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Self-supervised dynamic learning for
long-term high-fidelity image transmission
through unstabilized diffusive media

Ziwei Li 1,2,3,5 , Wei Zhou1,5, Zhanhong Zhou1, Shuqi Zhang1, Jianyang Shi 1,2,
Chao Shen1,2, Junwen Zhang1,2, Nan Chi 1,2 & Qionghai Dai 1,4

Multimode fiber (MMF) which supports parallel transmission of spatially dis-
tributed information is a promising platform for remote imaging and capacity-
enhanced optical communication. However, the variability of the scattering
MMF channel poses a challenge for achieving long-term accurate transmission
over long distances, of which static optical propagation modeling with cali-
brated transmission matrix or data-driven learning will inevitably degenerate.
In this paper, we present a self-supervised dynamic learning approach that
achieves long-term, high-fidelity transmission of arbitrary optical fields
through unstabilized MMFs. Multiple networks carrying both long- and short-
termmemory of the propagationmodel variations are adaptively updated and
ensembled to achieve robust image recovery. We demonstrate >99.9% accu-
racy in the transmission of 1024 spatial degree-of-freedom over 1 km length
MMFs lasting over 1000 seconds. The long-term high-fidelity capability
enables compressive encoded transfer of high-resolution video with orders of
throughput enhancement, offering insights for artificial intelligence promoted
diffusive spatial transmission in practical applications.

Propagation of optical fields for long distances is an essential
requirement in remote imaging and optical communication applica-
tions. Optical fibers, especially the single-mode fiber, have been ela-
borately deployed in internet connection, however, they only allow for
the transmission of a single Gaussian fundamental beam. Multimode
fiber (MMF), on the other hand, permits hundreds to several thousand
spatial modes to pass through. This makes them a promising platform
for direct image transmission1 and mode-division multiplexing trans-
mission to boost the channel capacity2,3, showing potential in appli-
cations suchas compact endoscopy in bio-imaging4–6, high-rate optical
communication2,7, and quantum key teleportation8,9.

However, the inevitable spatial mode dispersion in the MMFs
induces a complex optical field mixing of the input image as it pro-
pagates through thefiber, resulting in intense scramblingof theoutput
intensity distribution. Image restoration through diffusemedia entails

precise characterization of the physical system. Methods have been
developed that measure the MMF’s forward process in the form of a
complex transmission matrix (TM), and unscramble the output image
via back-projection10,11. However, the calibration of TM with a huge
number of elements is time-consuming and complicated in
implementation12. Artificial intelligent approacheshavebeenproposed
to model the forward process or directly estimate the decoding pro-
cess for image inference from the scrambled output13–16. Notwith-
standing the notable progress in modeling the scattering process, it is
foreseen that the instability of the MMF propagation induced by sys-
tem drifting and environmental disturbance will accumulate and
severely deviate from the characterized model after a long time,
especially for long-distance transmission. As a consequence, most
reported literature have experimented on short MMFs (<10m)17–19 and
were impeded from practical long-term high-fidelity image
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transmission. Therefore, developing a technique to support long-term
accurate spatial information transmission over long distances for
remote video transfer remains a challenge.

One method to tackle the variation of scattering is to train a
general network using large sets of data describing diverse
conditions20,21. However, this requires a long-duration training data
collection andwill hinder its flexible application in practice. Moreover,
the generalized model often achieves poorer performance at a certain
timepoint than using a ‘specific’ network trained on data acquired
within small time durations. Another inspiring approach is to use the
mixture-of-expert framework, in which multiple expert networks each
responsible for one sub-problem are fused together to achieve better
generalization22. This architecture has been successfully applied for
image denoising23,24 and phase retrieval25 to improve reconstruction
accuracy and robustness to noise. However, the implementations have
so far been confined to static contexts.

In this work, we develop a dynamic-learning framework that can
adaptively handle the time-varying optical propagation in long MMFs.
The proposed network, termed multi-scale memory dynamic-learning
network (MMDN), leverages the multi-expert framework to separately
model the long- and short-termdynamics of theunstableMMFchannel
with multiple networks and combine the multi-scale memory by

adaptiveweighted ensemble. The networkparameters are dynamically
updated over time in a self-supervised manner, by learning from cur-
rently predicted pseudo-labels to synthesize the optimal inverse
transmission model for subsequent image inference. MMDN achieves
adaptive and accurate tracing of the variations on the optical propa-
gation model in MMF, enabling parallel transmission of 1024 spatial
degrees of freedom through 1km-length fibers with >99.9% accuracy
for over 1000s-duration. The high-fidelity performance enables effi-
cient transmission of high-resolution video with several orders of
throughput enhancement by using compressive encoding, showing
the feasibility of long-term high-fidelity spatial transmission. The pro-
posed dynamic memory framework opens up a new paradigm for
demixing through unstabilized diffuse media.

