evidence to
support PPP1R3B as a gene that influences retinol, which encodes a
catalytic subunit of the phosphatase PP1 that is implicated in relevant
metabolic processes like glycogen synthesis33. However, other lines of
evidence point to the role of long-noncoding RNA in this locus. The
loci on chromosomes 16 and 20 are noteworthy as the closest tran-
scription start sites to the respective lead SNPs are two transcription
factors (TF) from theMaf family (MAF andMAFB). Interestingly,MAFB
has been shown to regulate both TTR and RBP4 expression in various
tissue contexts from human or murine studies34,35. As only some lines
of evidence support these two TF, further functional characterisation
of these two loci is warranted. Interestingly, in the locus on chromo-
some 16, two of the other genes with some evidence for a retinol-
related function (MAFTRR and LINC01229) have been shown experi-
mentally to regulateMAF expression and are also associatedwith other
biochemical traits like urate, further supporting the role of the Maf
family on retinol abundance in serum36. Finally, the remaining locus on
chromosome 2 (2:122078406-122084285) had the least interpretable
functional prioritisation results. The closest transcription start site to
the lead SNP was another TF (TFCP2L1) that has broad physiological
roles, including in the kidney37.

We then sought to expand our scope for gene discovery beyond
genome-wide significant retinol-associated loci through further inte-
gration of genetics with transcriptomics and proteomics (Online
Methods, SupplementaryData 12-13). Firstly, we leveragedmultivariate
models of genetically regulated expression (GReX) to perform a
transcriptome-wide (liver, whole blood, adipose, small intestine, pan-
creas, and breast mammary tissue) and proteome-wide (plasma)
association study (TWAS/PWAS) of circulating retinol. Tissues for the
TWAS were selected based on prior knowledge of retinol biology and
the results of the partitioned heritability analyses (Online Methods),
whilst plasma was the only tissue available for PWAS. After applying
multiple-testing correction to the TWAS and PWAS individually
(FDR <0.05) and testing whether there was a shared causal variant via
colocalisation [Posterior probability (PP) of a shared causal variant
(H4), PPH4 > 0.8], we identified strong evidence of four additional
retinol-associated genes outside of genome-wide significant loci (at
least +/− 1megabaseaway). Thesewere as follows:MLXIPL, which binds
to carbohydrate response elements to regulate triglycerides38–40;
GSK3B, a gene that encodes amember of the glycogen synthase kinase
family involved in metabolism and glycaemic homoeostasis41; the
tankyrase gene (TNKS) implicated in processes like Wnt signalling42;
and INHBC, part of the inhibin family of proteins with important
endocrine functionality43. Genetically predicted mRNA expression of
MLXIPL in adipose, pancreas, and breastmammary tissuewas inversely
associated with circulating retinol levels. Conversely, TWAS analyses
revealed that genetically predicted expression ofGSK3B and TNKSwas
positively associated with circulating retinol levels. Finally, genetically
predicted plasma protein expression of INHBC showed a positive
correlation with retinol levels (ZPWAS = 4.72). We then used a more
conservative approach whereby finemapped variants that putatively
influence protein expression (pQTLs) were used as instrumental vari-
ables (IV) to estimate the causal effect of plasma proteins on retinol
using Mendelian randomisation (MR, Online Methods, Supplementary
Data 14). We applied the same filters to the results (FDR <0.05 and
PPH4 > 0.8). The colocalisation tests assist to detect proteomic effects
on retinol that have higher confidence; however, as we are mostly
using a single finemapped IV per protein, we do not have access to the
same suite of sensitivity analyses that are usually deployed in a poly-
genic MR approach which uses multiple IVs. These pQTL-MR analyses
further supported that upregulated INHBC likely increases serum
retinol, with each SD increase in plasma protein expression associated
with a small but highly statistically significant impact on circulating

retinol [0.05 SD increase in retinol per SD in INHBC expression, 95%CI:
0.03, 0.07]. In line with expectation, pQTL-MR, and subsequent colo-
calisation, further genetically validates that elevated RBP4 protein
abundance correspondingly increases serum retinol with somewhat
large effect (0.6 [95% CI: 0.48, 0.72] SD in retinol per SD in plasma
RBP4 expression). There was also evidence that RBP4 protein expres-
sion and retinol colocalise under the hypothesis of a single causal
variant (PPH4 = 1). Considering the eight genes prioritised in this and
the previous section (RBP4, GCKR, FOXP2, TTR, MLXIPL, GSK3B, TNKS,
INHBC), we found that these genes exhibited upregulated expression
in the liver (PAdjusted < 0.05) upon analysing data from 54 GTEx tissues.
This further consolidates the salience of hepatic processing to genetic
influences on circulating retinol abundance. Pathway analyses of these
genes demonstrated that they were enriched amongst factors such as
those involved in carbohydrate metabolism (Supplementary Data 15).

Evidence of causal effects of retinol across the human clinical
phenome using retinol binding protein 4 variation as a genetic
instrument
The role of retinol in human health and disease has been of long-
standing interest. However, most evidence has been observational,
limiting the ability for causal inference. Moreover, randomised con-
trolled trials (RCT) of interventions like retinol supplementation and
endogenous/synthetic retinoids have only been performed for a small
fraction of the traits implicated through observational studies. We
sought to increase our understanding of causal effects of genetically
predicted retinol on human health by leveraging genetic variants
associated with retinol uncovered in this study as IVs. Given certain
assumptions aremet, these genetic proxies of retinol can be utilised to
estimate causal effects of circulating retinol at scale using Mendelian
randomisation (MR) (OnlineMethods). Firstly, we utilised a single IV in
RBP4 (rs10882283), as this gene has a clear and unambiguous asso-
ciation with circulating retinol levels, and therefore, is less likely to be
prone to horizontal pleiotropy than other retinol-associated loci. We
do caution, however, that RBP4 does exert some other functionality
that may not be directly related to retinol transport44, although this
gene is still likely the best available single IV associatedwith circulating
retinol at genome-wide significance. We utilised this RBP4 IV (MET-
SIM+ INTERVAL meta-analysis effect size in SD units) to estimate the
effect of retinol on over 19,500 outcomes in the IEUGWAS database
(IEUGWASdb, Online Methods, Supplementary Data 16). IEUGWASdb
collates and harmonises GWAS summary data from GWAS catalog,
consortium based GWAS, UK Biobank GWAS, and several other sour-
ces. After multiple-testing correction (FDR <0.01), genetically pre-
dicted retinol was found to putatively exert causal effects onoutcomes
including several lipid traits, leucocyte counts (total leucocytes and
neutrophils), reticulocytes, optic disc area, and resting-state con-
nectivity of a functional MRI (fMRI) derived network edge. For
instance, each SD in circulating retinol was associated with a −0.1 SD
[95% CI: −0.14, −0.06] decrease in leucocyte count, whilst this unit
retinol increase was estimated to increase optic disc area by 0.22 SD
[95% CI: 0.12, 0.32]. We further interrogated a representative subset of
these associations using colocalisation to test if the signals are driven
by a shared causal variant in RBP4 (Fig. 3, Supplementary Data 17).
Colocalisation strongly supported that the effect of circulating retinol
on leucocyte count, optic disc area and the edge in the fMRI network
arises from a shared causal variant in RBP4. In contrast, the effect of
retinol on lipids through RBP4 was shown to likely arise from linkage
due to the proximal gene FFAR4 that encodes a free-fatty acid receptor.
Therefore, the lipid findings may not represent a causal impact of
circulating retinol, at least through RBP4, but rather the influence of
FFAR4, although further investigation is warranted, particularly using
analyses that consider multiple causal variants at this locus.

A limitation of the above phenome-wide analyses is that the
multiple-testing burden that arises from the inclusion of over 17,000
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traits may obscure retinol effects on binary disease phenotypes, as
these are usually less powered than GWAS of continuous traits. To
overcome this, we also estimated the effect of retinol using theRBP4 IV
on 1141 binary endpoints with at least 1000 cases in FinnGen release 8
(not featured in IEUGWASdb), allowing a phenome-wide analysis of
electronic health record derived binary outcomes. However, there
were no traits that survived multiple-testing correction. The most
statistically significant result was some nominal evidence of a protec-
tive effect of circulating retinol on the odds of carpal tunnel syndrome
– OR=0.682 [95% CI: 0.558, 0.860], P = 2.2 × 10−4, q = 0.25.

