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Long-term exposure to ambient PM2.5,
particulate constituents and hospital
admissions from non-respiratory infection

Yijing Feng 1 , Edgar Castro 2, Yaguang Wei2, Tingfan Jin 2, Xinye Qiu 2,
Francesca Dominici 3 & Joel Schwartz 1,2

The association between PM2.5 and non-respiratory infections is unclear.
Using data fromMedicare beneficiaries and high-resolution datasets of PM2.5
and its constituents across 39,296 ZIP codes in the U.S between 2000 and
2016, we investigated the associations between annual PM2.5, PM2.5 con-
stituents, source-specific PM2.5, and hospital admissions fromnon-respiratory
infections. Each standard deviation (3.7-μg m−3) increase in PM2.5 was asso-
ciated with a 10.8% (95%CI 10.8–11.2%) increase in rate of hospital admissions
from non-respiratory infections. Sulfates (30.8%), Nickel (22.5%) and Copper
(15.3%) contributed the largest weights in the observed associations. Each
standard deviation increase in PM2.5 components sourced from oil combus-
tion, coal burning, traffic, dirt, and regionally transported nitrates was asso-
ciated with 14.5% (95%CI 7.6–21.8%), 18.2% (95%CI 7.2–30.2%), 20.6% (95%CI
5.6–37.9%), 8.9% (95%CI 0.3–18.4%) and 7.8% (95%CI 0.6–15.5%) increases in
hospital admissions from non-respiratory infections. Our results suggested
that non-respiratory infections are an under-appreciated health effect
of PM2.5.

It is estimated that 15% of all the deaths across the world are directly
attributable to infectious disease each year1. While respiratory
infections draw the most attention, non-respiratory infections are
also an important health burden. For example, in 2015, it was esti-
mated that the healthcare expenditure for intestinal infections was
$6.4 billion in the United States2. There were around 10.5 million
office visits for urinary tract infection, causing $3.5 billion in societal
costs per year3,4.

Fine particulate matter (PM2.5) is a well-recognized risk factor for
health and has been found to be associated with multiple adverse
health outcomes such as cardiovascular disease and respiratory
disease5,6. Previous studies suggested that PM2.5 has potential immu-
notoxicity and could be a risk factor for infection7–9. Various studies
have found a positive association between PM2.5 exposure and risk for
respiratory infections10–13. However, only limited studies have investi-
gated the effect of PM2.5 on non-respiratory infections and there were

conflicting results14–17. Due to the lack of consistent evidence, further
study is required in this field.

PM2.5 is a complex mixture of multiple constituents that come
from different sources18. Different chemical constituents likely have
different immunotoxic profiles which could lead to different health
impacts. Identifying the constituent-specific effects could help us
understand the underlying pathways by which different components
and sources of PM2.5 lead to adverse health outcomes and provide
information for targeted interventions.

In this study, we investigated the associations between long-term
exposure to PM2.5 and hospital admissions from non-respiratory
infections among older adults in the US and identified the constituents
and source specific PM2.5which contributemost to the adverse health
effects.

Here, we show that ZIP codes with higher PM2.5 concentration
had higher rates of hospital admissions from non-respiratory
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infections. Across the 15 PM2.5 constituents we examined, sulfates,
Nickel and Copper contributed most to the observed association
between PM2.5 and the outcome. PM2.5 sourced from oil combustion,
coal burning, traffic, dirt, and regionally transported nitrates had the
strongest associations with admissions from different non-respiratory
infection.

Results
ZIP code-level characteristics
Hospital admissions of non-respiratory infections from 39,296 ZIP
codes between 2000 and 2016 were included in the analysis. In total,
13,724,218 admissions from non-respiratory infections were identified.
This study included data from 67,005,279 Medicare beneficiaries,
amongwhom37,037,978 (55.3%)were female, 56,700,531 (84.6%)were
White, 5,788,605 (8.6%) were Black and 11,837,647 (17.6%) were ever
eligible for Medicaid. Among the 436,577 included ZIP code-years, the
median number of beneficiaries was 536, while themedian percentage
of beneficiaries younger than 75 years-old was 55.2%, the median per-
centage of female beneficiarieswas 55.6%,medianpercentage ofWhite
beneficiarieswas 95.9%.Other ZIP code-level characteristics controlled
for in the analysis, including percentage of smokers, SES, and
meteorology are summarized in Table 1.