Results
Multi-scale memory dynamic-learning network
We experimented on an intensity-modulated optical setup (see Fig. 1a
and Supplementary Fig. 1). The input pattern coupled into the MMF is
transformed into a complex distorted field at the distal end due to
spatial mode dispersion. We calibrated and analyzed the variations of
diverse 100m and 1km-length MMF transmission channels and
observed slowly changing system drifting (see Supplementary Fig. 2).

Fig. 1 | Principle of dynamic learning for image transmission in varying
diffuse media. a Dynamic-learning framework for long-term data transmission in
varying MMFs. b, cWorkflow of dynamic subnetworks update for continuous data
recovery, where b the short-term models are rebuilt interleavedly, and c each

submodel is frequently updated by self-supervised learning from previously pre-
dicted labels. d Multi-timescale expert networks with long- and short-term mem-
ories of the transmission characteristics ensembled adaptively by confidence-
based weights.
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Deep learning approaches have been reported to solve this nonlinear
transformation problem to retrieve the input image from output
speckle, however, one generalized neural network will fail to precisely
model the gradually varying MMF channel over a long time. In this
work, we proposed a dynamic-learning framework that adaptively
tracks the optical propagation characteristics to achieve long-term
image transmission with high accuracy through longMMFs. Instead of
training a fixed and generalized neural network, we designed a com-
pact network that generalizes well on short-term transmission. The
MMDN model will be dynamically updated by online training on the
unlabeled streaming data using predicted input images as labels,
henceworking in a self-supervised architecture (see Fig. 1c). According
to the calibration results in Supplementary Fig. 2, the MMF transmis-
sion channels could sustain nearly unchanged within a 10-s duration,
which ensures the feasibility of the self-supervised dynamic updating
strategy.

Besides slow-varying system drift, we also witnessed intense
jitter effects that will cause severe MMF channel deviations (illu-
strated in Supplementary Fig. 3). This physical prior knowledge
inspires us to develop an ensemble framework of subnetworks which
carry multi-scale memory of the system variations for the MMDN
block. As shown in Fig. 1d, the output speckle image is fed into three
networks, where S1 and S2 indicate two transmission models with
different short-term memories, and L3 indicates one model with
long-term memory. A grading module was additionally designed for
confidence evaluation of expert subnetworks, allowing adaptive
memory fusing to produce an optimized prediction that has good
adaptability to both slow drifting and abrupt jitter effects. For con-
tinuous data transmission, themulti-scalemodels are self-supervised
and updated at a short interval (i.e., 10 s). For S1 and S2 that aim to
carry short-term information, we introduced the forgetting
mechanism by alternatively wiping its memory of the accumulatively
updated network model and rebuilding it with only the latest pre-
dicted data at specific intervals alternatively (seeMethods); while the
L3 will always keep the memory of previous transmission character-
izations during the update process, as depicted in Fig. 1b. The pro-
posed MMDN is supposed to show better performance in long-term
data recovery through scattering MMFs, attributed to the enriched
perspectives provided by the adaptively updated multi-timescale
models.

Long-term spatial transmission through unstabilized MMFs
We evaluated the performance of the proposed MMDN for long-term
spatial transmission through diffuse media by experimenting on
100m- and 1km-length MMFs placed on the optical table without
vibration isolation. To verify the ability to transmit arbitrary spatial
information, we showed reconstruction of random binary patterns
with spatial degree-of-freedom of 16 × 16 and 32 × 32, as opposed to
the specified images such as the MNIST dataset (see Supplementary
Video 1). We additionally reshaped the common grid pixel assignment
to accommodate the round-shape property of the MMF entry, and
proved slightly enhancedperformance (see Supplementary Fig. 7). The
output speckle patterns were captured by a camera at 100 fps. At the
preparation stage of data transmission, a sequence of known patterns
is transmitted, and the MMDN is statically trained on the initial
instances. Once finished, the MMDN is ready for a dynamic update to
support continuous image transmission.

