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Epiallelic variation of non-coding RNA genes
and their phenotypic consequences

Jie Liu 1 & Xuehua Zhong 1

Epigenetic variations contribute greatly to the phenotypic plasticity and
diversity. Current functional studies on epialleles have predominantly focused
on protein-coding genes, leaving the epialleles of non-coding RNA (ncRNA)
genes largely understudied. Here, we uncover abundant DNA methylation
variations of ncRNA genes and their significant correlations with plant adap-
tation among 1001 natural Arabidopsis accessions. Through genome-wide
association study (GWAS), we identify large numbers of methylation QTL
(methylQTL) that are independent of known DNA methyltransferases and
enriched in specific chromatin states. Proximal methylQTL closely located to
ncRNA genes have a larger effect on DNA methylation than distal methylQTL.
We ectopically tether a DNA methyltransferase MQ1v to miR157a by CRISPR-
dCas9 and showdenovoestablishment ofDNAmethylation accompaniedwith
decreased miR157a abundance and early flowering. These findings provide
important insights into the genetic basis of epigenetic variations and highlight
the contribution of epigenetic variations of ncRNA genes to plant phenotypes
and diversity.

Epigenetic variants, referred to as epialleles with different degree of
DNA methylation, are associated with a wide range of complex bio-
logical traits in plants and animals1–3. The classical mice epiallele,
agouti viable yellow (Avy), controls the variations of coat color with
the fully methylated/silent allele showing brown coat, the unmethy-
lated/active allele showing yellow coat, and partial methylated allele
giving rise to mottling4. The first natural plant epiallele with clear
molecular basis is the naturally occurred heritable methylation of
Lcyc gene, which leads to the silence of Lcyc and change in the flower
morphology of Linaria vulgaris5. Additionally, several other natural
epialleles with functional importance have also been reported, such
as Colorless nonripening (Cnr) locus for tomato ripening6 and Karma
for mantled fruit of oil palm7. Along with these well-characterized
epialleles, a large number of epigenetic variations have been identi-
fied in natural and epigenetic recombinant inbred lines showing
strong correlation with gene expression changes and phenotypic
variations in Arabidopsis1,2,8–13.

Current epiallele studies have mostly focused on the protein-
coding genes, transposable elements (TEs), and differentially methy-
lated regions on the genome8,13–15. Little is knownabout the epialleles of

ncRNA genes. The ncRNA genes have been viewed as “junk” for a long
time but found to participate in many biological processes during
recent decades16,17. Dysregulation of ncRNAs has been attributed to the
cause of cancer and other human diseases. These disease-related
ncRNAs has thus become drug targets18–20. Plant ncRNAs play impor-
tant roles in many processes through the fine-tuning of gene expres-
sion at transcriptional and/or post-transcriptional level17,21,22. Studies
have also revealed critical roles of ncRNAs in establishing and main-
taining epigenetic states. For example, small interfering RNA (siRNA) is
required in the RNA-directedDNAmethylation pathway to establish de
novo methylation and maintain asymmetric CHH (H is A, C, or T)
methylation to ensure genome fidelity and stability23,24. Three long
noncoding RNAs (lncRNAs), COOLAIR, COLDAIR, and COLDWRAP, are
antisense/sense transcripts derived from FLOWERING LOCUS C (FLC)
and are essential for vernalization through recruiting Polycomb
repressive complex 2 (PRC2) to deposit H3K27me3 and epigenetically
silence FLC25–28. Emerging evidence has shown that lncRNAs can phy-
sically interact with DNA methyltransferases in mammals and
methylcytosine-binding protein VIM1 in plants to regulate DNA
methylation29,30. In contrast to the well-studied role of ncRNAs in DNA
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methylation, the effect of DNA methylation on ncRNA function and
regulation is largely unknown.

Compared to other types of ncRNAs, miRNAs have been well
studied with important functions in gene expression and some
developmental phenotypes21. Precise regulation of flowering time
controlledbyhundreds of genes is critical for plants to adapt tonatural
environments. Among these flowering genes, the miR156/157 family,
which encodes microRNAs and represses SQUAMOSA PROMOTER
BINDING PROTEIN-LIKE (SPL) genes, is a master regulator of vegetative
phase change and confers age-related floral induction through
the miR156/157-SPL module31–34.

In natural populations, both genetic and epigenetic changes may
contribute to the variation of complex diseases and phenotypes. Thus,
it is challenging to dissect the epigenetic function from genetic con-
tribution. While global epigenome perturbation by genetic mutational
studies has revealed significant association of epigenetic marks with
their inferred functions, understanding how epigenetic features at
specific loci contribute to a given biological function remains largely
unknown. Recently, CRISPR-based systems have been reported to
manipulate the locus-specificmethylation status of target genes35–37 by
either fusion of an inactive Cas9 (dCas9) with a prokaryotic DNA
methyltransferase MQ135 or recruitment of NtDRMcd36/MQ1v37 to tar-
get sites by a SunTag system. These epigenome-editing strategies can
decouple the DNA methylation of a specific target locus from genetic
mutations and/or methylation of other regions to directly investigate
the importance of epigenetic variations.