PM2.5 and non-respiratory infection
Across all the included ZIP code-years, the median level of PM2.5 was
9.7μgm−3 (IQR 7.7–11.8). The median admission rate of non-
respiratory infections was 25.1 (IQR 16.3–35.2) per 1000 person-
years. The distribution of PM2.5 levels and rate of admission from non-
respiratory infections in 2008 are shown in Figs. 1 and 2. After
adjusting for the covariates, each standard deviation (3.7-µg m−3)
increase in PM2.5 was associated with a 10.8% (95%CI 10.8–11.2%)
increase in the admission rate from non-respiratory infection. PM2.5
was also significantly associated with increased admission rates for
three sub-types of non-respiratory infection. The increases in admis-
sion rate associated with each standard deviation increase in PM2.5
were 6.8% (95%CI, 6.4–7.2%), 12.0% (95%CI, 11.6–12.0%) and 12.8%
(95%CI, 12.4–13.2%) for intestinal infections, urinary tract infections

and septicemia respectively (Table 2). When we restricted the analysis
to ZIP code-years with PM2.5≤ 9 µgm−3, a standard deviation increase
in PM2.5 was associated with 21.5% (95%CI 20.6–22.8%) increase in rate
of hospital admissions from non-respiratory infections (Table 2).

Mixture effect of PM2.5 constituents
Each decile increase in the mixture was associated with a 10.3%
(95%CI 10.2–10.4%) increase in admission rate of non-respiratory
infection, while the constituents with the highest relative importance
were SO4 (30.8%), Ni (22.5%) and Cu (15.3%) (Fig. 3). Similarly, each
decile increase in the mixture was associated with 10.2% (95%CI
10.1–10.4%), 12.7% (95%CI 12.4–13.0%), and 12.0% (95%CI 11.8–12.3%)
increases in admission rate for septicemia, intestinal infections and
urinary tract infections, respectively. The constituents with the
highest relative importance were Ni (19.7%), SO4 (17.4%) and Cu
(15.6%) for septicemia; Cu (37.3%), Ni (20.0%) and SO4 (18.4%) for
intestinal infections and SO4 (34.2%), Ni (14.2%), Fe (13.5%) for urinary
tract infections. Each decile increase in the mixture was associated
with 4.2% (95%CI 3.2–5.2%) increase in admission rate of CNS infec-
tions while the constituents with highest relative importance were Si
(25.2%), OC (16.2%) and Ca (14.4%). Detailed relative importance of
constituents for the four sub-types of non-respiratory infections are
shown in Supplementary Fig. S1–4. All the results were adjusted for
covariates mentioned above.

Source specific PM2.5 and non-respiratory infections
Geographical distributions for the clusters within whichwe conducted
separate NMF are shown in Supplementary Fig. S5–7. The major
sources of PM2.5 identified from our constituent data were coal
burning, traffic, oil combustion, soil, biomass burning and regionally
transported nitrates. Coal burning was identified in all of the nine
stratawhile oil combustionwas identified ineight strata; soil and traffic
were identified in seven strata. Detailed results fromNMF are shown in
supplementary material (Figs. S8–S16).

After summarizing over all the strata, PM2.5 from five out of the
six identified sources was significantly associated with increased
admission rate from non-respiratory infections. The estimated
increases in admission rate from non-respiratory infections for each
one standard deviation increase in source specific PM2.5 were 14.5%
(95%CI 7.6–21.8%), 18.2% (95%CI 7.2–30.2%), 20.6% (95%CI 5.6–37.9%),
8.9% (95%CI 0.3–18.4%), and 7.8% (95%CI 0.6–15.5%) for oil combus-
tion, coal burning, traffic, soil and regionally transported nitrate
respectively. PM2.5 from oil combustion and coal burning were asso-
ciated with increased hospital admissions from intestinal infections,
urinary tract infections and septicemia; while PM2.5 from traffic was
associated with increased admission from all four subtypes of non-
respiratory infections. Detailed effect estimates of each of the source-
specific PM2.5 are shown in Table 3.

Discussion
In this study among older adults across the contiguous US, we
observed that ZIP codes with higher PM2.5 concentrations had
increased admission rates from total and different subtypes of non-
respiratory infections including intestinal infections, urinary tract
infections and septicemia. The associations were observed even at
lower levels of PM2.5 including levels below the US EPA’s recently
proposed standards, after adjusting for multiple confounders. When
we examined PM2.5 constituents, SO4, Ni and Cu contributed most to
the association between the constituent mixture and hospital admis-
sions from non-respiratory infections. Based on our source appor-
tionment analysis, PM2.5 sourced from oil combustion, coal burning
and traffic had the strongest associations with admissions from dif-
ferent non-respiratory infections, which is generally consistent with
the loadings in the mixture analyses, since Ni is a tracer for oil com-
bustion, SO4 for coal combustion, and Cu for traffic particles.