In Fig. 2, we show the transmission results for over 1000 s on four
different settings. The static neural network (StaticNN) trained on the
first 500-s data and tested on the following 500-s is taken as the
baseline method. The transmission matrix (TM) based reconstruction
has also been investigated and compared (see Supplementary Fig. 6).
The MMDNwas dynamically updated at each 10-s interval. Comparing
the reconstructed accuracy averaged on each 10-s batch, we observed
an obvious degradation after 200 s using StaticNN, especially for 1 km

fibers; while MMDN achieved ~100% accuracy throughout the 1000 s
period. Although the increase in fiber distance makes its scattering
channel vary more intensely, the dynamic-learning ability of the pro-
posed MMDN allows it to precisely model the dynamics and adapt to
the current state of the physical process. We also illustrated repre-
sentative recovered spatial profiles and the averaged spatial distribu-
tion of transmission accuracy. For 1 km transmission, MMDN enables
<0.1% error rate across the spatial position and an average accuracy of
99.97% and 99.99% for 32× 32-pixel and 16× 16-pixel reconstruction,
which is two orders improved than using StaticNN. For 100m trans-
mission cases, MMDN even reduces the average error rate to 2e-6
throughout the transmission period. As a result, we demonstrated that
MMDN can permit long-term spatial information transmission with
high fidelity.

Further, we tested on recovery of high-level encoded random
images. The grayscale input patterns are generated by the binary DMD
using spatial division multiplexing. Experimenting on the 1km-length
MMF, we demonstrated long-term transmission of 2-bit images with
24 × 24-pixel (see Fig. 3a) and 4-bit images with 16 × 16-pixel (see
Fig. 3b). The mean absolute errors (MAEs) of recovered non-binary
patterns are measured in temporal and spatial domains. The accuracy
metric (1-MAE) is above 0.994 for the 2-bit reconstruction and 0.992
for the 4-bit reconstruction during the 500-s period, and the average
accuracy is 0.998 and 0.999, respectively. As a comparison, the Sta-
ticNN will intensely degrade in reconstruction accuracy as the system
variation aggregates over time. The experiments proved the potential
of the proposed MMDN approach for practical applications involving
gray-level image delivery.

Multi-scale memory ensemble improves instability robustness
The dynamic-learning strategy forMMFdynamicsmodeling intuitively
raises a critical demand for accurate inference on the current batch, so
as to provide reliable training sets for the subsequent update. How-
ever, twomain factors exist that could hinder its naïve implementation
from practical usage. First of all, the inevitable inference error for the
previous batch induces a bias to the model update, which will accu-
mulate and largely deteriorate the network effectiveness after a long
period26. Besides, the abrupt disturbances happen frequently for
unstabilized long MMFs, resulting in significant transmission char-
acteristics distinguishment even between adjacent batches. MMDN
incorporates the physical prior inspired multi-scale memory mixture
architecture, providing a solution for precise and robust modeling of
system dynamics.

We next investigated the benefits of long and short-termmemory
ensemble network design. We chose two variable MMF channels with
medium instability including a 100m-length gradient-indexed MMF of
200μm diameter (GI-200) and a 1km-length step-indexed MMF of
200μm diameter (SI-200) for spatial transmission of 16 × 16 and
32 × 32-pixel random binary patterns. We analyzed the contributions
of different subnetworks in MMDN by evaluating their intermediate
prediction accuracy. For the GI-200 case, as shown in Fig. 4a, we pre-
sented the average accuracy over a 1000 s duration using S1, S2, L3,
and the confidence-based ensemble network and observed that the
multi-scalemodel improved the accuracy by around 10-fold compared
to the short-term models and the long-term model. Comparing the
time-varying transmission error rate shown in Fig. 3b, the long-term
model shows degraded performance especially at the 40–55 s period,
while the short-termmodels provide ‘wiser’predictions and contribute
to producing a good ensemble model. Similar comparisons in aver-
aged transmission accuracy and error rate at each timestep are also
presented for the SI-200 case (see Fig. 4c, d). In this experiment, the
long-term model works better than short-term models most of the
time, as the magnified time clip is within 40–45 s, and the multi-scale
model outperforms all other single-scale models throughout the per-
iod. The above results verified that using amixture of expert networks
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with different memory scales will enrich perspectives of the dynamic
scattering channel by learning from the same data, and overcome
diverse variations in MMFs to achieve spatial transmission with high
accuracy over long periods.

