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A signal processing and deep learning
framework for methylation detection using
Oxford Nanopore sequencing

Mian Umair Ahsan 1, Anagha Gouru 1,2, Joe Chan1, Wanding Zhou 3,4 &
Kai Wang 1,4

OxfordNanopore sequencing can detect DNAmethylations from ionic current
signal of single molecules, offering a unique advantage over conventional
methods. Additionally, adaptive sampling, a software-controlled enrichment
method for targeted sequencing, allows reduced representation methylation
sequencing that can be applied to CpG islands or imprinted regions. Here we
present DeepMod2, a comprehensive deep-learning framework for methyla-
tion detection using ionic current signal from Nanopore sequencing. Deep-
Mod2 implements both a bidirectional long short-term memory (BiLSTM)
model and a Transformer model and can analyze POD5 and FAST5 signal files
generated on R9 and R10 flowcells. Additionally, DeepMod2 can run efficiently
on central processing unit (CPU) through model pruning and can infer epi-
haplotypes or haplotype-specific methylation calls from phased reads. We use
multiple publicly available and newly generated datasets to evaluate the per-
formance of DeepMod2 under varying scenarios. DeepMod2 has comparable
performance to Guppy and Dorado, which are the current state-of-the-art
methods from Oxford Nanopore Technologies that remain closed-source.
Moreover, we show a high correlation (r = 0.96) between reduced repre-
sentation and whole-genome Nanopore sequencing. In summary, DeepMod2
is an open-source tool that enables fast and accurate DNA methylation
detection fromwhole-genome or adaptive sequencing data on a diverse range
of flowcell types.

DNA methylation, which is the process by which methyl groups are
added to specific nucleotides of DNA molecules, represents an
important epigenetic change to the genomes of human and other
species. Examples of DNA methylation include 5-methylcytosine
(5mC), N4-methylcytosine (4mC), 5-hydroxymethylcytosine (5hmC),
and N6-methyldeoxyadenosine (6mA)1. DNA methylations and mod-
ifications are essential tomanybiological processes, including genome
stability, genomic imprinting, aging, repression of transposable

elements, and carcinogenesis1. 5-methylcytosine (5mC) is the most
prevalent form of DNA methylation in humans. Genome-wide epige-
netic change (global DNA 5mC hypomethylation) is a hallmark of
cancer2, which is often accompanied by local hypermethylation of
tumor suppressor genes within their promoter regions3,4. The 5mC
occurs generally within CpG dinucleotides which are concentrated in
large clusters called CpG islands. In addition to being diagnostic bio-
markers, DNAmethylation sites are nowa therapeutic target for cancer
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with several drugs being tested or approved by the US Food and Drug
Administration (FDA)5,6. For example, 5-Aza-2’-deoxycytidine is among
the first methylation inhibitor used in cancer clinical trials7, and we
demonstrated that it leads to isoform switching and exon skipping
such as EZH2 in addition to de-methylation8. Both local 5mC hyper-
methylation and global 5mC hypomethylation can distinguish cancer
cells from normal cells, making methylation a potential biomarker for
such cells9. N4-methylcytosine (4mC), 5-hydroxymethylcytosine
(5hmC) and N6-methyladenine (6mA) also play pivotal role in reg-
ulating gene expression1,10, but they are much less studied than 5mC,
partially due to lack of reliable high-throughput methods and refer-
ence data sets.

Methylationmicroarrays and short-read sequencing have enabled
profiling of 5mC in CpG sites at single base resolution, however, both
technologies have substantial limitations11. These methods typically
use bisulfite conversion12 for 5mC detection which requires special
DNA preparation13,14, is subject to conversion efficiency15 and PCR
biases16, has limitations to assay repetitive regions (as shown in Fig. 1)
and epihaplotypes (haplotype-specific methylation), which are areas
that can be addressed by long-read sequencing technologies such as
Oxford Nanopore Technologies (ONT) sequencing. Ionic current

signal from Nanopore sequencing can be used to distinguish between
unmethylated and methylated cytosines and several tools have been
developed for this purpose (for example, Nanopolish17, f5c18,
Megalodon19, Dorado20, Guppy21, DeepMP22, Nanoraw/Tombo23,
DeepSignal24, Rockfish25, as well as DeepMod26). Indeed, a recently
published comprehensive survey evaluated seven ONT methylation
callers in diverse genomic contexts and showed a high level of con-
cordance between ONT methylation prediction and bisulfite
sequencing27.

Moreover, adaptive sampling in Nanopore sequencing allows real
time DNA molecule selection based on read sequence28. This strategy
results in a real-time acceptance or rejection of molecules: within 1 s
(~400 bp bases), the sequencer determines whether to continue
sequencing a molecule (if it maps to a pre-specified region of interest)
or reject and then sequence the next molecule. Therefore, one can
design target genomic regions such as CpG islands or CpG rich pro-
moters, and then perform adaptive sequencing on the ONT platform,
essentially achieving reduced representation methylation sequencing
(RRMS) which is conceptually similar to the commonly used reduced
representation bisulfite sequencing (RRBS). In 2022, Nanopore
released more mature protocols of adaptive sequencing on human

b) HG002 bisulfite 
converted reads

e) Genome Annota�on
Tandem Repeats

CpG Islands

a) HG002 Methyla�on

HG002 BS-seq

HG002 ONT Kit14 WGS

f) HG002 ONT Kit14 Read Signals

d) HG002 ONT Kit 14 
reads

c) HG002 wild type 
Illumina reads

Fig. 1 | Methylation calls and reads of short-read bisulfite sequencing (BS-seq)
andOxford Nanopore Technologies (ONT) kit14 sequencing ofHG002 genome
in CpG islands overlapping large tandem repeats. a Shows BS-seq methylation
calls andONTkit14methylation calls producedbyDeepMod2, (b) shows IGVplot of
reads and coverage of HG002 Illumina reads after bisulfite conversion, (c) shows
IGV plot of reads and coverage of wild type HG002 Illumina reads. d Shows cov-
erage and methylation tags of ONT kit14 reads of HG002 tagged by DeepMod2,
with red andblue colors showingmethylated andunmethylatedCpGs, respectively.
e Shows a track of tandem repeats larger than 10kbp from GIAB genome

stratification v3.0, and a track of CpG islands. The region surrounded by black
rectangle shows no read coverage in either BS-seq or native Illumina sequencing
due to low complexity. The region surrounded by blue rectangle has read coverage
in native Illumina sequencing, but not in BS-seq sample which illustrates further
difficulty of accurately mapping low complexity bisulfite converted reads. f Shows
ONT signal of all reads overlapping the methylated CpG sites shown in the green
section in (e). Signals from all the reads are aligned to the reference genome using
move table and minimap2, with overlapping signals from all reads are shown for
each base in the region. Panels (a–e) are generated in IGV.
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genome (targeting 310 Mbp or 10% of the genome consisting of all
CpG islands, CpG shelves, CpG shores and several promoter regions),
and a few papers demonstrated its success29–31.

Over the past few years, peer-reviewed and open-source methy-
lation detection tools have severely lagged technological develop-
ments in ONT sequencing. For example, Nanopolish, DeepMP,
DeepSignal, DeepMod, Tombo, methBERT and Rockfish provide
models only for R9.4 flowcells, which is being discontinued by ONT in
2023. The newer generation of R10.4 flowcells have a longer protein
pore with two pinch points for two signal measurements, and the
signal profile is completely different from previous flowcells. More-
over, none of the open-source tools can process POD5 files or BAM
move tables that replace FAST5 file format for storing signal and
basecall data by ONT basecallers.

In the current study, we present DeepMod2, a comprehensive
deep learning framework for methylation detection from Oxford
Nanopore sequencing. DeepMod2 substantially improves upon our
previous tool DeepMod in terms of accuracy, and it can analyze all
types of Oxford Nanopore flowcells and signal data formats. We per-
form whole-genome Nanopore sequencing of the NIH3T3 cell line (a
widely used mouse reference cell line for methylation studies) and
RRMSof HG002 (a widely used human reference cell line). Using these
datasets alongwith publicly availableONT datasets of Ashkenazim trio
(HG002, HG003, HG004) human cell lines, we evaluate the perfor-
mance of DeepMod2 with short-read sequencing and methylation
microarrays as ground truth. Our evaluation on both R9.4 and R10.4
flowcell datasets demonstrates that DeepMod2 has comparable per-
formance to Guppy and Dorado, the current state-of-the-art methods
from Oxford Nanopore Technologies. For per-read and per-site eva-
luation on human cell lines, DeepMod2 achieves ~95% and ~99% F1-
score, respectively, with a correlation of r > 0.95 with short-read
sequencing. Moreover, we show a high correlation (r =0.96) between
reduced representation and whole-genome Nanopore sequencing of
HG002, suggesting that it can be a viable strategy for large-scale cost-
effective methylation profiling of complex genomic regions. Finally,
we demonstrate that phasedmethylation calls fromDeepMod2 can be
used to accurately predict imprinted regions in human cell-lines.

Results
DeepMod2 takes ionic current signal from POD5/FAST5 files and read
sequences from a BAM file as input and makes 5mC methylation pre-
diction for each read independently using a BiLSTM or Transformer
model. If aligned reads are provided as input, then DeepMod2 com-
bines per-read predictions to estimate overall methylation level for
each CpG site in the reference genome. It additionally provides
haplotype-specific methylation counts if the input BAM file is phased.
Finally, it adds standardizedmethylation tags (MMandML) to theBAM
file to allow allele-specific analysis or visual validation of the methyla-
tion. These tags can be viewed in genome browsing tools, such as
Integrative Genomics Viewer (IGV)32 shown in Fig. 1. The workflow of
DeepMod2 is shown in Fig. 2. Since R9.4 and R10.4 flowcells produce
different characteristic signals, we present benchmark performance of
DeepMod2 models trained for both types of flowcells, with one
BiLSTM and one Transformermodel trained for each flowcell type. We
show DeepMod2’s performance on reduced representation methyla-
tion sequencing (RRMS) samples of HG002 and compare it with whole
genome sequencing. We also demonstrate how phased methylation
output of DeepMod2 can enable detection of imprinted regions.
Finally, wepresent a computational runtimeanalysis ofDeepMod2 and
examine the model differences between DeepMod and DeepMod2.

We compared per-read and per-site performance of DeepMod2
and other state-of-the-art Nanopore methylation callers on R9.4.1 and
R10.4.1 flowcell datasets of Ashkenazim trio (HG002, HG003, HG004)
and R9.4.1 flowcell dataset of NIH3T3. The evaluation was carried out
against ground truth methylation labels obtained from short-read

sequencing coupled with bisulfite or enzymatic conversion. For
NIH3T3, we additionally evaluated per-site performance against Infi-
nium Mouse BeadChip methylation calls.

