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Unsupervised classification of brain-wide
axons reveals the presubiculum neuronal
projection blueprint

Diek W. Wheeler 1 , Shaina Banduri1, Sruthi Sankararaman1, Samhita Vinay1 &
Giorgio A. Ascoli 1

Wepresent a quantitative strategy to identify all projection neuron types from
a given region with statistically different patterns of anatomical targeting. We
first validate the technique with mouse primary motor cortex layer 6 data,
yielding two clusters consistent with cortico-thalamic and intra-telencephalic
neurons. We next analyze the presubiculum, a less-explored region, identify-
ing five classes of projecting neurons with unique patterns of divergence,
convergence, and specificity. We report several findings: individual classes
target multiple subregions along defined functions; all hypothalamic regions
are exclusively targeted by the same class also invading midbrain and agra-
nular retrosplenial cortex; CornuAmmonis receives input froma single class of
presubicular axons also projecting to granular retrosplenial cortex; path dis-
tances from the presubiculum to the same targets differ significantly between
classes, as do the path distances to distinct targets within most classes; the
identified classes have highly non-uniform abundances; and presubicular
somata are topographically segregated among classes. This study thus
demonstrates that statistically distinct projections shed light on the functional
organization of their circuit.

The classification of neurons in the mammalian nervous system
has long been a focus of intensive investigation. While local fea-
tures from slice preparations in vitro may suffice to infer the
circuit roles of GABAergic interneurons1–3, long-range projecting
axons are crucial architectural elements of neural organization4,5

constituting the conceptual and physical nexus between brain-
wide circuits and synaptic communication6. Thus, projection
axons have long been digitally traced from serial sections after
in vivo labeling and light microscopy imaging7–10. At the same
time, their macroscopic extent (~1 cm span; ~1 m cable length) and
microscopic caliber (~100 nm branch thickness) combine into a
formidable technological challenge for large-scale collection11,12.
As a result, the number of completely reconstructed projection
axons in any mammalian neural system has until recently
remained into the low tens.

A source brain region projecting to N targets (where N typically
ranges between 10 and 50 in the mouse cortex) could contain any
combination of 2N−1 distinct axonal projection types. Such a combi-
natorics challenge requires a large-scale data collection for proper
classification. Projects based on fluorescent Micro-Optical Sectioning
Tomography (fMOST) technology13–15 or the Janelia MouseLight
platform16, launched in recent years to address this need, produced
nearly 10,000 mouse whole-brain single neuron reconstructions
registered to a 3D Common Coordinate Framework (CCF)17 with con-
sensus anatomical labeling18. However, these newly available data do
not themselves generate novel scientific insights, explain brain cir-
cuitry, or even disprove that axons might simply invade a random
subset of the regional target areas19. Rigorous methods are needed to
test the hypothesis that specific projection types exist, to characterize
their identities, and to quantify their population sizes20.
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This study introduces an original technique to objectively identify
projection-basedneuronal classes. To ascertainwhether a collectionof
axonal projections might result from essentially random variation
within the constraints of regional connectivity or likely reflects distinct
neuron types, we begin from the foundational criterion for classifica-
tion: if a set of itemsbelongs to segregated classes, their pairwise inter-
individual differences must be on average larger between than within
classes. In other words, two items from the same class should tend to
bemore similar to each other than two items from separate classes. To
implement this logic into a classification framework, we couple rigor-
ous statistical testing with unsupervised hierarchical clustering. A
unique strength of this approach is its entirely data-driven granularity:
the continuous accumulation of new tracings will progressively refine
the classification details with increasing statistical power. We can then
characterize the identified projection classes by quantifying their
population size, topographic somadistributions, and convergenceand
divergence patterns.

In the remainderof this article,wefirstproposea formaldefinition
of and a quantitative solution for the classification problem. We vali-
date our approach by applying it to layer 6 of the primary motor
cortex, and then utilize it to study the presubiculum, a rather under-
investigated region of themouse brain. We next quantify the neuronal
population sizes of the presubicular projection classes and char-
acterize the spatial distribution of their somata. Finally, we analyze the
patterns of divergence and convergence of presubicular projection
classes. We conclude by discussing the biological interpretations of
these results.

Results
Quantitative solution of the classification problem
The axonal projections of each neuron in a source region can be
represented as k-dimensional vectors, where k is the number of target