Scalability and generalization of MMDN
Having validated long-term high-fidelity transmission of generalized
patterns, we also noted that the MMDN is well applicable to transmit

specific types of natural images. In Fig. 5a, b, we show a set of recov-
ered hand-written digits and fashion symbols transmitted through a
1km-long fiber. The input images of 28 × 28 pixels are upsampled to be
32 × 32 and binarized by the greyscale threshold of 0.5. The initial
MMDN model trained on 20,000 paired data is then dynamically
updated to support continuous image transmission of over 1000 s. To
evaluate the quality of reconstructed images, we quantitively com-
pared the SSIM and accuracy obtained using StaticNN and proposed

Fig. 2 | Performance of spatial transmission over a long time in
unstabilized MMFs. Averaged transmission accuracy over time and accuracy
spatial distribution of MMDN and static network are compared on four

configurations with decreasing instability: a spatial resolution: 32 × 32, fiber length:
1 km; b spatial resolution: 16 × 16, fiber length: 1 km; c spatial resolution: 32 × 32,
fiber length: 100m; d spatial resolution: 16 × 16, fiber length: 100m.
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MMDN.We observed nearly errorless transmission of bothMNIST and
fashion-MNIST datasets with MMDN during the whole period, and the
SSIM is mostly above 0.99. Whereas, the static model will degrade in
transmission accuracy and image similarity (see Supplementary
Video 2). This indicates the feasibility of image transmission in unsta-
bilized scattering MMF using MMDN, laying the foundation for direct
natural image transmission for remote imaging applications such as
biological endoscopy.

One big concern of the learning-based image reconstruction
approach is whether the network is able to transfer to other unseen
categories of images. To demonstrate the generalized performance of
the proposed network, we used the MMDN dynamically trained on
Latin alphabet images for inference on the digit dataset (see Fig. 5c)
and measured the transmission accuracy (see Fig. 5d). Examples of
reconstructed input patterns right after the switch of image category
as well as 10 s and 150 s after the switch are presented in Fig. 5e,

0

StaticNN

MMDN

MMDN

StaticNN

4-bit encoded, MMF length: 1 km

1-MAE = 0.979 1.000 0.970 0.947 0.963 0.945 0.814 0.797

1-MAE = 0.996 1.000 0.998 0.996 1.000 0.998 1.000 0.998

2-bit encoded, MMF length: 1 km

MMDN

MMDN

StaticNN

1.0

0.9

1-MAE = 0.997 0.998 0.994 0.964 0.889 0.777 0.773 0725

1-MAE = 1.000 1.000 1.000 0.997 1.000 0.996 0.994 0.994

1-
M

AE
 

1.0

0.9

750 sTime: 700 s 900 s 950s 1000 s850 s850 s800 s

Aver. Acc = 0.999Aver. Acc = 0.942

Aver. Acc = 0.998Aver. Acc = 0.914

1-
M

AE
 

1.0

0.9

1.0

0.9

Spatial recovery accuracy

Time (s)

Time (s)

StaticNN

Spatial recovery accuracy

b

a

750 sTime: 700 s 900 s 950s 1000 s850 s850 s800 s

Fig. 3 | Performance of non-binary encoded image transmission over a long
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transmissions: a 2-bit encoded patterns of 24× 24-pixel resolution and b 4-bit
encoded patterns of 16× 16-pixel resolution. The MMF (Step-index, 200μm core
diameter, NA 0.22) is 1 km long.
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respectively. We observed an average accuracy of 99.44% and good
visual fidelity with a high SSIM of 0.978 even without fine-tuning the
network (i.e., T = 0). The accuracy was further elevated up to 99.68%
and the SSIMup to0.989 after 2 batches (i.e., T = 10 s) attributed to the
dynamic update ability of MMDN, and the high accuracy could be well
retained during the following 150 s. This experiment demonstrates
that the proposed MMDN has good generalization performance for
image transmission.

Long-term high-throughput video transmission
We further propose a practical high-throughput video transmission
protocol via unstabilized long MMFs, as shown in Fig. 6. High-
resolution video streams are compressively encoded into bit streams
and spatially arranged to form a sequence of spatial-multiplexing-
coded patterns. The spatial-multiplexed MMF setup can be used to
support up to thousands of independent communication channels
transmitting in parallel, and the proposed MMDN addresses the
encoded spatial pattern recovery from recorded speckle images with
nearly 100% accuracy to guarantee high-quality video decoding.

