
Article https://doi.org/10.1038/s41467-024-45777-z

Data encoding for healthcare data
democratization and information leakage
prevention

Anshul Thakur 1 , Tingting Zhu 1,4, Vinayak Abrol2,4, Jacob Armstrong1,
Yujiang Wang 1,3 & David A. Clifton1,3

The lack of data democratization and information leakage from trained
models hinder the development and acceptance of robust deep learning-
based healthcare solutions. This paper argues that irreversible data encoding
can provide an effective solution to achieve data democratization without
violating the privacy constraints imposed on healthcare data and clinical
models. An ideal encoding framework transforms the data into a new space
where it is imperceptible to a manual or computational inspection. However,
encoded data should preserve the semantics of the original data such that
deep learning models can be trained effectively. This paper hypothesizes the
characteristics of the desired encoding framework and then exploits random
projections and random quantum encoding to realize this framework for
dense and longitudinal or time-series data. Experimental evaluation highlights
that models trained on encoded time-series data effectively uphold the
information bottleneckprinciple andhence, exhibit lesser information leakage
from trained models.

In recent years, deep learning has demonstrated remarkable success in
a wide variety of fields1, and it is expected to have a significant impact
on healthcare as well2. Many attempts have been made to achieve this
breakthrough in healthcare informatics, which often deals with noisy,
heterogeneous, and non-standardized electronic health records
(EHRs)3. However, most clinical deep-learning tools are either not
robust enough or have not been tested in real-world scenarios4,5. Deep
learning solutions, approved by regulatory bodies, are less common in
healthcare informatics, which shows that deep learning hasn’t had the
same level of success as in other fields such as speech and image
processing6. Along with well-known explainability challenges in deep-
learning models7, the lack of data democratization8 and latent infor-
mation leakage (information leakage from trained models)9,10 can also
be regarded as a major hindrance in the development and acceptance
of robust clinical deep-learning solutions.

In the current context, data democratization can be described as
making digital healthcare data available to a wider cohort of AI
researchers. Achieving healthcare data democratization can result in
global clinical models that are trained on data sampled frommultiple
geographical locations instead of being limited to a single site. These
models are expected to be robust to population-specific distribution
shifts and to exhibit better generalization. The wider access to
healthcare datamight also facilitate algorithmic contributions tailored
for healthcare applications through a broader AI research base. How-
ever, healthcare data is sensitive and is rightly protected by data
privacy laws making data democratization difficult11,12.

On the other hand, latent information leakage is referred to as
learning the non-targeted latent information about the underlying
training population10. Higher modeling complexity of deep-learning
models often facilitates the learning of this non-targeted information
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that may act as an inductive bias to improve the predictive perfor-
mance of models. However, the latent information can be sensitive or
help in inferring the information such as age, sex, and chronic or acute
medical conditions of the patients. The revelation of this sensitive
patient information can be considered a privacy violation. Hence, data
democratization and prevention of latent information leakage are two
of the important factors required to develop better clinical deep-
learning solutions that are secure and widely acceptable.

Data democratization can be equated with the irreversible de-
identification of healthcare data so that no patient can be linked to an
electronic health record (EHR). A truly de-identified dataset cannot be
considered sensitive or private, so sharing it publicly would not result
in a violation of any data privacy laws13. However, researchers have not
developed a truly irreversible de-identification mechanism, and there

is always a risk of re-identification11,13,14. It is a common practice to
anonymize healthcare data, but the resulting data might not always be
considered to be completely de-identified. In general, the notion of
anonymity or de-identification is closely related to the amount of
computational effort and time required to re-identify a patient from
the data. An EHR can be considered non-anonymous (even after the
anonymization process) if the efforts to re-identify the patient are
considered reasonable. The reasonable efforts are subjective and
should often change with advancements in technology11. As a result,
simple data anonymization is not enough to achieve true de-
identification and data democratization. Hence, there is a require-
ment for information-processing mechanisms that couldmask private
information while retaining the data semantics to enable data sharing
or democratization.

Aside from data democratization, trained clinical deep-learning
models also raise privacy concerns. These models have been shown to
learn biomarkers of diabetic retinopathy, anemia, and chronic kidney
disease from fundus images15. Apart from that, deep-learning models
can also predict gender, sex, ethnicity, and smoking status from a
fundus image16. Hence, it is quite possible that a model trained for
predicting diabetic retinopathy from fundus images can learn a feature
representation that may reveal non-targeted patient characteristics
and sensitive information regarding the ailment of a patient suffering
from chronic kidney disease and anemia. In the same way, a model
trained for mortality prediction based on the first 48 hours of hospi-
talization in the intensive care unit (ICU) can provide information on
thepatient’s acute aswell as chronic conditions thatmay ormaynotbe
related to the current ICU stay or mortality prediction (see Results).
The extensive feature extraction in deep-learning models results in
better performance for the targeted taskand thediscovery of newnon-
targeted or passive digital biomarkers for various diseases, thereby
improving healthcare provision. This disclosure of non-targeted
information, however, violates the privacy of the patients and poses
an ethical dilemma.