Per-read benchmark evaluation
DeepMod2 and other state-of-the-artmethylation callers for nanopore
sequencing predict CpG methylation probability for each DNA mole-
cule independently by analyzing the current signal it produces. Then,
they combine the individual read evidence to infer methylation stoi-
chiometry for each CpG site. It is important to directly evaluate the
accuracy of the first step because the underlying models are often
trained (usually through machine learning or deep learning) to max-
imize the accuracy of this prediction. This canbe accomplished viaper-
read evaluation in which we compare the individual read predictions
for a CpG site against the ground truth labels. In this case, the
benchmark ground truth only included sites that were almost com-
pletely methylated (≥90% methylation frequency) or unmethylated
(<10%methylation frequency) with ample coverage (≥10X) from short-
read sequencing for this evaluation; details of this evaluation can be
found in the Methods section.

We evaluated DeepMod2, Nanopolish, Guppy and Rockfish on
R9.4.1 flowcell datasets of Ashkenazim trio and NIH3T3. We recognize
thatMegalodonandTombo (other software tools releasedbyONT) are
widely used in literature, however, both tools have been deprecated by
ONT in favor of Dorado (performance comparison with Dorado is
shown under the runtime evaluation section). For R10.4.1 flowcell data
of the Ashekazim trio, we evaluated DeepMod2, Guppy and f5C (a re-
implementation of Nanopolish) since these are the only tools compa-
tible with R10.4.1 datasets. For the Ashkenazim trio, we evaluated
performances on chr1 since DeepMod2 models were trained on chr2-
21 and validated on chr22. Figure 3a–d show receiver operating char-
acteristic (ROC) curves and precision-recall (PR) curves for per-read
performance evaluation on HG002. The ROC and PR curves for
DeepMod2, Guppy and Rockfish show that their models can achieve a
good balance between methylated and unmethylated predictions as
the decision threshold changes. Moreover, ROC and PR curves for R10
flowcell have much sharper corners than R9 flowcells, indicating that
the signal from newer flowcells can better discriminate between
methylated and unmethylated cytosines. This is corroborated by a
higher area under ROC (AUROC), average precision (AP) and F1-score
for R10 datasets compared to R9 datasets, as shown in Fig. 3e-j. Sup-
plementary Data 1 shows precision, recall, F1, AUROC, AP, true and
false positive andnegatives of eachmethylation caller for eachdataset.
For R9.4.1 datasets of the Ashkenazim trioHG002, HG003 andHG004,
the F1-score of DeepMod2 models is in the 95.7–97.1% range, which is
higher than the F1-scores of Guppy models (93.17–95.31%), but lower
than Rockfish (96.9–97.5%). For the mouse genome NIH3T3, although
Rockfish (92.53% F1-score) and DeepMod2 Transformer (90.61% F1-
score) perform substantially better than other tools (<88% F1-score),
all methods perform relatively worse on NIH3T3 compared to other
genomes. For R10.4.1 flowcells, DeepMod2 models have F1-scores in
97.5–98.2% range which is comparable with Guppy (F1-score
97.9–98.5%), while both tools perform substantially better than f5c (F1-
score 89.2–91.4%).

Per-site benchmark evaluation
DeepMod2 estimates per-site CpGmethylation level by calculating the
fraction of reads with 5mC compared to the total number of mapped
bases at the locus.Weperformedper-site evaluation ofDeepMod2 and
other methylation callers using two strategies. In the first strategy, we
measured precision/recall/F1-score for methylated and unmethylated
CpGs genome wide and in seven specific genomic regions: CpG
islands, CpG shores, CpG shelves, promoters, exons, introns, and
intergenic regions. In this case, the ground truth only included sites
that were mostly methylated (≥80% methylation) and mostly
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unmethylated (<20% methylation) with ample coverage (≥10X for
HG002-4 and ≥5X for NIH3T3) from short-read sequencing for this
evaluation. For Nanopore methylations callers, CpG sites with methy-
lation frequency ≥50% were labelled as methylated and labelled
unmethylated otherwise. In the second strategy, we measured Pear-
son’s correlation coefficient between predicted methylation fre-
quencies fromNanopore datasets and ground-truthmethylation levels
from short-read sequencing or beta values frommethylation arrays. In
this case, we included all sites frommethylation array as ground truth,
whereas for short-reads based ground truth, we only included sites
with ample coverage (≥10X for HG002-4 and ≥5X for NIH3T3)
regardless of the methylation level.

Figure 4 shows bar plots of F1-score of per-site evaluation of
DeepMod2 and other methylation callers against short-reads ground
truth in various genomic regions, as well as the Pearson’s correlation
coefficient for genome wide CpG sites. Supplementary Data 2 and
Supplementary Data 3 show precision, recall, F1-score, true and false
positive and negatives for R9.4.1 and R10.4.1 datasets, respectively. For
R9.4.1 datasets of HG002, HG003 andHG004, DeepMod2 BiLSTM and

Rockfish consistently outperform othermodels, with genome-wide F1-
score in a narrow range of 99.85–99.92%. All tools perform slightly
better on human genomes than on the mouse genome NIH3T3, with
Rockfish performing best at 99% F1-score followed by DeepMod2 at
98.75%. For R10.4.1 datasets, Guppy model shows substantial
improvement over R9.4.1 model, whereas DeepMod2 models also
show slight improvement. DeepMod2 BiLSTM and Guppy perform
similarly across the genomes with F1-scores in the 99.94–99.97%
range, whereas f5c has F1-score in 99.54–99.63% range showing com-
parable performance. Even though DeepMod2 Transformer and
Rockfish had better per-read performance than DeepMod2 BiLSTM,
this difference vanishes in per-site performance evaluation. In fact,
DeepMod2 BiLSTM model consistently outperforms DeepMod2
Transformer model. Similarly, even though Nanopolish and f5c had
substantially lower per-read performance (difference of 6–8%) com-
pared to other tools, their per-site F1-score is within 0.5% of
other tools.

Figure 5 shows heatmap plots and Pearson’s correlation coeffi-
cient between the genomewidemethylation frequency predictions by

Input
Oxford Nanopore 
POD5/FAST5 Files

DeepMod2

Add modifica�on 
tags to BAM file

Per-Read Modifica�on Probability

DeepMod2 Framework

Preprocessing
Dorado/Guppy 

Basecalling (Move 
Table Output Required)

Read Alignment
(Recommended)

Read Phasing
(Op�onal)

Combine per-read 
predic�ons based on

• Genomic Posi�on
• Strand Orienta�on
• Haplotype Phase

Output
Per-Read 

Predic�ons

Per-Site 
Predic�ons

• Aggregated and 
Stranded

• Phased (op�onal)

Modifica�on 
Tagged BAM

Feature Extrac�on

• Process each CpG locus 
on read and reference

• Generate 21x19 feature 
matrices

Deep Learning 
Model Inference

• BiLSTM or 
Transformer model

• Fast CPU inference 
from model pruning

Fig. 2 |WorkflowofDeepMod2 formethylation calling.DeepMod2 uses POD5or
FAST5files fromNanopore sequencing and aBAMfile containing read sequences as
input. It requires POD5/FAST5 files to be basecalled using Guppy or Dorado with
move table output to allow signal alignment with the basecalls. The BAM file is
recommended to be aligned to a referencegenome to allow reference anchoring of
signals and estimation of per-site methylation levels. DeepMod2 uses a feature
extraction module to get signal summary statistics and alignment information for
each base of a read in a 21-bp window centered at the CpG of interest. A feature
matrix is fed to a BiLSTMorTransformermodel thatmakes per-readpredictions for

each CpG site on the read. DeepMod2 adds per-read predictions to the input BAM
file as modification tags and also produces a tab separated text file output con-
taining detailed per-read predictions. In the post-processing step, all per-read
predictions for a site are combined to calculate the percentage of total reads with
methylated cytosine. DeepMod2 produces two outputs for per-site predictions:
aggregatedoutput in whichmethylation and read counts from forward and reverse
strands of a CpG site are combined, and stranded output with separate counts for
each strand. If a phased BAM file is given as input, then DeepMod2 additionally
provides methylation counts for both haplotypes.
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Nanopore methylation callers and the ground truth methylation fre-
quencies. For correlation and heatmap analysis, we considered only
those CpG sites that were common between a givenmethylation caller
and the ground truth after removing low coverage sites (<10X for
Nanoporemethylation callers and 10X/5X for Ashkenazim trio/NIH3T3
ground truth, respectively). The total number of CpG sites in the plots
reflects how many CpG sites predicted by each tool had at least 10X
coverage. Correlation heatmaps and marginal distributions of methy-
lation levels show twohotspots ofmethylation levels in bothNanopore
and short-read sequencing, corresponding to near complete methy-
lation and non-methylation, with a smaller cluster around 50%
methylation. DeepMod2 BiLSTMmodel shows the highest correlation
(95–97.35%) across the Ashkenazim trio, whereas Rockfish has the
highest correlation for NIH3T3. The heatmaps show that R10 flowcell

datasets have a better correlation with the ground truth, especially for
CpG sites with intermediate methylation levels.

In our evaluation above, Nanopore methylation callers showed
slightly better performance on human genomes than on mouse gen-
ome. To examine this discrepancy, we further compared Nanopore
methylation calls for NIH3T3 against methylation calls from Illumina
Mouse Methylation BeadChip array. Supplementary Fig. 1a shows the
heatmap plots of Nanopore methylation calls against mouse methy-
lation array. Additionally, we calculated precision, recall and F1-scores
of Nanopore tools evaluated against NIH3T3 methylation microarray
(329,638 CpG sites counting both strands separately), shown in Sup-
plementary Fig. 1b, with all tools showing F1-score above 99%. These
results demonstrate a high degree of consensus between methylation
microarrays and Nanopore methylation calling. Furthermore, all

Fig. 3 | Per-read performance of DeepMod2 BiLSTM and Transformer models
and other state of the art methylation callers evaluated against short-reads
ground truth for benchmarking. a–d Show receiver operating characteristic
(ROC) curves and precision-recall (PR) curves for R9.4.1 and R10.4.1 flowcell sam-
ples of HG002, with area under ROC (AUROC) and average precision (AP).
e–g Show bar plots of AUROC, AP and F1-score for R9.4.1 flowcell datasets of

HG002,HG003,HG004andNIH3T3.h–j Showbarplots of AUROC,APandF1-score
for R10.4.1 flowcell datasets of HG002, HG003 andHG004. F1-score for each tool is
evaluated at 0.5 probability of methylation threshold. Evaluation is performed on
chr1 for HG002-4 and chr1-19 for NIH3T3. Source data are provided in the Source
Data file.
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Nanopore methylation callers show a higher correlation with methy-
lation array than with bisulfite sequencing. This suggests that the
relatively poor performance of Nanopore methods when compared
against bisulfite sequencing can be partly attributed to library or

sample differences between Nanopore sequencing and bisulfite-
sequencing of NIH3T3.