Exploratory analysis of phenome-wide effects of retinol using
multiple instrumental variables
To boost power for discovery of causal retinol effects, we then utilised
non-palindromic, independent (LD r2 < 0.001) genome-wide significant
SNPs as IVs (Online Methods). We do caution that due to the immense
pleiotropy of some IVs, such as the SNP in GCKR, these results must be
interpreted carefully. As a result, we aimed to implement a pipeline
that refines the trait pairings with the strongest evidence. Firstly, we
used the inverse-variance weighted estimator with multiplicative ran-
domeffects (IVW-MRE) to estimate the effect of retinol on IEUGWASdb
outcomeGWAS forwhich at least six of the IVswere available (> 17,000
outcome phenotypes). There was moderate positive correlation
between the IVW-MRE and singleRBP4 estimates across all traits tested
(r =0.43, Supplementary Fig. 7). Whilst well powered, the IVW-MRE
assumes all IVs are valid, which is unlikely in practice. Therefore, we
developed a pipeline to prioritise the most confident causal relation-
ships that survive multiple-testing correction considering the IVW-
MRE estimates (FDR <0.01, Online Methods, Fig. 4A, Supplementary
Data 18–20). This was comprised of three tiers, with Tier #1 being the
highest level of evidence. Retinol/outcome pairings thatwere assigned
a tier had to exhibit no significant heterogeneity between IV-outcome
effects, a non-significant MR-Egger intercept (which screens for
unbalanced pleiotropy), and not be driven by a single IV. Four

additional MR methods with differing assumptions were then applied
in this study (Online Methods). From the trait pairings that passed the
above heterogeneity and pleiotropy filters, Tier #1 traits were those for
which all five methods were nominally statistically significant
(P < 0.05), whilst Tier #2 traits had 4/5 significantmethods, and Tier #3
traits 3/5 methods significant. There were no Tier #1 retinol/outcome
trait pairings, but several Tier #2 and Tier #3 trait pairings (Fig. 4B, C),
with all of them directionally consistent with the estimates from the
singleRBP4 IV, supporting their validity. Before formally reporting trait
pairings as either Tier #2 or Tier #3 in the manuscript, we excluded
traits that would have been assigned a tier with non-European ancestry
(Age hay fever, rhinitis or eczema diagnosed, cereal type, and sitting
height ratio), and ensured that the GWAS reported were large and well
powered relative to the outcome trait. Broadly, we found evidence that
genetically predicted retinol may increase body fat-related measures,
resting-state fMRI connectivity of several network edges, as well as
food consumption phenotypes related to carbohydrates. Retinol also
exhibited evidence of a relationship with the cortical thickness and
surface area of several brain regions, as well as microbiome compo-
sition and keratometry measurements. These results were dominated
by continuous traits, for which we are better powered, however, there
were some binary traits assigned Tier #2 or Tier #3 evidence. Specifi-
cally, genetically proxied retinol was associated with decreased odds
of coxarthrosis (arthrosis of the hip), whilst it was associated with
adverse asthma/COPD medication effects and dental problems. We
caution that all these inferred associations require further investiga-
tion, and should be treated with requisite caution, as reviewed
elsewhere19,45,46. GWASof theseoutcome traitswith greater sample size
will also no doubt emerge in the future, and these findings should be
assessed for consistency using those larger studies. Moreover, the
power and assumptions of each MR test is also a key consideration
when further interrogating these reported trait pairings – for instance,
the MR-Egger approach is relatively low-powered compared to other
methods usedhere but is unbiased in the presence of pleiotropy under

Fig. 3 | Representative subset of significant causal estimates of circulating
retinol using the RBP4 instrumental variable (IV) subjected to colocalisation.
The effect size units are the beta per standard deviation (SD) increase in circulating

retinol. The error bars denote 95% confidence intervals. Traits highlighted orange
demonstrate strong evidence of a single shared causal variant with circulating
retinol in the RBP4 region (PPH4 > 0.8).
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the InSIDE (Instrument Strength Independent of Direct Effect)
assumption. Another consideration of this approach, which leverages
multiplicative random effects with relatively few IVs (<10), is the
potential influence of residual standard errors below 1 on the estima-
tion of the IVW standard errors. We see some evidence of this impact
on the IVW-MRE estimates for Tier #2 andTier #3 traits – as these traits
exhibit no significant heterogeneity between IV estimates. Specifically,

whilst all fixed effect IVW results are still highly statistically significant
for these traits, they have larger standard errors than the IVW-MRE,
indicative of residual standard errors <1. This is a function of the MRE
not scaling the standard error of the IVW by the model residual stan-
dard error like in the fixed effects model. We discuss this further in
Supplementary note 2 and in Supplementary Fig. 8. However, these
issues only impact the P-value of the IVW-MRE relative to that of the

Fig. 4 | Estimated causal effects of genetically predicted circulating retinol
across the human clinical phenome. a Prioritisation pipeline overview for retinol
causal estimates [inverse-variance weighted estimator with multiplicative random
effects (IVW-MRE)] that survive multiple-testing correction (FDR<0.01). These
estimates are then subjected to tests for heterogeneity and pleiotropy (Online
Methods), with a tier then assigned based on how many of the five Mendelian
randomisation (MR)methods applied are at least nominally statistically significant.
In panelsb and c, the left-handplotdenotes theZ-score (beta/SE) from theMR IVW-

MRE estimates. Positive Z scores denote a positive IVW-MRE estimate of the effect
of circulating retinol on that trait, and vice vera. The traits are coloured by their
broad phenotypic category. The right-hand plot visualises the Z score using the
IVW-MRE model verses that of the MR estimate using the RBP4 IV alone (Wald
Ratio). The dotted lines approximately represent nominal statistical significance
(P < 0.05). In panel b, just tier #2 traits are plotted (Online Methods), whilst panel
c plots both tier #2 and tier #3 traits.
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fixed effects, and Tier #2/Tier #3 traits still exhibit non-zero evidence
across multiple methods and no indication of a single IV driving the
association. Further, using instead a fixed effects IVW estimator as the
primary test for trait pairings with no heterogeneity (Cochran’s Q
P <0.05) yields similar outcomes being prioritised asmost statistically
significant after FDR correction (Supplementary Note 2). It is also
important to consider when interpreting these estimates that MR
approaches are only valid under the assumptions they make, and as a
result, any potential causal relationship reported here requires further
validation, ideally using a randomised control trial design.

We hypothesised that the putative effect of retinol on body fat
could be one explanation for its relationship in this study to brain
phenotypes beyond a direct effect of retinoid signaling, particularly
given that obesity and adiposity have been linked with brain indices
captured by MRI47. However, using IVs for body fat percentage, we did
not find any strong evidence that it is causally related to any of the
retinol-associated brain regions (SupplementaryData 21), suggesting a
direct effect of retinol on these regions/networks or a relationship
induced through some other unobserved confounder.

We then applied the above pipeline to the FinnGen r8 traits. There
were eight disease phenotypes that retinol was associated with after
multiple testing corrections (Supplementary Fig. 9, FDR <0.01), which
increased to 19 with an exploratory FDR<0.1 threshold (Supplemen-
tary Data 22). There was a moderate degree of concordance between
the FinnGen r8 phenome-wide results using the single RBP4 IV and the
IVW-MRE method (r =0.48). We found three disease endpoints with
Tier #3 evidence (Fig. 4B, Supplementary Data 23). Specifically,
genetically predicted retinol was estimated to increase the odds of
congenital malformations of the heart and great arteries, whilst it was
protective for type 2 diabetes with coma and inflammatory liver dis-
ease. As these traits had tier #3evidence, therewas some inconsistency
in the strength of the results across different MR methods, and
therefore, these relationships should be interpreted cautiously. One of
the most active areas of research in retinol epidemiology is the rela-
tionship between retinol and cancer risk48. The estimated effect of
circulating retinol on the odds of any malignant neoplasm was not
significantly different than one - OR =0.97 [95% CI: 0.91, 1.04],
P =0.423 (Supplementary Fig. 10). However, therewas some indication
of a protective effect of retinol on squamous non-small cell lung can-
cer, which approached the threshold for statistical significance after
FDR correction - OR=0.64 [95% CI: 0.51, 0.80], P = 8.19 × 10−5, q =0.01.

There was also some data to support retinol having effects on other
respiratory neoplasm endpoints (Supplementary Fig. 10). Using the
singleRBP4 IV, therewas additionally someweak, nominal evidence for
a protective effect of retinol on all non-small cell lung cancers (P = 2.3 ×
10−3, q = 0.45) Given previous observational evidence that retinol is
protective for lung cancer48, aswell as some data supporting the use of
synthetic retinoids like bexarotene in lung neoplasms49, this relation-
ship warrants further exploration.