regions invaded by the source region. Each of the k components of the
vector quantifies the number of axonal points within the corre-
sponding region (Fig. 1; see “Choice of metric to quantify axonal
extent” in “Methods”). We explore the null hypothesis, H0, that all
neurons from a source region belong to a single projection class
(Fig. 2a), as opposed to the alternative hypothesis, HA, that distinct
projection classes exist from that source region (Fig. 2b). If two
hypothetical classes exist, the projectionswill bemore similar between
neurons within a class and more different across classes (Fig. 2c). In
such a two-class scenario, the combined within- and across-class dis-
tances would thus form a wider distribution than the distribution
generated if all neurons belong to just a single class (Fig. 2d). To for-
mally test HA, wemeasure all pairwise differences between neurons (as
arccosine vector distances, see “Methods”). We then generate the
distribution of distances for H0 by randomizing the projection pat-
terns while preserving total axonal extent both by neuron and target
region. We achieve this single-class continuum by iterative stochastic
swapping of axonal points between neurons across two target regions
(see Fig. 2e and “Methods”). We can then apply Levene’s one-tail sta-
tistical test to ascertain whether the original distribution of pairwise
distances has significantly larger variance than the randomized dis-
tribution. If the answer is positive, we must discard H0 and accept HA.
Starting from the top node in an unsupervised hierarchical clustering
tree, we can thus repeat Levene’s test on the neurons of eachof the two
subtrees, continuing the process until none of the variance differences
are statistically significant (Fig. 2f). When Levene’s test fails (i.e., it
provides a negative answer), the precise cutoff is determined inde-
pendently of the other points of failure. Therefore, all neuronswithin a
cluster (i.e., under the same Levene failure point) are statistically
equivalent with respect to the axonal projection patterns across the
target regions, but each cluster is independent of the other clusters.
Moreover, there is no correspondence between the cutoff levels and
the resulting number of neurons in each cluster.

Validation of the approach
To validate the above research design, we first analyzed 52MouseLight
layer 6 neurons from the primary motor cortex21 (Source data are
provided as a Source Data file). This anatomical area is known to
contain two distinct projection classes with well-defined subdivisions:
cortico-thalamic (CT) and cortico-cortical or intra-telencephalic (IT)
neurons22. The variance of the distribution of pairwise axonal projec-
tion differences of these neurons was significantly larger than that of
the randomized projections (p = 6.46 × 10−51; variance of real data =
373.4; variance of randomized data = 195.7), indicating the existence
of distinct clusters. However, both subtrees after the first split of
unsupervised hierarchical clustering returned a non-significant
Levene’s test (IT: p =N/A; variance of real data = 219.9; variance of
randomized data = 240.0; CT: p =0.24; variance of real data = 295.1;
variance of randomized data = 264.0), revealing exactly two clusters
(Fig. 3a). The first cluster, consisting of 21 neurons, projected almost
exclusively to motor cortical targets; the second cluster of 31 neurons
projected primarily to thalamic targets (Fig. 3b–d). These patterns
were fully consistent with the axonal pathways of the IT and CT neu-
ronal classes, respectively. This finding thus corroborates the validity
of employing Levene’s test of variance on pairwise difference dis-
tributions to identify statistically distinct classes in unsupervised
hierarchical clustering.

Classification of projection neurons from mouse presubiculum
We then applied our analytic technique to a lesser-explored source
region of the mouse brain: the presubiculum. Unsupervised clustering
and the test of variance demonstrated that the 93MouseLight neurons
from the presubiculum form five distinct projection classes (Fig. 4a–c).
We designate each class by a letter (A-E) followed by the number of
neurons in the class (Fig. 4c). The first class, A38, primarily targets the

Fig. 1 | Brain-wide neuronal projections. CCF-registered reconstruction of two
presubicular neurons (brain depiction and neurons AA1090 in black and AA1058 in
blue from the Janelia MouseLight project) invading 9 regions out of 40 potential
targets along with the numbers of axonal points of the neurons in each highlighted
region (posterior viewof brain). Source data are provided as a SourceData file. CCF
common coordinate framework, AM anteromedial nucleus, AV anteroventral
nucleus, cc corpus callosum, dhc dorsal hippocampal commissure, fx fornix, LHA
lateral hypothalamic area, LM lateral mammillary nucleus, MMmedial mammillary
nucleus, TH other thalamic nuclei.
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lateral entorhinal cortex (LEC), accounting for 82% of axonal extent
outside of the presubiculum. This class also invades the dorsoventral
(granular) retrosplenial cortex as well as the hippocampal formation
(dentate gyrus, CA3, CA2, CA1, and subiculum). The second class, B27,
mainly targets the dorsal portion of the medial entorhinal cortex
(dMEC), accounting for 92.5% of extra-presubicular axonal extent, as
well as retrohippocampal zone and parasubiculum. Class C3 neurons
mostly target the contralateral dMEC (42%) and LEC (40%), subiculum
(14%), and parasubiculum (4%) through extensive callosal and com-
missural fibers. Class D19 has the most complex (and unreported)
pattern of innervation: in addition to major projections to the

subiculum (40.8%) and dentate gyrus (16.3%), it is the sole source of
projections to the lateral (agranular) retrosplenial cortex, to the
hypothalamus (including the lateral mammillary nucleus and 18 addi-
tional nuclei), and to the superior and inferior colliculi in themidbrain.
This neuronal class also projects to a subset of 8 thalamic nuclei,
including the medial part of the anterior thalamic nucleus (ATN) and
the lateral geniculate nucleus. Lastly, class E6 projects to a com-
plementary set of 14 other thalamic nuclei, including the ventral,
dorsal, anterior, and lateral parts of the ATN and themedial geniculate
nucleus. Neurons from all five projection classes also have substantial
collaterals within the presubiculum. Examples of projection neurons