We experimented on the 1 km transmission of a 6-min full-color
video of 480×480-pixel resolution and 20 fps. The video was enco-
ded in the form of H.264 with a compression ratio of 1.39‰ and then
converted into 32 × 32-pixel spatially multiplexed patterns. The
proof-of-concept MMF setup with a 150 fps acquisition rate guaran-
tees adequate bandwidth for real-time transmission of encoded
video (see Supplementary Video 3). We evaluated the transmission
accuracy of the spatial-multiplexed encoded signals in Fig. 6b and the

visual fidelity of decoded video frames using the SSIM metric in
Fig. 6c. When using the static network for image recovery, we
observed that a slight signal accuracy deterioration of less than 2%
starting at 100 s would cause a significant drop in decoded video
quality, leading to the SSIM of recovered video frames drastically
dropping below 0.4. Noticeably, even when the transmission per-
formance can be restored to good accuracy afterward, such as the
160-180 s period as highlighted with the asterisk in Fig. 6b, the video
decoding corruption still remains irreparable. By comparison, our
proposed MMDN ensures high-accuracy spatial transmission over
the long term and hence can be incorporated into the highly com-
pressed encoded video transmission protocol to achieve high-quality
image recovery with the SSIMs all above 0.995 within the 6-min
duration. Example recovered frames within the 93–99 s period are
illustrated in Fig. 6d to visualize the decoding corruption caused by
the slight transmission error using the static network. The results
validated the superiority in decoding accuracy using MMDN for
encoded video transmission, which offered over 700-fold efficiency
enhancement compared to the plain coded video transmission
scheme (see Supplementary Fig. 8).

Discussion
Spatial reconstruction from diffusive MMF transmission is a chal-
lenging task and has so far been limited to short-distance fibers and
faced the tradeoff between high accuracy and long-time general-
ization. In the work, we described the MMDN, a multi-scale dynamic-
learning approach that can achieve >99.9% accuracy of long-time
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image transmission through unstabilized 1 km MMF channels. The
MMDN technique is developed based on the physically informed
model of the diffusiveMMF system that fully describes the long-term
drifting and short-term abruption effects, therefore enabling good
accommodation with the dynamics of the system characteristics. We
compared MMDN with previous approaches in terms of time dura-
tion, reconstruction quality, transmission distance, etc., and
demonstrated a comprehensive improvement of our approach (see
Supplementary Fig. 9). In particular, the high-fidelity long-term
transmission performance of MMDN will allow for efficient video
transmission in a highly compressed scheme. The superior decoding
capability will also facilitate practical applications such as minimally
invasive endoscopic imaging, spatial-multiplexed optical commu-
nication, and optical security taking a diffusive channel as the
decoding medium.

In contrast to conventional methods relying on the calibration of
transmission matrices, deep learning provides an alternative pathway
for addressing intricate reconstruction challenges, offering notable

benefits such as enhanced accuracy and the avoidance of strict
adherence tomathematical model priors. Nevertheless, the efficacy of
deep learning is contingent upon a substantial collection of labeled
samples for robust and generalized network training. We empirically
examine the required size of the training dataset for MMDN, as illu-
strated in Supplementary Fig. 11.

One intuitive premise of the proposed dynamic-learning
approach is that the scattering MMF channels drift at a relatively
slow pace. Based on this assumption, the network model optimally
trained on the previously recorded dataset will exhibit only minor
deviations from being ‘perfect’ for the current input data. Therefore,
the previous model acting as the pre-trained model can provide a
good initialization of network parameters and facilitate the con-
vergence of the network update. Another concern of the current
proof-of-concept spatial transmission system is the limited spatial
modulation speed of SLM which would limit the bandwidth of MMFs
compared with that of SMFs. One promising and practical solution to
break this limit is to use programmable lighting arrays as the spatial
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information encoder. Independently addressable LED arrays of
10 × 10 pixels with 100MHz switching speed27 and 64 × 64 pixels with
2.5MHz28 have been reported to generate fast-switching structured
illumination patterns at low cost. Using a laser diode array, for
example, the VCSEL7 array, which is commonly used in LiDAR and
data centers, spatial modulation with up to Gigahertz bandwidth can
be achieved. Equipping with those high-speed spatial modulation
modules, the bandwidth of MMFs could be elevated to hundreds of
Gigahertz. On the other hand, the MMDN-enhanced MMF-based
optical transmission technique gives rise to high-speed direct ima-
ging that can achieve tens of kilohertz to megahertz frame rate (see
Supplementary Fig. 12), extensively outperforms the SMF-based or
wavefront-shaping enabled MMF-based raster-scanning remote
imaging techniques.