Genetic evidence that lipids and kidney function influence cir-
culating retinol
It is also clinically valuable to understand exposures and diseases that
impact circulating retinol abundance. To explore this in greater detail,
we leveraged retinol as an outcome trait in MR analyses. We utilised a
diverse range of thousands of continuous and ordinal phenotypes
from IEUGWASdb as exposures in a similar pipeline described above
(Online Methods). Several lipid species were demonstrated to puta-
tively influence retinol abundance after multiple-testing correction
(FDR <0.01, Fig. 5A, Supplementary Data 24); for example, triglycer-
ides were implicated to increase circulating retinol whilst cholesteryl
ester-related traits decreased circulating retinol. We also saw some
evidence for a positive effect of the frequency of solarium and sun
lamp use on retinol, which may arise from behavioural-related
mechanisms. Furthermore, our findings suggest that increased reti-
nol levels are associatedwith a susceptibility-weightedMRImeasure in
the left putamen, called T2*. T2*, reflecting magnetic susceptibility
relative to tissue water, can be influenced by factors such as iron and
calcium content. This association may also be influenced by beha-
vioural or other pathways that warrant further investigation.

After applying the same tiering system used for retinol as an
exposure, we observed Tier #1 evidence strongly supporting a causal
effect of creatinine on circulating retinol. This relationship is biologi-
cally plausible and may represent an association with kidney
function50,51, although circulating creatinine is biologically hetero-
genous and is also influenced by unrelated factors like muscle mass.
Due to the biological complexity of lipid traits, we observed significant
heterogeneity between IV effects, and as a result, they were not
assigned a tier in our analysis. However, the effect of triglycerides on
increasing circulating retinol levels is consistent with established
knowledge of retinol biology, as well as this study implicating two
genes that are mechanistically confirmed to impact triglycerides

Fig. 5 | Exploring the causal effects of continuous exposures on circulating
retinol. a Exposure traits that demonstrated a significant causal estimate (IVW-
MRE) on circulating retinol aftermultiple-testing correction (FDR<0.01). Traits are
coloured relative to their broad phenotypic category. bMultivariable MR (MVMR)

models investigating the effect of creatinine and major lipid species on circulating
retinol. Each panel represents the results from a different MVMRmodel (each with
different underlying assumptions (Online Methods). The exposure – retinol rela-
tionship plotted is conditional on the three other traits in the model.
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(GCKR and MLXIPL). We then leveraged the CAUSE model to distin-
guish causal effects of creatinine on circulating retinol from correlated
pleiotropy thatmay arise between these two traits due to the extensive
polygenicity of creatinine52. We found that a model that includes a
causal effect of creatinine on retinol was more parsimonious than a
model of pleiotropy alone (sharing model) through comparison of
these models using the Bayesian expected log pointwise posterior
density (ELPD) method (Supplementary Fig. 7, 4ELPDSharing vs

Causal = −4.34, P = 8.9 ×10−3). Given that IVs for creatinine could plau-
sibly act through lipid species like triglycerides to influence circulating
retinol, we then constructed multivariable MR (MVMR) models that
estimated the creatinine to retinol relationship conditioned on high
density lipoprotein (HDL), low density lipoprotein (LDL), and trigly-
cerides (Online Methods). While there was some evidence that the
effect of creatinine on retinol could arise due to triglycerides, there
was also evidence to suggest an independent effect of both triglycer-
ides and creatinine on increasing circulating retinol, depending on the
modelling parameters used (Fig. 5B, Supplementary Note 3).

Finally, we explored pharmacological agents and molecular per-
turbagens that may influence circulating retinol (Online Methods).
Considering the novel genes prioritised in this study with an assigned
direction of expression (TWAS/PWAS, pQTL MR), it was found that
GSK3B is a drug-target known to be inhibited by lithium and related
compounds. This may be of clinical interest as it suggests that lithium,
utilised as a therapy in mood disorders, may decrease circulating
retinol via its inhibition of GSK3B given that genetically predicted
expression of this gene was positively associated with retinol. We then
employed computational signature mapping to further characterise
pharmacological agents related to retinol (OnlineMethods). However,
these analyses did not yield any compounds for which the in vitro
transcriptomic signature significantly matched or opposed genetically
predicted expression associated with retinol after multiple-testing
correction (Supplementary Data 25). We then considered perturbagen
signatures aggregated to biological pathways or compounds grouped
by overall mechanisms of action (MOA) (Online Methods). After
multiple-testing correction (FDR <0.05), there were 13 gene-set based
perturbagen signatures that were significantly similar to the direc-
tionality of genetically predicted expression associated with retinol
(Supplementary Data 26). For example, the expression signature of
compounds in the HDAC inhibitor MOA opposed expression geneti-
cally predicted to increase serum retinol. This can be interpreted as
while no single HDAC inhibitor was significantly associated with reti-
nol, there was at least some evidence for the overall relationship with
this MOA. This accords with the suggested effect of HDAC inhibitors
like valproic acidondownregulating the expression ofRBP453–55, a gene
not included in the signature mapping analyses given the large effect
of its encoded protein on retinol.

No strong evidence for traits which exhibit bidirectional rela-
tionships with circulating retinol
We then considered whether any of the tested traits may exhibit a
bidirectional causal relationship with circulating retinol. Reverse
causality for Tier #2 and Tier #3 traits from the IEUGWASdb pipeline
was first assessed, although for binary traits this should be treated
purely as a test of the null hypothesis given the difficulties in using IVs
for binary traits56. Therewas no strong evidence for reverse causality of
any of these traits (Supplementary Data 27). One exception to this was
in relation to expression of the protein PEAR1, forwhich therewas very
nominal evidence of bidirectional effects. We also investigated evi-
dence for bidirectional effects involving FinnGen Tier #3 traits that
retinol is genetically predicted to influence. The use of either genome-
wide significant or suggestively significant SNPs (P < 1 × 10−5) as IVs did
not indicate evidence of reverse causality of these diseases to retinol
(Supplementary Data 28). However, given some of the statistical lim-
itations of these analyses, such effects warrant further consideration.

Lastly, we considered whether creatinine, as the most confident trait
pairing with retinol as the outcome, exhibited a bidirectional rela-
tionship. There was only very weak evidence that circulating retinol
has a negative effect on circulating creatinine (P =0.023).

Genetically proxied retinol can identify individuals outside of
the normative range of circulating retinol for a given age
Wewere also interested in evaluating the performance of a genetically
proxied index of circulating retinol, that is, a circulating retinol poly-
genic score (PGS). The independent TwinsUK cohort was utilised to
tune and evaluate retinol PGS (Online Methods). We used several
methods to evaluate the performance of a retinol PGS in this cohort.
Firstly, we test different retinol PGS configurations in a random
selected training subset of the model (70% of cohort), using a linear
mixed model to account for relatedness between the twin pairs. The
best performing retinol PGS configuration in the training subset
explained approximately 2.12% of the phenotypic variance of retinol
when applied to the remaining 30% of the cohort (mean variance
explained across three retinol measurement timepoints). We also
found similar performance when applied to each subset of twin pairs
(Supplementary Data 29). A limitation of this approach for using the
same cohort for tuning and testing the retinol PGS is that the estimated
effect sizes may not be representative. As a result, we employed an
approach to tune weights for the PGS using the summary statistics
alone. This was achieved through leveraging the principles of prob-
abilistic finemapping to update variant weights by their posterior
probability of association (Online Methods). Due to the modest poly-
genicity of retinol, this method upweights a small number of variants.
Despite this, these scores were still significantly associated with cir-
culating retinol in TwinsUK (Supplementary Data 29).

Like most micronutrients, circulating retinol has been shown
previously to have a complex relationship with age57. However,
population-level approaches investigating these effects do not
account for inter-individual variability. We hypothesised that norma-
tive modelling could be used to characterise individual patterns of
circulating retinol, and to evaluate the contribution of genetics to
these individualised effects. Normative modelling, derived from the
application of growth charts in paediatric medicine, aims to estimate
normative reference ranges of variation in the population (e.g., of
circulating retinol) based on age and/or other relevant variables. Here,
we established reference ranges for circulating retinol as a function of
age using generalised-additive models for location, scale, and shape
(GAMLSS) frameworks in the TwinsUK dataset (Online Methods, Sup-
plementary Note 4). Thesemodels were constructed in the full cohort,
as well as in one twin subset only for comparison. Briefly, this involved
identifying the optimal distribution for the GAMLSS model using all
samples, followed by splitting the data into two partitions. One parti-
tion was utilised to estimate centiles (5th, 25th, 50th, 75th and 95th), and
the left-out subjects were benchmarked against this reference chart to
determine theposition of their individual retinolmeasurement (Online
Methods). This process was then repeated using the opposite subject
allocation. An individual’s retinol level was classified as infra-normal if
their measured retinol fell below the 5th percentile for their age, and as
supra-normal if their retinol value exceeded the 95th percentile for
their age.