It is important to note that all ONT methylation callers have a
slight tendency to overestimate methylation levels compared to

R9
.4

.1
R1

0.
4.

1

Fig. 4 | Per-site performance evaluationofDeepMod2 and other state of the art
methylation callers evaluated against ground truth. a–h, j–q Show F1-scores of
R9.4.1 and R10.4.1 datasets, respectively, from evaluation on genome wide CpG
sites, as well as even key genomic regions: CpG islands, CpG shelves, CpG shores,

promoters, introns, exons and intergenic regions. i, r Shows Pearson correlation
coefficient for genome wide CpG sites for R9.4.1 and R10.4.1 datasets. Evaluation is
performed on chr1 for HG002-4 and chr1-19 for NIH3T3. Source data are provided
in the Source Data file.
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Nanopolish/f5C Rockfish
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Fig. 5 | Correlation between per-site methylation frequencies from ONT and
short-read sequencing. The figure shows Pearson’s correlation coefficient (r) and
correlation heatmap plot for ONT R9 and R10 flowcell datasets of DeepMod2 and
other state of the art ONTmethylation callers. The evaluation is performed on chr1
for HG002-4 and chr1-19 for NIH3T3. The sub-figures also show for each tool the

number of CpG sites (counting forward and reverse strands separately) used to
calculate correlation and plot heatmap after passing minimum coverage filter of
10X. Blue color denotes lower end of heatmap color scale whereas red represents
the higher end. Source data are provided in the Source Data file.
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ground truth, especially for CpG sites that havemethylation frequency
near 50% in ground truth. For Guppy, this tends to happen at sites
where there is a “C to A/G/T” single nucleotide variant present and the
overestimation can be attributed to how Modkit33 reports Guppy
methylation. Modkit reports methylation frequency of a given CpG
locus as the number of reads with methylated cytosine at the locus
divided by the total number of reads with cytosines at that locus. In
comparison, bothDeepMod2 and the ground truth reportmethylation
frequency of a given CpG locus as the number of reads with methy-
lated cytosine at the locus divided by the total number of reads at that
locus regardless of whether the base is cytosine or not. We further
investigated the cause of discrepancies between DeepMod2 and
Guppy methylation frequencies in chr1 of HG002 R10.4.1 dataset.
Supplementary Fig. 2a shows that oncewe treat SNVs as unmethylated
cytosines in Guppy calls, the correlation between methylation fre-
quencies of DeepMod2 and Guppy improves substantially. On the
other hand, for 0.52% of the CpG sites, DeepMod2 predicted methy-
lation frequency >90% while Guppy and ground truth reported
methylation frequency <65%. This reveals a slight bias in DeepMod2
models to overestimate methylation in some CpG sites. Despite this,
not only doDeepMod2 andGuppyhavehigh correlation ~98%between
per-site methylation frequencies, but they also have a high correlation
of 93.6% between per-read probability score predictions. The heatmap
and correlation of per-read probabilities is shown in Supplementary
Fig. 2bwhich also shows the distribution of per-read probabilities from
both tools.We further focusedonper-readpredictions of theCpG sites
that were hypermethylated in DeepMod2 relative to Guppy and com-
pared the per-read probabilities of DeepMod2 and Guppy, as shown in
Supplementary Fig. 2c. For these sites, we found that the underlying
per-read CpGs that had <2% probability of methylation in Guppy,
DeepMod2 methylation probabilities were almost uniformly spread
between 50-100%. This indicates that although DeepMod2 did not
predict these per-read CpGs as unmethylated, i.e. with probability
<50%, it still predicted a low confidence of methylation for these per-
read CpGs. One possible reason for this discrepancy could be that
DeepMod2 models are trained on native methylation found in wild
type samples of HG002, HG003 and HG004 cell lines, and despite
using a strict criterion for ground truth labels (discussed in “Methods”
section), it is possible that residual heterogeneity among molecules
exists, leading to a small fraction of mislabeled read-level methylation
states used in training. This can introduce some challenges for
supervised learning. One potential solution to overcome this issue can
be to use synthetically modified and/or unmodified samples (that are
completely methylated or unmethylated) for model training.

Evaluation on reduced representation methylation
sequencing (RRMS)
We sequencedHG002 genome usingNanopore RRMS sequencing. For
the 310 Mbp on-target region, we sequenced 3.26 billion bases and
achieved 12.5X coverage, resulting in 5-fold enrichment relative to the
off-target region. Out of a total of 9.4 million reads sequenced, 89.4%
of the reads were rejected due to being off-target (N50 609bp), 1% of
the reads were too short to be rejected or accepted and 9.4% were
accepted as on-target (N50 5.41 kbp).

Figure 6a–d show IGV plots of reads and methylation calls from
whole genome and RRMS Nanopore sequencing of HG002, as well as
short-reads based methylation calls. Comparison of read coverage
with RRMS track shows substantial enrichment for on-target regions
with a sharp drop in coverage outside the target regions. We used
DeepMod2 to detect 5mC from HG002 RRMS; genome-wide we
detected a total of 39 out of 58.3 million cytosines within CpG motifs
(i.e. counting both strands separately), whereas in the RRMS target
region we detected 13.99 out of 14.37 million cytosines within CpG
motifs. After aggregating the CpG predictions from forward and
reverse strands, we detected 24.8 out of 29.15 million CpGs genome-

wide, and 7.17 out of 7.19 million CpGs in RRMS target region. We
discovered a discrepancy between the number of aggregated and
stranded CpG sites detected within RRMS regions: the number of
stranded CpGs (14 million) was less than twice the number of aggre-
gated CpGs (7.17 million). This shows that there are roughly 170k CpG
loci that were covered only on the forward or reverse strand. There-
fore, for lower coverage (<20X) samples, such as RRMS from MinION
flowcells, we recommend using aggregated methylation counts to
improve statistical power of any downstream analysis. Figure 6e shows
the distribution of read depth for CpG sites in RRMS regions, with or
without aggregating methylated and unmethylated counts from for-
ward and reverses strands, as reported by DeepMod2.

Figure 6f–h show heatmap and Pearson’s correlation coefficient
of aggregated methylation frequencies for CpG sites within RRMS
target regions when comparing ONT RRMS against ground truth from
the EpiQC study34 and ONT whole genome sequencing (R9.4.1 and
R10.4.1 flowcells). We observed a high correlation (95.78–96.45%)
between RRMS and WGS from both short-reads and ONT. Figure 6i
shows whole genome view of coverage and methylation levels in
HG002 ONT RRMS and ONT WGS datasets, with separate tracks for
RMMS CpGs vs all CpGs, as well as the RRMS on-target regions track.
Supplementary Data 6 shows a similar breakdown for each chromo-
some separately and we can visually observe the enrichment of on-
target RRMS regions compared to off-target regions, as shown by the
coincidence of RRMS track and coverage peaks.

Haplotype specific methylation calling
If a phased BAM file with haplotype tag HP specifying read phase is
given as input to DeepMod2, then it provides methylated and unme-
thylated read counts for each haplotype as additional columns in per-
site output. Figure 7 shows IGV plots of phased HG002 ONT reads in
imprinting control regions (ICRs) of H19/IGF2 and KCNQ1/KCNQ1OT1,
with methylation tags added to the BAM file by DeepMod2. In this
dataset, the reads in both ICRs belong to the same haplotype block
chr11: 1954146- 3277342 (GRCh38 coordinates), where SNV calling and
phasing was performed by NanoCaller35. Figure 7 also shows methy-
lation tracks of each haplotype extracted from DeepMod2 per-site
output, in addition to the track of overall methylation frequency. The
ICR ofH19/IGF2 (ICR1) is known to bemethylated in paternal allele and
unmethylated in maternal allele, whereas ICR of KCNQ1/KCNQ1OT1
(ICR2) is known to be unmethylated in paternal allele and methylated
in maternal allele36. This is consistent with phased methylation calling
fromDeepMod2 in Fig. 7which shows that the parental allele in phase 1
is methylated in ICR1 and unmethylated in ICR2, whereas the parental
allele in phase 2 is unmethylated in ICR1 and methylated in ICR2.
Moreover, this allowsus to infer that the phase 1 in the given haplotype
block belongs to the paternal allele and the phase 2 belongs to the
maternal allele, given that HG002 cell line is from a healthy individual
without an imprinted disorder. Indeed, allele-specific methylation
from ONT has been used to infer parental origin of alleles with sub-
stantial accuracy37.

We further combined NanoCaller-Deepmod2 pipeline for phased
methylation calling with DSS38 to detect differentially methylated
regions between parental haplotypes of HG002, HG003 and HG004.
We used NanoCaller to phase R10.4.1 datasets of the HG002, HG003
and HG004 (without assigning maternal or paternal labels to the
haplotypes), and then used DeepMod2 to detect methylation and
extract aggregated methylation counts for each phase. Finally, we
applied DSS on each genome separately to detect regions that were
differentiallymethylated between the two parental haplotypes of each
genome, i.e. putative imprinted regions. We detected 8909, 9873 and
10064 differentially methylated regions between parental haplotypes
of HG002, HG003 and HG004, respectively. When compared against
21 known ICRs from Jima et al36., we found 19, 20 and 19 of the known
ICRs in ONT datasets of HG002, HG003 and HG004, respectively,
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a) HG002 

Methyla�on

BS-seq

ONT WGS

ONT RRMS

b) HG002 ONT 

WGS

c) HG002 ONT 

RRMS

d) RRMS regions

e) Read Depth for CpG Sites in RRMS Target Regions

f) ONT RRMS (R9.4.1) vs 
short-reads ground truth

g) ONT RRMS (R9.4.1) vs 
ONT WGS (R9.4.1)

h) ONT RRMS (R9.4.1) vs 
ONT WGS (R10.4.1)

i) Whole genome view of methyla�on levels and read coverage for ONT RRMS (R9.4.1) vs ONT WGS (R9.4.1)

ONT WGS Methylation (All CpGs)

ONT RRMS Methylation (All CpGs)

ONT WGS Coverage (All CpGs)

ONT RRMS Coverage (All CpGs)

ONT WGS Methylation (RRMS CpGs Only)

ONT RRMS Methylation (RRMS CpGs Only)

ONT WGS Coverage (RRMS CpGs Only)

ONT RRMS Coverage (RRMS CpGs Only)

RRMS Regions

Fig. 6 | ONT reduced representationmethylation sequencing (RRMS) of HG002
genome. a–d Show IGV plots of methylation frequencies and sequencing reads.
a HG002 methylation levels predicted by BS-seq, ONT whole genome sequencing
(WGS) and RRMS. b HG002 ONT WGS reads with colored methylation tags anno-
tated byDeepMod2. cHG002ONTRRMS readswithmethylation tags annotated by
DeepMod2. In (b, c), methylated and unmethylated cytosines are shown in red and
blue, respectively. d Shows RRMS on-target region track. e Shows read depth dis-
tribution for CpG sites with or without aggregating read counts from both strands.