Table 1 | Characteristics of the included ZIP codes between
2000 and 2016

Overall

ZIP code-years 436,577

Number of beneficiaries per ZIP code 536 [222, 1530]

Characteristics of Medicare beneficiaries (median percentage [IQR])

Female 55.59 [52.55, 58.37]

Aged between 65 and 74 55.24 [50.33, 59.88]

Aged between 75 and 84 32.07 [28.83, 35.30]

White 95.86 [86.13, 98.60]

Black 0.90 [0.00, 5.81]

Eligible for Medicaid 10.03 [5.93, 17.26]

ZIP code-level contextual characteristics (median [IQR])

Hispanic (%) 2.87 [1.04, 8.84]

Poverty (%) 8.46 [5.21, 13.27]

Education below high-school (%) 25.62 [16.06, 37.69]

Median Household income ($) 44575 [35537, 57417]

Smoker (%) 46.76 [42.22, 51.47]

Percent beneficiaries had ambulatory visit (%) 80.35 [76.65, 83.22]

Distance to the nearest hospital (KM) 8.73 [3.04, 17.09]

Population density (person/KM2) 127.38 [35.87, 1110.00]

Winter maximal daily temperature (°C) 6.88 [2.17, 13.37]

Summer maximal daily temperature (°C) 29.51 [27.04, 32.25]
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Positive associations between PM2.5 and infections have been
found in many studies, most of which focused on respiratory infec-
tions such as pneumonia and bronchiolitis6,13,19–21. However, associa-
tions between PM2.5 and non-respiratory infections have also been
observed. A previous study among the USMedicare population found
that each 1 µgm−3 increase in short-term PM2.5 was associated with
0.41%, 0.39%, 0.13% and 0.09% increases in hospital admission rates
from septicemia, urinary tract infections, skin and subcutaneous tissue
infections and intestinal infections20. However, that study examined
short-term exposures to PM2.5 and not long-term exposures as we
have done. A study from China observed that each 1 µgm−3 increase in
short-term PM2.5 was associated with a 0.93% increase in rate of hos-
pital admissions from bacterial infections of unspecified site and a
0.97% increase in the rate of hospital admissions from intestinal
infections17. Our study further supports that PM2.5 is a risk factor for
non-respiratory infections and is the first we know of to examine long-
term exposures to particles, particle components, and particle sour-
ces. The potential pathways through which PM2.5 affects non-

respiratory infections have not been thoroughly studied yet. An ani-
mal study suggested that exposure to PM2.5 down-regulated IL-1β and
IFN-β, which led to increased susceptibility to viral infections22.
Moreover, chronic exposure to PM2.5 could alter phagocytic activity
and superoxide dismutase (SOD) activity, which affects immune
response to pathogens23. The immunotoxicity potentially plays a key
role in the observed association between PM2.5 and non-respiratory
infections.

We observed that sulfate, Ni and Cu had the largest contribution
to the effect of PM2.5 mixture on hospital admissions from non-
respiratory infections. Ni is a heavy metal with high immunotoxicity.
Previous studies suggested Ni exposure could increase production of
reactive oxygen species, reduce the activity of SOD and catalase, and
induce mitochondrial dysfunction, which are all interrelated with the
function of the immune system24. Airborne Ni is predominantly from
the combustion of heavy fuel oil, but other sources includemetallurgy,
stainless steel production and other industrial sources. An animal
study found that the soluble Ni component could alter the immune

PM2.5 (μg/m3)
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Fig. 1 | ZIP code-level PM2.5 in the US in 2008. Source data are provided as a Source Data file. The figure was created from ArcMap 10.7.
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Fig. 2 | Rateofhospital admissions fromnon-respiratory infections in theUS in 2008.The rates of hospital admissions are indicatedby the Sourcedata are provided as
a Source Data file. The figure was created from ArcMap 10.7.
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defense in rats and increase their vulnerability to bacterial infections25.
Similar to Ni, Cu is also a divalent cation that could affect the immune
system and oxidative stress, including through Fenton chemistry.
Exposure to high levels of Cu increases the production of pro-
inflammatory cytokines and ROS26. An in vitro study found that copper

could induce the apoptosis of monocytes. Airborne Cu is primarily a
non-tailpipe traffic emission, primarily frombrake wear. Other sources
include industry and smelters. Sulfate particles derive primarily from
coal combustion and have been observed to have the strongest asso-
ciation with mortality across different PM2.5 constituents in a number
of studies27,28. However, evidence on the association between sulfate
and infections is still lacking. A recent study observed that exposure to
sulfate particles was associated with increased length of stay from
hand-foot-mouthdisease29. One potentialmechanism for the observed
effect could be that acidic sulfates turn the metal oxides from PM2.5
into metal ions which are soluble in the lung lining fluid, producing
oxidative compounds and ultimately perturb the immune system30–32.
It is plausible that sulfate interplays with metals such as nickel and
copper and leads to the observed association between these PM2.5
constituents and non-respiratory infections.

