
Article https://doi.org/10.1038/s41467-024-45761-7

The plasmidome associated with Gram-
negative bloodstream infections: A large-
scale observational study using complete
plasmid assemblies

Samuel Lipworth 1,2,7 , William Matlock 1,7, Liam Shaw 3,
Karina-Doris Vihta 4, Gillian Rodger1, Kevin Chau1, Leanne Barker1,
Sophie George1, James Kavanagh 1, Timothy Davies1,3, Alison Vaughan1,
Monique Andersson 2, Katie Jeffery 2, Sarah Oakley2, Marcus Morgan2,
Susan Hopkins5, Timothy Peto1,2,6, Derrick Crook1,2,6, A. Sarah Walker1,6,8 &
Nicole Stoesser 1,2,6,8

Plasmids carry genes conferring antimicrobial resistance and other clinically
important traits, and contribute to the rapid dissemination of such genes. Pre-
vious studies using complete plasmid assemblies, which are essential for reliable
inference, have been small and/or limited to plasmids carrying antimicrobial
resistance genes (ARGs). In this study, we sequenced 1,880 complete plasmids
from 738 isolates from bloodstream infections in Oxfordshire, UK. The bacteria
had been originally isolated in 2009 (194 isolates) and 2018 (368 isolates), plus a
stratified selection from intervening years (176 isolates). We demonstrate that
plasmids are largely, but not entirely, constrained to a single host species,
although there is substantial overlapbetween species ofplasmidgene-repertoire.
Most ARGs are carried by a relatively small number of plasmid groups with
biological features that are predictable. Plasmids carrying ARGs (including those
encoding carbapenemases) share a putative ‘backbone’ of core genes with those
carrying no such genes. Thesefindings suggest that future surveillance should, in
addition to tracking plasmids currently associated with clinically important
genes, focus on identifying and monitoring the dissemination of high-risk plas-
mid groups with the potential to rapidly acquire and disseminate these genes.

Gram-negative bloodstream infections (BSI) are associated with sub-
stantial morbidity andmortality; their incidence continues to increase
both in the UK and globally1,2. Multi-drug-resistant and hypervirulent
phenotypes are a particular concern, especially since genes conferring

these characteristics (and others which may have either positive or
negative fitness effects) are carried on plasmids, frequently in asso-
ciation with other smaller mobile genetic elements3,4. Plasmids are
thought to facilitate the rapid dissemination of these genes within and
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between bacterial species. A detailed understanding of their biology
and epidemiology is therefore likely to be crucial in tackling the global
threat of antimicrobial resistance (AMR).

Complete and accurate genome assemblies, such as those pro-
duced by “hybrid” assemblies of short and long-read sequencing data,
are crucial for the study of plasmid epidemiology. Until recently,
however, these have been prohibitively expensive for large-scale
application, and sowhilst this approachhas recently beenused at scale
to evaluate the plasmidome of environmental/agricultural isolates5, to
our knowledge its application to human-associated isolates has been
mostly restricted to relatively small numbers of isolates selected based
on AMR phenotype3,6. This phenotype-driven selection strategy has
identified several plasmid types associated with the dissemination of
key ARGs but it is currently not known whether similar plasmids are
also found in susceptible populations. Earlier works have demon-
strated the similarity of ARG-associated plasmids from the pre- and
post-antibiotic era7–9, hinting that these genes are disseminated on
amongst well-conserved pre-existing plasmid families. Recently, two
studies have demonstrated the utility of network-based approaches to
classify plasmid assemblies from public databases, offering insights
into the host range of these plasmids, though such analyses suffer
from sampling bias as well as a lack of clinical context and accurate
metadata10,11. Therefore, the plasmidome associated with Gram-
negative isolates causing both antimicrobial susceptible and sensi-
tive clinical infections remains largely uncharacterised.

Using short-read sequencing we have previously described in
detail the population dynamics of E. coli and Klebsiella spp. BSI isolates
collected between 2009 and 2018 in Oxfordshire, UK12. In this study
usinghybridassembly,wegeneratedcomplete genomes for all isolates
collected in 2009 and 2018, as well as a representative sample from

intervening years. Using this dataset, we first sought to investigate the
extent to which plasmids are shared and contribute to overlaps in
the pangenome within and between species. We then sought to com-
pare plasmids associated with ARG carriage to those that are not.
Subsequently, we investigated the disseminationdynamics of themost
prevalent ESBL gene in the population, blaCTX−M−15, highlighting com-
plex nested mobilisation that can only be unravelled using hybrid
assembly. Finally, we contextualised our findings by comparing our
plasmid dataset to a large global collection and investigated whether
features of “successful” plasmids and those with the potential for ARG
carriage are predictable.