f–h Show heatmap and correlation between methylation frequencies for aggre-
gated CpG sites from HG002 ONT RRMS and HG002 WGS from short-reads, ONT
R9.4.1 and R10.4.1 flowcells, within RRMS regions of all 24 chromosomes. f–h Show
heatmap and correlation between ONT RRMS methylation and short-read ground
truth, ONTWGSR9.4.1 andONTWGSR10.4.1methylation of HG002. i Shows RRMS
region track. Source data are provided as a Source Data file. Panels (a–d) and (i) are
generated in IGV.
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using NanoCaller-DeepMod2-DSS pipeline, as shown in Table 1. We
further investigated the cause behind false negative ICRs. For ICR in
chr20:37522341-37522993, none of the ONT datasets show differential
methylation between haplotypes and instead show near complete
methylation, as shown in Supplementary Fig. 3. Approximately 1.5 kbp
upstream of this ICR, both HG002 and HG003 show differential
methylation for ICR in chr20:37520202-37521842, but HG004 shows
near complete methylation in both haplotypes as shown in Supple-
mentary Fig. 4. Lastly, for ICR in chr20:43513725-43515256 near
L3MBTL1, we detected differential methylation between haplotypes of
both HG003 and HG004, but not for HG002. Upon closer examina-
tion, we found that HG002 is indeed partiallymethylated in this region
and the average overall methylation (ignoring read phases) reported
byDeepMod2 for this region is ~40%.However, this region fallswithin a
long region (~700kbp) of runs of homozygosity in HG002, and as a
result no read phasing was performed and no phased methylation
counts were produced for this region, as shown in Supplementary
Fig. 5. This illustrates a drawback in depending solely upon phased
methylation counts for analyzing imprinted regions, because read
phasing may not be possible in regions with runs of homozygosity.
Therefore, there is a need to develop differential methylation analysis
methods that can incorporate both haplotype-specific methylation
levels as well as overall methylation levels when analyzing differential
methylation patterns in a parent-of-origin specific manner.

We also compared candidate ICRs from DeepMod2 with 1488
candidate ICRs identified by Jima et al36. and found 429, 346 and 377 of
these candidate ICRs in ONT datasets of HG002, HG003 and HG004,
respectively. Supplementary Data 7 shows all the candidate ICRs and
differentially methylated regions found within haplotypes of HG002,
HG003 and HG004, along with DSS area statistic for each region.

Evaluation of DeepMod2 runtime and accuracy under various
model parameters, basecaller and alignment options
DeepMod2 uses BiLSTMand Transformer-based deep neural networks
for methylation detection and we recommend using a GPU for the
fastest runtime. However, GPUs or GPU instances on cloud servers can
be an expensive and scarce resource, whereas CPUs are often much
cheaper and are more readily available. In this section we evaluated
runtime performance of DeepMod2 on a single PromethION R10.4.1
flowcell dataset of HG004 with ~30X coverage. The dataset consists of

4.9 million reads in POD5 file format that were basecalled with Dorado
and then aligned with minimap2. All software were run using 16 CPUs
(Intel XeonGold 5317 3-GHz)with 256GBofmemory,withNVIDIAA100
80GB GPU for running for Dorado and DeepMod2 deep-learning
models. We also present the runtime for DeepMod2 using CPUs
instead of GPUs for model inference.

To allow fast inference from CPUs, we applied model pruning to
BiLSTM and Transformer models in DeepMod2 after training. Prun-
ing introduces sparsity in the models by setting certain model
weights to zero, essentially removing some connections between
layers. While doing so has no effect on GPU runtime, it can allow
tremendous speed up for CPU inference. We applied pruning to lin-
ear layers in BiLSTM and Transformer models by removing a certain
percentage of weights with lowest L1-norm; more details are pro-
vided in the Methods section. This reduces the size of the BiLSTM
model from 1,236,225 parameters to 582,503 parameters and reduces
the size of the Transformer model from 545,121 to 374,049 para-
meters. However, there is a possibility thatmodel pruning can reduce
the model accuracy, and we wanted to assess its effects. Figure 8a
shows the effect of model pruning on BiLSTM model runtime and
accuracy. For CPU inference, the pruned BiLSTMmodel requires only
13 h compared to 60 h for themodel without pruning, demonstrating
approximately 5-fold speed up with pruning. For GPU inference, the
pruned model requires only 5.7 h. The per-read F1-scores of BiLSTM
model with and without pruning are 95.18% and 95.39%, respectively.
Similarly, the per-site F1-scores of BiLSTM model with and without
pruning are 99.86% and 99.88%, respectively. These results demon-
strate that model pruning has negligible effect on model accuracy
while allowing a substantial improvement in runtime. Pruning is
enabled by default in DeepMod2, but users can choose to disable
pruning. Supplementary Data 4 shows a detailed performance com-
parison of DeepMod2 BiLSTM and Transformer models with and
without pruning, with evaluation shown on the entire R9 and R10
flowcell datasets.

ONT basecallers such as Guppy and Dorado provide several
basecaller models for each flowcell: FAST, HAC (high accuracy) and
SUP (super high accuracy), in the increasingorder of basecall accuracy,
model size and runtime. Although we performed per-read and per-site
evaluation in earlier section on SUP basecalled datasets, we further
investigated the effect of basecaller model choice on DeepMod2

a) Phased Per-Site 
Methyla�on 
Output 
by DeepMod2

c) Phased ONT 
Reads with 
Methyla�on Tags 
added by 
DeepMod2

b) Read Coverage and Overall 
Methyla�on Frequency

chr11:1,995,800-2,006,800 chr11:2,697,000-2,705,000

Phase 2

Phase 1

Phase 2

Phase 1

d) Genes

Fig. 7 | IGV plot of phased HG002 ONT reads and methylation calls by Deep-
Mod2 in two imprinting control regions (ICRs) shown in GRCh38 coordinates.
The region on the left shows the ICR of H19/IGF2 gene cluster that is methylated
only in the paternal allele, whereas the region on right shows the ICR of KCNQ1/
KCNQ1OT1 gene cluster which is methylated only in the maternal allele. Reads in
both regions belong to the samehaplotype blockwith phasing done byNanoCaller.
a Shows phased per-site output by DeepMod2, i.e. methylation frequency found in
eachhaplotype.b Shows readcoverage trackwith red andblue colorsdepicting the

ratio of methylated and unmethylated reads, respectively, at each CpG site
regardless of the phase. The methylation fraction calculated from all reads hovers
in 0.4–0.6 range, but this fraction can be affected by uneven coverage between
alleles. Phased methylation frequencies on the other hand Show a much more
drastic difference between methylation frequencies of the alleles. c Shows phased
ONT reads withmethylation tags added by DeepMod2, with red and blue depicting
methylated and unmethylated cytosines. d Shows RefSeq gene tracks for genes
overlapping the two ICRs. Panels (a–d) are generated in IGV.
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runtime and accuracy. We analyzed the runtime of the entire Deep-
Mod2 methylation calling framework, which has three basic steps:
(1) basecalling, (2) read alignment, and (3) methylation calling, and
compared it with Dorado methylation calling framework which has
three similar steps: (1) basecalling and methylation calling, (2) read
alignment, BAMsorting and indexing, and (3) per-site pileup fromBAM

file. Since Dorado integrates basecalling and methylation into a single
run, we used GPU for running all instances of Dorado, with or without
methylation calling. For DeepMod2, we compared runtime between
two device configurations for model inference: using CPUs vs GPU for
model inference, and the results are shown in Fig. 8b and Supple-
mentary Table 1. In DeepMod2 framework, Dorado basecalling using
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Fig. 8 | Runtime performance of DeepMod2 and Dorado on a single Pro-
methION flowcell dataset of HG004 using 16 Intel Xeon Gold 5317 3-GHz CPUs
and 1 NVIDIA A100 GPU. a Shows the substantial effect of pruning BiLSTMmodel
on DeepMod2 runtime when using CPUs and GPU for model inference, as well as
the negligible effect of pruning per-read and per-site accuracy. b Shows runtime

comparisonof DeepMod2 andDoradomethylation calling frameworks under three
basecaller models, FAST, HAC and SUP. For DeepMod2, runtimes for CPU and GPU
inference are shown separately, whereas for Dorado only GPU inference runtime is
shown. c Shows precision, recall and F1-score of DeepMod2 and Dorado with the
three basecaller models. Source data are provided in the Source Data file.
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both FAST andHACbasecallermodels takes ~5.5 h, whereas SUPmodel
takes 26h. Afterwards, using minimap239 for genome alignment takes
5.4 h for FAST basecalled reads and 7.2–7.5 h for HAC and SUP base-
called reads. For DeepMod2 pruned BiLSTM model, regardless of the
basecaller model, CPU inference takes ~13 h and GPU inference takes
only ~5.6 h. Therefore, for the end-to-end pipeline from raw signals to
per-read and per-site predictions and methylated tagged BAM, Deep-
Mod2 framework with CPU inference takes 25, 26 and 47h for FAST,
HAC and SUP basecalling, respectively, whereas GPU inference takes
only 17, 18, and 39 h for FAST, HAC and SUP basecalling, respectively.
Dorado framework on the other hand with GPU inference for both
basecalling and methylation calling, takes 10, 16 and 37 h for FAST,
HAC and SUP basecalling, respectively.

In terms of genome-wide per-site accuracy shown in Fig. 8c, using
HAC vs SUP basecalling has little effect on DeepMod2 and Dorado
methylation calling performance: F1-score for HAC basecalling is
99.86% for DeepMod2 and 99.94% for Dorado, and whereas for SUP
basecalling the F1-score is 99.84% for DeepMod2 and 99.94% for
Dorado.On theother hand, forFASTbasecalling, we see a small drop in
performance with F1-scores of 99.78% for DeepMod2 and 99.62% for
Dorado. Supplementary Data 5 shows detailed per-site evaluation
performance of DeepMod2 and Dorado with different basecaller
models in various genomic regions.