PM2.5 sourced from coal burning, oil combustion, and traffic was
identified in most of the strata and significantly associated with
increased admission rate from total non-respiratory infections and
most subtypes. These results are in accordance with our mixture
analysis, given that sulfates, Nickel and Copper are the main con-
stituents of PM2.5 sourced from coal burning, oil combustion and non-
exhaust traffic. It was estimated thatmore than80%of the PM2.5 in the
US was from fossil fuel combustion including coal, petrol, and diesel
and 0.36 million excess deaths in the country during 2012 were attri-
butable to these sources33. Previous epidemiological studies suggested
that, when compared to natural sources, PM2.5 from fossil fuel com-
bustion has a greater adverse effect on mortality27,28,34. Thurston et al
observed that coal combustion PM2.5 was associated with increased
mortality from ischemicheart disease and that it showed a larger effect
than overall PM2.5 in general28. Moreover, PM2.5 sourced from fossil
fuel burning has also been found to be associated with multiple dis-
eases including pneumonia, psychiatric disorders, and cancer33,35,36.
Road traffic is another major contributor to the PM2.5 and has been
found to be associatedwithmany adverse health outcomes37–39. Traffic
related PM can be categorized as exhaust and non-exhaust sources.
Exhaust particles mainly come from tailpipe emissions while non-
exhaust particles mainly come from the wear of tires and brakes, and
also the abrasion of road surface40. A recent meta-analysis suggested
that air pollution sourced from traffic emissions were associated with
multiple adverse health outcomes including low birthweight, asthma
onset, cardiovascular events, andmortality frommultiple causes41. The
results from our study provide further evidence for the harmful effect
of PM2.5 sourced from fossil fuel and traffic on health, suggesting that
regulations on PM2.5 could potentially focus on these sources.

The observed association between PM2.5 and its constituents and
the outcomes were consistent across different subtypes of non-
respiratory infections. However, the association between PM2.5 and
CNS infection was much weaker when compared to other subtypes.
One plausible explanation would be that the blood-brain barrier pro-
vides unique protection to the CNS and thus may be less affected by
the environmental risk factors such as air pollution42. Related evidence
is still sparse and, therefore, more studies are needed in order to elu-
cidate the observed difference between CNS infections and other
subtypes of non-respiratory infections.

This study has several strengths. First, this is the first study to
comprehensively evaluate the impact of PM2.5 on non-respiratory
infections. Second, using the data of PM2.5 constituents across the
contiguous US, the study was able to identify the constituents and
source-specific PM2.5 which had the strongest associations with dif-
ferent non-respiratory infection outcomes. These results could
potentially help elucidate the potential mechanisms behind the
immunotoxicity of PM2.5 and its constituents. Moreover, the results
frommixture and source specific analysis are informative for targeted
prevention strategies and policy making. Third, this study included
more than 60 million participants, and most of the Medicare fee-for-

Table 2 | Association between PM2.5 and rate of hospital
admissions from non-respiratory disease among Medicare
beneficiaries between 2000 and 2016

Outcome Admission rate ratio (95%CI)

All ZIP code-years ZIP code-years with
PM2.5 ≤9µgm−3

Non-respiratory
infection

1.108 (1.108–1.112) 1.215 (1.206–1.228)

CNS infection 1.007 (0.996–1.022) 0.949 (0.921–0.982)

Intestinal infection 1.068 (1.064–1.072) 1.189 (1.173–1.206)

Urinary tract infection 1.120 (1.116–1.12) 1.236 (1.223–1.245)

Septicemia 1.128 (1.124–1.132) 1.228 (1.215–1.241)

Admission rate ratiowas calculated for each standarddeviation (3.7 μgm−3) increase inPM2.5.All
the associations were adjusted for percentage of beneficiaries who were female, percentage of
beneficiaries who were aged between 65 and 74, percentage of beneficiaries who were aged
between 75 and 84, percentage of beneficiaries who were White, percent of beneficiaries who
were Black, percentage of beneficiaries who were eligible for Medicaid, percentage of popu-
lation living in poverty, percentage of population having education less than high school, per-
cent smokers, median household income, percentage of population who were on public
assistance, average annual percent of Medicare enrollees having at least one ambulatory visit to
a primary care clinician, distance to nearest hospital, population density, summermaximal daily
temperature, winter maximal daily temperature at ZIP code-level and calendar year.