Results
We sequenced and assembled n = 953 isolates of which n = 738 were
complete and included in subsequent analysis (Supplementary Fig. S1).
Of these, 75% (553/738) were E. coli (n = 153, 297, 103 in 2009, 2018,
intervening years, respectively), 22% (161/738) Klebsiella spp. (n = 39,
58, 64 in 2009, 2018, intervening years, respectively) and 3% (24/738)
other Enterobacterales species (details in Supplementary Fig. S1 and
Supplementary Data 3). In total, these 738 isolates carried 1,880 plas-
mids with amedian of 2 plasmids per isolate (interquartile range (IQR)
1–3). 10% (77/738) isolates carried none, 29% (211/738) carried one and
61% (450/738) more than one (Fig. 1A). Of the n = 661/738 isolates with
at least one plasmid, 77% (508/661) carried at least one large plasmid
(i.e., sequence length >100,000 bp), and 94% 621/661) at least one
large or medium plasmid (i.e., sequence length >10,000 bp); of these
53% (329/621) also carried at least one small plasmid (i.e., sequence
length <10,000 bp). Carriage of one or more small plasmids in the
absence of any medium or large plasmid was relatively rare at 6% (40/
661). Rarefaction analysis suggested that a substantial number of

Fig. 1 | Characteristics of plasmid carriage in E. coli/K pneumoniaebloodstream
infections.A,BNumberofplasmidsper isolate forE. coli (A) andKlebsiella spp. (B),
coloured by the number of ARG classes per isolates whereMDR is ≥3, AMR 1–2 and
no AMR 0. C Rarefaction curve of the number of novel plasmid groups (as defined
using the Louvain-based method described above) per new plasmid sequenced

stratified by size (large ≥100,000 bp, medium ≥10,000 to < 100,000 bp, small
< 10,000 bp. D Number of plasmid-associated ARGs per isolate vs number of
plasmids carrying at least one ARG. Isolates with only one plasmid-associated ARG
(by definition, carried on one plasmid) are excluded. Source data are provided in
the supplementary “Source Data” file.
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plasmid groups (defined using a graph-based clustering method, see
below) remain unsampled and that there is a significantly greater
diversity amongst groups containing smaller (<100,000 bp) vs larger
(≥100,000 bp) plasmids (Fig. 1B). There was some evidence that
Klebsiella spp. isolates tended to carry slightly more plasmids than
E. coli: median 2 (IQR 1–5) vs (median 2 (1–3) plasmids, respectively
(Kruskal–Wallis, P value = 0.03; Fig. 1A), as did multi-drug-resistant
(MDR i.e., carriage of ≥3 ARG classes) vs. non-MDR isolates: (n = 317/
738 vs. n = 421/738 isolates; median 3 (IQR 2–4) vs. median 2 (1–3)
Kruskall–Wallis, P value <0.001]).

Despite comprising a relatively small proportion of the total
genome (median = 2.79%, IQR = 1.97–3.97%), plasmids carried 39%
(2069/5311) ARGs, 12% (987/8315) virulence genes and 60% (2836/
4735) stress response genes. 50% (368/738) isolates carried at least one
plasmid-borne ARG and 306 at least 2; of these, 79% (242/306) carried
all annotated ARGs on a single plasmid (Fig. 1C). In isolates with a
medium or large plasmid, co-carriage of a small plasmid was sig-
nificantly more common in isolates harbouring plasmid-borne ARGs
58% (210/361) vs. 46% (119/260) without (Fisher test, P value = 0.003).

Most BSI isolates carry a large (>100,000 bp) plasmid from a
small number of common plasmid groups
We first attempted to classify plasmids using existing tools; 17% (317/
1880) plasmids could not be assigned a replicon type, and 33% (622/
1880) had no identifiable relaxase type. Similarly, 26% (487/1880)
plasmids were not typable using the recently described Plasmid
Taxonomic Unit (PTU) scheme13; 7% (128/1880) were not typable by
any method tested. Subsequently, we therefore opted to use a pre-
viously described classification approach, utilising a graph-based
Louvain community detection algorithm14 (see “Methods”), which
has the advantage of not being reliant on reference databases for
group assignment and is thus able to classify all plasmids into groups
(hereafter referred to as “plasmid groups”). These Louvain-based
plasmid groups generally clustered plasmids together at a lower dis-
tance threshold (i.e., more similar) than the other methods tests
(median 0.251, IQR 0.051–0.522 vs 0.692 IQR 0.561–0.852 for COPLA/
PTU clusters, 0.968 IQR 0.856–1.000 MOB-suite/Relaxase, 0.664 IQR

(0.367–0.928) Plasmidfinder/Replicon typing (Supplementary Fig. S2).
This approach yielded 513 groups from 1880 plasmids, of which 164
(32%) contained >1 plasmid, but only 33 (6%) contained ≥10 plasmids,
andmostwere singletons (349/513 (68%)). As expected, given themore
closely related groupings identified by the Louvain-based approach,
this method created more groups compared to the others tested, and
more of these were singletons (Supplementary Data 4). In all, 322/553
(58%) E. coli isolates carried a plasmid from one of the four most
common, predominantly E. coli-associated, large (>=100,000 bp)
plasmid groups (4/6/7/8, all PTU-FE) in Fig. 2) and similarly 76/161
(47%)Klebsiella spp. isolates contained a plasmid fromoneof the three
most common, predominantly Klebsiella spp.-associated, large plas-
mid groups (1, 2 and 5, PTU-E35, FK and FK, respectively) in Fig. 2).