Reference free methylation detection
By default, when an aligned BAM is provided as input to DeepMod2,
both mapped and unmapped reads are analyzed for methylation
calling. Even formapped reads, any clipped or unaligned segments are
also analyzed and tagged withmethylation in BAMoutput. This can be
very useful in cases where the reference genome for a given species is
not available or when a query sample differs substantially from the
available reference genome due to structural rearrangements (such as
chromosomal abnormalities in cancer). Supplementary Fig. 6 shows a
5281-bp insertion in HG002 genome, and all ONT methylation callers,
except for DeepMod2 and Guppy/Dorado, ignored the inserted
sequence and called methylation only in the read segments that
aligned to the reference genome. However, DeepMod2 and Guppy/
Dorado tag all CpGs in a read, regardless of the alignment, and save the
methylation calls in the primary alignment record of the read in BAM
output. Both tools do not add methylation tags to supplementary or
secondary alignments, which can be unreliable unless strict filters are
applied. Later, the BAM file can be re-aligned to different reference
genomes or contigs to assess the methylation without the need to re-
run methylation inference. Supplementary Fig. 6 also shows that after
re-aligning methylation tagged DeepMod2 reads to the 5218-bp
insertion sequence, we can examine methylation inside the insertion.
Similarly, Supplementary Fig. 7 shows an example of a 1200bp het-
erozygous inversion in HG002 where realignment to the inverted
sequence allows us to examine methylation within the inversion.

To ensure that methylation calling without reference alignment
can still provide accurate results, we investigated the accuracy of
DeepMod2 when an unaligned BAM file is provided as an input. This
means that DeepMod2 will only call methylation on CG motifs found
on the reads and will not use reference sequence as a feature in the
deep-learning model. After running DeepMod2, we mapped the una-
ligned methylation tagged BAM output of DeepMod2 to reference
genome with minimap2 (while preserving the methylation tags MM
and ML) and used Modkit33 to get per-site frequencies. For single
R10.4.1 PromethION flowcell dataset of HG004, the F1-score for
methylation calling fromunalignedBAM file is between 99.5–99.8% for
the three basecaller versions and is within 0.3% of F1-score of Deep-
Mod2 methylation calling with aligned BAM and reference features.
Supplementary Data 5 shows a detailed performance breakdown. This
shows that even without using reference anchoredmethylation calling
or reference sequence features, DeepMod2 still achieves very high

accuracy. Thus, DeepMod2 can reliably callmethylation, evenwhen no
read alignment or reference is available.

Comparison of DeepMod2 with DeepMod
Our group previously published DeepMod for 5mC detection from
Oxford Nanopore sequencing. DeepMod2 uses different neural net-
work architectures than DeepMod and employs a different algorithm
for signal processing and feature extraction. DeepMod’s deep-learning
model uses three BiLSTM layers of hidden size 100, after which it
applies a single fully connected layer (with 400 weights) only to the
central timestep (corresponding to the cytosine of interest) to obtain
the probability of modification. In comparison, DeepMod2’s BiLSTM
model uses two BiLSTM layers of size 128, after which it applies a fully
connected layer (with ~700kweights) to the concatenatedoutput of all
BiLSTM timesteps, not just the central timestep. Then it applies
another fully connected layer (with 129 weights) to obtain the prob-
ability of modification. In short, DeepMod2 uses shallower recurrent
network than DeepMod but uses a deeper classification network that
incorporates information from all time steps. The addition of a fully
connected layer of ~700k which connects to all timesteps allows for
much faster convergence of model compared to using on the central
timestep. However, to enable fast inference from DeepMod2 BiLSTM
models despite the increased size, we applied pruning to the ~700k
weight layer and removed 95% of lowest L1-norm weights. Analysis of
the weights after pruning shows that the model retains at least 4% of
weights from all timesteps of the concatenated BiLSTM outputs, not
just the central timestep, as shown in Supplementary Fig. 8. This lends
weight to the hypothesis that DeepMod2 classifier network uses some
information from all timesteps in the final prediction, not just the
central timestep. After pruning, DeepMod2 model has 582,503 para-
meters compared to 408,402 parameters in DeepMod. Moreover,
DeepMod2 also implements a Transformer model which replaces the
BiLSTM layers with 4 Transformer encoder layers with 8 self-
attention heads.

We ran DeepMod on chr21 of HG001 R9.4 dataset basecalled with
Metrichore from NanoporeWGS consortium40. We also basecalled the
same dataset with Guppy and used DeepMod2 R9.4.1 BiLSTM model.
Per-site evaluation of DeepMod had an F1-score of 87.6% and a corre-
lation of 72.4% whereas DeepMod2 had an F1-score of 99.1% and a
correlation of 91.3%. To improve methylation calling performance,
DeepMod applies an optional clustering BiLSTM network (10,623
parameters), which uses predicted per-site methylation frequencies of
the opposite strand and the nearby CpG sites to re-estimate the true
underlying methylation frequency of a given CpG locus. This essen-
tially has the effect of nudging themethylation frequency of a CpG site
in the same direction as the nearby sites. After applying this secondary
network, the average methylation for chr21 by DeepMod increased by
16.5%, the F1-score increased to 97.8% and the correlation increases to
85.6%; this is still lower than DeepMod2 which does not use any such
clustering network. Moreover, the methylation frequency predictions
of the second clustering network of DeepMod do not reflect true
molecular stoichiometry. For instance, if DeepMod’s first BiLSTM
network predicts 7 out of 10 reads to be methylated at a CpG site,
giving 70% methylation frequency, then after applying the secondary
network, it could change the methylation frequency to 83%. It is not
clear how to interpret an 83%methylation frequency out of 10 reads as
it does not represent the actual stoichiometry of DNA fragments, nor
does it tell which of the per-read predictions should be updated to
reflect the newly estimated methylation frequency. This is certainly a
problem for analyzing real-world samples drawn from patients or
tumors that can have high mosaicism or heterogeneity where only a
portion of cells may have aberrant methylation. Similarly, this
approach is not suitable if there is a need to analyze allele-specific
methylation where it is important to know the methylation status of
reads containing a certain allele, not just the overall methylation
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frequency of a locus. This highlights the importance of increasing the
accuracy of deep-learning model at individual read level instead of
relying onmethylation frequency consensus fromnearby sites. To that
end, our results demonstrate that DeepMod2 models have sub-
stantially higher accuracy than DeepMod, due to improved model
architecture and a larger training dataset.

With regards to feature extraction, both DeepMod and Deep-
Mod2 extract features within a 21-bp window centered at the cytosine
of interest. However, DeepMod2 uses 19 features to better capture the
characteristics of the signals associated with each base. For instance,
DeepMod2 divides the signal of each base into quadrants and calcu-
lates the mean of each quadrant to be used as a feature; it also calcu-
lates median of the signal which is more robust to poor signal
alignment. DeepMod aligns the Nanopore signal against reference
genome using read alignment and ignores read sequence afterwards,
whereas DeepMod2 models use both read and reference sequence as
features. More importantly, DeepMod2 models are trained to detect
modification even if there is no read alignment to the reference,
allowing it to detect modifications from unaligned reads or unaligned
segments of a reads or insertions. Supplementary Table 2 goes into
further details regarding the differences between the algorithm and
models of DeepMod2 and DeepMod, whereas Supplementary Table 3
shows detailed breakdown of per-site performance of DeepMod and
DeepMod2 on chr21 of HG001.

Discussion
Summary of benchmark evaluation
DeepMod2 allows fast and accurate detection of 5mC modification
from ionic current signal of Oxford Nanopore sequencing. It can pro-
cess POD5 and FAST5 fileswith signal alignment information produced
by Guppy or Dorado basecallers, and it provides models for analyzing
both R10.4 and R9.4 series flowcells. DeepMod2 produces detailed
per-read and per-site predictions as well as methylation tagged BAM
file as outputs. Our evaluation of DeepMod2 using ground truth from
short-read sequencing and methylation microarray shows that Deep-
Mod2 performs competitively against other state of the art methyla-
tion detection tools such asGuppy, Dorado and Rockfish, with all tools
often performing within 0.2% of each other in terms of per-site F1-
scores.Our analysis of both R10.4 and R9.4 datasets show a substantial
improvement in methylation calling accuracy using the newer R10.4
flowcells. We performed whole genome Nanopore sequencing of
mouse genome NIH3T3 and our evaluation demonstrates that Deep-
Mod2models trainedonhumangenomecanbe successfully applied to
the genomes of other species. Lastly, we performed differential
methylation detection on haplotype-specific methylation calls from
DeepMod2 to detectputative imprinted regions inHG002,HG003 and
HG004 genomes. Our results showed a substantial overlap with pre-
viously known imprinting control regions (ICRs), detecting 19 out of 21
known ICRs in all three genomes.

Application of adaptive sampling to methylation calling
Besides whole genome sequencing, reduced representation methyla-
tion sequencing (RRMS) via adaptive sampling in Oxford Nanopore
sequencing allows an easy way to target and enrich certain genomic
regions for methylation detection while avoiding several problems
faced by RRBS, such as low coverage in regions lacking CCGG motif
targeted by endonuclease. We performed reduced representation
methylation sequencing (RRMS) of HG002 genome and using Deep-
Mod2 we demonstrated a high correlation (>95%) between RRMS and
ONT/short-read whole genome sequencing. Using a single MinION
flowcell, we were able to detect 7 million CpG sites with ~12.5X cov-
erage in 310Mbp on-target region, covering about 10% of the human
genome. This allows a substantially broader examination of DNA
methylation than microarray-based methods such as Illumina 450K,
Epic V1 and EPIC V2 methylation arrays which target approximately

450K, 850K and 930K CpG sites respectively. Furthermore, unlike
microarrays, adaptive sampling is an easily customizable process
which allows users to target different genomic regions by simply
providing a different list of acceptable genomic sequences or regions
to Oxford Nanopore sequencer. This can allow development of dif-
ferent adaptive sampling procedures tailored towards different dis-
eases. For example, to analyze imprinted disorders, target regions
consisting of imprinted genes and imprinting control regions can be
used, whereas different oncogenes and tumor suppressor genes can
be targeted for different types of cancers.

Notable features and advantages of DeepMod2
DeepMod2 shares several advantages with Guppy and Dorado over
other open-source ONT methylation callers such as Nanopolish,
Rockfish, f5c, DeepSignal andmethBERT. For instance, DeepMod2 can
store methylation information for each CGmotif on a read in MM and
ML tags of its BAM output. Sorted and indexed BAM files allow fast
querying into arbitrary genomic positions, enabling convenient visual
validation of methylation (using genome browsers such as IGV) and
allele-specific analysis of methylation. Whereas other open-source
tools only produce a plain-text per-read output that typically contains
several hundred million lines of unordered predictions, making it dif-
ficult to assess methylation of different reads from the same region.
More importantly, both DeepMod2 and Guppy/Dorado can detect
methylation from unmapped reads or unaligned segments of reads
and store this methylation information in the BAM file. In fact, both
DeepMod2 and Guppy/Dorado do not require reference genome or
aligned reads to accurately call 5mC methylation, as shown earlier in
the runtime analysis. Methylation-tagged BAM files can be easily
aligned to various reference genomes without the need to redo
methylation detection with respect to each reference genome. This is
possible because methylation tags annotate 5mC with respect to read
coordinates and thus remain unchanged during alignment. This can be
especially helpful in cases where the reference genome for a certain
species has large gaps or is inaccurate, or the only reference sequence
available is from a closely related species. Moreover, the presence of
structural variants and chromosomal rearrangements frequently lead
to incomplete or inaccurate read alignments, and certain methylation
patterns may only become visible after aligning to a modified or dif-
ferent reference genome, as shown in Supplementary Fig. 6 and Sup-
plementary Fig. 7. In particular, the emergence of pangenome
references highlights the need to extricatemethylation detection from
reference alignment.