Methods
Experimental setup
The optical setup for image transmission through the MMFs is
described in Supplementary Fig. 1. The continuous-wave laser beam at
wavelength 561 nm is expanded by a pair of lenses (f 1 = 10mm,
f 2 = 100mm) and projected onto the SLM (V-7001) for binary ampli-
tude modulation. The spatial modulated optical field is relayed by a
pair of lenses (f 3 = f 4 = 50mm) to the back-pupil plane of an objective
lens (Nikon, 20X, 0.25NA) and coupled into the input facet of theMMF
placed at the image plane of the objective. At the output of the MMF,
the speckle field at the distal end is magnified by another objective
(Nikon, 20X, 0.25NA) and imaged by the CMOS (MER2-230-167U3M).
The specifications of the MMFs used in all experiments are summar-
ized in Supplementary Fig. 10.
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Fig. 6 | Long-term transmission of compressive encoded high-
throughput video. a Pipeline of compressive encoded video transmission through
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accuracy of encoded signals. c SSIM of decoded video frames. d Example video
frames recovered with StaticNN and MMDN.
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Stability analysis of MMF channel
We adopted three metrics to evaluate the transmission channel sta-
bility over a large variety of MMFs, as summarized in Supplementary
Fig. 2. The first metric measures the SSIM of a sequence of output
speckle patterns to the reference pattern captured at T =0 while
transmitting a fixed image. The SSIM calculation can be expressed as

SSIM=
2 � μx � μy +C1

� �
� 2 � σxy +C2

� �

μ2
x +μ2

y +C1

� �
� σ2

x + σ2
y +C2

� � : ð1Þ

Here, x and y indicate the two images being compared, μx , μy and
σ2
x , σ

2
y are the mean values and variations of images x and y, and σxy is

the covariance between two images. The C1 and C2 are two constants
used to prevent the denominator from becoming zero or the result
from becoming infinite.

The second metric measures the Helinger distance of the speckle
energy distribution of two batches. The speckle energy distribution of
each batch is obtained by summing up all speckle images in that batch,
and one batch consists of 500 output speckle images captured within
5 s. For two discrete energy distributions P= ðp1,p2 . . . ,pnÞ and
Q = ðq1,q2 . . . ,qnÞ, n is the total number of pixels in a single speckle
image, the Hellinger distance can be calculated as

H2 P,Qð Þ= 1
2

Xn

i=0

ffiffiffiffi
qi

p � ffiffiffiffiffi
pi

p� �2
: ð2Þ

The third metric computes the pixel-wise accuracy of the recov-
ered image at each timepoint, by using an approximate reconstruction
algorithm termed real-value inverse transmission matrix (RVITM)29.
The test image is transmitted right after the approximal transmission
matrix is calibrated. The accuracy for each recovered image is the
percentage of mis-distinguished pixels to the full number of pixels.

Data preparation
Our research employed arbitrary random binary images, as well as
natural scene images including the Fashion-MNIST dataset, Latin let-
ters from the E-MNIST dataset, and hand-written digitals from the
MNIST dataset. The input images tested in the experiments are of
16 × 16-pixel and 32 × 32-pixel resolution. According to the maximum
number of spatial modes that are allowed to transmit through the
MMF, it is theoretically possible to input images of larger pixel reso-
lution. The input images are reshaped in a round assignment as
depicted in Supplementary Fig. 7. We used a binary SLM as the
amplitude modulator to encode the spatial information, and the out-
put speckles are captured by the monochromatic CMOS. To reduce
computational complexity, we down-sampled the speckle images to
100 × 100-pixel and 150 × 150-pixel for reconstructing input patterns
of 16 × 16-pixel and 32 × 32-pixel, respectively.

Neural network architecture and training details
We designed an ensemble network consisting of three subnetworks
with the same structure but updated differently over time. Each sub-
network is a convolutional neural network consisting of two con-
volutional layers and one fully-connected layer. Each convolution layer
is followed by Dropout, Batch normalization, and ReLu activation. A
sigmoid activation function is applied to the output layer for binary
image reconstruction.We employed cross-entropy as the loss function
and calculated the deviations from predicted images of each subnet-
work to the digitized ensemble predictions. We trained the subnet-
works by propagating the loss backwardwith the AdaDelta optimizer30

at a learning rate of 0.1.
For the pretraining ofMMDN,we use 5000paired data for 16 × 16-

pixel image reconstruction and 20000 paired data for 32 × 32-pixel
image reconstruction. For each update, we use 500 paired data for

16 × 16-pixel image reconstruction and 1000 paired data for 32 × 32-
pixel image reconstruction. Please refer to Supplementary Fig. 11 for a
detailed comparison of MMDN performance training on different
amounts of datasets. The training time for each round of network
update processed on the workstation equipped with NVidia RTX3090
GPU is around 0.11 s and 0.98 s, respectively. We utilized early stop-
ping to prevent overfitting and reduce the training time for each net-
work update, and the network fine-tuning typically can be finished
within 20 epochs.