We then investigated the extent to which retinol PGS was asso-
ciated with these individual profiles of circulating retinol with respect
to age (Supplementary Data 30). By way of example, we report results
forthwith from the more conservative modelling approach which only
used one half of the twins. Retinol PGS was at least nominally sig-
nificantly associated with supra and infra-normal deviations except for
supra-normal deviations at thefirst (youngest) visit forwhich therewas
only a trend observed (Supplementary Figs. 1213). For example, at the
second visit each SD in retinol PGS was associated with an approxi-
mately 70% [95% CI: 23%, 136%] increase in the odds of exhibiting

Article https://doi.org/10.1038/s41467-024-45779-x

Nature Communications |         (2024) 15:1490 10



supra-normal retinol levels for a given age relative to all remaining
participants, whilst conversely reducing the odds of displaying infra-
normal levels by approximately 37% [95% CI: 12%, 55%]. These data
suggest that genetics is a non-zero contributor to circulating retinol
levels that fall outside the normative range for a given age. In future, a
normativemodelling approach could be utilised to examine additional
factors, including dietary intake, as well as the interplay between
genetics and other influences, that might contribute to individualised
deviations in retinol levels relative to the population benchmarks.

Discussion
We conducted the largest GWAS of circulating retinol to-date, reveal-
ing important insights into genetic influences on this trait. The sample
sizes in this study facilitated the first published estimate of SNP her-
itability for circulating retinol, plausibly between 5-10%. However, the
large standard errors accompanying these estimates reinforces that
greater sample sizes are still needed. Moreover, we were able to
uncover confident genetic signals associated with retinol at genome-
wide significance outside of the RBP4:TTR transport complex. The
gene prioritisation pipeline applied both within and beyond genome-
wide significant loci prioritised eight genes with high-confidence for a
role in retinol biology. These genes were highly expressed in the liver
and overrepresented amongst biological pathways including carbo-
hydrate metabolism. The liver is known to be the key organ respon-
sible for retinol storage and processing1, which is represented strongly
by the genetic data in this study. Further, the prioritised genes
assigned as overrepresented in the regulation of carbohydrate meta-
bolic process pathway (GCKR, GSK3B, and MLXIPL1) are all broadly
known to be related to hepatic energy metabolism. As lipids are
directly mechanistically linked to retinol absorption, storage, and
delivery1,3, it is plausible that the varied metabolic roles of these genes
converge on changes in the abundance of different lipid species. The
role of lipids in circulating retinol abundance is also highlighted by our
Mendelian randomisation analyses. However, it is still likely that gly-
caemic homoeostasis may impact circulating retinol via mechanisms
not directly linked to lipid biology; for example, expression of the
insulin-controlled glucose transporter GLUT4 is postulated to be
related to RBP4 protein levels58. In summary, our results suggest that
the most identifiable common variant influences on circulating retinol
are either mediated through direct effects on transport or metabolic
factors, particularly related to lipids. We also prioritised genes like
FOXP2 for which a mechanistic relationship to retinol is less inherently
clear. Our analyses of transcriptomic correlates of FOXP2 supported
the immense biological pleiotropy associated with this transcription
factor, reinforcing its significanceoutside of its traditionally conceived
association in the literature with neurological phenotypes like lan-
guage. Work is now needed to disentangle the mechanisms which
specifically underlie this relationship between FOXP2 and circulating
retinol that were infer from these genetic findings.

Our study also represents a significant advancement as it is the
first to perform a high-throughput, hypothesis free, analysis investi-
gating the potential causal effects of retinol across a wide range of
human clinical phenotypes using Mendelian randomisation. This work
recapitulated known influences of retinol on ophthalmological
measures59, the innate and adaptive immune response60, and con-
genital heart malformations61. However, we also uncovered some less
characterised relationships thatmay be of direct clinical relevance.We
highlight forthwith the example of circulating retinol being genetically
predicted to impact the thickness and surface area of several brain
regions, as well as indices of brain connectivity. Retinoic acid, a
downstream metabolite of retinol, is considered one of the most
intrinsic central nervous system signalling molecules, particularly as it
exerts control over processes like neuronal differentiation in utero and
adult neurogenesis, as reviewed elsewhere2. It is, therefore, logical that
retinol would plausibly influence brain structure and connectivity

throughout the lifespan. However, the regions implicated in this study
require further examination with respect to their clinical significance.
By way of example, we associated increased circulating retinol with a
reduction in thickness in the right rostral anterior cingulate cortex.
This cortical region has been identified by a large international mega-
analysis from the ENIGMAconsortium to exhibit increased thickness in
individuals with the neuropsychiatric disorder schizophrenia com-
pared to controls62, suggesting a potential protective effect of retinol
in this regionwith respect to schizophrenia.This accordswithprevious
evidence linking retinoids to schizophrenia2,63. It is known clinically
that both retinol deficiency and toxicity can have harmful neurological
effects, highlighting the complexity of the relationship of retinol to the
brain throughout the human lifespan. This complexity is also seenwith
retinoids used as pharmacotherapies. For instance, isotretinoin (13-cis
retinoic acid), indicated for conditions like acne, has been shown to
have opposing effects on adult neurogenesis relative to all-trans reti-
noic acid and putatively increases the risk of suicide64,65, although
evidence for this association is mixed66. Conversely, a synthetic reti-
noid, bexarotene, with different receptor affinities to isotretinoin, has
demonstrated some promise as a potential adjuvant to antipsychotics
in schizophrenia67. Future work should attempt to understand these
relationships with greater fidelity by investigating genetic influences
on other retinoids beyond retinol, as well as how tissue-specific
abundance can differ from what circulates in serum68. Emerging
methods for non-linearMendelian randomisation would also be useful
in this context given that retinol often exerts dosedependent effects69.
The causal estimates generated in this study also need to be treated
with appropriate caution due to the limitations of MR and require
further validation in study designs that can enable causal inference,
such as randomised control trials. As reviewed previously18,19,70, MR
tests are only unbiased when their assumptions are plausibly satisfied,
which is why we implemented a suite of different methods and sensi-
tivity analyses with quite distinct underlying assumptions in this study.
Genetic estimates on circulating retinol used as IVs could also be
confounded by factors including uncontrolled population stratifica-
tion, selection bias, and measurement error. We also can compare our
MR-pheWAS results to some previous literature that used retinol IVs in
a MR study, most of which used RBP4 and TTR IVs from the previous
Mondul et al. GWAS. For example, we replicated a largely null effect of
circulating retinol thatwas previously suggested usingMRon the odds
of Alzheimer’s disease71, digestive tract cancers72,73, and endometrial
cancer74. Interestingly, a previous MR study did report weak evidence
of a risk increasing relationship between genetically proxied dietary
intake of retinol and lung cancer, which was the opposite direction of
thatwe found formeasured circulating retinol in this study75. However,
MR studies of dietary retinol intake are verydifficult to interpret due to
the pleiotropic nature of any genetic effects on nutrient intake pat-
terns that would be used as IVs, highlighting the importance of GWAS
usingmeasured retinol. In summary,weprovide a large resource to the
literature of putative effects of circulating retinol across the human
clinical phenome that will be informative for future investigation of
this trait.

Finally, we make some recommendations for future GWAS of
retinoid molecules. An important limitation of our analyses is that we
only investigated genetic effects on circulating retinol, rather than
retinol availability within target tissues. Given the complexities
of retinol homoeostasis, it is plausible that genetic effects on factors
like retinol entry into the cell (e.g., STRA6 receptor) and esterification
for storage (e.g., lecithin retinol acyltransferase) are obscured when
considering only retinol present in serum or plasma. Therefore, future
studies should attempt to measure retinol abundance in different tis-
sues from genotyped samples, although this will pose a challenge in
terms of obtaining sufficient sample sizes. Moreover, it would be of
interest to characterise the genetic overlap between effects on retinol
versus other retinoids like retinaldehyde and all-trans retinoic acid.
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Despite these limitations, and the need for concerted efforts to collect
more data, we believe this study demonstrates the value in conducting
retinol GWAS to both better characterise retinoid associated biology
and its clinical significance.