However, Nanopolish, f5c, Rockfish, DeepSignal, methBERT and
the original DeepMod can only predictmethylation for read bases that
align to a referenceCpG locus, and none of these tools produce a BAM
file output. As a result, these tools are unable to carry out de novo
methylation detection without a reference genome, and need to per-
form methylation from scratch if the reference genome is changed.
DeepSignal andmethBERT depend upon Tombo (a deprecated tool by
ONT that works only for R9.4.1 flowcells) to explicitly align the read
signal against a simulated reference signal using dynamic timewarping
algorithm. Consequently, they are unable to provide coordinates of
methylated cytosines on the read since Tombo only reports the seg-
ments of raw signal that correspond to each reference base. Rockfish,
on the other hand, internally uses minimap2’s python API to map
basecalled sequences fromFAST5 files to a reference genome and uses
the mapped reference sequence as input for its decoder. On the other
hand, DeepMod2 and Guppy/Dorado methylation calls can be rea-
ligned to various reference genomes or split across alleles and haplo-
types using well known BAM utility tools such as Modkit. However, it
should be noted that de novo detection of 5mC methylation is largely
possible because the ONT basecallers are able to accurately detect the
underlying cytosine base regardless of 5mC methylation status. This
requires incorporation of a diverse range of modified and unmodified
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datasets during basecaller training. For other types of modifications,
especially any rare modifications that the basecaller has not been
trained on, accuratemodification detectionmay still require reference
mapping to overcome basecalling errors.

Lastly, DeepMod2 provides a convenient framework for haplo-
type specific methylation calling. If given a phased BAM file as input,
DeepMod2 can providemethylation counts in each haplotype without
any incurring extra runtime or complicated FAST5/POD5 or BAM
operations. Even if DeepMod2 is given unphased BAM file as input, the
methylation-tagged BAM file it produces can still be phased later.
Afterwards, the phased BAM file can be split into separate BAM files for
each phase, and haplotype-specific methylation calls can be extracted
by running tools such as Modkit (same can be done for Guppy and
Dorado methylation-tagged BAM files). Performing haplotype-specific
methylation calls from other open-source methylation tools such as
Rockfish, DeepMod, DeepSignal, and methBERT would require a
cumbersomeprocess of (1) splitting FAST5/POD5 files that contain raw
signal data for thousands of readsperfile, (2) saving the rawsignal data
of reads from each phase into separate FAST5 files; both steps can end
up using several terabytes of storage and hours of runtime. In the case
of Nanopolish and f5c, haplotype-specific methylation calling would
require providing haplotype-separated BAM files as inputs in different
runs. Either case ends up incurring substantial storage and runtime.

DeepMod2 also has a few advantages over ONT proprietary soft-
ware such as Guppy and Dorado. Firstly, Guppy and Dorado combine
basecalling and methylation calling into a single step which can save
substantial time by eliminating the need to reopen the signal files and
process the signals for methylation (as required by DeepMod2).
However, if one needs to re-analyze the same sample for a different
type of methylation (6mA/5hmC/4mC) or synthetic DNA modification
(IdU/BrdU), or analyze DNA methylation in a different motif, then
Dorado/Guppy needs to re-basecall the sample from scratch. This can
lead to substantial redundancies in the usage of computational
resources as basecalling is a very resource intensive task which typi-
cally requires high-end GPUs41, whereas methylation or modification
calling is a relatively simpler task which can be efficiently and quickly
performed even on CPUs as shown byDeepMod2. Currently in Dorado
v0.3.4, there are four distinct methylation detection models
provided for “dna_r10.4.1_e8.2_400bps_sup@v4.2.0” basecaller model:
“5mCG_5hmCG” for 5mC and 5hmC detection in CpG motif,
“5mC_5hmC” for 5mC and 5hmC detection in all context, “5mC” for
5mC detection in all contexts, and “6mA” for 6mA detection in all
contexts. All of these four methylation models are distinct and not
necessarily interchangeable, e.g. 5mCmodel uses 2-class classification
between 5mC and C, whereas 5mC_5hmC models uses 3-class classifi-
cation between 5mC, 5hmC and C. Running more than one of these
Dorado methylation models, e.g. 5mCG_5hmCG and 6mA, would
require basecalling the same reads twice. As shown in the runtime
analysis earlier, SUP basecaller plus methylation Dorado model takes
~27 h, even with a NVIDIA A100 80GB GPU. DeepMod2 on the other
hand, implements methylation detection that is separated from
basecalling and re-uses basecalls with the help of move tables, taking
only 6 hwith aGPU andonly 13 hwith CPUs. Aswe continue to develop
models for other kinds of methylations and modifications besides
5mC, DeepMod2 will also be able to assess various modifications in
different motifs without resorting to re-basecalling for each of them.
Additionally, the efficient implementation of DeepMod2 in terms of
required computational resources and runtime also allows it to be
used simultaneously with Guppy/Dorado methylation detection for
consensus calling of methylation, as done by NANOME27.

Areas of further improvement in DeepMod2 and DNA
methylation analyses
DeepMod2 uses signal summary statistics for each base as features for
its deep-learning model, whereas Rockfish uses the actual signal value

itself; both tools rely on move tables to align signal to the basecalls.
Move tables provide an approximate alignment between basecalls and
signal, i.e. move table values denote when the basecaller prediction
changed from one base to another in the flip-flop prediction model.
Consequently, the move table does not always accurately demarcate
boundaries between signals associated with consecutive bases, which
can lead to uninformative signal summary statistics. Supplementary
Fig. 9 shows signal-to-basecall alignment of three reads from R9.4.1
and R10.4.1 flowcell datasets of HG002 overlapping the same CpG
locus. It can be seen in several cases that the signal associated to one
base comprises two signal clusters towards the start and end of the
signal, indicatingpoor signal alignment frommove table. In such cases,
the signalmeanoften just ends up in the center of the twoclusters. The
read signals also show that although the shape of the signal from
different reads generally follows the same pattern, there can be sub-
stantial local timescale (x-axis) shifts and scaling differences in the
signal alignments of different reads. These issues present a challenge
for deep-learningmodels thatneed tobe able to capture such variation
in signals. Therefore, DeepMod2 uses several signal statistics, such as
mean signal in each quadrant of base signal or median, to capture
uncertainties in the basecall-to-signal alignment. Nevertheless, it is
reasonable to expect that using the raw signal itself could potentially
lead to more informative features and higher accuracy. This can be
especially beneficial for rare modifications and methylations that may
not be seen by the basecaller, and we will explore this direction in the
future. However, for 5mCmethylation detection, DeepMod2 is able to
use signal summary statistics to accurately callmethylation.Moreover,
the pruned BiLSTM model of DeepMod2 has only 582,503 weights,
compared to 4,367,110 weights of Rockfish “rf_small”model. A smaller
model size means faster inference times, especially on CPUs.

Currently DeepMod2 only provides models for 5mCpG methyla-
tion because there is a lack of available datasets for other types of
methylations. No 5hmC has been detected in GIAB cell lines HG001
through HG007, for which there is abundant Nanopore and bisulfite/
oxidative bisulfite sequencing data available34. As more data for other
types of modifications such as 5hmC and 6mA becomes available, we
will continue to train DeepMod2 models for these modifications. It
should be noted that although Dorado provides models for 6mA and
5hmC detection, as well as for 5mC detection in all genomic contexts,
thus far no benchmarking study has evaluated or demonstrated the
accuracy of these models.

In DeepMod2, we chose a probability threshold of 50% to label a
per-read CpG prediction as methylated but it is possible to exclude
per-read CpG predictions with intermediate probability scores to
improve the accuracy of downstream analysis. This has been imple-
mented by Nanopolish/f5c and Nanopore’s Modkit tool for extracting
per-site predictions from Guppy/Dorado BAM files. Although doing so
can potentially improve the accuracy of per-site frequency estimates,
the resulting decrease in coverage for per-site predictions can lead to
lower statistical power in downstream analyses, especially for low
coverage samples. Therefore, we do not recommend setting a strin-
gent criterion to filter out per-read methylation predictions, and
instead suggest that downstream tools should take confidence level of
methylation calls into account within their analyses.

Finally, although differential methylation tools developed for
bisulfite sequencing (BS-seq) can be used to analyze methylation calls
from ONT, there is a need to comprehensively evaluate such tools on
ONT methylation datasets and potentially develop new tools for
downstream analysis of ONT methylation, such as NanoMethPhase42.
Popular differential methylation analysis tools such as methylKit and
DSS are designed forBS-seq and onlyuse the counts ofmethylated and
unmethylated cytosines in their statistical models. It can therefore be
argued that using counts of binarymethylation labels fromBS-seq can
lead to a lower statistical power compared to a robust method of
integrating methylation probabilities from ONT methylation calling42.
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Moreover, BS-seq differential methylation detection tools analyze per-
site methylation counts only and cannot incorporate the evidence of
methylation from several CpG sites overlapping the same read over a
span of thousands of bases, similar to the strategy used by Methyl-
Purify for BS-seq43. Analyzing patterns of co-occurrence of variants
over long reads has been successfully used to improve SNV detection
inNanoCaller35. Therefore, it is reasonable to expect that incorporating
read-level information from Nanopore sequencing for determining
differential methylation can improve the accuracy and power of sta-
tistical analysis.

Methods
Oxford nanopore sequencing of NIH3T3 mouse genome
We sequenced NIH3T3 mouse cell line with Oxford nanopore
sequencing using PromethION R9.4.1 (FLO-PRO002) flowcells and
SQK-LSK110 library preparation kit. Sequencing was performed using
standard Nanopore whole genome sequencing protocol and we gen-
erated 6.97 million reads and 79Gbp bases at ~29X coverage, with
mean, median and N50 read lengths of 11,324 bp, 6,694 bp and
21,744bp respectively. NIH3T3 cell was purchased from ATCC.

Reduced representation methylation sequencing of HG002
Weperformed reduced representationmethylation sequencing (RRMS)
on the human reference sample HG002. The genomic DNA sample was
first sheared to about 6kbp using the Covaris g-TUBE at a centrifuge
speedof 11,00RPM for 30 s. After shearing, 2 ugof the shearedDNAwas
processed into a Nanopore library using Nanopore’s standard protocol
for RRMS (ligation sequencing gDNA – reduced representation methy-
lation sequencing of human samples: RRMS_9164_v110_revC_30-
May2022). The library was processed using Nanopore’s ligation
sequencing kit (SQK-LSK110) and sequenced with a MinION Flow Cell
(FLO-MIN106D) on the GridION. The sample was sequenced for 72 h
with 2washes and reloads at 23 h and 46h. The BED file used for human
RRMS can be accessed through ONT’s “Adaptive Sampling Catalogue”
(https://community.nanoporetech.com/adaptive_sampling_catalogue/).
HG002 (NA24385) cell line was purchased from Coriell Institute for
Medical Research.