Plasmid groups are structured by host phylogeny but there is
evidence of intra and inter-species transfer events
Overall, 141/513 (27%) groups were found in >1 MLST and 22/513 (4%)
were found in more than one species; multi-species groups had ≥10
members significantly more commonly (8/22 (36%) vs 25/491 (5%), P <
0.001) (Fig. 2). We found strong evidence that the pangenome of the
plasmidome of BSI isolates was structured by host phylogeny,
although there was also vast and persistent background diversity.
Sequence type and host species explained 8% and 7% (AdonisP =0.001
for both) of the observed variance in gene content between plasmi-
domes, respectively. ARG content explained a comparatively small
amount of variance (R2 = 2%, P = 0.001), as did year of isolation (0.03%,
P =0.005) and sourceattribution (R2 = 1.2%,P = 0.99, i.e., the suspected
focus of infection, only available for a small subset of isolates [198/
738]) (Fig. 3, panels a, b, c and d, respectively). When we focussed on
plasmid groups found in the most common E. coli STs (131, 95, 73), we
observed that most were seen in only a single ST (78/109), but 13
“generalist” groups were seen in all three STs, and accounted for the
majority of plasmids (215/400 54%). Highly similar plasmidomes were
seen in genetically divergent members of each ST, consistent with
multiple horizontal transfer events (Supplementary Fig. S3). Persistent
plasmid groups seen in both 2009 and 2018 were also seen in more
phylogenetically diverse isolates within STs (Supplementary Fig. S4),

Fig. 2 | Phylogenetic distribution of the most common (n> = 10 members)
plasmidgroups (n = 33groups) and thecontent of these.The tree is a neighbour-
joining tree built on Mash distances between chromosomes. Tip colours represent
species/phylogroup. The black bars represent the presence or absence of plasmid
groups (shown along the bottom x axis) for each isolate in the tree. The right panel

shows the percentage of isolates within each of these 33 plasmid groups carrying
the genes indicated (darker colours denote higher proportion of isolates carrying
gene). To improve readability, gene groups have been clustered together. Source
data are provided in the supplementary “Source Data” file.
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suggesting that the persistence of plasmidsmay be linked to their host
range potential.

Common plasmid groups share genes with each other; gene
sharing with chromosomes is also frequent
Whilst we observed only 4% (22/513) plasmid groups were shared
between species, we hypothesised that this might greatly under-
represent the true extent of plasmid-mediated horizontal gene transfer
given the role of smaller mobile genetic elements and the fact that BSIs
represent a tiny fraction of the overall ecological landscape. We there-
fore looked for evidence of overlap in the pangenome between differ-
ent plasmid groups as well as between these and host chromosomes.
Most genes in the pangenomes of common (i.e., containing n ≥10
plasmids) plasmid groups of E. coli and Klebsiella spp. were non-unique
to their group (median % non-unique genes 88%, IQR 67-98%). Most
overlap occurred amongst genes found in the plasmid pangenome
fromthe samespecies (median% sharedgenes86% (IQR50–95%) vs 31%
(8–43%) from different species, P < 0.001). There was also substantial
overlap between plasmid group pangenomes and the chromosome
pangenome, although there was some evidence of convergence in the
chromosomally integrated mobilome between species, evidenced by
less difference in the proportion of genes shared with the chromosome
for the same vs different species (Supplementary Fig. S5, median 33%
(IQR 0–45%) vs 21% (0–35%), respectively P =0.34).

Plasmids associated with ARG carriage are often highly similar
to those with no such genes
The 439 plasmids carrying at least one ARG were predominantly large
(≥100,000 bp, 277/439, 63%), low copy number (median 1.80 IQR
1.63–2.37) and conjugative (347/439, 79%). Whilst most plasmid-borne
ARGs were carried by plasmids clustering in a small number of groups
(i.e., 81% 1674/2069ARGswere carried by 8plasmid groups), 36% (170/

474) plasmids in these groups did not carry an ARG and all groups had
at least one such member, highlighting that acquisition of ARGs in
ARG-negative plasmid backbones represents a common risk across
genetically divergent plasmidgroups (Fig. 4).We repeated this analysis
using group assignments given by COPLA (Plasmid Taxonomic Units)
and Plasmidfinder (replicon typing) and found similar results (Sup-
plementary Data 5), suggesting that this finding is robust to the choice
of clustering method.

Hybrid assembly reveals complex nested diversity associated
with key AMR genes, significant chromosomal integration of
ARGs and the presence of multiple copies in different contexts
Chromosomal integration of ARGs was common: for example, in
E. coli, 56% (23/41) blaCTX−M−15, 9% (2/22) blaCTX−M−27, 14% (42/293)
blaTEM−1, 42% (14/33) blaOXA−1, 39% (7/18) aac(3)-IIa and 5% (3/65) dfrA17
were chromosomally integrated. There was significantly more chro-
mosomal integration of ARGs also seen at least once in a plasmid in our
study in E. coli vs Klebsiella spp. (restricting to 2009 and 2018 only 15%
[324/2103] vs 8% 39/478 [8%], Chi-squared test P < 0.001). For E. coli,
therewas significantlymore chromosomal integration in 2018 vs 2009
(19% 285/1485 vs 6% 39/618, Chi-squared test P < 0.001) but there was
no evidence of this for Klebsiella spp. (7% [3/190 vs 6% 17/279, Chi-
squared test P =0.89). For most of these ARGs, there were multiple
instances of isolates carrying two (and occasionally more) copies
(9 such examples for blaCTX−M−15 (Fig. 5), 1 blaCTX−M−27, 29 blaTEM−1,
2 aac(3)-IIe and 1 dfrA7).