All three modules S1, S2, and L3 are frequently fine-tuned on the
newly input sequence at a 10-s interval for all experiments via the
proposed self-supervised scheme. In addition, S1 and S2 modules are
rebuilt alternatively at every five intervals to refresh their memory of
the input data sequence and only keep short-term memory.

Confidence-based ensemble algorithm
Each subnetwork of the ensemble network calculates the average
confidence level of one predicted instance as:

ck =
1
N

XN

i = 1

Pi
k � 1

2

����
���� � 1:8+0:1

� 	
, ð3Þ

wherePi
k represents thepredicted valueofpixel i from the subnetwork

k, which is binarized to be either 0 or 1, and N is the spatial resolution
of the input patterns. The confidence-based weight of each subnet-
work is defined as:

wk = exp

P
j≠k1� cjP
j1� cj

 !
, j = 1,2,3: ð4Þ

The final ensemble prediction is the weighted summation of
predictions P1, P2 and P3 from three subnetworks:

P=
w1 � P1 +w2 � P2 +w3 � P3

w1 +w2 +w3
: ð5Þ

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided in this paper. One set of testing datasets to
demonstrate the algorithm is provided in Figshare with the identifier
https://doi.org/10.6084/m9.figshare.24249676. Source data are pro-
vided in this paper.

Code availability
The code is available on GitHub (https://github.com/fudanawei/
MMDN31).

References
1. Čižmár, T. & Dholakia, K. Exploitingmultimodewaveguides for pure

fibre-based imaging. Nat. Commun. 3, 1027 (2012).
2. Richardson, D. J., Fini, J. M. & Nelson, L. E. Space-division multi-

plexing in optical fibres. Nat. Photon. 7, 354–362 (2013).
3. Feng, F. et al. Data transmission with up to 100 orbital angular

momentum modes via commercial multi-mode fiber and parallel
neural networks. Opt. Express 30, 23149–23162 (2022).

4. Bianchi, S. & Di Leonardo, R. A multi-mode fiber probe for holo-
graphic micromanipulation and microscopy. Lab Chip 12,
635–639 (2012).

5. Vasquez-Lopez, S. A. et al. Subcellular spatial resolution achieved
for deep-brain imaging in vivo using a minimally invasive multi-
mode fiber. Light Sci. Appl. 7, 110 (2018).

Article https://doi.org/10.1038/s41467-024-45745-7

Nature Communications |         (2024) 15:1498 9

https://doi.org/10.6084/m9.figshare.24249676
https://github.com/fudanawei/MMDN
https://github.com/fudanawei/MMDN


6. Choi, Y. et al. Scanner-free and wide-field endoscopic imaging by
using a single multimode optical fiber. Phys. Rev. Lett. 109,
203901 (2012).

7. Rizzelli, G. et al. Coherent communication over multi mode fibers
for intra-datacenter ultra-high speed links. J. Lightwave Technol.
40, 5118–5127 (2022).

8. Li, W. et al. High-rate quantum key distribution exceeding
110Mb s–1. Nat. Photon. 17, 416–421 (2023).

9. Ding, Y. et al. High-dimensional quantum key distribution based on
multicorefiber using siliconphotonic integrated circuits.npjQuant.
Inf. 3, 25 (2017).

10. Zhou, Y. et al. High-fidelity spatial mode transmission through a 1-
km-long multimode fiber via vectorial time reversal. Nat. Commun.
12, 1866 (2021).

11. Plöschner, M., Tyc, T. & Čižmár, T. Seeing through chaos in multi-
mode fibres. Nat. Photon. 9, 529–535 (2015).

12. Popoff, S. M., Lerosey, G., Fink, M., Boccara, A. C. & Gigan, S.
Controlling light through optical disordered media: transmission
matrix approach. N. J. Phys. 13, 123021 (2011).

13. Borhani, N., Kakkava, E., Moser, C. & Psaltis, D. Learning to see
through multimode fibers. Optica 5, 960–966 (2018).

14. Rahmani, B., Loterie, D., Konstantinou, G., Psaltis, D. & Moser, C.
Multimode optical fiber transmission with a deep learning network.
Light Sci. Appl. 7, 69 (2018).

15. Rahmani, B. et al. Actor neural networks for the robust control of
partially measured nonlinear systems showcased for image pro-
pagation through diffuse media. Nat. Mach. Intell. 2,
403–410 (2020).

16. Zhang, S. et al. Spatial pilot-aided fast-adapted framework for
stable image transmission over longmulti-mode fiber.Opt. Express
31, 37968–37979 (2023).