Fig. 2 | Definitions of neuron classes and clustering methods. a In a single-class
scenario, the distribution of differences between neurons can be calculated for all
neuron pairs (pink double-arrows). b If two distinct classes exist, neurons (repre-
sented here as black dots) will tend to have more similar projections within their
class (red double-arrows) and more different ones across classes (blue double
arrow). c The differences within the classes (red distribution) will be smaller than
those between classes (blue distribution). d The distribution of the combined fre-
quency of differences, in a multi-class scenario (red-blue stacked areas; green half-
height width), will be wider than that of a single-class distribution (pink curve;
orange half-height width). e Diagram showing the randomization of projection
patterns through the repeated pairwise swapping of axonal point counts between

two neurons across two of their potential target regions, which preserves the col-
umn (for a given region) and row (for a given neuron) sums of the matrix. This
swapping results in a projection pattern continuum that matches with the overall
distribution representing the 1-class null hypothesis. f Unsupervised hierarchical
clustering groups a set of neurons into classes based on their relative pairwise
differences or similarities, as modeled by a binary dendrogram. The top (root) of
the dendrogram represents all neurons lumped into the same class, while the
bottom (leaves) shows every neurons split into separate classes. The p value that
determines whether to keep splitting is derived from Levene’s test based on a one-
way ANOVA of the absolute data values and the group means to which the data
values belong.
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Fig. 3 | Primary motor cortex L6 (IT vs. CT). a Representation of the two clusters
producedby Levene’s one-tailed test for the equality of variances andunsupervised
hierarchical clustering, using MouseLight neurons from the primary motor cortex,
layer 6 (n = 52).bColormap of the axonal distributionsof neurons (columns) across
anatomical regions (rows), with darker shades representing more axonal projec-
tions. The axonal points for the thalamic targets aremore numerous than those for
the motor cortical targets by a factor of two. Source data are provided as a Source
Datafile. cCCF-registered reconstructionsof the axonalpathways of representative

IT (intra-telencephalic, red, AA0876) and CT (corticothalamic, blue, AA0398)
neuronswith semitransparent surfaces of primarymotor cortex layer 6 (green) and
selected thalamic nuclei (pink). The two black dots indicate the cell body locations
of the two representative cells from each class.dCCF-registered reconstructions of
the axonal pathways of all IT andCTneurons (see SourceData for a full listing of the
52 neurons depicted) in the MouseLight sample (same color coding). The neurons
and brain depictions in panels (c) and (d) are from the Janelia MouseLight project.
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from each of the presubicular projection classes are depicted in
Fig. 4d–e.

Presubicular classes have non-uniform population sizes
Next, we quantified the proportion of neurons in the mouse pre-
subiculum that belong to each projection class. To this aim, we
extracted the anterograde tract tracing density distributions from the
Allen Institute regional connectivity atlas andmatched the fractions of
neurons in every class based on their axonal patterns by numerical
optimization (seeNon-Negative Least Squares inMethods; Sourcedata
are provided as a Source Data file). The results converged with very

small residual error (<0.0006%) indicating a near-exact correspon-
dence between single-neuron and regional projections. Fully sampling
neurons from across the presubiculum, Class D19, reaching the mid-
brain, hypothalamus, lateral (agranular) retrosplenial, and the lateral
geniculate (visual thalamus) accounted for the greatest portion (38.1%)
of neurons. Class A38, targeting the hippocampus, subiculum, dorso-
ventral (granular) retrosplenial cortex, and lateral entorhinal cortex
(what pathway), accounted for the second largest share (30.6%) of
neurons. Class B27, projecting to the parasubiculum and medial
entorhinal cortex (where pathway) consisted of 16.3% of projection
neurons. Class E6, focused on other thalamic nuclei including medial

Fig. 4 | Classification of projection neuron types in the presubiculum.
a Representation of 5 axonal clusters produced by Levene’s test and unsupervised
hierarchical clustering of neurons from the presubiculum (n = 93). b Colormap of
the axonal distributions of neurons (columns) across anatomical regions (rows),
with darker shades representing more axonal projections. Parcel names high-
lighted in pink are hypothalamus related. Parcel names highlighted in yellow and
light blue are thalamus related. Source data are provided as a Source Data file.
c Neuron-to-target assignments for the identified axonal projection classes and
corresponding anatomical regions (dotted line: contralateral). d Anterior view of
the mouse brain with a CCF-registered reconstruction of one neuron from each
class (cluster A, blue, AA0021; cluster B, red, AA0724; cluster C, cyan, AA0168;
cluster D, brown, AA0031; cluster E, green, AA0244). Color coding of neurons and
semitransparent anatomical areas shown in (a, b, and c). e Posterior view of the
brain with CCF-registered reconstructions of all 93 MouseLight presubicular neu-
rons (see Source Data for a full listing of the neurons depicted). The highlighted