no3

oc

si

ca

k

ec

nh4

pb

br

v

z

fe

cu

ni

so4

0.0 0.1 0.2 0.3

Fig. 3 | Weights of PM2.5 constituents in the mixture index for the association
between the particle mixture and non-respiratory infections. The dash line
indicated the suggested threshold for the most influential constituents. Source
data are provided as a Source Data file.
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service beneficiaries between 2000 and 2016 in the analysis, which is a
representative sample of the older adults across the US, therefore, the
results are likely to be generalizable to older population. The large
sample size also provided enough power for us to evaluate the asso-
ciation between the exposures and multiple subtypes of non-
respiratory infections.

The study also has limitations. First, the exposure data in this
study are at ZIP code level instead of individual level. The participants’
individual exposure level within a same ZIP code could vary due to
different factors. The exposure data were aggregated from grid cell
level to ZIP code level. Therefore, the measurement error of the
exposure could be affected by the size of ZIP code area and popula-
tion, which is potentially non-differential. However, the within ZIP
code coefficients of variation of the exposure data are small for the
major PM2.5 components, suggesting that the potential measurement
error arising from the aggregation was small. Moreover, previous
studies suggested that ZIP code level air pollution is a valid proxy for
individual level exposure and could avoid some of the impact of per-
sonal level confounding43. Second, the ZIP code level total PM2.5 and
PM2.5 constituents in this study are not weighted by population.
However, population-weighted exposure estimates could potentially
lead to largermeasurement error and further bias the result estimates.
Third, the outcomes of this studywere hospital admissions, whichonly
captures the cases that were hospitalized or the most severe non-
respiratory infection cases. It is unclear whether these results also
apply to themilder cases. Further study which captures the outpatient
cases are needed in thefield. Fourth, this studywas limited toMedicare
beneficiaries who were 65 or older. Considering that older adults are
more vulnerable to the adverse effect of air pollution, the results from
this studymight not be generalized to younger population. Moreover,
since themetal components had substantial weights in contributing to
the weighted quantile sum, but very small mass concentrations, the
effect size estimate per weighted decile of the mixture cannot be
directly compared to the effects per unit mass of PM2.5. However,
these small mass components also contributed importantly to the
source apportionment study, which may partially explain the larger
effect size for sources, while this may also reflect the unimportance of
other components of PM2.5 that were not included in our component
mixture. Lastly, we are only able to obtain limited data on individual
level confounders in this study. To reduce residual confounding,
confounders such as smoking and SES were controlled at the
contextual level.

In conclusion, higher ZIP code level PM2.5 exposure was asso-
ciated with increased rate of hospital admissions from non-respiratory
infections and the association remained robust even in areas with
lower PM2.5, continuing below PM2.5 concentrations of 9μgm−3.

Sulfates, Nickel, and Copper play the most important role in the effect
of the PM2.5 mixture on non-respiratory infections. PM2.5 sourced
from fuel oil combustion, coal burning and traffic had larger effects on
admission from non-respiratory infections when compared to PM2.5
from other sources. PM2.5 effects on non-respiratory infections has
been understudied and this study provides evidence that this pathway
could be an important additional impact from PM2.5 and should be
considered in evaluating the adequacy of current PM2.5 standards.

Methods
Study population
We included all beneficiaries who enrolled in Medicare fee for service
and were aged 65 and older between 2000 and 2016. Medicare is a
national health insuranceprogram in theU.S. which provides coverage
mainly for those who are 65 years of age or older44. Beneficiaries
entered the open cohort on January 1st 2000 or the first January 1st
after their enrollment, which ever came later, and were followed until
thedate of death, orDecember 31st, 2016,whichever cameearlier. This
study is approved by the IRB of theHarvard T.H. Chan School of Public
Health. Informed consent was waived because this study conducted
secondary analysis of deidentified data.

Outcome
The outcomes of this study were hospital admissions from non-
respiratory infections, and its subtypes including central nervous sys-
tem (CNS) infections, intestinal infections, urinary tract infections and
septicemia. Data on hospital admissions including ICD (International
Classification of Diseases) Diagnosis codes at discharge and date of
admissions among Medicare beneficiaries between 2000-2016 were
extracted from the Medicare Provider Analysis and Review (MEDPAR)
data file. Hospital admission data could include multiple diagnosis
codes for eachadmission record. In this study,wedefined theoutcome
as having a principal discharge diagnosis code of non-respiratory
infections.