Distinct from most studies on ncRNA regulation of chromatin
functions, this study focuses on epigenetic regulation of ncRNA genes
and the importance of epigenetic variations of ncRNA genes to plant
phenotypes. We profile the methylation level of 5,099 ncRNA genes in
Arabidopsis 1001 Epigenomes and find that 74% of them show large
variations with coefficient of variations (CV) > 100%. We map large
numbers of methylQTL through GWAS and find that local genetic
variants aremuchmore determinative thandistal genetic variants, and
that methyQTL are enriched in H3K9me2 regions. Furthermore,
methylation level of ~1400 ncRNA genes are significantly correlated
with plant adaptation-related traits. To directly test the methylation
contribution to a given trait, we performepigenetic editing ofmiR157a
gene to demonstrate that DNA methylation change of a single ncRNA
gene can make a dramatic alteration to plant adaptation phenotype,
i.e., flowering time. This study highlights the widely existed epigenetic
variations of ncRNA genes, their genetic basis, and their important
contribution to plant phenotypes.

Results
Natural variations in DNA methylation of ncRNA genes
We selected 811 natural accessions (Supplementary Data 1) from both
1001 Arabidopsis Genomes38 and Epigenomes8 with the same growth
conditions and profiled the methylation levels of ncRNA genes and
protein-coding genes. We found that the methylation levels of ncRNA
genes were lower in CG context and higher in non-CG (CHG and CHH)
context compared to the protein-coding genes (Fig. 1a). This finding
prompted us to focus on the diversity and importance of methylation
of ncRNA genes.

According to the Arabidopsis Araport11 genome annotation, there
are 5,099 ncRNA genes located on 5 chromosomes and divided into 8
groups. The number of ncRNA genes from each group varies from 78
(antisense RNA genes) to 2,444 (lncRNA genes), with lncRNA and
antisense lncRNA genes making up the majority (68%, Fig. 1b).
Methylation traits were determined by calculating the average
methylation levels of each ncRNA gene in CG, CHG, and CHH context
in 811 accessions. A total of 12,115 methylation traits remained after
filtering with amissing rate of ≤10% (<81 accessions withmissed value)
and used for subsequent analysis. The CV of these 12,115 traits ranged
from 3% to 876%, with an average of 188%, and 74% (8963) of them

were greater than 100% (Fig. 1c, Supplementary Data 2). For example,
86% (1700 of 1977) and 74% (136 of 183) of CG methylation traits of
lncRNA and miRNA genes had CV greater than 100%, respectively
(Fig. 1c, d). We also surveyed the average DNA methylation levels of
each group in each accession and found that ncRNA genes had varied
DNA methylation levels among different groups. Compared to TEs,
ncRNA genes had much lower DNA methylation in all cytosine con-
texts. In non-CG context, most groups had higher methylation level
than protein-coding genes. While in CG context, both sense lncRNA
and antisense lncRNA genes had slightly lower DNA methylation
comparing with protein-coding genes (protein-coding genes:
16.57 ± 0.02, lncRNA genes: 16.05 ± 0.03, antisense lncRNA genes:
12.28 ± 0.02, Mann-Whitney test P < 2.00 × 10−15, Fig. 1e). This obser-
vation explained the global higher CG methylation of protein-coding
genes than that of ncRNA genes (Fig. 1a). Notably, miRNA genes
showed much higher methylation levels in both CG and non-CG con-
text (Fig. 1e).

To investigate the biological significance of DNA methylation of
ncRNA genes, we first calculated the correlation coefficient between
DNA methylation and latitude and longitude data of the natural
accessions. We found that DNA methylation of 196 and 162 ncRNA
genes was significantly correlated with latitude and longitude,
respectively (P < 6.08 × 10−5, N > 720, Supplementary Data 3). Among
these genes, 28 were significantly correlated with both latitude and
longitude. To determine whether methylation of ncRNA genes was
correlated with plant phenotypes, we gathered phenotype datasets
(303 quantitative phenotypes) of natural Arabidopsis accessions from
12 studies39 (Supplementary Data 4) and calculated the correlation
between these phenotypes and DNA methylation of ncRNA genes. In
total, 84% (254 of 303) of these phenotypes were significantly corre-
lated with DNA methylation of 1468 ncRNA genes (P < 6.08 × 10−5,
N > 100, Supplementary Data 4). After cataloging these phenotypes
into 8 groups and constructing a network based on significant corre-
lations with Cytoscape40, we found that most (87%, 1801 of 2072) sig-
nificant correlations fell into groups of fitness, flowering, plant
structure, development, and root morphology (Fig. 1f). While for ion-,
yield-, and metabolite-related phenotypes, far fewer correlations (13%,
271 of 2072) were detected (Fig. 1f). Together, these analyses revealed
abundant variations of DNAmethylationwithin ncRNA genes and high
correlation of these variations with plant phenotypes.