Given the global importance of the ESBL gene blaCTX−M−15 con-
ferring third generation cephalosporin resistance, we focused on its
genetic background and putative dissemination mechanisms. As
mentioned above, plasmid groups carrying this gene in our dataset
were generally species-constrained. However, within a single species,
considering phylogroup, sequence type and even plasmid group,

Fig. 3 | A Umap projection of distances (measured by gene presence/absence)
between the plasmidomes of isolates (each point represents the plasmidome,
i.e., all plasmid sequences of a single isolate). These are coloured to show the

variability explained by species (A)/ARG carriage (B)/year (C) and infection source
(D). Source data are provided in the supplementary “Source Data” file.
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blaCTX−M−15 was found in a variety of genetic contexts (Fig. 5). For
example, in E. coli ST131 it was found in five plasmid groups and was
chromosomally intergrated in 41% (17/41) isolates. Within ST131 sub-
clades, there was some evidence of vertical transmission, as well as
numerous independent integration events. In many cases, several
uniquegeneflanking regionswere found in associationwithblaCTX−M−15

within a single plasmid group, or identical flanking regionswere shared
across plasmid groups and between plasmid groups and chromo-
somes. Visual inspection of gene flanking regions and hierarchical
clustering of a weighted graph (“Methods”: Bioinformatics) suggested
that whilst there was substantial diversity, these flanking regions
appear to have evolved in a stepwise manner with bilateral association
of blaCTX−M−15 and Tn2 in flanking groups 2, 3 and 6 compared to the
presence of Kpn14 (groups 1 and 5) and IS26 (group 4) (Supplementary
Fig. S6). Inspection of core-genome phylogenies of the two largest
blaCTX−M−15 carrying plasmid groups (plasmid groups 2 [IncF, PTU-FK]
and 3 [IncF, PTU-FE] in Fig. 2) demonstrated multiple probable inde-
pendent horizontal acquisition events of transposable units containing
this gene (and other ARG cassettes Supplementary Figs. S7 and S8),
suggesting that a flexible capacity to acquire ARGs through diverse
mobile genetics elements rather than a fixed association with them

might be important factors for the successful dissemination of the host
plasmid.

Comparison with wider plasmid datasets highlights under-
sampled plasmid diversity, more widespread inter-species and
inter-niche plasmid sharing, and the potential for carbapene-
mase dissemination amongst high-risk plasmid groups
We repeated our graph-based plasmid clustering method on a
combined dataset of Oxfordshire plasmids (N = 1880, hereby refer-
red to as the “Oxfordshire dataset”) and the Global collection of
plasmids deposited in the NCBI (N = 10,159, denoted the “global
dataset”) using the same sparsifying threshold (≤0.551). This yielded
5913 groups, of which 484 contained at least one plasmid from the
“Oxfordshire dataset”; of these, 326/484 groups (67%) containing
536 plasmids appeared to be unique to Oxfordshire. In total, 79/484
(16%) of groups containing Oxfordshire plasmids were found in
more than one species in the full dataset; of these 57 (72%) occurred
in only a single species in the Oxfordshire dataset, highlighting the
substantial underestimation of wider between-species dissemina-
tion by investigating only a single region and single source (i.e.,
bloodstream infections).

Fig. 4 | Plasmid network where individual plasmids (nodes) are connected by
edges if they cluster in the same group using the Louvain-basedmethodology
and coloured according to the number of classes of ARGs that they carry. Edge
thickness is drawn proportional to the Jaccard distance (see methods) between
plasmids. Multi-species clusters are donated by black outlined shapes. Only

plasmids groups with ≥10 members are shown.The ordering of clusters corre-
sponds to that in Fig. 2. Labels above clusters denote the PlasmidFinder/COPLA
taxnomic designations, respectively; plasmid groups are numbered consecutively
from the top left. Source data are provided in the supplementary “SourceData” file.
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A striking feature of the global network was that plasmids carrying
carbapenemase genes clustered with those that did not (Fig. 6). Of 122
plasmid groups with at least one member carrying a carbapenemase
gene, 19 (16%) contained at least one Oxfordshire plasmid. These inclu-
ded representatives from the K. pneumoniae MDR-associated Oxford-
shireBSIdatasetgroups2and5 (Fig. 2), three largegroups (Fig. 2, groups
3/6/8) widely distributed amongst E. coli isolates and two groups of
smaller plasmids (<100,000 bp, Fig. 2 groups 10 and 12), also widely
distributed in Oxfordshire E. coli. Although only 2% (7/414) Oxfordshire
plasmids falling into these groups actually carried a carbapenemase
ARG, this suggests the potential for carbapenemase acquisition and
dissemination amongst widespread “high-risk” plasmid backbones.

Factors predictive of plasmid group success
Having demonstrated that most isolates carry a plasmid from a rela-
tively small number of plasmid groups, we next sought to understand
what factors might be driving the widespread dissemination of these
amongst BSI isolates. Multivariable Poisson regression analysis
revealed that plasmid group frequency (a subjective marker of

evolutionary “success”) was associated with isolation in multiple spe-
cies (adjusted rate ratio aRR4.89, 95%CI 4.29–5.57, P<0.001), capacity
to conjugate (aRR 1.73, 95% CI 1.47–2.04) or mobilise (aRR 1.29, 95%CI
1.13–1.48) (i.e., containing either a relaxase or oriT but missing a mate-
pair formation marker), carriage of multiple ARGs (aRR 1.23, 95% CI
1.19–1.27)/virulence (aRR 1.44, 95%CI 1.36–1.53), toxin–antitoxin genes
(aRR 1.32, 95% CI 1.18–1.47) and a higher GC content (aRR 1.01, 95% CI
1.00–1.03) (Supplementary Data 6). Carriage of ARGs (adjusted odds
ratio, (aOR = 2.88, 95%CI 1.53–5.41, P < 0.001) and isolation inmultiple
species (aOR = 7.79, 95%CI 3.07–22.90, P < 0.001) were independently
associatedwith a higher probability of plasmid groups being observed
internationally (Supplementary Data 7).