Deep learning models can be seen as a combination of feature
extraction layers mapping an input example to a compressed,
semantic representation or embedding and the last classification layer
mapping the embedding to the model output or predictions (Fig. 1d).
According to the information bottleneck (IB) principle, an ideal model
should minimize mutual information between input and embedding
while maximizing it between embedding and the model output17,18. In
other words, the embedding extracted by the model should only
contain task-specific information and must strip spurious or non-task-
related information that might be present in the input. To avoid latent
information leakage, clinical deep-learningmodels should be designed
or trained to follow the IB principle andmust only extract the relevant
information from the input patient data.

This paper argues that encoding healthcare data can simulta-
neously achieve data democratization and prevent latent informa-
tion leakage. To accomplish this, we envision an encoding
framework that transforms pre-processed and anonymized long-
itudinal health records or multivariate time-series data into a new
space. This envisioned encoding framework is characterized by one-
way data transformations, imperceptibility of the encoded data, and
preservation of semantic properties in the encoded data. A one-way
transformation denotes the computational impracticality of reco-
vering the original data from its encoded version. The impercept-
ibility of the encoded data refers to the inability to infer any
information about the original data just by performing a simple
manual or computational analysis of its encoded version. Feature
scaling or normalization, for example, cannot be considered a viable
method of encoding information. Finally, semantic preservation
refers to the requirement that encoded data must preserve the
semantic characteristics of the original data to an extent so that
deep-learning models can be trained effectively over the encoded
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Fig. 1 | A schematic illustration depicting the proposed encoding framework
and its various components. aConceptual rendition of amultivariate time-series as
a collection ofmultiple 1-d signals.b Illustration of theprocess of encodingone of the
1-d signals within a time-series using the proposed encoding framework. c Illustration
of a quantum circuit that is composed of four wires, unitary rotation gates, and
controlled-NOT (CNOT) gates. d Illustration of the setup used for evaluating the
latent information leakage from the trainedmortality predictionmodels. Penultimate
layer embedding from the trained mortality prediction models is given as input to a
linear or dense layer dealing with either gender or patient disorders predictions.

Article https://doi.org/10.1038/s41467-024-45777-z

Nature Communications |         (2024) 15:1582 2



data. In theory, the performance of models based on original data
and encoded data should be the same.

The realization of this envisioned frameworkwill enable the sharing
of encodedhealthcaredatawithout violatingprivacy constraints. Ideally,
encoded data is imperceptible, and the encoding process is practically
irreversible. Therefore, it is very unlikely that any sensitive patient
information can be derived from encoded data by either a manual or
computational inspection. Nevertheless, there is an obvious trade-off
between the imperceptibility and semantic preservation requirements
of the envisioned encoding framework. A better semantic preservation
results in lesser imperceptibility and vice versa. As a result, the encoded
data can be seen as a deformed version of the original data, and much
higher computational effort is required to extract its semantic char-
acteristics. This nature of encodeddata results in inherent regularization
during model training and indirectly enforces the IB principle (see
Results) to prevent latent information leakage.

This paper exploits random projections19,20 and random quantum
circuits21,22 as information-processing tools to achieve the desired
encoding framework for the multivariate time-series data. Both ran-
dom quantum circuits and random projections can deform or project
the data to a space where it becomes imperceptible. By exploiting
random projections or random quantum circuits, the proposed
encoding framework performs piece-wise or segment-wise temporal
encoding of each feature or each 1-d signal of amultivariate time-series
(Fig. 1b). Since there is no interference among features or signals of the
original time-series, the resulting encoded time-series retains its
semantic characteristics. However, random transformations deform
each segment of a signal to make them incomprehensible. Due to the
fact that the original data, encoding method, transformation matrix
(used for randomprojections), and randomquantumcircuitwill not be
made public, it is extremely difficult to reverse the encoding process.
Hence, data democratization can be achieved by sharing this encoded
data among deep-learning researchers. Additionally, higher model
complexity is required to extract the relevant semantic information
from the deformed or encoded data resulting in regularization and
thus enforcing the IB principle.

Results
Designed experiments for the performance evaluation
The proposed encoding framework is evaluated using publicly avail-
able datasets: 1) PhysioNet 2012 challenge23, 2) MIMIC-III24,25 and 3)
eICU-CRD26,27. Both PhysioNet and MIMIC-III deal with in-hospital
mortality prediction based on the first 48 hours of ICU stay. Similarly,
eICU-CRD is used for the task of acute respiratory failure (ARF) pre-
diction based on the first 12 hours of ICU stay. Each ICU stay is
represented by a time-series with 48 and 12-time-steps (separated by
1 hour) for mortality and ARF prediction, respectively. Each step is
represented by a 44, 60, and 284-dimensional feature vector in Phy-
sioNet, MIMIC-III, and eICU datasets, respectively. Table 1 documents
the total number of ICU stays or examples available in each dataset. In
addition to the clinical features and task labels, meta-data about the
patients corresponding to ICU stays are also available. This includes
gender information in all datasets as well as chronic, acute, and mixed
conditions afflicting patients in MIMIC-III and information about the
ethnicity of the patients in eICU. More details about the clinical fea-
tures representing time-series in all datasets can be found in Supple-
mentary Notes 1, 2, and 3.