GWAS of DNA methylation of ncRNA genes
To determine the genetic basis of DNA methylation variations of
ncRNA genes, we performed GWAS to map the methylQTL for CG,
CHG, and CHHmethylation of each ncRNA gene. The genotype data of
811 accessions extracted from 1001 Arabidopsis Genomes38 contained
1,110,440 biallelic single nucleotide polymorphism (SNP) with minor
allele frequency ≥5% and missing rate ≤25%. The association tests
between SNPs and methylation traits were performed with EMMAX41

using a mixed linear model with consideration of relatedness between
accessions. To test this GWAS method, we ran GWAS on CHH methy-
lation of CMT2 targeted TEs and detected signals around CMT2 (Sup-
plementary Fig. 1) consistent with published studies8,15. We then ran
GWAS on 12,115 traits and detected 564,346 significant associations
between 188,347 SNPs and methylation levels of 3,825 ncRNA genes
after Bonferroni correction (P ≤ 9.01 × 10−9, Fig. 2a). Surprisingly, very
few significant SNPs (218 of 188,347) in genes (including 2 kb upstream
and 2 kb downstream region) were reported to regulate DNA methy-
lation (Fig. 2a). In Arabidopsis Col-0 accession, DNA methylation is
maintained by DNA methyltransferases MET1 for CG, CMT3 for CHG,
CMT2 and DRM2 for CHH context24,42,43. In our GWAS results, only
73 significant SNPs were in genes encoding these methyltransferases.
When comparing methylation levels of 811 accessions withmet1, cmt3,
cmt2, and drm2 mutants, we found that 100%, 99%, 25%, and 13% of
these 811 accessions had higher methylation levels than the
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Fig. 1 | Natural variation of DNA methylation of ncRNA genes. a DNA methyla-
tion of ncRNA genes and protein-coding genes in CG, CHG, and CHH context
among 811 Arabidopsis accessions. The P-value was calculated by Mann–Whitney
test. b The classification and number of ncRNA genes according to Araport11
genome annotation of Arabidopsis. c The variation of DNA methylation measured
with coefficient of variation (CV). The colors indicate the degree of variation with
three layers corresponding to CG, CHG, CHH methylation, respectively. d The
heatmap of CGmethylation of miRNA genes. Right panel is the zoom-in view of the
gray-boxed region in the left panel. e The distribution of average CG, CHG, CHH

methylation of each group in 811 accessions. The horizontal lines within the boxes
represent the median; the dots represent outliers (more than 1.5 × IQR from the
hinge, where IQR is distance between the first and third quartiles); and the lower
and upper hinges of the box represent the 25th and 75th percentiles, respectively.
N = 811 for each boxplot. f The network of significant correlations between
methylation of ncRNA genes and plant phenotypes. Each dot indicates one ncRNA
gene and each line indicates significant correlation between the DNA methylation
of this gene and the plant phenotype. Source data are provided as a Source
Data file.
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corresponding mutants (Fig. 2b). This indicates that these natural
accessions weremuchmore tolerant with CMT2/DRM2-mediated CHH
methylation loss than MET1- and CMT3-mediated CG and CHG
methylation loss, respectively. We did not observe any significant
correlations between expression of these methyltransferases with
corresponding CG/non-CG methylations (Fig. 2b). Taken together,
these results suggest that the genetic basis of methylation of ncRNA

genes were complex and that known methyltransferases were not
responsible for the observed DNA methylation variations of ncRNA
genes in the natural population.