For hospital admission records with ICD-9 diagnosis codes, we
applied the categorizing scheme from the Clinical Classification Soft-
ware for ICD-9-CM (CCS) to categorize over 14,000 ICD-9 diagnosis
codes into 280 clinically meaningful and mutually exclusive diagnosis
groups45. For hospital admission records with ICD-10 diagnosis code,
we applied the categorizing scheme from the Clinical Classification
Software Refined for ICD-10-CM (CCSR) to categorize over 70,000
ICD-10 diagnosis codes into 530 clinically meaningful diagnosis
groups46. Based on CCS and CCSR, ICD diagnosis from hospital
admission records were categorized into total non-respiratory infec-
tions, CNS infections, intestinal infections, urinary tract infections and
septicemia.

Table 3 | Association between source-specific PM2.5 and rate of hospital admissions from non-respiratory infections among
Medicare beneficiaries between 2000 and 2016

Admission Rate Ratio

Non-respiratory infection CNS infection Intestinal infection Urinary tract infection Septicemia

Oil combustion 1.145 (1.076–1.218) 1.004 (0.988–1.02) 1.171 (1.085–1.264) 1.148 (1.051–1.255) 1.135 (1.074–1.199)

Soil, dirt 1.089 (1.003–1.184) 1.112 (1.065–1.162) 1.105 (0.962–1.27) 1.153 (0.99–1.343) 1.032 (0.99–1.075)

Coal burning 1.182 (1.072–1.302) 1.007 (0.988–1.026) 1.161 (1.013–1.332) 1.226 (1.076–1.397) 1.154 (1.068–1.248)

Traffic 1.206 (1.056–1.379) 1.056 (1.011–1.103) 1.239 (1.038–1.479) 1.278 (1.042–1.567) 1.187 (1.067–1.321)

Biomass 1.089 (0.996–1.192) 1.059 (1.012–1.109) 1.091 (0.966–1.234) 1.088 (0.942–1.256) 1.135 (1.075–1.199)

Regionally transported
nitrate

1.078 (1.006–1.155) 0.987 (0.943–1.034) 0.992 (0.981–1.003) 1.051 (1.017–1.085) 1.112 (1–1.236)

Admission rate ratiowas calculated for each standard deviation increase in source-specific PM2.5. All the associationswere adjusted for percentage of beneficiarieswhowere female, percentageof
beneficiaries who were aged above between 65 and 74, percentage of beneficiaries who were aged between 75 and 84, percentage of beneficiaries who wereWhite, percent of beneficiaries who
were Black, percentage of beneficiaries whowere eligible for Medicaid, percentage of population living in poverty, percentage of population had education less than high school, percent smoker,
median household income, percentage of population who were on public assistance, average annual percent of Medicare enrollees having at least one ambulatory visit to a primary care clinician,
distance to nearest hospital, population density, summer maximal daily temperature, winter maximal daily temperature at ZIP code-level and calendar year.
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For admission records with ICD-9 diagnosis codes, non-
respiratory infection was defined as diagnosis code being within one
of group 2–9, 76–78, 90, 135, 159, 197, 201 and 248ofCCS scheme;CNS
infection was defined as diagnosis code being within one of group
76–78; intestinal infection was defined as diagnosis code being within
group 135; urinary tract infection was defined as diagnosis code being
within group 159; septicemia was defined as diagnosis code being
within group 2.

For CCSR scheme, each ICD-10 diagnosis code could exist inmore
than one diagnosis group. Therefore, for admission records with ICD-
10 diagnosis codes, non-respiratory infection was defined as being in
group INF002-004, INF006-011, MUS001-002, MUS027, NVS001-
NVS003, GEN001, SKN001 and DIG001 but not in group RSP002-006.
CNS infection was defined as diagnosis code being within either one of
group NVS001-003; intestinal infection was defined as diagnosis code
being ingroupDIG001; urinary tract infectionwas defined asdiagnosis
code being in group GEN001; septicemia was defined as diagnosis
group being in group INF002.

The number of hospital admissions from non-respiratory infec-
tions and its subtypes were calculated for each year within each
ZIP code.

Environmental exposure data
Levels of ambient PM2.5 and its constituents across the contiguous
US between 2000 and 2016 were estimated from validated ensemble
machine learning models developed by our grouped previously.
Details of the exposure modeling are described elsewhere47–49. Daily
PM2.5 at a 1 km*1 km grid cell level was estimated by combining
predictions from random forest, gradient boosting, and neural net-
work models in a geographically weighted regression ensemble.
Predictors of the model for PM2.5 included aerosol optical depth,
meteorology data, chemical transport model simulations and land-
use data47. The cross-validated (CV) R2 of the annual PM2.5 prediction
model was 0.89.