Methods
Study cohorts
The study was designed and conducted in compliance with all the
relevant regulations regarding the use of human study participants
and the criteria set by the Declaration of Helsinki. Each contributing
study cohort to the meta-analysis was approved for data collection
and use by their individual institutional review boards (INTERVAL: all
participants gave informed consent, National Research Ethics Ser-
vice approved the study (11/EE/0538); METSIM: all participants
provided written informed consent, with approval by the ethics
committee at the University of Eastern Finland and the Institutional
Review Board at the University of Michigan; ATBC/PLCO: IRB
approval by NIH). The TwinsUK Resource Executive Committee
(project ID: E1205) approved the use of the TwinsUK dataset and the
related study protocol. The use of the TwinsUK data complies with
the ethics regulations of the TwinsUK Resource Executive commit-
tee. The submitted manuscript and protocol was reviewed by the
TwinsUK Resource Executive committee and internally by NIH. The
proceeding section outlines the datasets included in the genome-
wide meta-analysis of circulating retinol, as well as the replication
cohort.

INTERVAL. The largest constituent cohort of the meta-analysis was
drawn from the INTERVAL study, comprised of recruited blooddonors
from the United Kingdom76. Retinol abundance was measured from
plasma using the high-throughput metabolomics platform Dis-
coveryHD4® (Metabolon, Inc., Durham, USA), as outlined in Supple-
mentary Note 5. Briefly, after adjustment for various technical/
biological confounders and outlier effects, residualised plasma retinol
was inverse-rank normal transformed before association testing.
Whole-genome sequencing of this cohort was performed as described
elsewhere77. A GWAS of the normalised residuals was performed in
HAIL via multiple-linear regression adjusted for INTERVAL metabolon
batch and 10 genetic PCs. The final GWAS sample size was 11,132 Eur-
opean ancestry participants.

METSIM. Plasma retinol was also measured using the DiscoveryHD4®
high-throughput platform, the same platform as INTERVAL, in a recent
metabolome-wideGWASof theMETSIM (Metabolic Syndrome inMen)
study78. Analogous to INTERVAL, METSIM was a cohort of recruited
volunteers. The cohort consists of middle-aged men recruited from
Northern Finland between 2005-201079. As described by Yin et al.78,
METSIM participants were genotyped using the Human OmniExpress-
12v1_C BeadChip and imputed using a customMETSIM panel of whole
genome-sequenced participants in the study. A linear mixed model
implemented in EPACTS v.3.2.6 was then leveraged to perform GWAS
on residualised retinol, subjected to inverse-rank transformation after
adjustment for technical and biological confounders. The final GWAS
had a sample size of 6136 METSIM participants (European ancestry).

ATBC+PLCO. The largest previous dedicated GWAS of circulating
retinol from 2011 was also included in this study22. This GWAS com-
prised data from two studies that measured serum retinol: the Alpha-
Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study, a Finnish
randomised control trial of beta-carotene/alpha-tocopherol supple-
mentation for cancer prevention80, and the Prostate, Lung, Colorectal,
and Ovarian (PLCO) Cancer Screening Trial, a United States trial of
cancer screening effectiveness81. The inclusion criteria, measurement
of serum retinol, andgenotypinghavebeenoutlinedbyMondul et al.22.
Briefly, ATBC/PLCO samples were genotyped using the Illumina

HumanHap550/610 arrays and imputed to the HapMap Central Eur-
opean reference panel, whilst serum retinol concentrations were esti-
matedusing reversed-phase liquid chromatography. The retinolGWAS
(N = 5006) was performed in R (version 2.10.1) using multiple linear
regression adjusted for age at sample collection, SNP derived PCs,
cancer status, serum cholesterol, and body mass index. The retinol
units for the GWAS effect sizes were in natural log transformed μg/L. A
limitation of using summary statistics from this study is that only
<600,000 variants were available for inclusion in the GWAS, as was
common at the time before more recent advances in imputation
pipelines that result in larger post-imputation yield. Therefore, to
increase the number of variants available formeta-analysis, we applied
a summary statistics-based imputationprocedure toboost the number
of variants available for meta-analysis. After harmonisation with the
1000 genomes phase 3 reference panel, we applied Gaussian summary
statistics imputation (ImpG) as implemented by the FIZI v0.7.2 python
package (https://github.com/bogdanlab/fizi) with the default window
size of 250 kb82. The ImpG model leverages the assumed Gaussian
distribution of GWAS Z scores with a mean of zero and variance that
arises from the LD-induced correlation between variants. As outlined
elsewhere82, Z scores of unobserved (imputed) variants can be esti-
mated given the LD correlation matrix derived from the reference
panel, with a metric of imputation accuracy (R2) calculated using the
conditional variance. We retained only confidently imputed var-
iants (R2 > 0.8).

TwinsUK. We performed a serum retinol GWAS in the TwinsUK cohort
to serve as a replication dataset. High-throughput metabolomics pro-
filing in this cohort has been described extensively elsewhere83.
TwinsUK is a prospective population-based study of mostly female
twin pairs which has been profiled using a variety of multiomic
technologies84. As outlined by Shin et al., genotyping was performed
with a combination of Illumina arrays (HumanHap300, Human-
Hap610Q, 1M-Duo and 1.2MDuo 1M)85. This was followed by imputa-
tion to the 1000 genomes phase reference panel after quality control
and retaining individuals of predominantly European ancestry after
PCA.We retained physically genotyped variants and those with at least
moderate imputation accuracy for GWAS (R2 > 0.3) in 5654 samples.
Our strategy forGWAS in this cohortgiven the limitedoverlapbetween
participants with both measured retinol and genetics available was to
split the twin pairs into two separate cohorts and ensure individuals in
each sub-cohort were unrelated. Relatedness testing in both sub-
cohorts containing one of the two possible twin pairs was performed
separately using KING as implemented by plink2 (PLINK v2.00a3LM
AVX2 Intel), with one participant from third-degree relative or greater
pairs randomly removed86,87. Kinship estimation via KING was per-
formed for autosomal variants that satisfied all of the following: phy-
sically genotyped on the array, MAF >0.05, outside of regions of long-
range LD like the MHC88, and in relative linkage equilibrium (r2 < 0.05).
PCA was then applied in each sub-cohort using plink2 to calculate
eigenvectors for use as downstream covariates. Retinol was measured
from samples at three timepoints. Themeanageof participants at each
timepoint was 51.5 (SD = 8.41), 58.6 (SD = 8.38), and 64.7 (SD = 8.41),
respectively. There were only a very small number of males in this
cohort (~ 3%), so only females were retained for further analysis due to
this imbalance in sex composition. After merging with the genotyped
split twin cohorts, as described above, there were up to 918 and 717
genotyped participants with measured retinol at three timepoints in
each subset, respectively. Six GWAS were performed: in each sub-
cohort (one or two), multiple linear regression was utilised to test the
additive effect of each variant on measured retinol at one of the three
measured time-points covaried for age, five SNP derived PCs, and
metabolomics batch. These GWAS was performed using the --glm flag
in plink2, resulting a 9,051,192 by three matrix of estimated additive
genetic retinol effect sizes for both sub-cohorts.
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Genome-wide meta-analyses
We conducted genome-wide meta-analysis of common variants
(MAF ≥0.01) using METAL (version March 2011), followed by a rare
variant (MAF < 0.01) meta-analysis also with METAL. The METSIM and
INTERVAL cohorts were integrated for the primary meta-analysis as
they both had expansive genome-wide coverage of common and rare
variants. A sample size weighted meta-analysis of Z scores (Stouffer’s
method) was utilised for this purpose. We also conducted the MET-
SIM+ INTERVAL meta-analysis via an inverse-variance weighted esti-
mator with fixed effects to estimate the effect sizes of effect alleles in
SD units of plasma retinol given this was the unit of both the METSIM
and INTERVAL GWAS, as well as both studies using the same Meta-
bolon Inc. platform for metabolite quantification. Heterogeneity
between the studies was assessed using Cochran’s Q test. We then
conducted a meta-analysis with fewer available variants that also
included ATBC + PLCO using Stouffer’s method (as the unit for this
GWAS differed from METSIM and INTERVAL). This larger sample-size
meta-analysis was also restricted to commonvariants as therewas very
limited rare variant coverage in ATBC+ PLCO.