To explore the common features of methylQTL and exclude
associations caused by linkage disequilibrium, we applied multiple
stringent filtration steps (Methods) and kept 496 high-confidence
methylQTL for subsequent analysis (Fig. 2c and Supplementary
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Data 5). Using the distances between representative SNPs of each
methylQTL and the corresponding ncRNA genes, we classified them as
proximal (<100Kb) or distal (>100Kb)methylQTL and found thatmost
methylQTL (74%, 368 of 496) were proximal methylQTL (Fig. 2c, d).
Using AT4G05535 that encodes a long noncoding RNA as an example,
GWAS of its CG methylation identified a single significant signal with
representative SNP located in its intron region (P = 1.71 × 10−107, Sup-
plementary Fig. 2) and the phenotypic variation explained (PVE) by this
methylQTL was 57%. Most of the distal methylQTL (70%, 89 of 128)
were located on different chromosomes of the corresponding ncRNA
genes (Fig. 2c, d). When comparing the PVE of proximal and distal
methylQTL, we found that proximalmethylQTL has greater effect than
the distal methylQTL (26% vs. 17% on average, P = 6.73 × 10−8, Fig. 2e).
DNAmethylation of 4 ncRNA genes were simultaneously controlled by
proximal and distal methylQTL (Supplementary Data 5). The CHG
methylation of AT2G06395, which is located on chromosome 2 and
encodes a long noncoding RNA, was regulated by one proximal
methylQTL (representative SNP located in 398 bp downstream,
P = 2.23 × 10−26, Supplementary Fig. 3, bottompanel) and another distal
methylQTL (on chromosome 1, P = 4.86 × 10−13, Supplementary Fig. 3,
top panel). The PVE of the proximal methylQTL was much higher than
that of the distal methylQTL (18% vs. 7%) for the CHG methylation of
AT2G06395. These results demonstrated the enrichment and the
higher PVE of proximal genetic variants in regulating DNAmethylation
variations of ncRNA genes.

Further analysis of representative SNPs against chromatin
states defined by two independent studies44,45 revealed significant
enrichments of these SNPs in repressive chromatin states CS8,
CS9, CS32 marked with H3K9me2, and depletions in chromatin
state CS29 colocalized with the promoter region (Fig. 2f, g). We
carried out enrichment analysis against different genomic fea-
tures and found that these representative SNPs were significantly
enriched in the ncRNA gene regions and depleted in promoter
and intron regions (Fig. 2h). This is consistent with the idea that
proximal genetic variants play important roles in regulating DNA
methylation of ncRNA genes.

Given the strong correlations of ncRNA gene methylation and
phenotypes, we determined whether significant SNPs for ncRNA
methylation were also presented in GWAS of the corresponding cor-
related phenotypes by obtaining significant SNPs from publicly avail-
able studies46 and searching for the overlaps. 682 SNPs were
simultaneously detected in GWAS results of correlated pairs of 30
phenotypes and methylation of 53 ncRNA genes (Fig. 2i). The CG
methylation of AT2G32315 was significantly correlated with flowering
time at 16 °C with higher methylation accessions (>20% of CG methy-
lation) showing late flowering (Fig. 2j). Similarly, SNPChr1_3195160was
significantly associated with both CG methylation of AT2G32315 and
flowering time (Fig. 2k). AT2G32315 encodes an antisense long non-
coding RNA that overlaps with AT2G32310 encoding a CCT domain
protein. CCT genes are conserved classical flowering genes among

many plant species, such as CO in Arabidopsis47, ZmCCT in maize48,49,
and Ghd7 in rice50. Together, these results showed that methylation
variations of ncRNA genes were highly correlated with the flowering
and adaptation-related phenotypes.

miR157a abundance is negatively correlated with flowering time
To directly test the impact of DNAmethylation on ncRNA function, we
focused on miR157a as a case study because there was a significant
methylQTL locating ~800 bp downstream (P = 1.15 × 10−30 for CHG,
Fig. 3a; P = 3.13 × 10−25 and 1.43 × 10−23 for CG and CHH, Supplementary
Fig. 4). The correlation analysis showed that DNA methylation of
miR157a had positive correlation with longitude (Pearson’s r = 0.15,
N = 768, P = 3.51 × 10−5, Supplementary Data 3). The miR156/miR157
family redundantly regulated flowering time and knockout of miR157a
in miR156 mutant had much earlier flowering than the single
mutant31–34. Knockout of miR157a alone had no obvious change due to
the redundancy of miR156/miR157 family32. However, it is unclear
whether knock-down or altered abundance of miR157a has any impact
on flowering. Since DNA methylation regulates gene expression, we
first investigated the relationship between the abundance of miR157a
and flowering time. To avoid the potential redundancy issue, we gen-
erated knockdown and overexpression transgenic lines through con-
stitutively expressing a miR157a-specific short tandem target mimic
(STTM51) and miR157a coding sequence driving by the CaMV35S pro-
moter, respectively. We measured the abundance of mature miR157a
with stem-loop primers52 and found that mature miR157a abundance
was significantly reduced in the two independent knockdown lines and
increased in overexpression lines (Fig. 3b). We found that the knock-
down and overexpression plants demonstrated early and late flower-
ing phenotype, respectively (Fig. 3c–e). Previous studies showed that
miR156/miR157-SPL module, in which miR156/miR157 repressed the
expression/translation of SPL genes, was a key flowering pathway33,34,53.
Consistently, we noted that nine SPL genes were significantly upre-
gulated inmiR157a knockdown lines (Fig. 3f) and downregulated in the
overexpression lines (Fig. 3g).