Datasets
Benchmark datasets. For HG002, HG003 and HG004, we obtained
ground truth from EpiQC study34, available from Gene Expression
Omnibus (GEO) under the accession number GSE186383. For each
genome, we downloaded CpG methylation calls from six short-read
library preparation methods for cytosine deamination and whole
genome sequencing, covering a range of deamination techniques.
These methods include whole genome bisulfite sequencing
(TruSeq, MethylSeq, SPLAT, TrueMethylBS), oxidative bisulfite
sequencing (TrueMethylOX), and enzymatic deamination (EMSeq).
For each library prep method, we summed methylated and unme-
thylated cytosine counts over its two replicates. For NIH3T3, we
used the three untreated replicates from Sapozhnikov et al.44,
deposited at the GEO under the accession number GSE162138. The
three replicates have following accession numbers: GSM4942823,
GSM4942824 and GSM4942825. We also used Illumina Mouse
Methylation BeadChip for benchmark evaluation on NIH3T3 from
Lee et al.45.

Sequencing datasets. For HG002, HG003 and HG004, we obtained
R10.4.1 (4 kHz sampling) flowcell datasets from Oxford Nanopore
Open Data Registry46. The R10.4.1 datasets of each genome were
sequenced using two PromethION flowcells. R9.4.1 dataset of HG002
was obtained from Oxford Nanopore Open Data Project46, whereas
R9.4.1 dataset of HG003 and HG004 were obtained from Human
Pangenome Reference Consortium47. The NIH3T3 genome was
sequenced by us by ONT sequencing.

DeepMod2 methylation detection framework
DeepMod2 takes ionic signals from Oxford Nanopore sequencing as
input and carries out methylation prediction in two steps. (1) Per-read
prediction: DeepMod2 extracts features and signal summary statistics
from each read and uses a BiLSTM or Transformer model to predict
methylation probability for each CpG site on a read. (2) Per-site pre-
diction: DeepMod2 merges methylation predictions from all reads
overlapping a CpG site and estimates the percentage of methylated
reads. The details for both per-read and per-site predictions are
described below.

Per-read prediction
Featureextraction. To extract features from rawNanopore signals of a
read, DeepMod2 requires a mapping or alignment between basecalled
sequence and raw signals. This signal alignment is inferred from “move
table” generated by Guppy or Dorado basecaller. The details of feature
extraction are described below and shown in Fig. 9:
1. Inputs: POD5/FAST5 signal files and a BAM file containing base-

called read sequences are the required input. The BAM file can be
aligned or unaligned and itmust containmove table if using POD5
file format or if the FAST5 files do not contain move table.
Otherwise, move table from FAST5 file can be used if Guppy
basecall group is specified. Aligned BAM file and reference gen-
ome FASTA file are optional but highly recommended to allow
methylation calling on reference anchored CpG sites.

2. For each read:
a. Obtain raw signal from FAST5/POD5 file and normalize it using

median absolute deviation.
b. Determine all loci on the read that match CG sequence motif,

denote these sites as set A.
c. Determine mapping orientation and loci of bases on the read

that map to a CG motif in reference genome using BAM
alignment file, and denote these read loci as set B. These loci
on the readmay not have CGmotif due to basecalling error.
This step is only performed if reference genome and aligned
BAM file are provided.

d. Take a union of read loci in sets A and B and generate features
for these CpG loci.

e. Users can set a read length or mean quality score threshold to
filter out reads from being utilized. This can be useful for
excluding short, rejected reads from RRMS adaptive
sampling.

3. For each CpG locus on the read from the union of set A and B
described above, create a 21×19 feature matrix for each base in a
21-base window centered at cytosine of interest:
a. Use the move table from BAM file or FAST5 file to determine

which segments of the normalized signal belong to each
base in the 21-bp window.

b. If the read is aligned and reference is provided, use CIGAR
string from alignment to determine which reference base is
mapped to each base in the read. The referencebase aligned
to a read base will be used as a feature in the deep learning
model but can be excluded using ‘—exclude_ref_features’
option. If ‘—exclude_ref_features’ option is used or if a base
on the read is unmapped, clipped or corresponds to an
insertion, then we will use N as the reference base.

c. Calculate the following 19 features for each signal segment
associated with a base in the 21-bp window:

1 – length of base signal (log10 base)
2 – mean of base signal
3 – standard deviation of base signal
4 – mean of 1st quarter of base signal
5 – mean of 2nd quarter of base signal
6 – mean of 3rd quarter of base signal
7 – mean of 4th quarter of base signal
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8 – median of base signal
9 – median absolute deviation of base signal
10–basecall probability fromquality score, converted fromPhred

scale to probability of correct basecall
11–14 – One-hot encoding of read base into ACGT
15–19 – One-hot encoding of aligned reference base into ACGTN

(optional feature)

Deep learningmodel inference. After feature extraction, DeepMod2
feeds input matrix of each CpG site of each read into a BiLSTM or
Transformer model to obtain a probability of 5mC methylation.
DeepMod2 provides BiLSTM and Transformer model for various
Nanopore flowcell chemistries. The details of the BiLSTM archi-
tecture are shown in Fig. 9, whereas the details of Transformer
models are shown in Supplementary Fig. 10. Each BiLSTM model
consists of two BiLSTM layers with 128 hidden units for 21 timesteps.
The output of the BiLSTM model is flattened to 21 × 128 × 2 = 5376
(timesteps × hidden size × bi-directional) size layer, which is fed into
a fully connected layer with output size 128, followed by a fully

connected layer of output size 1 with sigmoid activation to obtain a
probability score. This is in contrast with original DeepMod method
which used BiLSTM output only from the central timestep for clas-
sification. By default, DeepMod2 uses pruned models for both
BiLSTM and Transformer model, but this can be turned off using
‘--disable_pruning‘ parameter. Moreover, DeepMod2 will use GPU for
model inference if available, otherwise it will resort to using CPUs.
Users may also specify CPUs or a particular GPU device for inference
using ‘--device’ option. For each CpG feature matrix, DeepMod2
records read name,mapping locus and orientation of the CpG site on
reference genome, methylation probability and prediction, read
length and mean base quality score of the read, as well as the hap-
lotype phase if the BAM file is phased. The above pieces of infor-
mation for per-read predictions are stored in a tab separated text file.
For CpG loci that match a cytosine in the read, we additionally add
MM and ML tags to the BAM file to record the location and prob-
ability of modification. Since producing a compressed BAM output
can be computationally expensive, users can specify number of
threads to use for compression via ‘--bam_threads’ parameter.

BiLSTM
Network

2 BiLSTM Layers
Hidden Size=128

Modifica�on 
Probability

Classifica�on 
Network

Fla�en

Fully Connected Layer

Size=1848

Size=128
Fully Connected 

Layer

Size=1
Sigmoid 

Layer

Number of 
Parameters

547,840

Features extracted for 21 bases 
centered at the base of interest

Read Base C C T T C T A T G G C G A T G C C G A G A

Aligned Ref Base C C T T C A A T G G C G C T G C C G A G A

Basecall Quality 41 32 41 38 38 37 23 16 27 16 33 31 17 34 30 31 21 28 35 18 22

21 19 Input  Matrix
(�me steps features) 

Feature Extrac�on 19 Extracted Features Per Read Base
1 – length of base signal (log10 base)
2 – mean of base signal
3 – standard devia�on of base signal
4 – mean of 1st quarter of base signal
5 – mean of 2nd quarter of base signal
6 – mean of 3rd quarter of base signal
7 – mean of 4th quarter of base signal
8 – median of base signal
9 – median absolute devia�on of base signal
10 – basecall probability from quality score
11-14 – Read base one-hot encoding of ACGT
15-19 – Aligned reference base one-hot 
encoding of ACGTN (op�onal feature)

Deep 
Learning 
Model

Normalized 
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Signal

Before Pruning: 688,256
A�er Pruning: 34,534

129
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Parameters
With Pruning: 582,503
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Fig. 9 | DeepMod2 feature extraction and BiLSTM deep-learning model archi-
tecture. For each CpG locus on a read, DeepMod2 extracts 19 features per read
base in a 21-bp window centered at the cytosine of interest. The feature matrix is

given as an input to a deep learningmodel, such as BiLSTM (shown in thisfigure) or
Transformer, to predict methylation probability. DeepMod2 uses pruned neural
networks by default to improve inference speed.
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Per-site prediction
As DeepMod2 produces per-read predictions, it combines them into
per-site predictions simultaneously. A threshold of 0.5 for probability
score is used to predict a CpG site as methylated, however, user spe-
cified thresholds can be used to exclude intermediate probability
predictions from per-site methylation. DeepMod2 combines methy-
lated and unmethylated predictions from all reads overlapping a CpG
site in a strand-specific manner, i.e. it makes separate prediction for
forward and reverse strand of reference genome. Then, it combines
methylated andunmethylated counts fromboth strands toproduce an
aggregatedper-site output aswell. It provides additional breakdownof
methylated and unmethylated counts for each haplotype if a phased
BAM file was given as input. DeepMod2 determines per-site frequency
as the fraction of reads containing methylated cytosines versus total
number of mapped reads at the location (which can include SNVs but
not deletions). By default, DeepMod2 only reports methylation fre-
quencies for reference CpG sites, however ‘--include_non_cpg_ref’
option can be used to get methylation frequencies for non-reference
CpG sites as well (i.e. genomic loci that do not have CG motif in the
reference but the sample has CGmotif at that loci, potentially due to a
variant). If the dataset of a sample is being split intomultiple runs, then
per-read predictions from all the runs can be combined later using the
‘merge’ function ofDeepMod2. Themerge function canalsobe used to
re-calculate per-site frequencieswith differentmodification thresholds
or read quality score cutoff.