The FUMAv1.4.1 (FunctionalMapping andAnnotationofGenome-
Wide Association Studies) platform was utilised to annotate variants,
define lead SNPs, and infer loci boundaries for genome-wide sig-
nificant signals (P < 5 ×10−8)89. We utilised the default settings for
defining independent significant SNPs (r2 ≤ 0.6) and lead SNPs
(r2 ≤ 0.1). LDestimationwas achievedusing the 1000genomesphase 3
European reference panel, with LD blocks within 250kb of each other
merged into a single locus. We then attempted to replicate the lead
SNPs from the eight genome-wide significant loci (METSIM+
INTERVAL) in TwinsUK, as described in the previous section. Given the
small sample size of TwinsUK, we sought to ascertain if the lead SNPs
were directionally consistent with themeta-analysis. This was achieved
by taking themean SNP Z score across the three timepoints for the two
sub-cohorts of unrelated participants, with a binomial test utilised to
inferwhether thenumber of lead SNPs (meanZ) thatweredirectionally
consistent was greater than chance alone (Binomial P < 0.05).

In the rare-variant meta-analysis, we annotated variants using the
Functional Annotation of Variants (FAVOR) online resource90.
Phenome-wide association profiles of selected variants were also
investigated using the pheweb browser collated from FinnGen release
8 (https://r8.finngen.fi/)91. Rare variants were then aggregated to genes
through leveraging the characteristics of the Cauchy distribution92,93.
In this approach, gene-wise P values are summed and then trans-
formed to approximate a Cauchy distribution, which due to its heavy
tail is insensitive to correlations amongst the P values. This behaviour
of the Cauchy distribution is important as covariance amongst rare
variants is difficult to estimate, and therefore, this approach guards
against inflated type I error due to potential unknown covariance/LD
between rare variants. Code for implementing the Cauchy aggregation
was adapted from https://github.com/yaowuliu/ACAT.

SNP heritability estimation
Summary statistics for the meta-analyses were munged using the
munge_sumstats.py script from the ldsc repository of scripts (https://
github.com/bulik/ldsc) and only common (MAF >0.05) HapMap3
variants outside of the MHC retained. SNP heritability was then esti-
mated using the LDSRmodel and the 1000 genomes phase 3 reference
panel94. By way of comparison, we then estimated SNP heritability
using the LDAK model via SumHer as implemented in LDAK v.5.2
(https://dougspeed.com/)95. Pre-computed tagging files derived from
2000 white British individuals in the UKBB for HapMap3 SNPs were
utilised to calculate SNP heritability using the LDAK-thin and BLD-
LDAK models95,96. Briefly, the same munged summary statistics were
used for these two LDAK heritability models. In these two approaches,
the SNP-wise expected heritability is not fixed but rather it is free to
vary byMAF and local LD in the LDAK-thinmodel, whilst the BLD-LDAK

model additionally varies this by functional annotation. We also esti-
mated partitioned SNP heritability via LDSR using a multi-tissue and
cell-type panel97.

Empirical Bayes’modelling of the genetic architecture of retinol
We investigated the polygenicity of the genetic architecture of circu-
lating retinol using an Empirical Bayes’ adaptive shrinkage method
termed ashR98. Functions to perform this method were implemented
via the ashRRpackage v2.2-54 (https://github.com/stephens999/ashr).
Briefly, this approach models effect sizes, along with their standard
error, as a mixture of zero and non-zero effects. Empirical Bayes’
inference is performed under the assumption that the distribution of
these variant effects is unimodal, which is a realistic assumption for
genetic effects on complex traits at the population level. The MET-
SIM+ INTERVAL IVW meta-analysis was utilised for this as it provides
an interpretable effect size and standard error for each variant (plasma
SD units). In line with previous work in the literature99, we annotated
each HapMap3 variant with its corresponding LD score from the 1000
genomes phase 3 European reference panel, aswell LD scores from the
UKBB White Great British participants for comparison, and sorted
these into bins of similar LD scores (NBins=1000 and NBins = 5000). The
ashR Empirical Bayes’ inference of the proportion of non-zero effects
was undertaken in each LD score bin, followed by calculating themean
across all bins. We utilised a generalised additive model to plot a
smoothed trend line of the relationship between increasing LD score
bin (higher LD score) and the proportion of non-zero effects.

Gene prioritisation
Gene prioritisation was performed within genome-wide significant
loci, as well as outside of loci that obtained genome-wide significance.
Due to the better coverage of common variants, we focused on the
METSIM+ INTERVAL meta-analysis for gene prioritisation. The pipe-
line for prioritising putative causal genes within the eight genome-
wide significant loci was adapted from a previous GWAS performed by
our group100. The following criteriawere utilised in this study: 1) closest
transcription start site (TSS) to the lead SNP, 2) closest gene (any) to
the lead SNP, 3) gene encoding retinoid transporter or enzyme in
locus, 4) non-synonymous variant in locus, 5) the most statistically
significant GTEx eGene [expression quantitative trait loci (eQTL) sig-
nal] in the locus, 6) most significant GTEx eGene in finemapped cred-
ible set for eQTL signal [posterior inclusionprobability (PIP) > 0.1, DAP-
G method – a method for finemapping likely causal eQTL signals from
non-causal associations with gene expression]101,102, 7) strongest
plasma pGene [protein quantitative trait loci (pQTL) signal] drawn
from finemapped pQTLs (PIP> 0.5)103, 8) highest CADD score, which is
a ranking metric of the deleteriousness of a particular allelic sub-
stitution relative to the rest of the genome; for example, a CADD score
> 20 represents the predicted top percentile of the most deleterious
substitutions104, 9) lowest RegulomeDB score, which integrates eQTL
and epigenetic data to predict themost likely functional variants in the
non-coding genome105, 10) the OpenTargets V2G predicted gene for
the lead SNP106, and 11) genes physically mapped to SNPs in the 95%
credible set derived fromprobabilistic finemapping (assuming a single
causal variant such that LD did not have to be modelled)107. We used a
prior variance of 0.15 to approximate Bayes’ factors from variant-wise
effect sizes (METSIM + INTERVAL IVW meta-analysis), in line with pre-
vious work finemapping association signals with quantitative traits108.
We characterised which genes satisfied the greatest number of the
above criteria on a per locus basis.

FOXP2 was one of our confidently prioritised genes but its biolo-
gical significance outside of the brain is less well understood. To
investigate this, we analysed RNA sequencing data from an in vitro
experiment that overexpressed FOXP2 in a human osteosarcoma epi-
thelial cell line (U2OS) via transfection of wild-type FOXP2 expressing
plasmids. Raw read counts from five control cell line replicates versus
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five plasmid transfected FOXP2 overexpression replicates were
downloaded from the Gene ExpressionOmnibus (GEO) resource (GEO
Accession: GSE138938)32. Data normalisation, filtration, and differ-
ential expression analyses were performed using the edgeR package
version 3.34.0109. Specifically, raw counts were firstly normalised to
library size and lowly expressed geneswith fewer than 10 rawcounts in
the smallest library were removed via a counts-per-million threshold-
ing approach. Data were inspected before and after the filtration step
via coefficient of variation (BCV) and multidimensional scaling (MDS)
plots (Supplementary Fig. 14). Differential expression for each gene
that survived quality control was then performed using exact tests for
differences in the means between two groups of negative-binomially
distributed counts.Wedefined a differentially expressed gene as those
which survived multiple-testing correction using the Bonferroni
method (PCorrected < 0.05), with three different absolute log2 fold
change (FC) cut-offs considered: |log2FC | > 1.5, |log2FC | > 2, and |
log2FC | > 5. The use of Bonferroni correction and large absolute FC
thresholds is very conservative; however, given the volume of differ-
entially expressed genes, and a relatively large number of replicates for
a cell line experiment boosting power, we believe these strict para-
meters are warranted to prioritise the most salient FOXP2 associated
signals. The overrepresentation of each set of candidate genes
amongst biological pathways and other ontology sets was tested using
g:Profiler110.