To further explore the relationship between abundance of
miR157a and flowering time, we obtained six independent transgenic
lines with enhancedmiR157a expression driven by its native promoter.
Compared with WT, all six transgenic lines showed increased abun-
dance of miR157a (Fig. 3h) and late flowering phenotype (Fig. 3i, j and
Supplementary Fig. 5). Furthermore, there was a strong positive cor-
relation between miR157a level and flowering time among these 6
transgenic lines (Pearson’s r =0.82, P <0.05, Supplementary Fig. 6),
suggesting that miR157a negatively regulates flowering time likely
through repressing SPL expression.

Tethering MQ1v to miR157a gene induces DNAmethylation and
early flowering
To directly test the role of DNA methylation in regulating miR157a
expression, we utilized a SunTag-MQ1v system with an enhanced

Fig. 2 | GWAS of DNA methylation of ncRNA genes. a The distribution of iden-
tified significant SNPs and some known methylation related genes on Arabidopsis
genome. The numbers of significant SNPs are calculated in each 100Kb window.
b The histogram of CG, CHG. CHH methylation levels among 811 accessions and
met1, cmt3, cmt2, drm2 mutant (top) and correlation plots of expression
(log2(TPM+ 1)) and methylation (bottom). c The distribution of 496 high con-
fidencemethylQTL. The y-axis of each dot indicates the physical position of ncRNA
gene, and the x-axis is the position of corresponding methylQTL. d The number of
methylQTL divided by the distance of associated SNP to the corresponding ncRNA
gene. The pie chart shows the proportion of proximal ( <100Kb) and distal
( >100Kb) methylQTL. e Boxplot of phenotypic variation explained (PVE) by
methylQTL. The horizontal lines within the boxes represent the median; the dots
represent outliers (more than 1.5 * IQR from the hinge, where IQR is distance
between the first and third quartiles); and the lower and upper hinges of the box

represent the 25th and 75th percentiles, respectively. The P-value is calculated by
one-way ANOVA analysis. f–h Enrichement analysis of methylQTL. The odds ratio
and significance are calculated with Fisher’s exact test. ***P <0.001; **P <0.01;
*P <0.05. i The SNPs simultaneously identified by GWAS of correlated phenotype
andmethylation of ncRNAgene. j The CGmethylation of AT2G32315 is significantly
correlated with flowering time. The horizontal lines within the boxes represent the
median; the dots represent outliers (more than 1.5 × IQR from the hinge, where IQR
is distance between the first and third quartiles); and the lower and upper hinges of
the box represent the 25th and 75th percentiles, respectively. The P-value is cal-
culated by one-way ANOVA analysis. k SNP Chr1_3195160 is significant in GWAS of
CGmethylation of AT2G32315 (top) and flowering time (bottom). The color of each
dot indicates linkage disequilibrium level between Chr1_3195160 and the SNP.
Source data are provided as a Source Data file.
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prokaryotic CGDNAmethyltransferaseMQ1v35,37 to de novomethylate
and generate an epiallele of miR157a in Col-0 background. In this
system, miR157a specific sgRNA guided dCas9 to its target, which then
recruited MQ1v to methylate nearby CG dinucleotides (Fig. 4a). We
found an approximately 50% increase in CG DNA methylation at
miR157a gene in SunTag-MQ1v line compared to WT (Fig. 4b). As
expected, CHG and CHH methylation had no significant changes

(Supplementary Fig. 7), suggesting that MQ1v can specifically methy-
late CG dinucleotides at miR157a.

Compared toWT, we noted an early flower phenotype in SunTag-
MQ1v transgenic plant (number of days to flowering: 25 vs. 30 in WT,
P = 4.87 × 10−59; leaf number: 10 vs. 14 in WT, P = 6.45 × 10−75, Fig. 4c–e).
Next, we measured the abundance of mature miR157a and found only
26% mature miR157a in SunTag-MQ1v compared to the WT
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(P = 5.31 × 10−5, Fig. 4f). This negative correlation was consistent with
the relationship observed in knockdown lines (Fig. 3b). We further
measured the expression levels of SPL genes and found a significant
increase of SPL transcript levels in SunTag-MQ1v line (Fig. 4g, Sup-
plementary Fig. 8). Taken together, this MQ1v targeting system pro-
vided direct evidence that DNA methylation of miR157a could lead to
its decreased expression, which then derepressed SPL genes and
induced early flowering.