On the original as well as on the encoded data, we train 5 different
neural networks on each dataset and compare their relative perfor-
mances. These models include long short-term memory (LSTM)28, tem-
poral 1-D convolutions29, multi-resolution temporal convolutions30,
transformer31, and vision transformer32. More details can be found in the
Section “Methods”. To assess the latent information leakage from the
trained models, a single dense layer mapping the penultimate layer
embedding to the patient information is used. For theMIMIC-III dataset,
gender and 25 latent or non-targeted patient disorders (acute, chronic,
and mixed) are predicted from the penultimate layer embedding of the
trained mortality prediction models. For PhysioNet, we only predict
gender as the latent information. Similarly, we predict the gender and
ethnicity of patients from the trained ARF prediction models. Since we
are employing only a single linear layer tomap embedding to either sex,
ethnicity, or patient disorders (Fig. 1d), no further feature transforma-
tions are employed. The performance of this latent information pre-
diction depends entirely on the nature of embedding. More details
about this experimental setup can be found in the Section “Methods”.

Apart from that, we also trained models on both original/raw and
encoded datasets to predict the gender and ethnicity of the patients.
Themodel architectures used formortality andARFprediction are also
used for these prediction tasks.

Performance on the encoded time-series data
The performance of various models on both the encoded and ori-
ginal datasets is illustrated in Fig. 2. Across all datasets, models
trained and evaluated on the original data consistently outperform
those dealing with the encoded time-series data. Specifically, con-
cerning the MIMIC-III dataset, random quantum encoding, and
random projection-based encoding resulted in an average relative
performance drop of 3.52 (±1.25)% and 15.29 (±2.51)%, respectively. A
similar trend was observed in the PhysioNet dataset, with an average
relative performance drop of 5.13 (±1.94)% and 22.44 (±4.75)%.
Likewise, the eICU dataset exhibited a drop of 2.13 (±1.59)% and
12.45 (±2.29)%. This decline is expected, considering that data
encoding distorts the time-series to preserve patient information.

Despite the performance drop seen in models trained on the
encoded data, particularly those using quantum encoding, these
models appear effective in executing the target task. This suggests that
the encoding framework, whether utilizing random projection or
random quantum encoding, can maintain essential semantic char-
acteristics in the deformed encoded data. Notably, random quantum
encoding consistently outperforms random projections across all
models and datasets, indicating that quantum encoding better pre-
serves semantic characteristics while deforming the data through
random quantum operations.

Latent information leakage from the trained models
The performance for the task of predicting a patient’s gender from the
trained mortality and ARF prediction models is depicted in Fig. 3.
According to the analysis of Fig. 3, we can effectively predict patients’
gender from the trained models on original or non-encoded data. The
behavior is common across all datasets and all models regardless of
their modeling capacity. Similarly, the analysis of Fig. 4 illustrates that
we can identify the patients’ gender from the ARF models trained on
the original time-series data. Although gender and ethnicity are not

Table 1 | Characteristics of MIMIC-III, PhysioNet, and eICU datasets

Dataset # ICU stays # Positive cases Feature dimensions Time-steps # Train, validation, and held-out examples

MIMIC-III 21,156 2799 60 48 14,698, 3222, 3236

PhysioNet 8000 1122 44 48 5120, 1280, 1600

eICU 122,588 57,434 284 12 68,648, 17,163, 36,777
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sensitive information, these results highlight that trained models can
indeed reveal the latent non-targeted patient characteristics.

Figure 5a illustrates the performance of predicting the patient
disorders from the trained MIMIC-III models in a latent manner. The
analysis of this figure highlights that all models trained on the original
data generate representations or embedding that reveal information
regarding the patients’ disorders. Across all models trained on original
data, amacroAUROCof approx. 0.7 is observed for the latent disorder
prediction. It should be noted that the macro AUROC obtained by
different models within this experiment is comparable to the perfor-
mance achieved by the targeted patient phenotype prediction models
(see Supplementary Fig. S1 of Supplementary Note 6). This shows that
mortality prediction models are susceptible to leaking the patients’
private medical information.

Figure 5b, c depict the performance of predicting the chronic and
acute disorders (a subset of 25 disorders) from the trained LSTM
mortality prediction models. Similar behavior is observed for all the
othermodels considered in this study (see Supplementary Figs. S2 and
S3 of Supplementary Note 7). The analysis of the figures shows that
these models learn the characteristics that help infer or predict non-
targeted patient disorders. We can predict both chronic and acute
disorders that may or may not be correlated with the mortality pre-
diction. According to the odds ratios33 for these acute and chronic
disorders (Supplementary Fig. S4 of Supplementary Note 8), most
acute conditions exhibit a higher risk of mortality (odds ratio >> 1),
while most chronic conditions are weakly associated with mortality
( ≈1). This shows that some conditions, such as shock and acute renal
failure, are directly associated while others, such as chronic lipid

metabolismdisorder and chronic renal disease, are not associatedwith
mortality in the MIMIC-III patients corresponding to the ICU stays.
Irrespective of odds ratios or the association between disorders and
mortality, we can identify patients ailing from these ailments with an
average AUROC of >0.7.