parcels are the same as those depicted in panel (c), with the same color coding. The
neurons and brain depictions in panels (d) and (e) are from the Janelia MouseLight
project. CA3+CA1CornuAmmonis areas 3 and 1, DGdentate gyrus, Sub subiculum,
LEC lateral entorhinal cortex, dMEC dorsal portion of themedial entorhinal cortex,
ParaS parasubiculum, PostS postsubiculum, Retrohipp retrohippocampal region,
DV(gr.)RtSpl dorsal and ventral (granular) retrosplenial cortex, L(ag.)RtSpl lateral
(agranular) retrosplenial cortex, MidB midbrain, Hyp hypothalamus, PMdv +TU
dorsal and ventral premammillary nucleus and tuberal nucleus, MM+ LZ: medial
mammillary nucleus and hypothalamic lateral zone, MBO+ LM mammillary body
and lateral mammillary nucleus, mATN+ PT medial anterior thalamic nucleus and
parataenial nucleus, TH+ LGN thalamus and lateral geniculate nucleus, dvATN+
MGN dorsal and ventral anterior thalamic nucleus and medial geniculate nucleus,
IAD+ IAM interanterodorsal and interanteromedial nucleus of the thalamus, LD+
AD lateral dorsal and anterodorsal nucleus of thalamus.
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geniculate (auditory), was responsible for 13.7% of presubicular neu-
rons. The diffuse contralateral projections of class C3 comprised the
remaining 1.3%.

When accounting for these relative proportions together with the
MouseLight axonal projections, we can estimate the contribution of
each class to the presubicular projections in each collection of target
regions. Inparticular, the dentate gyrus receives 21%of its presubicular
afferents from class A38 and 79% from class D19. The subiculum
receives 69% of its presubicular afferents from class D19, 30% from
class A38, and 1% from class C3. The lateral entorhinal cortex receives
99% of presubicular afferents from class A38 and 1% from class C3. The
dorsal medial entorhinal cortex and parasubiculum receive 99% of
presubicular afferents from class B27 and 1% from class C3. All other
regions are targeted by individual classes: CA3, CA1, and the dorso-
ventral (granular) retrosplenial cortex by A38; the midbrain, hypo-
thalamus, lateral (agranular) retrosplenial cortex, and part of the
thalamic nuclei includingmedial ATN and lateral geniculate nucleus by
D19; and the rest of the thalamic nuclei including dorsoventral ATN
and medial geniculate nucleus by E6.

Somata distribution reveals class topographic organization
Computational geometry analysis of soma locations within the
presubiculum demonstrated a clear spatial separation among the
four main projection classes: A38, B27, D19, and E6 (the smallest class,
C3, is largely contralateral projecting). Specifically, the convex hull
volume of each neuron class overlapped only minimally (~5–20%) with
that of other neuron classes (Fig. 5a–c). In particular, class A38 was
positioned more rostrally and dorsally relative to the caudal-ventral
position of class B27, with approximately 14% of overlap (Fig. 5a). The
overlap of A38 was maximal with D19 (21%); however, while most
A38 neurons had a selective somatic concentration in layer 2 (34/38:
89.5%), D19 had a somatic distribution across all 3 presubicular layers:
21% in layer 1 and 26% in layer 3 (Fig. 5b). Class E6 had the most
lateral positioning resulting in almost complete segregation from the
other projection classes: there were so few overlapping somata that a
proper convex hull volume of the overlap could not be calculated
(Fig. 5c, d).

Efferent path distances from the same neurons vary by target
We tested whether the path distances from presubicular neurons of a
given projection class differed across their divergent target regions
(Fig. 6). In these analyses of divergence, ipsilateral and contralateral
targets were considered separately, as the latter are systematically
farther than the former. For class A38 neurons, projection distances to
the ipsilateral lateral entorhinal cortex, subiculum, and dentate gyrus
are significantly shorter than those to the ipsilateral hippocampus;
moreover, projection distances to the ipsilateral lateral entorhinal
cortex are significantly longer than those to the ipsilateral subiculum
and dentate gyrus. Similarly, projection distances to the contralateral
subiculum and lateral entorhinal cortex are significantly shorter than
those to the contralateral hippocampus. Thus, presubicular efferent
path distances differ less between ipsilateral and contralateral hippo-
campus than between other targets across brain hemispheres (Fig. 6a).
For class B27, projections to the ipsilateral parasubiculum have sig-
nificantly shorter paths than those to medial entorhinal cortex, dorsal
zone, but the distances are comparable in the contralateral case
(Fig. 6b). Finally, for class D19, projections both to the ipsilateral
medial anterior thalamic nucleus and lateral geniculate nucleus, and to
the ipsilateral hypothalamus and lateral mammillary nucleus com-
bined have significantly longer paths than those to the ipsilateral
midbrain (Fig. 6c).

Afferent path distances to the same region vary by class
Next, we asked whether the axons from neurons of distinct projection
classes converging onto their shared targets had different path

distances. With the sole exception of the dentate gyrus, all target
regions displayed a significant dependence of path distance on the
presubicular neuron class (Fig. 7). For the ipsilateral medial entorhinal
cortex, dorsal zone, projections from E6 and D19 have shorter dis-
tances than those from B27 and A38, and projections from B27 have
significantly shorter distances than those from A38. For the con-
tralateral medial entorhinal cortex, in contrast, projections from B27
have significantly longer distances than those from A38 (Fig. 7a). For
the ipsilateral parasubiculum, path distances fromD19 are significantly
longer than those from B27 (Fig. 7b). Finally, for the contralateral
subiculum, parasubiculum, and lateral entorhinal cortex, path dis-
tances from B27 are significantly longer than those from A38
(Fig. 7b–d).