Discussion
The widespread distribution of significant SNPs association with
methylation of ncRNA genes across the genome indicated the com-
plexity of the genetic basis. Our GWAS results did not identify any
commonproximal/distalmethylationQTL, distinct from the individual
level in which DNAmethylation was controlled by a limited number of
methyltransferases. At the population level, CG, CHG, and CHH
methylation variations were independent of MET1, CMT3, and CMT2/

Fig. 3 |miR157a regulatesflowering time. aGWASofCHGmethylation ofmiR157a
gene. The inset panel is quantile-quantile plot of P-values. The representative SNP
for this peak is indicated by a red triangle (lower panel). The color of each dot
represents the linkage disequilibrium level with the representative SNP. b The
relative abundance of mature miR157a in two independent knockdown and over-
expression transgenic lines. For each measurement, three replicates are used. The
P-value is calculated by one-way ANOVA analysis. Data are presented asmean ± SD.
**P <0.01. c The flowering phenotype of WT and transgenic lines at three time
points. bar, 1 cm. d, e The quantification of flowering time by days (d) and rosette
leaf numbers (e). The number in each bar is the number of plants used for

phenotyping. The P-value is calculated by one-way ANOVA analysis. Data are pre-
sented as mean± SD. **P <0.01. f, g The relative expression level of SPL genes in
knockdown (f) and overexpression transgenic lines (g). The P-value is calculated by
one-way ANOVA analysis. Data are presented as mean± SD. **P <0.01; *P <0.05.
h The abundance ofmaturemiR157a inWT and six independent pMIR157A:MIR157A
transgenic lines. The P-value is calculated by one-way ANOVA analysis. Data are
presented as mean± SD. **P <0.01. i, j Flowering phenotype of WT and pMIR157-
A:MIR157A transgenic lines. The number in each bar (i) is the number of plants used
for phenotyping. The P-value is calculated by one-way ANOVA analysis. Data are
presented as mean ± SD. **P <0.01. Source data are provided as a Source Data file.
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Fig. 4 | Tethering MQ1v to miR157a gene induces DNA methylation and early
flowering. a The schematic demonstration of SunTag-MQ1v system used for de
novo methylation of miR157a gene. It was created with BioRender.com
bMeasurement of DNAmethylation levels inWT and SunTag-MQ1v transgenic line.
The upper panel shows the location of miR157a and the primer used for BS-PCR.
The blue arrow shows the location of sgRNA. The number in each bar shows the
number of sequenced clones. The P-value is calculatedby one-wayANOVA analysis.
Data are presented asmean ± SD. *P <0.05. c–eTheflowering phenotypeofWTand
SunTag-MQ1v line. The number in each bar (d, e) indicates the number of plants

used formeasuringflowering. TheP-value is calculatedbyone-wayANOVAanalysis.
Data are presented as mean ± SD. **P <0.01. f Quantification of mature miR157a in
WT and SunTag-MQ1v line. For each measurement, three replicates are used. The
P-value is calculated by one-way ANOVA analysis. Data are presented asmean ± SD.
**P <0.01. g Expression levels of SPL genes measured with RT-qPCR. For each
measurement, three replicates are used. The P-value is calculated by one-way
ANOVA analysis. Data are presented as mean± SD. **P <0.01; *P <0.05. Source data
are provided as a Source Data file.
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DRM2, respectively. The ~500 high confidencemethylQTL identified in
this study were highly enriched in certain specific chromatin states,
indicating the existence of some common features underlying these
methylQTL. Several studies highlighted the tight link between DNA
methylation variations and 3D genome organization. Half of variable
CTCF (a key regulator of the 3D genome structure) binding sites
among 19 different human cell types were reported to be linked to
differential DNA methylation54. The causal function of prostate cancer
risk-associated SNP identified with GWAS could be disrupted by CTCF
deposition, which is DNA methylation dependent55. When expressing
DNA methyltransferases in Saccharomyces cerevisiae, Buitrago et al.
observed globally increased cis-contacts and decreased trans-
contacts56. In Arabidopsis, DNA methylation and other repressive epi-
genetic marks were intensely colocalized with the highest levels of
chromatin interactions, and both met1 and ddm1 mutants showed
easily detectable chromatin interaction changes compared with wild
type57,58. Thus, 3D genome organization might be an important factor
of epigenetic diversity.