Encoded data minimizes information leakage
The analysis of Figs. 3, 4, and 5 further highlights that the models
trained on the encoded data exhibit lesser latent information leakage
than the models trained on the original data. On average, MIMIC-III
models trained on data encoded using quantum circuits and random
projections (rather than original data) exhibited a relative drop of
20.11 (±2.45)% and 23.52 (±3.98)% in performance for the latent gender
prediction task. The PhysioNet models also exhibited relative drops of
22.66 (±5.45)% and 28.21 (±8.98)% for the data encoded using the
quantum circuit and the random projections, respectively. Similar
behavior is observed for the eICU models where quantum encoding
and random projection-based encoding resulted in a relative drop of
23.1 (±4.25)% and 31.11 (±7.6)% in the performance of the gender pre-
diction task. The encoding data also resulted in a drop in the perfor-
mance of the ethnicity prediction tasks. A similar trend is observed for
the patient disorder prediction from MIMIC-III models. Quantum
encoding and random projections resulted in a relative drop of
12.5 (±3.79)% and 18.75 (±5.45)% in the average macro AUROC score.

As discussed in Section “Introduction”, models that follow the IB
principle exhibit lesser information leakage. The drop in latent infor-
mation leakage from models trained on the encoded data can be
attributed to the lower mutual information (MI) between the model

Fig. 2 | Impact of the data encoding on the performance of different deep
learning models. Performance of LSTM, Vision Transformer (ViT), Transformer,
Temporal Convolutional Network (TCN), and Multi-Branch Temporal Convolu-
tional Network (Multi-TCN) on a MIMIC-III, b PhysioNet, and c eICU, respectively,
obtained across five different runs. Violin plots illustrate the average performance

of all models based on encoding methods for dMIMIC-III, e PhysioNet, and f eICU,
respectively. The middle line within each violin plot represents the median, while
the lines on either side represent the lower and upper quartiles. Source data are
provided as a Source Data file.
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input (i.e., original or encoded) time-series and the penultimate layer
embedding generated from the trained models. To uphold this claim,
we estimated MI between penultimate embeddings obtained from the
trained LSTMsand the input time-series examples. For the feasibility of
MI estimation, we used the average and vectorized form of the input
time-series to compute MI. Figure 6 illustrates the distribution of
estimatedMI between the input and the penultimate embeddings. It is
clear from this figure that the utilization of encoded data minimizes
the MI between the model input and the learned representation. As a
result, it can be inferred that training models with the encoded data
inherently enforce the IB principle in the training process. Hence, the
learned embedding only retains the information required to predict
mortality while stripping away the non-essential or non-targeted
patient information.

The above analysis shows that random projections-based
encoding provides maximum prevention against latent information
leakage. However, if we analyze Fig. 3 along with Fig. 2, it is also
evident that random projection-based encoding results in a larger
drop in the performance of the targeted task. On the other hand,
random quantum encoding provides more balance between the
performance of the targeted task and the prevention of information
leakage.

Visual inspection of the encoded data
The visual differences between the original and the encoded examples
from the PhysioNet dataset are illustrated in Fig. S6 of the supple-
mentary information document. The analysis of this figure makes it
clear that both temporal trends and distribution of features in the
original and the encoded time-series examples are noticeably
different.

To further analyze the impact of the encoding process on the
time-series data, 50 original and encoded examples from the positive
(mortality) class of the PhysioNet dataset were randomly selected and
averaged to obtain the original and encoded summary time-series.
Figure 7 depicts the behavior of four randomly chosen features from
these summarized time-series. Again, the distribution of magnitude as
well as temporal trends of the encoded features is different from the
original time-series features. By mere visual inspection, it is near
impossible to perceive any information from the encoded data (both
quantum encoding and random projections). Similar behavior is
observed for the other features. Hence, the encoding process provides
an additional layer of privacy over the de-identified data and might
push the community a step closer to achieving data democratization.

Predicting gender and ethnicity from original and encoded
datasets
Supplementary Figs. S7 and S8, documented in Supplementary
Note 11, illustrate how different models perform when trained to pre-
dict gender and ethnicity from the raw and encoded time-series data
directly. As with the latent gender and ethnicity prediction tasks, the
time-series encoding also results in a significant drop in the perfor-
mance of models trained on encoded time-series samples for pre-
dicting gender and ethnicity. Across all models, random projection
results in a relative drop of 26.03%, 32.5%, and 33.33%, respectively on
MIMIC-III, PhysioNet, and the eICU gender prediction tasks. Similarly,
quantum encoding results in average relative drops of 13.7%, 24.1%,
and 22.9%, respectively. Similar trends are observed for ethnicity
prediction tasks. The analysis of these results provides strong evidence
that time-series encoding makes it hard to infer sensitive character-
istics that can readily be extracted from the raw time-series data. If we

Fig. 3 | The extent to which data encoding prevents the leakage of gender
information fromtrainedmodels.Gender prediction from the latent embeddings
obtained from different models trained on a MIMIC-III, b PhysioNet, and c eICU
datasets, respectively. Violin plots illustrate the average performance of all models
as a function of the encoding method on d MIMIC-III, e PhysioNet, and f eICU

datasets, respectively. Every point on all plots represents the respective model
performance obtained during one of the five runs. The middle line within each
violin plot represents themedian, while the lines on either side represent the lower
and upper quartiles. Source data are provided as a Source Data file.
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analyze these results in association with mortality and ARF prediction
tasks as well as latent prediction tasks, it is evident the proposed
encoding framework achieves the desired characteristics of preserving
semantics as well as masking sensitive information to a large extent.