Machine learning allows risk stratification of plasmids
Given that we have shown that plasmids carrying ARGs are often very
similar to those with no such genes (“ARG-negative plasmids”), we
hypothesised that it might be possible to predict whether ARG-
negative plasmids pose a risk for eventual associationwithARGs. Todo
this, we first performed a genome-wide association study using the

Fig. 5 | Nested genetic complexity associatedwithblaCTX−M−15mobilisation.The
“Tree” panel shows a neighbour-joining tree of Mash distances between chromo-
somes for isolates carrying a blaCTX−M−15 gene. Tip colours represent species/ST/
phylogroup. The chromosomal copy 1 and 2 panels show the genetic context 5000
bp up- and downstream from chromosomal copies of the blaCTX−M−15 gene (shown
in red); the plasmid copy panel shows this equivalent information for isolates
carrying a plasmid-borne copy of this gene. The outlining colour in these panels
shows the hierarchical cluster assignment of these flanking groups. The plasmid

group panel shows group membership of plasmids carrying the blaCTX−M−15 gene
with each x axis position representing a distinct group and black bars showing the
presenceor absenceof these for isolates in the tree. The encirclednumbers denote:
1—different flanking sequences in the same ST, 2—different flanking sequences in
the same plasmid group, 3—the same flanking group found in both chromosomal
and plasmid contexts and 4—different plasmid groups harbouring the gene found
within the same ST. Source data are provided in the supplementary “Source
Data” file.
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Oxfordshire dataset only, which was corrected for population struc-
ture and plasmid size, to identify genes (excluding known ARGs) sig-
nificantly more or less likely to be carried by plasmids in ARG-
associated groups (i.e., plasmid groups where at least one member
carries at least one ARG). This revealed significant associations
between ARG-associated plasmid groups and the presence of insertion
and transposon sequences, various virulence factors, toxin/antitoxin
system and heavy metal resistance genes (Supplementary Data 8).

We then tested the predictive value of these elements to identify
ARG-negative plasmids belonging to ARG-associated groups using a
variety of models on the Oxfordshire dataset (see “Methods”) with
stratified tenfold cross-validation to estimate out-of-sample perfor-
mance. The best-performing model (Random Forrest) had a mean
accuracy of 90.3% (standard deviation [SD] 2.4%),mean area under the
receiver operator curve [AUC] 0.90 (SD 0.02), mean sensitivity 86%
(SD 4.3%) and mean specificity 93.4% (SD 2.9%). We re-trained the
RandomForrestmodel onARG-negative plasmids in the global dataset
using only plasmids sequenced prior to 2018 and subsequently made
predictions on the held-out 2018 plasmids. This demonstrated that the
model generalised well but was less sensitive on this dataset (accuracy
84.6%, AUC 0.82, sensitivity 73.7% and specificity 89.9%).

Discussion
In this study, we fully reconstructed 738 isolates (1880 plasmids) to
conduct a comprehensive evaluation of the epidemiology and

function of plasmids associated with Gram-negative isolates causing
bloodstream infections to date. Most isolates in this study carried a
large plasmid from a small number of plasmid groups; these were
frequently, but not invariably, associated with the carriage of multiple
antibiotic resistance, virulence and heavy metal resistance genes,
potentially providing survival and fitness benefits to the host bacter-
ium. The fact that most isolates with multiple plasmid-borne ARGs
(often from several different classes) carry all of these on a single
plasmid reinforces the importance of good antimicrobial stewardship
and avoiding unnecessary exposure to all classes of antibiotics to
control co-selection as much as possible. Crucially we also found that
plasmids carrying ARGs frequently cluster in large, widely dis-
seminated groups with plasmids without these genes, representing a
potential set of “high-risk” backbones for ARG acquisition and hor-
izontal spread.

To date, most similar sequencing studies have focused on plas-
mids carrying particular ARGs (particularly those with ESBL/carbape-
nem resistance genes) and have therefore not considered how these
might be related to plasmids without such genes. We hypothesise that
plasmid adaptation to co-exist with successful lineages often occurs
prior to the acquisition of high-risk ARGs, presenting a potential win-
dow of opportunity for intervention which is lost if one is solely
focused on the presenceof these genes. Our data and should therefore
motivate a shift away from studies focusing on a single phenotype or
gene of interest and towards efforts to identify and track high-risk