In our GWAS results, the majority of methylation QTLs was
proximal and had larger effect in controlling methylation variation
than the distal QTLs. There were multiple studies in which humans
exhibited similar patterns where methylation QTL associations pre-
dominantly occurred in cis59,60. 15% significant SNPs (29,118 of 188,347)
were distributed in genomic regions that were neither TEs nor enco-
ded protein or any annotated ncRNAs (Supplementary Data 6). These
notable observations suggest that some genomic sequences might
affect DNA methylation of nearby sites. In line with this hypothesis,
previous studies inmaize andArabidopsis have shown that insertion of
some specific retrotransposon families/siRNA-targeted TEs could lead
to the spreading of DNA methylation to adjacent regions61–64. When
depositing centromere repeat sequences into the intron region ofABI5
in Arabidopsis ibm1 mutant background, it could induce the estab-
lishment and spreading of DNAmethylation65. Gene duplication, a tail-
to-tail inverted repeat present in Arabidopsis PAI genes, was reported
to cause dense methylation, while PAI in the accessions lacking this
gene duplication was not methylated66. Despite these well-established
causal genetic variants, more and more studies have revealed the
genomewide correlations between structure variations (SVs) andDNA
methylation. In Arabidopsis, 22%-50% of SVs identified through align-
ing the physical genome maps of 8 accessions to TAIR10 reference
were hypo-/hyper- methylated8. One specific type of SVs, insertions
enriched with DNA type TEs, was found to have much higher DNA
methylation than flanking sequences in maize67. Somatic SVs were
associated with changes of nearby DNA methylation and gene
expressions through analysis of integrated data from 1400 human
cancers68. Copynumber variations, another typeof SV,were also found
to be significantly associatedwith CGmethylation69. These preliminary
explorations shed light on the potential important role of SV in reg-
ulating DNA methylation.

In this study, we found that epigenetic variations of ncRNA genes
were highly correlated with plant adaptation phenotypes, and gen-
eration of an epiallele of miR157a could shape plant flowering time.
About ~1400 ncRNA genes whose DNA methylation were significantly
correlated with plant adaptation phenotypes including latitude, long-
itude, fitness, flowering, plant structure, root morphology and devel-
opment. Most of these ncRNA genes have unknown function thus far.
Regardless, we were able to find some genes with clear functions, such
as miR157a, some miRNAs targeting transcription factors, and COOL-
AIR (AT5G01675) whose methylations were significantly correlated
with longitude, flowering time, and other plant adaptation phenotypes
in this study (Supplementary Data 3, 4).COOLAIR encodes an antisense
long noncoding RNA andmediates cold induced silencing of FLC, a key
determinant of flowering time25,26. Epigenetic editing of miR157a suc-
cessfully de novo methylated CG at target sites and decoupled the
genetic variations with DNA methylation change. We provided the

direct evidence that methylation change of miR157a, which was inde-
pendent of genetic variation, led to early flowering and provided a
strong case demonstrating that epigenetic change could make an
enormous contribution to plant phenotypes. Besides miR157a, we
uncovered a large number of correlations suggesting that epigenetic
variations of ncRNA genes might be much more important and may
have beenunderestimated in shapingplant phenotype and adaptation.

Methods
Plants materials
The Columbia-0 (Col-0) ecotype was used as the background for all
transgenic lines. Seeds were germinated on 1/2 MS plates after 3 days
cold treatment (4 °C) and then harvested for experiments or trans-
ferred to soil at 7–10 days seedling stage. Seedlings and plants were
grown under long-day conditions (16 h light/8 h dark) at 22 °C.

Vector construction and plant transformation
For knockdown of miR157a, STTM157a was synthesized by GenScript
(Piscataway, NJ) and then cloned into pCAMBIA1300-p35S. For over-
expression ofmiR157a, 362 bp covering 175 bp upstream, 98 bp coding
sequence, and 89bp downstream of miR157a was amplified using
gDNA as a template and cloned into pCAMBIA1300-p35S. For trans-
gene of pMIR157A:MIR157A, 2130 bp covering 1850bp upstream, 98 bp
coding sequence, and 182 bp downstream of miR157a was amplified
using gDNA as template and cloned into pCAMBIA1300. For SunTag-
MQ1v, dCas9-MQ1(Q147L) was amplified from pLV hUbC-dCas9-
MQ1(Q147L)-EGFP (Addgene: plasmid #89793), and then cloned into
BsiWI digested pEG302 22aa SunTagNtDRMcdnog (Addgene: plasmid
#115488) to replace NtDRMcd. All constructs were transferred into
Agrobacterium tumefaciens strain GV3101 by electroporation and
introduced into Arabidopsis by the floral dippingmethod. The primers
used for transgenic vector construction are listed in Supplemen-
tary Data 7.

Population methylomes and GWAS
BEDtools v2.29.070 was used to calculate methylation levels from the
1001 Arabidopsis Methylomes8 (NCBI GEO accession: GSE43857). To
avoid the impact of other factors such as temperature, we only used
data from 811 accessions. When calculating DNA methylation, only
cytosine sites with coverage greater than 4 were adopted. The geno-
type data consisting of 1,110,440 SNPsof 811 accessionswere extracted
from 1001 ArabidopsisGenomes38. LDdecaywas calculatedwith PLINK
v1.971 with parameters “--file genotype_file --r2 --ld-window-kb 32000
--ld-window 1000 --ld-window-r2 0”. The distance and r2 value were
then extracted from output file and r2 value was averaged based on
different distances. The LD decay was plotted with R software v3.6.1
(https://www.r-project.org/) using data with distance ≤100Kb. Geno-
type data was then filtered with PLINK v1.971 (parameter: --indep-pair-
wise 50 10 0.1) and 46,056 SNPs were kept and used for kinshipmatrix
calculation with EMMAX41. GWAS was performed with EMMAX41 using
default parameter (emmax -v -d 10 -t [genotype] -p [phenotype] -k
[kinship]).