Data encoding and explainability
Encoded data is expected to retain semantic characteristics of the
original data to a large extent such thatmodels trained on original and
encoded data exhibit similar behavior. Along with similar perfor-
mance, the features relevant for predictions inmodels trained on both
the original and the encoded data should largely be the same. While
encoded data does retain semantic characteristics, there is a notice-
able performance drop due to data encoding (Fig. 2). This shows that
the behavior of models trained on encoded data could be different.

Shapely additive explanations (SHAP)34 are employed on the
LSTM models, trained using the original and encoded PhysioNet and
MIMIC-III datasets, to study the impact of data encoding on the feature
relevance. Figure 8 illustrates the top 10 relevant features identified by
SHAP in each PhysioNet model. The analysis of this figure highlights
that there is a huge overlap between the sets of relevant features
identified for the original and the quantum-encoded models. More-
over, Glasgow comma score and blood urea nitrogen are regarded as
the most relevant features in both models. Although there is some
overlap between the relevant features of the original and the random
projection-based encoded models, the overall behavior seems to be
very different. Similar behavior is observed for the MIMIC-III models
(see Supplementary Fig. S9 of Supplementary Note 12). Hence, it can
be argued that random quantum encoding has been successful in
retaining semantic characteristics such that the resultant models
exhibit similar behavior to the original models up to an accep-
table level.

Discussion
This study proposes to encode the healthcare data to achieve data
democratization and prevent information leakage. The irreversible
and semantic preserving encoding framework outlined in this paper
allows getting an imperceptible and deformed form of healthcare data

that can be shared among researchers without violating privacy con-
straints. Moreover, the inherent regularization imposed on neural
network training due to the deformity of the training data is expected
to induce the information bottleneck (IB) principle and potentially
result in models that are less susceptible to latent information leakage
(Fig. 6). The experimental results on three different time-series data-
sets and five differentmodel architectures highlight that the proposed
encoding framework achieves the desired behavior while outlining the
potential of encoding frameworks for data democratization.

This paper explores random projections and random quantum
operations to piece-wise encode the 1-d signals in a time-series as
highlighted in Section “Methods” and Fig. 1. Compared to the original
time-series signals, the resultant encoded signals exhibit different
feature distributions and follow somewhat imperceptible trends
(Fig. 7).Models trained on the encodeddata performwell, highlighting
that the semantics are effectively preserved (Fig. 2). Concomitantly,
the information leakage from these models is significantly lesser than
models trained on the original data (Figs. 3, 4, and 5). Thus, as desired,
the proposed encoding framework results in encoded data that is
visually imperceptible, effective for deep learning, and minimizes
information leakage from the trained deep models.

Based on the performance comparison between models trained
on data encoded using random projections and random quantum
circuits (Figs. 2 and 3), it is evident that random quantum encoding
balances the deformation of data and preservation of the semantic
characteristics, which results in better models. Apart from the better
performance of quantum encoding, retrieving the original data from
its encoded version is theoretically harder as outputs of the quantum
circuit or the state of qubits are observed by projecting them on a pre-
defined basis state35. These measurements become the encoded sig-
nals, and estimating the qubit state from this measurement can be
ambiguous as multiple qubit states could map to the same measure-
ment. Even if the measurement weren’t an issue, one would have to
estimate the structure of quantum circuits (number of layers, number
of gates, and nature of gates) as well as the parameters of rotation
gates to reverse the encoding process possibly. In contrast, we only
need to estimate the transformation matrix (4 × 4) to reverse the

Fig. 4 | The extent to which data encoding prevents the leakage of ethnicity
information from the trained models. Performance in the latent prediction of a
patient’s ethnicity as a Asian, b African-American, c Hispanic, or d Caucasian from
various models trained on the eICU dataset, respectively. Similarly, violin plots
illustrate the average performance across all models in predicting a patient’s

ethnicity as e Asian, f African-American, g Hispanic, or h Caucasian, respectively,
based on encoding methods. Every point on all plots represents the respective
model performance obtained during one of the five runs. The middle line within
each violin plot represents the median, while the lines on either side represent the
lower and upper quartiles. Source data are provided as a Source Data file.
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randomprojections or similar data transformations. It will be sufficient
to have access to even one pair of original and encoded data to esti-
mate this transformation matrix accurately. As a result, while random
projection induces visible imperceptibility and preserves semantics to
someextent, it cannot be considered an irreversible transformwhich is
a major requirement of the proposed encoding framework. On the
other hand, quantum encoding provides theoretical irreversibility
while preserving semantics and inducing imperceptibility. Hence, it
presents a better data transformation or encoding solution.