Fig. 6 | Plasmids carrying carbapenemase genes are highly similar to plasmids
without these genes found inOxfordshire BSIs. A Each horizontal bar represents
a plasmid assembly either from Oxfordshire “Group 2/11” or the NCBI global
dataset. Common genes are shown in colour (with blast identity between these
shown from light grey to black (where the latter represents a perfect match),
whereas genes unique to a given plasmid are shown in grey. B A network plot of
plasmids which cluster with carbapenemase-carrying plasmids in the global

network analysis. The “carbapenemase gene” grouping includes all those variants
identified and classified as conferring resistance to the class “Carbapenem” in
AMRFinder. Plasmids (nodes) are connected with an edgewhere the edgeweight is
≤0.551 (see “Methods”). The thickness of the edges is displayed so that it is pro-
portional to the edge weight. Source data are provided in the supplementary
“Source Data” file.
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plasmid groups or other smaller mobile genetic elements and clearly
illustrate that such a new surveillance framework must incorporate
unselected sampling frames, i.e., not only selecting isolates with par-
ticular AMR phenotypes for sequencing. Notably we found an asso-
ciation of small plasmids and medium/large ARG-associated plasmids,
suggesting that theymay play an important helper role in ARGplasmid
persistence/spread, and a more detailed understanding of this possi-
ble synergy could be valuable15.

Whilst plasmid populations were structured, and plasmid groups
were mostly constrained to a single species and in some cases species
lineages in Oxfordshire, there was also clear evidence of exchange
between lineages of a species and different species. The plasmid
groups we identify appear to be subsets of the recently described PTU
typing system (e.g., plasmid groups 3/4/6/7/8 in Fig. 4 all correspond
to PTU-FE) and there appears to be a non-randomdistribution of these
across the phylogeny in Fig. 2, possibly indicating that these subsets
are adapted to particular sequence types (or local/ecological niches).
Enterobacterales are widely distributed as commensals and inmultiple
environmental sources; our study sample is thus extremely sparse
relative to the whole ecology. Even where we found no evidence that
certain plasmids were shared between species in Oxfordshire, our data
demonstrated widespread sharing of the plasmid gene repertoire
(including ARGs and their flanking regions) with plasmids and chro-
mosomes in other species. The high proportion of isolates with chro-
mosomally integrated ARGs (and apparent increase across the study
period for E. coli) supports findings from previous studies16,17 and may
either represent a success of plasmids in conferring survival benefits to
their host while lowering their own associated fitness cost or a success
of the host by lowering its dependence on the presenceof the plasmid.
It may also reflect their frequent association with transposable units6

(e.g., ISCEp1/IS26 for blaCTX−M−15) which facilitate their integration and
dissemination.

A limitation of this study is that it is froma single region,mitigated
in part by comparisons with publicly available datasets. We chose to
exclude assemblies with non-circularised plasmids, whichmayexclude
linear plasmids, though these are difficult to differentiate from
incomplete circular plasmids. The species imbalance in the dataset
reflects the fact that E. coli BSIs are more common than those caused
by Klebsiella spp. but may nevertheless bias inferences about plasmid
and gene sharing within and between species. Whilst the decision to
include an enriched sample (representing 26% of the total dataset in
this study) can bias the data with over-representation of dominant
clones, it is also true that such clones dominate the population struc-
ture of Oxfordshire BSI isolates (and global isolates in the case of E.
coli12,18,19). The lower sensitivity for predictingARG-group association in
the global dataset likely reflects its inherent bias and heterogeneity
compared to the Oxfordshire dataset as well as the existence of such
ARG-associated groups and genes not observed in our setting. The
inability to sequence and/or assemble all plasmids from the selected
cohort is an additional limitation. Sequencing only bloodstream
infection isolatesmay lead to underestimation of howmuch sharing of
plasmids between species truly occurs given that this represents a
highly selected subset of isolates causing severe disease. This is sup-
ported by our analysis of the large publicly available dataset, which
demonstrated that several groups found only in a single species in our
study have previously been seen in other species. Our results also
highlight the substantial limitations of previous studies using refer-
ence database-based approaches for plasmid typing and demonstrate
that fully reconstructed genomes (i.e., long-read sequencing data) are
essential in order to provide meaningful insight.

In conclusion, our study provides a high-resolution description of
the plasmidome associated with E. coli/Klebsiella spp. bloodstream
infections and demonstrates that using long-read data and unselected
sampling frames is essential in order to fully appreciate its complexity.
Previous studies of plasmid epidemiology in Gram-negatives have

primarily focused on MDR/carbapenemase-carrying isolates; our
finding that non-ARG-carrying plasmids are often highly similar to
plasmids isolated in these earlier studies demonstrates the potential
for rapid dissemination of ARGs to settings where they are currently
rare.We recommend that surveillance is basedonunselected sampling
frames, long-read sequencing and considers plasmids and smaller
mobile genetic elements to develop a representative understanding of
the horizontal gene transfer landscape to facilitate appropriate
intervention.