Annual mean levels of 15 PM2.5 constituents [elemental carbon
(EC), ammonium (NH4+), nitrate (NO3

-), organic carbon (OC), and
sulfate (SO4

2-), bromine (Br), calcium (Ca), copper (Cu), iron (Fe),
potassium (K), nickel (Ni), lead (Pb), silicon (Si), vanadium (V), and zinc
(Zn)]were estimated at a 50m*50mgrid cell level in urbanareas and at
a 1 km*1 km level in rural areas. The estimates incorporated predictions
frommultiple machine-learning models including random forest (RF),
stochastic gradient boosting (GBM), extremegradient boosting (XGB),
cubist, and K-nearest neighbors (KNN)models. These were ensembled
using a support vector machine (SVM). Like the prediction models for
PM2.5, models for PM2.5 constituents included a large number of
predictors which included satellite observations, meteorology data
and novel land use covariates48,49. The CV R2 ranged from 0.80 to 0.96
across different constituents. The constituents predicted comprise
most, but not all of the total mass of PM2.5.

Grid cell level PM2.5 and constituent concentrations were then
aggregated to the ZIP code level based on previously described
methods50. The coefficient of variation for each of the exposurewithin
ZIP codes are provided in supplementary table 1.

Covariates
We obtained demographic information (age, sex, race), ZIP code of
residence and Medicaid eligibility of the Medicare beneficiaries from
the Medicare denominator file. Sex information in Medicare data was
obtained frommultiple sources including self-reported at enrollment,
claims data or Electronic Health Records. Information on beneficiaries’
ZIP code, age, andMedicareeligibilitywere updated annually. ZIP code
level socioeconomic status (SES) data including percentage of His-
panics, percentage of population that had less than high school edu-
cation,medianhousehold income, percentage of populationwhowere
on public assistance and percentage of population living in poverty

were directly obtained from American Community Survey 5-year
estimates between 2011 and 201651 or linearly interpolated from the
2000 and 2010 US Decennial Census52. Data on the percentage of
smokers within a ZIP code was obtained from Behavioral Risk Factor
Surveillance System. Annual percent of Medicare enrollees having at
least one ambulatory visit to a primary care clinician and distance to
nearest hospital at ZIP code level were obtained or calculated from
data from the Dartmouth Atlas of Healthcare website53. ZIP code-level
maximal daily temperature in the summer and maximal daily tem-
perature in the winter was calculated from the Gridded Surface
Meteorological (gridMET)Dataset54. To account for potential temporal
trends, we also included indicatory variables of calendar year as
covariates.

Statistical analysis
Individual level data of Medicare beneficiaries were first aggregated to
counts of events by ZIP code and year and merged with the ZIP code-
level covariates. Within each ZIP code-year stratum, we calculated the
total counts of non-respiratory infections as well as its subtypes, total
number of Medicare beneficiaries, percent of female beneficiaries,
percent of Black beneficiaries, and percent of beneficiaries who were
also eligible for Medicaid. In our analysis, we only included ZIP codes
which had more than 100 beneficiaries.

Associations between PM2.5 and the admission rates of our five
outcomes, namely total non-respiratory infections, central nervous
system (CNS) infections, intestinal infections, urinary tract infections,
and septicemia were investigated using multivariable quasi-Poisson
regression models below.

log admissioncountijk
� �

=β0 +β1PM2:5 +β0Z + logðbenef iciarycountijÞ+ εijk

Where i indicates the ith ZIP code, j indicates the jth year, k indicates
the kth outcome (total non-respiratory infection and its subtypes), Z
indicates thematrix of covariatesmentioned above. Admission counts
indicates the number of hospital admissions for the corresponding
outcome while beneficiary count indicates the number of Medicare
beneficiaries aged 65 or older who were alive on January 1st of the
corresponding year within the ZIP code. Quasi-Poisson regression was
used because the outcome of the study was counts data and the
variance of the outcome was larger than the mean of the outcome.

The US Environmental Protection Agency is considering lowering
the standard of annual PM2.5 to 9–10 µgm−3. To evaluate the effect of
PM2.5 at levels below the proposed standards, we conducted the same
analysis restricted to ZIP code-years where PM2.5 ≤ 9 µgm−3.