The encoding of data is also able to facilitate collaboration among
multiple research entities without infringing upon the privacy of the
patients. All data collection sites can potentially share their data
among themselves so that every site can access the global data. As

discussed in Section “Introduction”, the models trained on this global
data are expected to be more generic and better at handling the
population-specific distribution shifts. However, the random nature of
encoding at each site will impede this cross-site collaboration. This
problem can be solved by agreeing beforehand on the nature of data
transformation, such as quantum circuit structure and rotation gate
parameters. Thus, encoded data from each site will be in the same
transformation space, allowing deep-learning models to be trained
effectively. Similar to cross-site collaboration, federated learning also
allows a central server to collaborate with multiple sites for training a
globalmodel without data sharing36. However, the structure ofmodels
is entirely decided by the server, and sites do not have any indepen-
dence. Each site is expected to perform similar operations using its

Fig. 5 | The extent towhichdata encodingprevents the leakageofnon-targeted
patient conditions from trained patient-care models. a Model-specific and
average performance across all models for predicting 25 latent patient disorders
using the penultimate embedding generated frommodels trained on theMIMIC-III
dataset. The chronic and acute disorders shown in b, c are subsets of 25 different

conditions considered in this work. A single model predicts the presence/absence
of all 25 disorders. Every point on all plots represents the respective model per-
formance obtained during one of the five runs. The middle line within each violin
plot represents the median, while the lines on either side represent the lower and
upper quartiles. Source data are provided as a Source Data file.
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local data. On the other hand, data encoding allows the researchers at
each site to access the global data and work independently on any
deep-learning algorithm.

As an alternative to data encoding, generative models such as
generative adversarial networks have been used to generate data
points that do not represent any real patients and theoretically can be
shared publicly37,38. However, generative models capture the input
distribution of the data points, and it is always possible to sample data
points that are extremely similar to the input points or real patients.
Similar to the subjectivity around the de-identification process (as
discussed in Section “Introduction”), a sampled example that is similar
to real patient data may or may not be considered a fabricated data
point. Moreover, generative modeling requires extensive computa-
tional resources and a large amount of data to fabricate the data points
effectively. On the other hand, the proposed encoding approach is an
information-processing framework and does not require any training.

Upon reflection, this work reveals three shortcomings. Firstly, the
proposed framework is designed to encode data for deep-learning
models with advanced capabilities, hindering the utility of traditional
machine-learning models with limited modeling complexities. Addi-
tionally, intentional disparities in summary statistics make statistical
and epidemiological analyses unfeasible, limiting the utility of enco-
ded to deep-learning applications. Secondly, both randomprojections
and random quantum encoding lack a mechanism to control

deformation or balance imperceptibility and semantic information
retention, leading to a performance drop in models trained on the
encoded data. Finally, the proposed framework hasn’t been evaluated
on recent foundation models like TimeGPT-139. These models are sig-
nificantly larger, boasting extensive modeling capacities. Conse-
quently, it is conceivable that these models may extract a wider range
of non-targeted applications compared to the standard models
assessed in this paper.

In the future, we will work towards inventing new non-linear or
sub-linear data transformations that could either automatically bal-
ance the deformation and semantic retention trade-off or provide a
hyper-parameter to control the degree of deformation in the encoded
data, while being theoretically irreversible. Using such data transfor-
mations in the proposed encoding framework will improve the per-
formance of the target tasks while enabling data democratization and
preventing information leakage. Furthermore, future work will also
deal with analyzing and evaluating foundationmodels on the encoded
examples.

Methods
Proposed encoding framework
Auniformly sampledmultivariate time-series is a collection ofmultiple
1-d signals representing features measured over time. Suppose X 2
RF ×T is a time-series consisting of F 1-d signals of length T, and x 2 RT

Fig. 6 | Impact of data encoding on the information bottleneck. Kernel density
estimation plots depict the estimated mutual information (MI) between embed-
dings derived from trained LSTM models and the averaged input time-series in

a MIMIC-III and c PhysioNet. Additionally, similar plots show the estimated MI
between embeddings from the trained LSTM models and vectorized input time-
series inbMIMIC-III anddPhysioNet. Sourcedata areprovidedas a SourceDatafile.
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Fig. 7 | Data encoding enhances imperceptibility. The difference in average
trends and the averagemagnitudeof the original and encoded signals representing
a cholesterol, b blood urea nitrogen, c alkaline phosphatase, and d alanine trans-
aminase are examined. These signals are computed by averaging 50-time-series

representing patients who eventually face mortality in the PhysioNet dataset. The
shaded area surrounding the averaged signal represents the standard deviation.
Source data are provided as a Source Data file.
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or x= x1,x2,x3, . . .xT