Methods
Isolate selection
The Oxford University Hospital Foundation Trust microbiology
laboratory provides a service for four general/specialist referral hos-
pitals as well as all GP practices (community/primary care) in the
region (total catchment population 805,000). We have previously
reported analyses of short-read sequencing data from E. coli and
Klebsiella spp. bloodstream infection isolates in Oxfordshire between
2009 and 201812,20. In this earlier study, we sequenced all available
isolates in this time period (i.e., a non-biased, sequential and near
complete dataset; n = 3468 isolates) with de-duplication to 90days per
patient. In the current study, we additionally sequenced all E. coli and
Klebsiella spp. isolates from 2009 and 2018 using Oxford Nanopore
Technologies (547/738, 74% isolates successfully sequenced, Supple-
mentary Data 1, Supplementary Fig. S1). We also sequenced a subset of
isolates from intervening years, using stratified random sampling
based on analysis of short-read data to capture maximum plasmid
diversity. To make this selection, we analysed the contigs of all
remaining short-read assemblies usingMLPlasmids21 to classify then as
likely plasmid or chromosomal in origin (using -use-full-khash-sets). All
likely plasmid contigs where binned together and sketched using
Dashing22 (default settings), and a distance matrix was subsequently
collected. We sparsified this matrix at 0.8 and used the LinkComm23

package in R to identify communities. We then selected one repre-
sentative per ST from the largest (n ≥10) clusters. The remaining
capacity (limited by resource and time as laboratory work took place
during the SARS-COV-2 pandemic)was filled using isolates with similar
multi-species plasmidomes and local AMR-associated outbreak clones.
Of the 191/738 (26%) isolates selected as part successfully sequenced as
part of this enriched dataset, 17/191 (9%) were K. pneumoniae ST490
(the dominant ST in Oxfordshire over this time period12) and 55/191
(29%) belonged to the predominant E. coli sequence types (STs 131/95/
73/69). A breakdown of successfully sequenced isolates and those
excluded is shown in Supplementary Fig. S1.

Sequencing
DNA for long-read sequencing was extracted either using Qiagen
Genomic Tip/100G according to the manufacturer’s instructions, or
with the BioMerieux Easymag using the manufacturer’s generic short
protocolwith afinal elution volumeof 50μL. TheQubit 2.0 Flourometer
was used to quantify DNA. Sequencing librarieswere prepared using the
Oxford Nanopore Technologies Native (n = 23) and Rapid (all other)
barcoding kits (SQK-RBK004, SQK-LSK108), according to the manu-
facturer’s instructions. Sequencing was performed on GridIons with
R9.4 flowells, which were reused multiple times utilising the ONT Flow
Cell Wash kit and our previously validated protocol24. For short-read
sequencing, DNAwas extracted using theQuickGeneDNAextraction kit
(Autogen, MA, USA) as per the manufacturer’s instructions with the
addition of a mechanical lysis step (FastPrep, MP Biomedicals, CA, USA;
6m/s for 40 s). Short-read (150bp) sequencingwasperformedaspart of
a previous project20 on HiSeq (Illumina instruments.

Bioinformatics
All bioinformatic programmes were run using default settings unless
otherwise specified. Reads were first base-called and demultiplexed
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using Guppy (v3.1.5, Oxford Nanopore Technologies) with
Deepbinner25 (v0.2.0) subsequently used to recover additional
unclassified reads24. Our strategy for hybrid assembly is depicted in
Supplementary Fig. S9.We first assembled all isolates usingUnicycler25

(v0.4.9) (--mode bold) with the raw Illumina andONT reads as input. In
parallel, we performed another assemblywhereUnicycler was given an
assembly graph from Flye26 (v2.9-b1768 run with --plasmids --meta and
reads which had been polished using Ratatosk27 v0.7.6.3) and short
reads pre-processed by Shovill28 (v1.1.0). The most contiguous
assembly of these was used (or the latter if both were complete). If
neither hybrid assembly completed then we used the Flye assembly
(with four subsequent rounds of Pilon29 (v1.24) polishing) if this was
complete. Incomplete assemblies (where ≥1 replicon [i.e., either plas-
mids or the chromosome] had >1 contig) were excluded from further
analysis (n = 215). Basic assembly metrics can be found in Supple-
mentary Data 1.

Rarefaction analysis with performed using the R library
Micropan30. Annotation of genes was performed using AMRFinder
Plus31 (v3.10.23) (Supplementary Dataset 2), ABRicate32 (v1.0.1), TADB
2.033 and Prokka34 (v1.14.6; custom/manually augmented databases
(available at www.github.com/samlipworth/GN_BSI_Hybrid) were used
for the latter two to attempt to improve the proportion of annotatable
toxin–antitoxin systems/plasmid-associated genes respectively. GC
content and predicted mobility were extracted from MOB-suite
(v3.0.0) output. GC-gap was defined as GC content of plasmid - GC
content of chromosome. Unicycler was used to estimate plasmid copy
number.

Plasmidomepangenomes (where all plasmids carried by an isolate
are considered as a single unit) were analysed using Panaroo35 (v1.2.8
--clean-mode sensitive --family_threshold 0.7) and visualised with a
Umap projection created using the R package Umap36. Variance in the
pangenome explained by e.g., AMR content/year/species was exam-
ined using a permanova perfomed in the R package vegan37. Gene
flanking regions were analysed using Flanker (v1.0, --w 0 -wstop 5000
-wstep 100)38. The Reder package39 was used to cluster a weighted
graph created from amatrix in which distances were determined to be
the greatest distance from the gene (in both upstream and down-
stream directions) in pairs of isolates which were in the same Flanker
cluster; this analysis was repeated in an all vs all fashion for all isolates.
Flanking regions were annotated using the Galileo AMR software (Arc
Bio, Cambridge, MA, USA).