Given that PM2.5 is a mixture of multiple constituents, within
which correlations exist, we used weighted quantile sum regression to
investigate the mixture effects of the different constituents. Weighted
quantile sum regression is amodeling techniquewhich can identify the
association between mixtures and the outcome of interest while
reducing the impact of high collinearity. A detailed description of the
weighted quantile sum method is provided in the supplementary
information. Briefly, weighted quantile sum regression estimates the
relative contribution of each constituent and generates a mixture
index as a linear combinationof different constituents. It assumes each
quantile increase in the mixture index is linearly and unidirectionally
associated with the outcome55. Using weighted quantile sum regres-
sion with a quasi-Poisson link, we estimated the association between
eachonedecile increase in the PM2.5mixture and ourfive outcomes of
interest while estimating the relative contribution from each of the
components within the PM2.5 mixture. The weighted quantile sum
regression was run with 100 bootstrap samples and all the weights
were constrained to be positive.

To identify source specific effects of PM2.5, we used non-negative
matrix factorization (NMF) to conduct source apportionment on our
ZIP code-level PM2.5 constituent data. Similar to principal component
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analysis, NMF is amethod for dimensionality reduction which explains
the observed multidimensional data using limited number of bases56.
However, NMF constrains the matrix components and the mixture
coefficients to non-negative values, which is more appropriate for
mass concentrations57. The regulations for the sources of air pollution
varied differently over time, and hence the proportion of each com-
ponent’s contribution to each source was likely to also vary over time.
Therefore, we conducted source apportionment separately by time
periods. To ensure enough sample size for NMF,we separatedour data
by three time periods (2000–2005, 2006–2010 and 2011–2016). The
contribution of different sources of PM2.5 also vary across regions.
Therefore, within each timeperiod, we summarized the ZIP codemean
concentration for each constituent. Using Ward’s hierarchical clus-
tering, the contiguous US was categorized into three clusters with
similar patterns of PM2.5 constituents for each of the time periods.
Within each of the nine stratum (3 clusters * 3 time periods), NMF was
conducted to identify 4–5 independent factors which accounted for
most of variance of the PM2.5 constituent data and the source factors
levels for each observation35. Based on the factor loadings of the
constituents and our prior knowledge on the trace elements of PM2.5,
we identified the source for each factor58 (details are provided in the
supplementary information). The units of source factor levels were
first converted to µgm−3 and rescaled by the standarddeviationof each
source factor (see supplementary methods). Within each stratum,
associations between source specific factors and non-respiratory
infection outcomes were estimated using quasi-Poisson regression
models, and all the source factors were mutually adjusted. The total
effect for each sourcewasestimatedby combining the stratumspecific
effects using randomeffectmeta-analysis (flowchart is shown inFig. 4).
Details of the random effect meta-analysis are provided in the sup-
plementary information.

All the analyses were adjusted for the confounders listed in the
covariate section. To account for the autocorrelationswithinZIP codes
across years, we incorporated robust standard error in all of the effect
estimates. Statistical analyses were conducted using R 4.1.359. The
analytic code for this project is available in Supplementary Code
published alongside with this manuscript.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data of the Medicare beneficiaries are available under restricted
access due to the requirements from the Center for Medicare and
Medicaid Services (CMS). Researchers can submit their data request
to CMS and the request will be forwarded to the CMS dissemination
contractor for processing. Processing of the data takes approxi-
mately 2–4 weeks (depending on the number and years of files being
requested). However, the data use agreement prevents us from
sharing that data and so are not publicly available. According to the
DUA, our group could only access the data on the level 3 cluster of
Harvard University with controlled access and cannot download the
data. The air pollution data used in this study are publicly available
on the SEDAC website: https://sedac.ciesin.columbia.edu/data/set/
aqdh-pm2-5-component-ec-nh4-no3-oc-so4-50m-1km-contiguous-
us-2000-2019 and https://sedac.ciesin.columbia.edu/data/set/aqdh-
pm2-5-component-trace-elements-50m-1km-contiguous-us-2000-
2019 and https://sedac.ciesin.columbia.edu/data/set/aqdh-pm2-5-o3-
no2-concentrations-zipcode-contiguous-us-2000-2016. The data
from American Community Survey and US census are available at
https://data.census.gov/. Data from BFRSS are available at https://
www.cdc.gov/brfss/annual_data/annual_data.htm. Data from Dart-
mouth Healthcare Atlas are available at https://data.dartmouthatlas.
org/. Source data of the figures are provided with this paper. Source
data are provided with this paper.

Code availability
The analytic codes of this study are publicly available from https://
github.com/yatkan/PM2.5_nonrespiratoryInfection_NC/tree/main.
Code is also available in Supplementary Code published alongside this
manuscript.
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