� �
is one of the F signals. The proposed frame-

work transforms the time-series X by performing piece-wise encoding
of every 1-d signal in X. The framework divides the signal x into seg-
ments or chunks of length n as x̂= x1:n,xn+ 1:2n, . . .xðT�n+ 1Þ:T

h i
and

applies transformation operation f() on every segment:

ej = f ðx̂jÞ 8 x̂j 2 x̂, ð1Þ

Fig. 8 | Consistency in explainability of models trained on raw and the encoded data. A comparison of SHAP-based feature importance in LSTMmodels trained on
a original, b quantum encoded, and c randomly projected versions of the PhysioNet dataset. Source data are provided as a Source Data file.
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where ej 2 Rn is encoded version of jth segment of x. Note that the
dimensions of transformed/encoded and input segments are the same,
and a segment length of n = 4 has been used across all experiments.
Each encoded segment of length n is temporally concatenated to
obtain the encoded version, e 2 RT , of the signal x as:
e= ½e1, e2, e3 . . . eðT=nÞ�. Similarly, transformation or encoding operation
is applied on all F 1-d signals to transform X into the encoded time-
series E 2 RF ×T . In this paper, we have used random projection and
random quantum encoding as data transformation operation f() in the
proposed framework. Both these mechanisms are discussed below.

Randomprojection is amethod of projecting the input data into a
random subspace using a random projection matrix whose columns
are of unit length19,20. It is mainly used for dimensionality reduction,
and it approximately preserves the similarity among data points in the
projected subspace as outlined by Johnson-Lindenstrauss lemma40. In
this work, we are not interested in dimensionality reduction and are
mainly concernedwith projecting the input into a random subspace to
make the data imperceptible. To attain this goal, we use a projection
matrix R 2 Rn ×n whose entries are randomly sampled from Gaussian
distribution N ð0, 1=nÞ. This projection matrix can be used to encode
the jth segment x̂j 2 Rn× 1 of signal x as:

ej =Rx̂j , ð2Þ

where ej 2 Rn× 1 is the encoded version of the input segment. As dis-
cussed above, we have used a segment length of n = 4, so the projec-
tion matrix of 4 × 4 is used for data encoding.

Random quantum encoding refers to a process of data transfor-
mation through the use of a quantum circuit containingmultiple gates
with random parameters21. The quantum circuit used in this study is
shown inFig. 1c. This circuit is composedof the following components:
qubits or wires, rotation gates, and controlled-not gates41. The circuit
consists of four wires to represent four quantumbits or qubits. A qubit
is a quantum system having a resting state ∣0i and an excited state ∣1i.
These states are mutually orthogonal and any qubit state ∣ψ

�
can be

represented as a superposition of ∣0i and ∣1i as: ∣ψ�=a∣0i+b∣1i, where
a and b are complex numbers thatmust satisfy ∣a∣2 + ∣b∣2 = 1. ∣a∣2 and ∣b∣2

represent the probability of ∣ψ
�
being in ∣0i and ∣1i, respectively.

Initially, all four qubits are in a resting state. The number of wires or
qubits is dictated by the length of the input segmented signal, i.e.,
n = 4. Secondly, rotationgates (RX) rotate thequbit around x-axisbyϕk

(radians) on its Bloch sphereprojection,where k is the indexof RXgate
in the circuit. This rotation operator with ϕk randomly chosen para-
meters can be defined as:

RX ðϕkÞ =
cos ϕk

2 �ιsin ϕk
2

�ιsin ϕk
2 cos ϕk

2

" #
: ð3Þ

The resultant qubit state ∣ψ0� after applying kth RX gate to qubit
∣ψ
�
is given as:

∣ψ0�= cos ϕk
2 �ιsin ϕk

2

�ιsin ϕk
2 cos ϕk

2

" #
a

b

� �
: ð4Þ

The final component, controlled-not (CNOT) gates, are used to
entangle the two qubits and have no parameters. First qubit is con-
sidered as control and the secondqubit isflipped if the control is ∣1i. As
we can see, CNOT deals with 2-qubit quantum system whose basis
states are f∣00i, ∣01i, ∣10i, ∣11ig. An input to CNOT gate is a linear
superimposition of these basis states: ∣ψ

�
=a∣00i+ b∣01i+ c∣10i+d∣11i,

where a, b, c and d are the complex coefficients. Hence, CNOT opera-
tion can be defined as:

CNOTð∣ψiÞ = a ∣00i+b ∣01i+d ∣10i+ c ∣11i: ð5Þ

The whole quantum encoding process can be divided into three
steps: (1) encoding input segment on wires, (2) processing qubits by
quantum circuit, and (3) measuring the outputs. In the first step, the
input segment x̂j is projected onwires of the circuit. Each element (x̂jn

)
of the input segment x̂j corresponds to nth wire or qubit. To encode
the information from x̂jn

to nth qubit, we rotate this qubit by x̂jn
radians around the y-axis on its Bloch sphere projection. This rotation
operator is described as:

RY ðϕnÞ=
cos ϕn

2 � sin ϕk
2

sin ϕn
2 cos ϕk

2

" #
, ð6Þ

whereϕn is πx̂
j
n. The process of applying this operator is similar to RX

gates (Equation 4). In the second step, after preparing the qubits as
encoded versions of the input segment, these qubits are processed by
the quantum circuit (Fig. 1c) described above. Finally, a measurement
operation is performed to register the state of a qubit after applying all
the quantum operations. In this work, we use the expectation of the
Pauli-Z operator (Z) to measure the output state of a qubit ∣ψ