Training and testing
Training. DeepMod2 models are implemented in PyTorch and are
trained using Adam optimizer with a learning rate of 5e-5 and L2 reg-
ularization with a coefficient of 1e-5. In order to obtain ground truth
label for model training, we used methylation predictions for HG002,
HG003 andHG004genomes fromEpiQC study. The ground truth data
consisted of methylation predictions from six short-read library
methods for each genome (after adding up the two technical replicates
for eachmethod). For a CpG site to be included in the training dataset,
it had to satisfy the following criteria in each of the six methods:

Coverage ≥10
Positive Label: ≥90% methylation
Negative Label: <10% methylation

Therefore, a CpG site was labelled as positive if it had ≥90%
methylation in all six methods and labelled as negative if it had <10%
methylation in all six methods. We chose these strict criteria because
we are training ourmodel with supervised learning and only wanted to
include those siteswherewecanconfidently assume that all reads have
the same methylation status. We used chr2-21 for training the model
and chr22 for hyperparameter selection and validation, and we
excluded chr1 from training ormodel validation. Since themethylation
counts from EpiQC were aggregated from both forward and reverse
strands of CpG sites, we split the CpG sites into forward and reverse
strands. Afterwards, we were left 11.7 million positive and 7.3 million
negative labels in chr2-21 training datasets of the three genomes
combined; Supplementary Table 4 shows the number of positive and
negative labels per genome in both training and validation datasets.

Once these labelswereobtained,weuseR9.4.1 andR10.4.1flowcell
datasets of HG002, HG003 and HG004 to generate the 21 × 19 feature
matrices. For a given read and a CpG site, if the read sequence had less
than 0.75 percent identity with aligned the reference sequence in the
21-bpwindowcentered at theCpG site,we excluded that featurematrix
from thefinal set of featurematrices. As a result, wegenerated a total of
635 million matrices for R10.4.1 datasets and 700 million matrices for
R9.4.1 datasets. Since we wanted to train DeepMod2models to be able
to predict methylation calling from both aligned and unaligned reads,
during the model training we used each featurematrix once with both
read and reference sequence encodings included and once with only

read sequence encoded and reference sequence replaced by N, effec-
tively doubling the number of training feature matrices to 1.3 billion
and 1.4 billion for R10.4.1 and R9.4.1 models. We trained both BiLSTM
and Transformer models for 10 epochs with early stopping. The
BiLSTM models for R9.4.1 and R10.4.1 datasets were trained for 4
epochs (validation accuracy of 96.17%) and 5 epochs (validation accu-
racy of 97.89%), respectively, before the models started overfitting.
Similarly, the Transformer models for R9.4.1 and R10.4.1 datasets were
trained for 4 epochs (validation accuracy of 96.32%) and 5 epochs
(validation accuracy of 97.95%), respectively.

Testing. For per-read evaluation, we created ground truth labels for
chr1 of HG002,HG003 andHG004 fromEpiQCdataset using the same
criteria as the training labels since per-read evaluation is equivalent to
testing model classification accuracy. For NIH3T3, we generated
ground truth labels for autosomal chromosomes chr1-19 from three
bisulfite sequencing replicates using the same criteria as human gen-
omes, i.e. minimum coverage of 10 across the three replicates, with
CpG sites labelled as positive or negative if they had ≥90%methylation
or <10% methylation across the three replicates, respectively. Conse-
quently, wehad a total of 817305, 590693, 568969 and 151566 stranded
CpG sites in per-site evaluation ofHG002,HG003,HG004andNIH3T3.
A detailed breakdown is shown in Supplementary Table 5.

For per-site evaluation, we loosened the criteria for positive and
negative labels but still used the following criteria:

For HG003-4: coverage ≥10 in all six short-read methods
For NIH3T3: coverage ≥5 in all three BS-seq replicates
Positive Label: ≥80% methylation in all six short-read methods for

HG002-4 or three BS-seq replicates for NIH3T3.
Negative Label: <20% methylation in all six short-read methods for

HG002-4 or three BS-seq replicates for NIH3T3.

We chose 20% and 80% as thresholds for defining ground truth
because EpiQC reported that sites with 20–80%methylation had poor
concordance not only between ONT and short-reads method, but also
among the different short-read methods. As a result, we decided to
exclude these sites from evaluation since the ground truth labels for
these sites cannot be reliably generated. We chose a smaller coverage
threshold for NIH3T3 since the BS-seq data for it had lower coverage.
Consequently, we had a total of 1438161, 1101209, 1042217,
9298784 stranded CpG sites in the per-site evaluation of HG002,
HG003, HG004 and NIH3T3, shown in Supplementary Table 6.

For correlation analysis, we only used a coverage cutoff of 10 for
HG002, HG003 and HG004 and cutoff of 5 for NIH3T3 to exclude low
confidence CpG sites, and we did not use any filtering based on methy-
lation frequencies. To get the final methylation frequency of reach CpG
site, we averaged methylation levels over the six short-read methods
from EpiQC for HG002-4 and averaged over the three BS-seq replicates
for NIH3T3. At the end, we were left with ~4.5 million stranded CpG sites
forHG002,HG003,HG004and15million strandedCpGsites forNIH3T3.
A detailed breakdown of number of CpG sites in per-site and correlation
evaluation of each genome is shown in Supplementary Table 6.

To enable benchmarking in various genomic contexts, we anno-
tated short-read ground truth methylation calls for the following fea-
tures in GRCh38 and GRCm38: CpG islands, CpG shores, CpG shelves,
exons, introns, promoters, and intergenic regions. To generate CpG
islands, shores, and shelves annotations, we downloaded the GRCh38
CpG islands BED file and GRCm38 CpG islands BED file from the UCSC
Genome Browser. To generate exons, introns, promoters, and inter-
genic regions, we downloaded the v43 gene annotation file (genco-
de.v43.annotation.gtf.gz) for GRCh38 and the vM25 gene annotation
file (gencode.vM25.annotation.gtf.gz) for GRCm38 from GENCODE.
CpG shores were generated by extending the region 2kbp up- and
downstream of the CpG islands and CpG shelves were generated from
2–4kbp up- and downstream of the CpG islands. Exons were extracted
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using the “exon” feature type from the GENCODE v43 annotation file
for GRCh38 and GENCODE vM25 annotation file for GRCm38. Genes
were extractedwith the “gene” feature type. Intronsweregenerated by
using bedtools48 subtract to take the difference between the genes and
exons files. Promoters were generated by extending the region
1000bp upstream of the transcription start sites. Intergenic regions
were generated by using bedtools subtract to take the difference
between the reference genomes and genes/promoters. The above
annotations were then overlapped with all the CpG sites in each
reference genome using bedtools intersect and were all compiled into
an annotation bedgraph.

We compared the performance of DeepMod2 with Guppy,
Dorado, Nanopolish, f5C and Rockfish. For Guppy we used
“dna_r9.4.1_450bps_modbases_5mc_cg_sup” and “dna_r10.4.1_-
e8.2_400bps_modbases_5mc_cg_sup_prom”models implemented in
Guppy V6.3.8 (accessed Nov 4 2022 from https://community.
nanoporetech.com). For Nanopolish, we used v0.14.0 from Nano-
polish’s github repository (accessed Oct 12 2022), whereas for f5c,
we used v1.3. We used Dorado v0.3.4 with the fast, hac and sup
versions of “dna_r10.4.1_e8.2_400bps@v4.1.0” models, followed by
Modkit for pileup. For Rockfish, we used github commit
“079e7582c0fd8cb3017e37251f4d0105e94c0ecc”, accessed on Aug
15 2023, and used “rf_small” model for inference.

Haplotype specific differential methylation
We carried out SNV calling and phasing of R10.4.1 datasets of HG002,
HG003 and HG004 with NanoCaller35 v3.4.1, which uses WhatsHap49

for phasing. Afterwards, weusedDeepMod2BiLSTMmodels to predict
methylation in each parental haplotype of autosomal chromosomes
chr1-22. For differential methylation detection, we used DSS38 on each
genome independently and provided methylation counts for each
haplotype as two groups to be compared. We used the same DSS
parameters for detection of differentially methylated regions as
NanoMethPhase42, except that we used stringent p-value cutoff of 1e-5
instead of 1e-3 for a differentially methylated CpG site in DSS to be
considered statistically significant. For DMLtest function in DSS, we
enabled smoothing, and set the delta threshold equal to 0 in callDMR
function. Whereas for differentially methylated regions, we required
them: (1) to be at least 100 bp long, (2) to contain at least 15 CpG sites,
(3) at least 50% of CpGs in the region should be differentially methy-
lated in statistically significant manner, and we allowed DSS to merge
any differentially methylated regions within 100 bp of each other. We
obtained a list of known ICRs by choosing the ICRs marked with “#” in
Table 1 of Jima et al.36 and obtained the list of all candidate ICRs from
Supplementary Table S1 of Jima et al.36, which can also be found at
https://humanicr.org/.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
ONT RRMS data of HG002 and ONT WGS data of NIH3T3 generated
deposited in the BioProject under accession code PRJNA951714. EpiQC34

ground truth for HG002, HG003 and HG004 is available from Gene
ExpressionOmnibus (GEO)under the accessionnumberGSE186383. For
NIH3T3,bisulfite-sequencingground truth44 is available fromGEOunder
the accession number GSE162138 and methylation microarray ground
truth Lee et al45. is available in Supplementary Data 8 of this study. ONT
R10.4.1 sequencing datasets of HG002, HG003 andHG004 are available
from Oxford Nanopore Open Data Registry46 under the following AWS
storage bucket: s3://ont-open-data/giab_lsk114_2022.12/. ONT R9.4.1
dataset of HG002 is also available from ONT Open Data Registry
[https://registry.opendata.aws/ont-open-data] under the following AWS
storage bucket: s3://ont-open-data/gm24385_mod_2021.09/. HG003

and HG004 R9.4.1 ONT datasets from Human Pangenome Reference
Consortium47 are available from the following URLs: https://s3-us-west-
2.amazonaws.com/human-pangenomics/index.html?prefix=NHGRI_
UCSC_panel/HG003/nanopore/ and https://s3-us-west-2.amazonaws.
com/human-pangenomics/index.html?prefix=NHGRI_UCSC_panel/
HG004/nanopore/. BED file for human RRMS can be accessed through
“Adaptive Sampling Catalogue” (https://community.nanoporetech.
com/adaptive_sampling_catalogue/) from ONT’s Nanopore Commu-
nity page which requires customer login access. CpG islands BED files
for GRCh38 and GRCm38 were downloaded from the UCSC Genome
Browser using the following links, respectively: https://hgdownload.soe.
ucsc.edu/goldenPath/hg38/database/cpgIslandExt.txt.gz and https://
hgdownload.soe.ucsc.edu/goldenPath/mm10/database/cpgIslandExt.
txt.gz. Gencode annotation files for GRCh38 (v43) and GRCm38 (vM25)
were downloaded from the following links, respectively: https://ftp.ebi.
ac.uk/pub/databases/gencode/Gencode_human/release_43/gencode.
v43.annotation.gff3.gz and https://ftp.ebi.ac.uk/pub/databases/
gencode/Gencode_mouse/release_M25/gencode.vM25.annotation.gff3.
gz. Source data are provided with this paper.

Code availability
The DeepMod250 software is available at https://github.com/WGLab/
DeepMod2 and is distributed under the MIT License.
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