Plasmid clustering
Robust taxonomic classification of plasmids remains a challenge40. We
therefore used two established methods that have been applied to
large-scale short-read sequencing datasets, Replicon typing using
PlasmidFinder (--minid 80)41 and Relaxase typing with MOB-suite
(default settings i.e., --min_mob_cov 80)42. We also typed all plasmids
using the recently described Plasmid Taxonomic Unit nomeclature11

(using COPLA13). As a substantial number of plasmids remained
unclassified by all these methods, we additionally utilised a recently
described graph-based classification system14. Mash(v2.3)43 (-s 1000, -k
21) was used to create an all vs. all distance matrix of plasmid assem-
blies where the distance was taken to be 1—the proportion of shared
kmers between the plasmid of interest and plasmids in the sketch
sequences, where plasmids with a distance of 0 share all kmers in the
sketch space whereas those with a score of 1 share no common kmers.
This was used to create a weighted graph using the R package Igraph44

where vertices represent plasmids and edges between these are
weighted by the distance described above. Community detection on
this graph was performed using the Louvain algorithm which seeks to
maximise the density of edges within vs between communities. We
optimised the performance of this algorithm as described previously14

by sparsifying the graph, removing edges with a weight ≤ a threshold
which was selected by iteration. This approach performed optimally

(i.e., assigned themaximum number of isolates to larger [n≥10 isolate]
clusters) when the graph was sparsified at an edge weight of ≤0.551
prior to community detection (Supplementary Fig. S10); this para-
meter was used for all subsequent analysis. The final sparsification
thresholdwas selected tooptimise the number of plasmids assigned to
large (n ≥10) clusters. We compared the classifications given by this
approach to other methods using the Normalised Mutual Information
index in the R package NMI45, which demonstrated good agreement
with previously described classification methods using normalised
mutual information (NMI; see “Methods”): replicon-typing NMI=0.81,
relaxase-typing NMI=0.93, plasmid taxonomic unit (PTU) NMI=0.81.

Comparison with existing plasmid sequencing data
To place our plasmid sequencing data in a global context, we down-
loaded all available plasmids (n = 10,159) from a recently curated
plasmid collection10 for comparison. We refer to the Oxfordshire iso-
lates as the “Oxfordshire dataset” and the combined collection as the
“Global dataset”. We computed a pairwise distance matrix and per-
formed Louvain-based clustering as described above, sparsifying the
graph using the same threshold (0.551) as in the main analysis.

Statistical analysis
To investigate factors associated with the geographical dissemination
of plasmid groups, we subsetted the global dataset to include only
Oxfordshire isolates and those from NCBI not from the UK and where
the location of isolation was known. We further filtered this to include
only plasmid clusters observed at least once in Oxfordshire. Isolation
inmore than one country was used as the binary dependent variable in
a logistic regression with other plasmid group features (e.g., ARG/
virulence/GC content) as independent variables. Multivariable asso-
ciations between all available plasmid group metrics (independent
variables) and plasmid group frequency in the dataset (dependent
variable) were estimated using Poisson regression in exploratory
analyses. Comparisons of continuous variables and proportions
between groups used Kruskal–Wallis/Wilcoxon rank-sum and Fisher/
Chi-squared tests respectively in R version 4.146.

To search for non-AMR plasmid-borne genes associated with
carriage of ARGs, we performed logistic regression with membership
of an ARG-associated group as the dependent variable and each gene
in the plasmid pangenome as the independent variable, adjusting for
population structure using multi-dimensional scaling (MDS) of mash
distances (R package CMD scale), represented in ten dimensions47. We
additionally adjusted for plasmid size using three categories (“large”
≥100,000 bp,medium ≥10,000– < 100,000bpand small <10,000 bp).
P-values were adjusted for multiple comparisons using the Bonferroni
method after removing genes with <1% population frequency. This
feature selection performed using a pangenome-wide association
study was conducted using only the Oxfordshire plasmid dataset.

We then tested the predictive value of these genes (n = 178) to
identify plasmids not carrying ARGs (ARG-negative plasmids) which
were found in ARG-associated groups in the Oxfordshire dataset
(N = 1439 ARG-negative plasmids of which 609were in ARG-associated
groups). We evaluated the performance of nine models (logistic
regression, linear discriminant analysis, K neighbours classifier, deci-
sion tree classifier, gaussian naive Bayes, random forest classifier and
gradient boosting classifier and a voting classifier combining all of
these) using 10-fold cross-validation, which was repeated 100 times.
We further evaluated the performance of the best-performing model
(random forest) using ARG-negative E. coli and Klebsiella spp plasmids
in the global dataset with the same features as before (significant gene
hits from the pangenome GWAS above). We split the dataset into
plasmids collected prior to 2018 (global training set on which the
model was re-trained n = 656 plasmids of which 221 where in ARG-
associated groups) and those collected subsequently (held-out global
testing set on which final metrics were reported N = 306 plasmids of
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which 99 where in ARG-associated groups). This analysis was per-
formed using the SciKitLearn48 package in Python version 3.7.7.

Data visualisation
Data were visualised using the ggplot249 and gggenes50 packages in R,
Clinker51, Cytoscape52 and Biorender (www.biorender.com).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Sequencing data for the “Oxfordshire dataset” has been deposited
under NCBI project accession PRJNA604975 and at https://doi.org/10.
25452/figshare.plus.24573268. Sequencing data for the global dataset
(https://doi.org/10.1038/s41467-020-16282-w) is available from the
NCBI RefSeq repository ftp://ftp.ncbi.nlm.gov/refseq/release/
plasmid. Source data are provided with this paper.
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