�
. We

know that Z can be defined as41:

Z=
1 0

0 �1

� �
, ð7Þ

where ∣0i 0h ∣� ∣1i 1h ∣ is the spectral decomposition formof Z. Then, the
expected value of Pauli-Z operator for ∣ψ

�
can be determined as:

ψ
�

∣Z ∣ψ
�
= hψj0ih0jψi � hψj1ih1jψi= jh0jψij2 � jh1jψij2: ð8Þ

Here jh0jψij2 and jh1jψij2 represents the probabilities of ∣ψ� being
in states ∣0i and ∣1i, respectively. Note that hajbi represents the
inner product between ∣ai and ∣b

�
in Hilbert space. For nth wire or

qubit, the measured value (ejn ) is regarded as the encoded version
of the corresponding element x̂jn

of the input segment x̂j . By con-
sidering all n qubit measurements, we obtain an encoded version
(ej = ½ej1 , ej2 , . . . ejn �) of the input segment x̂j . The encoded signal e is
obtained by temporally concatenating all the encoded segments ej.

Models
This work has trained various neural network architectures for per-
forming targeted and latent predictions. Firstly, the long short-term
memory (LSTM) based model, previously used in mortality
prediction12, incorporates an LSTM with 256 recurrent units, followed
by a linear layer with 1 node and sigmoid activation for binary
prediction.

Temporal convolution neural networks, drawing inspiration from
works such as refs. 29,30, leverage 1-dimensional convolution opera-
tions for time-series modeling. Our implementation features temporal
convolutional networks with four temporal blocks followed by a linear
layer with 1 node and sigmoid activation, mapping the 64-dimensional
embedding to an output score. Each temporal block consists of two
1-dimensional convolution layers with 64 filters of size 9. Each con-
volution layer is followed by 1-dimensional batch normalization,
parametric ReLU activation, and a dropout layer with a dropout
probability of 0.75. Additionally, a multi-branch temporal convolu-
tional network (Multi-TCN) is utilized, comprising two multi-branch
temporal blocks followed by a linear layer with 1 node and sigmoid
activation. Each multi-branch temporal block comprises three bran-
ches that process the input in parallel, with each branch featuring two
1-dimensional convolutional layers having 32 filters. The filters’ kernel
sizes in the branches are 5, 7, and 9, respectively. The last layer of the
block is a 1-dimensional convolution layer with 96 filters of size 1,
serving as an aggregator to select relevant features from all three
branches.
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Furthermore, transformer architectures, as introduced in31,
encompass anencoder and adecoder, each composed ofmultiple self-
attention layers. A transformer encoder is utilized in this work, con-
taining 1 attention layer with sixteen 256-dimensional heads, followed
by two linear layers with 16 and F nodes. The output, shaped as T × F,
where T is the time-steps and F is the feature dimensions, undergoes
temporal pooling before being fed into a two-layered MLP classifier
with 128 and 1 nodes for binary prediction. Additionally, the Vision
Transformer (ViT), designed explicitly for images in32, is employed for
modeling time-series. The architecturemirrors that of the transformer,
with the ViT featuring a learnable F-dimensional token appended to
the input time-series. This token is then given as input to the MLP
classifier instead of a temporally pooled representation, as is done in
the classical transformer.

As previously mentioned, the models utilized are single-layer
models, featuring either 1 node for latent binary prediction tasks or 25
nodes followed by sigmoid activation for latent disorder prediction in
the context of mortality prediction models.

Training mortality prediction models
Irrespective of the data encoding strategy or model architectures, all
prediction models are trained using the same parameter setting. Bin-
ary cross-entropy is used as the loss function. Adam optimizer with a
fixed learning rate of 0.001 and a batch size of 64 is used for training
the models. Eachmodel is trained to provide the best performance on
the validation examples, and the best-performingmodel configuration
is used for evaluating the test or held-out dataset.

Training latent information prediction models
For training information leakage or latent predictionmodels, we again
followed the same train, validation, and test split that is available for
the prediction tasks. For estimating the information leakage from a
trained model, we obtained the penultimate layer embedding for all
examples. These embeddings are used as input representations for
training and evaluating the latent information prediction models, i.e.,
gender, ethnicity, and disorder prediction models. Binary cross-
entropy loss, Adam optimizer with a fixed learning rate of 0.001, and
a batch size of 256 are used for training the models.

Implementation details
All experiments are performed using Python. PyTorch is used as a
deep-learning library. Quantum operations have been simulated using
PennyLane42. Mutual information for the IB analysis (Fig. 6) has been
estimated using ref. 43.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All datasets used in this study are publicly available from http://
physionet.org/. MIMIC-III is available at https://physionet.org/content/
mimiciii/1.4/. eICU-CRD is available at https://physionet.org/content/
eicu-crd/2.0/. PhysioNet 2012data is available at https://physionet.org/
content/challenge-2012/1.0.0/. A PhysioNet account is required to
access the datasets. Source data are provided in this paper.

Code availability
The code repository is publicly available44 and can be found at https://
github.com/AnshThakur/Quantum-Encoding.
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