To identify potential causal genes that have not reached genome-
wide significance at our current sample size, we integrated the circu-
lating retinol GWAS with genetic effects on mRNA and protein
expression. Firstly, we conducted a transcriptome and proteome-wide
association study (TWAS/PWAS) of circulating retinol using the
FUSION approach111. As outlined previously112–115, FUSION leverages
models of cis-acting genetically regulated expression (GReX) that
exhibit statistically significant non-zero heritability. Variant weights
from GReX models are integrated with the effect of those same var-
iants on retinol to estimate the direction of genetically regulated
expression associated with increasing circulating retinol. TWAS GReX
(mRNA) were estimated previously using GTEx v8 (http://gusevlab.
org/projects/fusion/). We selected the following biologically informa-
tive tissues to perform TWAS based on known retinol biology or tis-
sues that exhibited at least nominally significant (P <0.01) enrichment
of SNP heritability in the partitioned-LDSRmodel. The selected tissues
were: small intestine terminal ileum, pancreas, liver, adipose (visceral
omentum), adipose (subcutaneous), breast (mammary tissue), and
whole blood. It has been suggested previously that TWAS signals from
tissues that are less directly trait relevant can induce spurious asso-
ciations, which is why we limited our hypothesis space to these
tissues116. Protein GReX were derived from plasma (ARIC study, Eur-
opean subset), as outlined elsewhere103. We applied Benjamini-
Hochberg false discovery rate (FDR) correction across all TWAS Z,
followed by all PWAS Z. Colocalisation between GReX models and
retinol was performed for all TWAS/PWAS signals that were at least
nominally significant via the colocpackage as implemented by FUSION
(single shared variant hypothesis)108. We then considered a more
conservative approach to priortise proteins for whom expression
could be causally linked to circulating retinol through leveraging
finemapped plasma pQTLs (PIP > 0.5, ARIC, European subset) as
instrumental variables (IV) for Mendelian randomisation19,45,103. The
proteomic platform used was the SomaLogic Inc. version 4 platform
via an aptamer (SOMAmer) based approach. In the ARIC study, 4697
unique proteins or protein complexesweremeasured. In our study, we
focused on finemapped pQTLs within 500 kb of the transcription start
site for use as IVs. After harmonisation with the retinol GWAS, 937
unique proteins or protein complexeswere able to be tested. TheWald
ratio method was implemented for proteins with single IVs, whilst an
inverse-variance weighted estimator with fixed effects was utilised for
proteinswithmore than 1 IV. Fixed effectswere used for the IVW rather

than multiplicative-random effects in this instance as no protein had >
4 IVs. The use of IV based approaches for identifying trait-associated
genes versus GReX has been discussed extensively elsewhere114.
Colocalisation was also performed for proteins that survived FDR
correction. Mendelian randomisation was performed using the Two-
SampleMR package v0.5.6, with IVs clumped through leveraging LD
from the 1000 genomes phase 3 European reference panel to retain
only independent pQTLs (r2 < 0.001).

Finally, we investigated the tissue specificity of prioritised genes
from GWAS loci and the TWAS/PWAS/MR approach using FUMA. To
do this, we compared the expression of these prioritised genes using a
t-test (one-sided and two-sided) against all other available genes in
GTEx v8 on a per tissue basis (54 tissues), followed by applying Bon-
ferroni correction to these P-values89. We also conducted pathway
analyses of these genes using g:Profiler with default parameters110.

Causal inference
Wedeveloped and implemented a comprehensive pipeline to leverage
this retinol GWAS to identify putative causal effects of retinol on traits
across the human clinical phenome, as well as traits that causally
influence retinol in the reverse direction. This was achieved using
Mendelian randomisation (MR), which has been reviewed extensively
elsewhere19,46,70. Firstly, we considered circulating retinol as the MR
exposure. The lead SNP in RBP4was first chosen as a single IV to proxy
circulating retinol as out of all the genes implicated in genome-wide
significant loci, RBP4 has exhibits the most specificity in terms of its
relationship with serum retinol. We utilised the Wald ratio method to
estimate the effect of the circulating retinol increasing rs10882283-A
allele (METSIM+ INTERVAL IVW effect size) on over 19,000 outcomes
in the IEUGWASdb v6.9.2 (accessed on the 16th of December, 2022)
resource via the ieugwasr package version 0.1.526. This resource
reports for SNPs genome-wide their effect size and statistical sig-
nificance in terms of association with thousands of collated GWAS
from varying sources, including the UK Biobank, GWAS catalog, large
GWAS consortia, eQTL and pQTL studies, metabolomics studies, and
imaging studies, amongst others. To correct for multiple testing, we
applied the false discovery rate (FDR) method, and we retained only
those retinol/outcome pairs with estimates thatwere significant below
the 1% FDR threshold (q <0.01). Subsequently, we investigated whe-
ther significant trait pairs colocalised using coloc v5.1.0 with default
priors.

Although the single IV approach is more conservative, power to
detect causal effects can be boosted by using all available inde-
pendent (r2 < 0.001, 1000 genomes phase 3 European reference
panel) genome-wide significant SNPs as IVs. The inverse-variance
weighted estimator with multiplicative random effects (IVW-MRE)
was utilised to estimate the effect of retinol on outcomes from
IEUGWASdb for which at least 6 IVs were available in that GWAS117.
The IVW approach has a zero percent breakdown level as it assumes
all IVs are valid for use in Mendelian randomisation, which is often
unrealistic in practice. We developed pipeline to prioritise the most
reliable causal estimates from the IVW-MRE that survived multiple-
testing correction (q < 0.01). This involved identifying retinol MR
estimates on traits for which the following applied: i) no significant
heterogeneity (P < 0.05) between IV exposure-outcome effects tes-
ted with Cochran’sQ118, ii) a non-significant intercept of anMR-Egger
model that does not constrain the intercept to pass through the
origin119, and iii) no evidence that leaving out any single IV ablates
the statistical significance (at least P < 0.05) of the estimate120. Traits
satisfying these criteria were then assigned a tier (Tier #1, Tier #2,
Tier #3) based on the raw statistical significance of the retinol causal
estimate using other MR methods besides the IVW-MRE that have
different assumptions regarding IV validity. These were: the IVW
with fixed effects (does not model heterogeneity like with MRE), the
weighted median method121, the weighted mode method122, and the
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MR-Egger method119. The underlying assumptions and methodolo-
gical considerations of using these methods have discussed exten-
sively elsewhere123,124. Traits for which the effect of retinol was at
least nominally statistically significant using all five methods were
assigned as Tier #1, whilst four tests being statistically significant
was Tier #2, and three tests being statistically significant was Tier #3.
The F-statistic and I2 of the IVs was also assessed to ensure they
were well-powered (F > 10) and suited for MR-Egger (I2 > 0.9),
respectively125. Any traits assigned a tier from IEUGWAS were then
manually curated to ensure the GWAS was European ancestry and
well-powered for the trait of interest. We excluded the FinnGen
release 5 outcomes from IEUGWAS at this stage of tiering given we
examined these further using release 8 in the proceeding analyses.
To investigate the effect of body fat percentage on the retinol-
associated MRI indices, we used IVs from a non-overlapping GWAS
of that trait (N = 65,831)126. We then repeated the above process of
binary outcomes with at least 1000 cases from FinnGen release 8,
which is not included in the current version of IEUGWASdb at time of
analysis, to increase power to detect effects on disease endpoints.

We also systematically investigated continuous outcomes that
may causally impact circulating retinol. Continuous outcomes were
our focus as causal estimates from binary exposures are difficult to
interpret and are often less powered in the context of MR56. Exposures
were filtered from phenotypes available in IEUGWASdb to retain con-
tinuous traits, with further filtering to identify traits with ≥ 5 genome-
wide significant, independent (r2 < 0.001, 1000 genomes phase 3 Eur-
opean reference panel) IVs available in the retinol GWAS. The same
pipeline as above was then applied (IVW-MRE FDR <0.01, followed by
sensitivity analyses and tier assignment). The causal estimate of crea-
tinine on retinol was a Tier #1 trait, and due to the pervasive poly-
genicity of creatinine afforded by its large sample size, we followed up
this relationship using the MRmodel “Causal Analysis Using Summary
Effect Estimates” (CAUSE), using the CAUSE R package v1.2.052. Briefly,
this method is a more polygenic approach and seeks to distinguish
casual effects from correlated pleiotropy by fitting competing models
that account for these terms and comparing them using ELPD. After
using 1 million random variants to estimate nuisance parameters, LD
clumping and thresholding was applied to the serum creatinine sum-
mary statistics (IEUGWASdb trait ID: met-d-creatinine) in line with the
original CAUSEpublication (P < 0.001, r2 < 0.01, 1000genomesphase3
European reference panel). The competing CAUSE models were then
fit (null, sharing, and causal), ensuring that all Pareto k estimates were
<0.5 during the model comparison using ELPD.

We then performed a multivariable MR (MVMR) analysis to esti-
mate causal effects of creatinine on retinol conditioned on threemajor
lipid species using GWAS from the global lipids genetics consortium
(LDL, HDL, and triglycerides)127. MVMR was undertaken in accordance
with previous work using the R packages MVMR v0.3 and Mende-
lianRandomization v0.6.0123. Briefly, this entailed identifying variants
associated at genome-wide significance with at least one of the four
exposures that are independent (r2 < 0.001), calculating a conditional
F-statistic for multivariable instruments128, and applying four MVMR
models (IVW, Egger regression, Weighted Median, and a LASSO based
penalised regression approach for selecting the optimal IV
configuration)129.