17. Caramazza, P., Moran, O., Murray-Smith, R. & Faccio, D. Transmis-
sion of natural scene images through a multimode fibre. Nat.
Commun. 10, 2029 (2019).

18. Li, S. et al. Compressively sampling the optical transmission matrix
of a multimode fibre. Light Sci. Appl. 10, 88 (2021).

19. Fan, W., Chen, Z., Yakovlev, V. V. & Pu, J. High-fidelity image
reconstruction through multimode fiber via polarization-enhanced
parametric speckle imaging. Laser Photon. Rev. 15, 2000376 (2021).

20. Resisi, S., Popoff, S. M. & Bromberg, Y. Image transmission through
a dynamically perturbed multimode fiber by deep learning. Laser
Photon. Rev. 15, 2000553 (2021).

21. Li, Y., Xue, Y. & Tian, L. Deep speckle correlation: a deep learning
approach toward scalable imaging through scattering media.
Optica 5, 1181–1190 (2018).

22. Tahir, W., Wang, H. & Tian, L. Adaptive 3D descattering with a
dynamic synthesis network. Light Sci. Appl. 11, 42 (2022).

23. Choi, J. H., Elgendy, O. A. & Chan, S. H. Optimal Combination of
Image Denoisers. IEEE Trans. Image Process 28, 4016–4031 (2019).

24. Agostinelli, F., Anderson, M. R. & Lee, H. Adaptive Multi-Column
DeepNeural Networkswith Application toRobust ImageDenoising.
Neural Inf. Process. Syst. 1, 1493–1501 (2013).

25. Deng, M., Li, S., Goy, A., Kang, I. & Barbastathis, G. Learning to
synthesize: robust phase retrieval at low photon counts. Light Sci.
Appl. 9, 36 (2020).

26. Fan, P. et al. Learning enabled continuous transmission of spatially
distributed information through multimode fibers. Laser Photon.
Rev. 15, 2000348 (2021).

27. Zhao, W. et al. Ultrahigh-speed color imaging with single-pixel
detectors at low lightlevel. Phys. Rev. Appl. 12, 034049 (2019).

28. Wang,M., Sun,M.-j &Huang, C. Single-pixel 3D reconstruction via a
high-speed LED array. J. Phys. Photon. 2, 025006 (2020).

29. Zhao, T., Ourselin, S., Vercauteren, T. & Xia, W. Seeing through
multimode fibers with real-valued intensity transmission matrices.
Opt. Express 28, 20978–20991 (2020).

30. Zeiler, M. D. Adadelta: an adaptive learning rate method. https://
arxiv.org/abs/1212.5701 (2012).

31. Zhou,W., Li, Z.MMDNcode for self-superviseddynamic learning for
long-term high-fidelity image transmission through unstabilized
diffusive media. https://doi.org/10.5281/zenodo.10432215 (2023).

Acknowledgements
This work was sponsored by the National Natural Science Foundation of
China (62231018, Z.L.; 61925104, N.C.), and Shanghai Science and
Technology funding (2021SHZDZX0103, Z.L.).

Author contributions
Z.L. conceived of the project; W.Z. developed and implemented the
reconstruction algorithm; Z.L., S.Z., andW.Z. built the optical setup; Z.L.,
W.Z., and Z.Z. designed the experiments and analyzed the experimental
data; W.Z., S.Z., and Z.Z. collected the data; J.S., C.S., and J.Z. provided
instructions on the manuscript; N.C. and Q.D. provided mentoring
support; Z.L. andW.Z. wrote the manuscript with input from all authors.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-45745-7.

Correspondence and requests for materials should be addressed to
Ziwei Li, Nan Chi or Qionghai Dai.

Peer review information Nature Communications thanks the anon-
ymous reviewers for their contribution to the peer review of this work. A
peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-45745-7

Nature Communications |         (2024) 15:1498 10

https://arxiv.org/abs/1212.5701
https://arxiv.org/abs/1212.5701
https://doi.org/10.5281/zenodo.10432215
https://doi.org/10.1038/s41467-024-45745-7
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Self-supervised dynamic learning for long-�term high-fidelity image transmission through unstabilized diffusive�media
	Results
	Multi-scale memory dynamic-learning network
	Long-term spatial transmission through unstabilized�MMFs
	Multi-scale memory ensemble improves instability robustness
	Scalability and generalization of�MMDN
	Long-term high-throughput video transmission

	Discussion
	Methods
	Experimental�setup
	Stability analysis of MMF channel
	Data preparation
	Neural network architecture and training details
	Confidence-based ensemble algorithm
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