Discussion
This study introduced an original method to objectively identify
projection-based neuronal classes by pairing the Levene’s test with
unsupervised hierarchical clustering. We first conducted a con-
firmatory study on layer 6 of the primary motor cortex to verify that
the proposed technique could reproduce known projection types in a
previously explored area of the mammalian brain. The results yielded
two clusters with axonal projections consistent with those of the cor-
ticothalamic and intratelencephalic neuron classes found in past stu-
dies, thereby confirming the validity of the technique23.

Levene’s test was chosen because it is not dependent on the data
distributions being normal. Given the size of current available data,
normality cannot be assured. As the accumulation of data increases by
several orders of magnitude, it is possible that other statistical tests,
such as an F-test, could be used instead. Another form of unsupervised
clustering, such as K-means, could be utilized to achieve similar ends
to what we were able to achieve. The important aspect is that the
method be unsupervised, such that the data themselves direct the
clustering without any user input.

To test whether the technique could lead to novel insights, we
then applied it to the presubiculum, a region with crucial cognitive
function24, yet few studies on its circuitry25. The results yielded
five clusters, indicating distinct neuron classes, which led us to reject
the null hypothesis that projection neurons exhibit random variation
within the constraints of regional connectivity from the presubiculum.
In an earlier study26, retrograde tracing identified five classes of neu-
rons projecting from the presubiculum, which target the retrosplenial
cortex (corresponding to our class A38), contralateral subiculum (class
C3), medial entorhinal cortex (class B27), anterior thalamic nucleus
(class E6), and lateral mammillary nucleus (class D19). Our results
confirm the existence of these five classes and add new information
that reveals patterns of divergence (e.g., class A38 projects to the
retrosplenial cortex, dentate gyrus, subiculum, and entorhinal cortex),
convergence (e.g., the subiculum receives projections from classes
A38, contralateral C3, and D19), and specificity (e.g., class E6 projects
exclusively to the medial geniculate nucleus, and all hypothalamic
regions receive projections solely from class D19; see summary Fig. 8).

The proposed clustering technique correctly distinguishes cor-
tical (classes A38, B27, andC3) fromsubcortical (D19 and E6) pathways
in the second binary split in the hierarchical classification. These
results also add cellular level details to previously reported pre-
subicular projections to retrosplenial cortex and thalamic reticular
nuclei27, as well as a broader circuit context to the characterization of
individual presubicular neurons targeting the medial entorhinal
cortex28.

Furthermore, our findings reveal that several target regions are
spatially subdivided according to the differing inputs between classes.
These regions include the entorhinal cortex (lateral projectionsmainly
from class A38 and medial projections primarily from class B27), ret-
rosplenial cortex (dorsoventral granular projections almost exclu-
sively fromclass A38 and lateral agranular projections solely fromclass
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D19), and thalamus (medial anterior thalamic nucleus and lateral
geniculate nucleus projections principally from class D19 and dorso-
ventral anterior thalamic nucleus and medial geniculate nucleus pro-
jections predominantly from class E6). Some of these regional
subdivisions also have known functional distinctions: for instance, the
medial entorhinal cortex specializes in spatial representation while the
lateral entorhinal cortex specializes in integrating sensory input29.
Among the thalamic geniculate nuclei, themedial geniculate nucleus is
part of the auditory pathway, whereas the lateral geniculate nucleus is
part of the visual pathway4.

From a comparison of divergent path distances from one pre-
subicular class to its major targets, along with a comparison of con-
vergent path distances from each presubicular class to collectively
major targets, we found that path distances to the same targets were
significantly different between classes, as were the path distances to
distinct targets within most classes. This might imply that electrical

impulses reach different targets with varying delays, both within the
same class and between classes.

Topographic analysis of presubicular classes revealed spatial
separationbetween the somata of each class. Grid cells are co-localized
with head-direction and border cells in dorsal presubiculum as com-
pared to the ventral presubiculum30, in a manner similar to that found
in the deeper layers of the medial entorhinal cortex31, implying that
grid cells are more likely to be found in class A38 and E6 neurons than
in classB27neurons. Topographic analysis also suggests thepossibility
of anatomically mapping the input and output of the circuitry spe-
cializing in head direction computations32. Our reported topography
of presubicular projections classes is consistent with the recently
observed local modularity of the head-direction microcircuit33, and
may help clarify the relationship between the egocentric and allo-
centric spatial and episodic representations of the cortico-
hippocampal system34. Previous studies found head-direction cells in

Fig. 5 | Spatial distributions of somata in the presubiculum across projection
classes. Convex hulls of neurons (spheres) from classes A38 (blue), B27 (red), D19
(brown), and E6 (green), and semitransparent presubiculum (green). a Left sagittal
view of A38 and B27. b Layer 1 (green), layer 2 (purple), and layer 3 (orange) of the
presubiculum are highlighted in an anterior coronal view, with somata from A38 in
blue and D19 in brown. Most of the A38 somata are concentrated in layer 2, while

the D19 somata tend to bemore concentrated in layers 1 and 3. Somata that do not
follow this pattern are indicated with a white dot inside of the circle. c Left sagittal
view of D19 and E6. d Posterior coronal view of B27 and E6. The brain depictions in
all panels are from the Janelia MouseLight project, and the spheres were generated
with MATLAB.
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layer 3 of dorsal presubiculum33. Since class D19 neurons are found in
layer 3, whereas class A38 neurons are mostly confined to layer 2, this
would imply that head-direction cells make up part of the composition
of class D19, but less so for class A38.