Drugs and perturbagens associated with circulating retinol
We also considered drugs that may influence circulating retinol. We
searched genes prioritised from our pipeline with an assigned direction
of retinol-associated expression using DGIdb v4.2.0 andDrugBank v5 to
identify retinol-associated genes targeted by drugs130,131, outside of
knowndrugs that targetRBP4andTTR.Retaineddrug-gene interactions
were restricted to those with known mechanism of action and > 2 lines
of supporting evidence. We also utilised computational signature
mapping to identify pharmacological agents thatmay enhanceor inhibit

the expression of genes associated with circulating retinol. To boost
power for signature mapping, we considered all genes that were nom-
inally associated with retinol in the TWAS/PWAS (P<0.05) that exhib-
ited moderate colocalisation of a shared causal variant (PPH4 >0.4).
These genes were uploaded to the Connectivity Map Query online tool
to quantify the similarity, termed connectivity, with drug perturbagen-
associated expression profiles, as outlined in detail elsewhere132.

Polygenic scoring
We used the independent TwinsUK replication cohort, described in a
preceding section, to investigate retinol polygenic scores (PGS). PGS
were applied to genotyped variants and high confidence imputed
variants (R2 > 0.8) in TwinsUK. Therewere two differentmethodologies
implemented to construct PGS: LD clumping and thresholding
(LD C+T) and a probabilistic finemapping-based method that scales
variant effect sizes based on their posterior probability of causality,
thereby upweighting signals more likely to be causal (RápidoPGS)133,134.
In the LD C+T approach, variants were clumped using the within
sample LD of TwinsUK at the following P-value thresholds: 5× 10−8,
1 × 10−5, 1 × 10−3, 0.01, 0.05, 0.1, 0.5, and 1. Additive PGS were then
profiled using PRSice2 v2.3.5135. The RápidoPGS applies probabilistic
finemapping (with Bayes’ factors approximated using Wakefield’s
method) to independent LD blocks genome-wide such that variant-
wise posterior probabilities of causality can be estimated. This in
essence is a shrinkage approach to PGS to account for double-counting
effects that arise due to correlated effect sizes inducedby LD; however,
does not inherently require an independent genotyped sample from
theGWAS for tuning. ApproximateBayes’ factors in each LDblockwere
derived assuming a prior variance of 0.15, conventionally used for
quantitative traits. This parameter choice was compared to a data-
driven approach to estimating the prior variance based on SNP herit-
ability, as outlined elsewhere134. Variant-wise effect sizes are multiplied
by their posterior probabilities before PGS calculation, as above.

As we are using a twin cohort, there were two different approa-
ches we utilized to tune the optimal PGS configuration from the LD
C+ T approach. Firstly, we randomly split the cohort into a training
(70% of participants) and test (30% of participants) partition. A linear
mixed model was then fit in the training partition with fixed effects of
PGS, age, andmetabolomics batch, as well as a random effect of family
ID to account for twin relatedness. This was applied for retinol mea-
sured at each of the three visits for all the P-value thresholds. The
marginalR2 from a nullmodel with no PGSwas subtracted from the full
model to infer the best-performing PGS in the training partition (mean
marginal R2 across three visits). The variance explained of the best
performing P-value threshold was then estimated using the same
approach in the test partition. By way of comparison, we also split the
twins into separate unrelated cohorts and used one set as training and
one as testing. Fixed effects instead of mixed effects linear regression
was then implemented in a similar fashion to above, additionally
covaried for five SNP-derived principal components.We then repeated
all the above for the two probabilistic finemapping weighted PGS
(prior variance = 0.15 and data driven prior variance).

Normative modelling
We built a normative model of retinol as a function of age per study
visit in TwinsUK. This was achieved using a generalised additivemodel
for location (μ), scale (σ), and shape (GAMLSS)136,137, implemented in R
v4.4.1. The GAMLSS approach is useful in this application as it is semi-
parametric and able to account for factors such as heteroskedasticity
and non-Gaussian distributions. Our modelling approach can be
summarised as follows: we firstlyfit a GAMLSSmodel in the full sample
for a variety of GAMLSS distribution families implemented by the
gamlss R package v5.4.12. The model on retinol at visit i,iϵf1,2,3g for
each of the GAMLSS families set the μ term as the first order fractional
polynomial of age, along with metabolomics batch as an additional
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covariate, with the term σ just the first order fractional polynomial of
age to model the scale of the distribution. The model fit of each of the
tested families was then assessed using the Bayesian information cri-
terion (BIC) and the Akaike information criterion (AIC). We repeated
the above also including measured body mass index (BMI) at that
timepoint in the μ term by way of comparison. We chose the GAMLSS
family (Box-Cox t distribution) through considering the model per-
formance (minimum AIC and BIC) over all three visits (Supplementary
Note 4, Supplementary Figs. 15 and 16).We then split the cohort in half,
separating the twins, and fit normative centile curves using the selec-
ted GAMLSS family to one half of each batch of retinol measurement,
and computed deviations on the other independent sample half on a
per batch basis. We repeated this process with the modelling and
deviation subsets reversed to compute deviations for all samples.
Individuals whosemeasured retinol was above themodel derived 95th
percentile were classified as having supra-normal retinol for their age,
while those below the 5th percentile were classified as having infra-
normal retinol. To guard against overfitting due to the relatedness of
twins between the two subsets, we then performed all of the above just
using one half of the twins as the full cohort formodel fitting, followed
by splitting this subset as described above. We tested the relationship
between scaled retinol PGS (mean = 0, SD = 1) and infra-normal retinol
at each visit was tested in half of the cohort (unrelated) using binomial
logistic regression additionally covaried for five SNP-derived PCs. The
same models were also constructed for supra-normal individuals.

Software and operating systems
The primary analyses in this manuscript were performed either on a
MacBook Pro (OS X: Ventura 13.3), an in-house linux cluster (Ubuntu
18.04.5 LTS), or the High-Performance Computing Research Compute
Grid of the University of Newcastle [Red Hat Enterprise Linux release
8.1 (Ootpa)]. The primary R version utilised was version 4.1.1 (2021-08-
10), with some additional analyses using R version 4.0.3 (2020-10-10)
(linux cluster). The Python version utilised was either Python 2.7.17 or
Python 3.6.9, depending on the requirements of the analyses.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The full retinol GWAS summary statistics generated in this study are
available at https://doi.org/10.5281/zenodo.7905523. The RNAseq data
analysed by this study are available in the Gene Expression Omnibus
(GEO) under accession code GSE138938. The 1000 Genome Project
data utilised for LD calculation can be available at ISGR (https://www.
internationalgenome.org/data). The datasets used annotation of var-
iants as eQTLs and pQTLs are publicly available from GTEx (https://
www.gtexportal.org/home/downloads) and the Chatterjee lab reposi-
tory (https://nilanjanchatterjeelab.org/pwas/), respectively. Weights
used for the estimation of TWAS test statistics are available from the
Gusev lab repository (http://gusevlab.org/projects/fusion/). FinnGen
GWAS summary statistics utilised in this study are publicly available
from the FinnGen website (https://www.finngen.fi/en/access_results).
GWAS data from IEUGWASdb utilised in the study for theMR-pheWAS
can be publicly accessed from their website (https://gwas.mrcieu.ac.
uk/). LD tagging files for the UKBB utilised for heritability estimation
can be sourced from the LDAK website (https://dougspeed.com/ldak/
). Metabolite raw relative abundances are available for INTERVAL, a
cohort included in the GWAS meta-analysis, at https://www.ebi.ac.uk/
metabolights/ (project codes: MTBLS833 and MTBLS834). The Twin-
sUK data used in this study are available under restricted access to
protect participant privacy as outlined by the study protocol of
TwinsUK, access can be obtained by approved, bona fide researchers
by following the steps detailed by the TwinsUK website: https://

twinsuk.ac.uk/resources-for-researchers/our-data/). Researchers wish-
ing to access TwinsUK data must read the data access policy (https://
twinsuk.ac.uk/wp-content/uploads/2022/12/DTR_DataAccessPolicy_
2022V1.pdf) and complete a “Data Access Proposal Form” for con-
sideration by the TwinsUK Research Executive Committee. Specific
enquires related to data access can be directed to
victoria.vazquez@kcl.ac.uk.

Code availability
Code used in this study is freely available at the following GitHub
repository - https://github.com/Williamreay/Retinol_GWAS_code.
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