Filter of GWAS results and enrichment analysis
SNPs with P ≤ 9.01 × 10−9 (Bonferroni correction, 0.01/n where n is the
number of SNPs used in GWAS) were kept for further analysis. We
calculated the linkage disequilibrium (LD) decay (r2 ≥0.1 within 8Kb,
Supplementary Fig. 9) and SNP density (~150 SNPs/16Kb). This LD
decay distancewas very similar to previously reported 10Kbwhichwas
estimated with 19 Arabidopsis accessions72. For a given significant SNP,
it was preserved only if the number of other significant SNPs within
nearby 16Kbwas greater than 20 (Supplementary Fig. 10a, b). Based on
the LD decay, SNPs were grouped into clusters if the distance of two
consecutive SNPs was ≤8Kb. Only GWAS results for traits with cluster
number no more than 20 were retained (Supplementary Fig. 10c, d).
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The most significant SNP in each cluster was regarded as representa-
tive SNP and clusterswhose representative SNPwas in LD (r2 ≥0.1) with
more significant representative SNP in other clusters for same trait
were excluded. For the enrichment analysis of significant representa-
tive SNPs, Fisher’s exact testwasused to calculate the P-value and odds
ratio with the distribution of 1,110,440 SNP as control. The chromatin
states data were obtained from two studies44,45. The H3K9me2 peaks
were reported by Zhang et al73. and other H3 histone marks were
reported by Bewick et al74. The calculation and adjustment of P-value
were done with R software (https://www.r-project.org).

RNA extraction and expression quantification
For quantification ofmaturemiR157a, small RNAs were extracted from
10 days old seedlings following the protocol reported by Zhang et al52.
Briefly, we homogenized ~100mg leaves and added 1mL TRIzol (Invi-
trogen) and 0.4mL water. The homogenate was stored at room tem-
perature for 10min after mixing well and then centrifuged at
12,000 rpm for 15min at 4 °C. The supernatant was transferred to a
new tube and added 0.8 volume of isopropanol (Thermo Scientific™).
The mixture was stored at 4 °C for 30min after mixing well and then
centrifuged at 12,000 rpm for 15min at 4 °C. After discarding the
supernatant, the pellet in the tubes was washed twice with 70% iso-
propanol (Thermo Scientific™). The pellet was then dissolved with
40μL RNase-free water and used for following experiments. For
quantification of SPL genes, total RNAswere extracted from 10-day-old
seedlings using the TRIzol reagent (Invitrogen). The RNAs were then
treated with DNase I (New England Biolabs) and reverse transcribed
with ProtoScript® II Reverse Transcriptase (New England Biolabs).
Quantitative PCR of each sample with three replicates was performed
using SYBR Green qPCR Master Mix (Vazyme) and a CFX96 Real-Time
System (Bio-Rad). The relative transcript/miRNA abundance was cal-
culated and normalized to that of Col-0 using the 2−ΔΔCt method with
ACT7/snoR101 as the internal control. The primers used for RT-qPCR
are listed in Supplementary Data 7.

Quantification of DNA methylation by bisulfite method
For measuring DNA methylation of the target site, we used bisulfite-
PCR sequencing (BS-PCR). Genomic DNA was digested with RNase A
and then treated with bisulfite (EZ DNA Methylation-Lightning™ Kit).
Eluted gDNAwas used as template to run PCRwith KAPAHiFi HotStart
Uracil+ ReadyMixKit. PCRproductswere purified (BIOLINE, ISOLATE II
PCR, and Gel Kit), ligated to pCR-Blunt vector (Zero Blunt® PCR
Cloning Kit, Thermal Fisher Scientific), and then Sanger sequenced.
For each sample, at least ten clones were sequenced. The primers used
for bisulfite PCR are listed in Supplementary Data 7.

Statistical analysis
Statistical analyses were performed with Excel for one-way ANOVA
analysis, R for Fisher’s exact test and Mann-Whitney test, EMMAX41 for
GWAS P-values. Data are presented as mean± SD as indicated. For the
correlation analysis (Supplementary Data 3–6), the “corr.test” function
in R “psych” package was used.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data generated or analyzed during this study are included in this
published article. Source data are provided with this paper. The 1001
Arabidopsis Methylomes can be obtained under NCBI GEO accession:
GSE43857. The genotypic data of 1001 Arabidopsis Genomes can be
obtained in 1001 Genomes Data Center https://1001genomes.org/
data/GMI-MPI/releases/v3.1/. Source data are providedwith this paper.
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