Aswithmany secondary data analyses,wehave limited knowledge
of, and control over, artifactual shortcomings in the utilized datasets
due to possible idiosyncrasies in labeling, imaging, tracing,

registration, and mapping. However, the technique introduced
with this work is applicable to many disparate sources of data
besides MouseLight, including fMOST13–15 and even MapSeq/
BarSeq35,36. These data sources follow separate experimental and
computational protocols, allowing independent validation for the
source regions in which these datasets overlap. Our results so far, in
the cases of the mouse primary motor cortex and presubiculum,
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indicate that the executed analysis is robust to these possible con-
founding variables22.

Overall, this study revealed that neurons can be divided into dis-
tinct classes based on axonal projection patterns, as demonstrated in
layer 6 of the primarymotor cortex and the presubiculum.Our applied
analyses can be used to similarly analyze neurons projecting from all
other mouse brain regions with sufficient data. There are currently
approximately 40 regions fitting this criterion in the existing datasets,
but this number is expected to grow in the near future. Furthermore,
we suggest the application of pairing Levene’s test and unsupervised
hierarchical clustering to other complementary datasets, such as
single-cell transcriptomic datasets, to classify neurons across a mole-
cular domain, in addition to an anatomical domain, as demonstrated
here. Moreover, all these complementary datasets are broadly expec-
ted to continue to grow in sample size, brain coverage, and acquisition
pace37,38, supporting a call to establish cloud-based, community
accessible pipelines for robust, rigorous, and systematic neuronal
characterization39,40.

Methods
Choice of metric to quantify axonal extent
The axonal reconstructions utilized in this study are represented in the
Janelia MouseLight public repository21 (available at http://ml-
neuronbrowser.janelia.org) as SWC-formatted files41. This standard
data structure captures each neuronal tracing point with a set of
numerical values that include the three-dimensional coordinates, the
local neurite radius, and the identity of the next point in the path to the
root42. The spacing between consecutive points can be computed as
3D Euclidean distance of their locations, and the length of the axon as
the sum of those distances.

It may be tempting to assume that length constitutes the
most natural metric to quantify axonal extent in each brain
region. However, it is important to remember that this dataset
was collected by light microscopy and does not capture the dis-
tribution of presynaptic boutons. Therefore, it is not directly
possible to distinguish synapse-bearing portions of the axonal
arborization from fibers of passage. It is arguably the connectivity
target regions that should guide classification rather than the
regions through which the projection simply travels to reach its
destinations. This can be a critical confounding factor as the
longest unbranching stretches of cortical projecting neurons
often correspond precisely to fibers of passage43.

In our own axonal reconstruction experience, we noticed that,
while tracking branches from the image stack, it is natural to increase
the density of tracing points when the arbor meanders in the synaptic
neuropil than when it traverses layers devoid of potential postsynaptic

partners10. Moreover, when we painstakingly identified and annotated
the position of all axonal boutons in a different study, we found a
tendency to utilize more tracing points per unit of length in bouton-
rich branches thanotherwise44. These observations are consistent with
the need for greater sampling rates in the presence of larger signal
gradients or first derivatives in terms of axonal curvature (neuropil
meandering), radius (bouton swelling vs. shaft), or both (bifurcation
points).

In the MouseLight dataset analyzed here (Source data are pro-
vided as a Source Data file), the number of points in an axonal branch
and the corresponding branch length are significantly linearly corre-
lated (Pearson R =0.742; N = 19,847; p < 10−99). To determine whether
the average spacing between points varies non-uniformly between
supposed fibers of passage and putative synapse-bearing axons, we
separated the axonal branches in each presubiculum neuron based on
Strahler (centripetal) order, namely order 1–3 (terminal, pre-terminal,
and pre-pre-terminal branches) from order 4–6 (those more than 2
bifurcations away from an ending). This choice is justified by conver-
ging experimental evidence that cortical axonsmakemost presynaptic
contacts at Strahler orders 1–3, while boutons are substantially sparser
at orders 4–645,46. This is also consistent with the strongly non-uniform
distribution of average branch length in the dataset investigated in this
study, indicating more likely fibers of passage at Strahler order 4–6
(964.4 ± 1037.1 µm) than at Strahler order 1–3 (144.7 ± 80.2 µm; one-tail
t-test p = 4.8 × 10−11; t-value = −7.35; df = 88). We found indeed that the
average spacing of tracing points is significantly smaller at order 1–3
(22.54 ± 10.61 µm) thanat Strahler order 4–6 (39.07 ± 27.43 µm;one-tail
t-test p = 3.5 × 10−7; t-value = −5.26; df = 111). This again supports the
notion that the number of tracing points is a better proxy indicator of
synapse-bearing axonal extent than total length. We thus chose to
utilize thenumberof tracingpoints, andnot arbor length, as themetric
to classify axonal projections.

Data extraction and storage
The location of each axonal data point for nearly 1100 neurons was
extracted from JSON files from the MouseLight dataset21 using the
freeware JSONLab v1.5 (v2.0 is now available at https://sourceforge.
net/projects/iso2mesh/files/jsonlab/2.0%20%28Magnus%20Prime%
29/jsonlab-2.0.zip/download), where the three-dimensional coordi-
nates and parcel information were provided for each axonal point of
the neuron. The number of axonal points in each brain parcel were
tabulated for all neurons and were stored in a matrix, in which each
row represents a neuron, each column represents a parcel, and the
values in each cell represent the axonal counts of a particular neuron in
a particular region (Fig. 1; Source data are provided as a Source
Data file).

Fig. 6 | Divergent path distance comparison from one neuron class in the
presubiculum to its targets. a Box and whisker plot depicting the range of the
path distances from class A38 to itsmajor ipsilateral (I) and contralateral (C) targets
((I)Sub: n = 2865 independent axonal path lengths; (I)DG: n = 771; (I)LEC: n = 18,720;
(I)CA: n = 957; (C)CA: n = 304; (C)LEC: n = 17,142; (C)Sub: n = 273). Based on a CCF-
registered reconstruction, the axonal path distance of an archetype neuron
(AA0159) from class A38 (light blue), from its soma (black) in the ipsilateral pre-
subiculum (green) to the subiculum (purple), is significantly shorter than that (dark
blue) to the lateral entorhinal cortex (orange).bBox andwhisker plot depicting the
distributions of path distances from class B27 to its major ipsilateral and con-
tralateral targets ((I)ParaS: n = 1622 independent axonal path lengths; (I)dMEC:
n = 25,005; (C)dMEC: n = 15,800; (C)ParaS: n = 1666). Based on a CCF-registered
reconstruction, the axonal path distance of an archetype neuron (AA0374) from
class B27 (light red), from its soma (black) in the ipsilateral presubiculum (green) to
the parasubiculum (brown), is significantly shorter than that (dark red) to the
medial entorhinal cortex, dorsal zone (cyan). c Box and whisker plot depicting the
path distances from class D19 to its major ipsilateral targets ((I)MidB:

n = 405 independent axonal path lengths; (I)mATN+LGN: n = 349; (I)Hyp+LMN:
n = 469). Based on a CCF-registered reconstruction, the axonal path distance of an
archetype neuron (AA0031) from class D19 (light brown), from its soma (black) in
the ipsilateral presubiculum (green) to the midbrain (magenta), is significantly
shorter than that (darkbrown) to the hypothalamus and lateralmammillarynucleus
(red). See Fig. 4 for abbreviation definitions. The red horizontal lines in the box and
whisker plots depict the medians. The first quartiles (Q1) and the third quartiles
(Q3) are represented, respectively, by the lower and upper bounds of the boxes.
Error bars represent the data range, where the lower line is Q1 − 1.5 × (Q3 −Q1) and
the upper line is Q3+ 1.5 × (Q3 −Q1). Red pluses are outlier data points that are
greater than Q3 + 1.5 × (Q3 −Q1) or less than Q1 − 1.5 × (Q3 −Q1). In all depicted
comparisons, significant differences in distances were calculated using a two-sided
Wilcoxon Signed Rank Test performed on neuronal path distances and multiple
testing was corrected for by False Discovery Rate to determine the significance of
the resultant p-values. A * indicates that the path differences were found to be
significant. Source data are provided as a Source Data file. The neurons and brain
depictions in all panels are from the Janelia MouseLight project.
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Hypothesis design
Todeterminewhether distinct projection classes of neurons exist from
a particular parcel of the brain, hypothesis HA, we tested the pairwise
differences between neurons from the experimental matrices descri-
bed above. If only a single class of neurons exists, then only a single
distribution of differences between neuronswill be generated (Fig. 2a).
If two hypothetical classes exist, then the differences between

neurons, evaluated two at a time, will be smaller within a given class
than across the two classes (Fig. 2b, c). In a multi-class scenario, a
histogram of the differences between neurons should be wider than
the distribution generated when all the neurons belong to just a single
class (Fig. 2d). To generate the distribution of differences for the null
hypothesis, H0, a randomized control matrix was generated from the
original experimental matrix through multiple iterations of the
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stochastic pairwise swapping of axonal counts from two neurons
across two target regions (Fig. 2e). This method randomized the pro-
jection patterns, yielding a continuum consistent with the regional
connectivity of Fig. 2a, while preserving axonal sizes (row sums) and
regional targeting (column sums) of the original experimental matrix.

Levene’s test
We assessed the hypothesis that the variance of experimental data was
significantly larger than the variance of randomized data (α =0.05).
For both the experimental and randomized matrices, we computed
the arccosine between a pair of neuronal vectors, each composed of
the axonal counts across all target regions (https://github.com/
Projectomics/MATLAB). These angles measure the projection differ-
ence of two neurons across all brain parcels. We then performed a
1-tailed Levene’s test47 on the angle distributions of the experimental
and randomized matrices to assess whether their variances differed
significantly. To this aim, we used the MATLAB function vartestn with
the TestType parameter set to LeveneAbsolute. If the experimental
data had a greater variance than the randomized data, then the
experimental data could be further divided into classes, consistent
with the scenario presented in Fig. 2b.

Unsupervised hierarchical clustering
We used unsupervised agglomerative hierarchical clustering to
determine a biologically accurate division of neuron classes based
on axonal projection patterns. Specifically, the MATLAB linkage
function, with the average algorithm for computing distance between
clusters, was utilized on the 93 MouseLight neurons originating in
the presubiculum and the 52 MouseLight neurons originating in layer
6 of the primarymotor cortex. The initial assumption (null hypothesis)
was that all neurons were part of a single class. If Levene’s test
yielded significant results, the number of class divisions was
incremented, and the technique was again repeated on each class
division. This iterative process continued until none of the subdivided
classes yielded significant results, thereby yielding the final class divi-
sions (Fig. 2f).

Non-negative least squares
To estimate the fractional counts of cells in eachof k projection classes
in each region, wematched their respective single-cell axonal patterns
against the regional connectivity from anterograde tracing to the m
known targets, as presented in the Allen Mouse Brain Connectivity
Atlas (http://connectivity.brain-map.org/projection). The problem is

Fig. 7 | Convergent path distance comparison from each presubiculum cluster
tomajor targets. a Box and whisker plot depicting the range of the path distances
fromneurons in the various classes to the ipsilateral (I) and contralateral (C)medial
entorhinal cortex, dorsal zone (A38 to (I)dMEC: n = 6194 independent axonal path
lengths; B27 to (I)dMEC: n = 25,005;D19 to (I)dMEC:n = 1030; E6 to (I)dMEC:n = 18;
A38 to (C)dMEC: n = 4301; B27 to (C)dMEC: n = 15,800; C3 to (C)dMEC: n = 183).
Based on CCF-registered reconstructions, the axonal distance of an archetype
neuron from class B27 (red, AA0526), from its soma in the presubiculum (green) to
the ipsilateral dMEC (purple), is significantly longer than the comparable distance
of an archetype neuron from class D19 (brown, AA0875). b Box and whisker plot
depicting the path distances from neurons in various classes to the ipsilateral and
contralateral parasubiculum (B27 to (I)ParaS: n = 1622 independent axonal path
lengths; D19 to (I)ParaS:n = 2031; A38 to (C)ParaS:n = 76; B27 to (C)ParaS:n = 1666).
Based on CCF-registered reconstructions, the axonal distance of an archetype
neuron from class B27 (red, AA0377), from its soma in the presubiculum (green) to
the ipsilateral ParaS (purple), is significantly shorter than the comparable distance
of an archetype neuron from class D19 (brown, AA0385). c Box and whisker plot of
the path distances from neurons in various classes to the contralateral subiculum
(A38 to (C)Sub: n = 273 independent axonal path lengths; B27 to (C)Sub: n = 1389).
Based on CCF-registered reconstructions, the axonal distance of an archetype
neuron from class A38 (blue, AA0528), from its soma in the presubiculum (green)

to the contralateral Sub (purple), is significantly shorter than the comparable dis-
tance of an archetype neuron from class B27 (red, AA0526).d Box andwhisker plot
depicting the path distances from neurons in various classes to the ipsilateral and
contralateral lateral entorhinal cortex (A38 to (I)LEC: n = 18,720 independent axo-
nal path lengths; B27 to (I)LEC: n = 2002; D19 to (I)LEC: n = 27; A38 to (C)LEC:
n = 17,142; B27 to (C)LEC: n = 4532). Based on CCF-registered reconstructions, the
axonal distance of an archetype neuron from class D19 (brown, AA0912), from its
soma in the presubiculum (green) to the ipsilateral LEC (purple), is significantly
shorter than the comparable distance of an archetype neuron from class A38 (blue,
AA0878). See Fig. 4 for abbreviation definitions. The red horizontal lines in the box
andwhisker plots depict themedians. The first quartiles (Q1) and the thirdquartiles
(Q3) are represented, respectively, by the lower and upper bounds of the boxes.
Error bars represent the data range, where the lower line is Q1 − 1.5 × (Q3 −Q1) and
the upper line is Q3+ 1.5 × (Q3 −Q1). Red pluses are outlier data points that are
greater than Q3 + 1.5 × (Q3 −Q1) or less than Q1 − 1.5 × (Q3 −Q1). In all depicted
comparisons, significant differences in distances were calculated using a two-sided
Wilcoxon Signed Rank Test performed on neuronal path distances and multiple
testing was corrected for by False Discovery Rate to determine the significance of
the resultant p-values. A * indicates that the path differences were found to be
significant. Source data are provided as a Source Data file. The neurons and brain
depictions in all panels are from the Janelia MouseLight project.

Fig. 8 | Summary diagram of presubicular class connectivity. The diagram
summarizes the divergence of projections from the classes of the presubiculum
and the convergence into parcels distributed throughout the brain. The sizes of the
class nodes are proportional to the population sizes of the given classes. The cor-
respondence to prior classification of presubicular convergence targets are listed
to the left of the class nodes. The thickness of the arrows is proportional to the

number of axonal points in the destination parcel. The dashed arrows represent
contralateral connections. The intensity of blue of the destination parcel nodes
corresponds to the number of converging connections, where darker corresponds
to more connections. From within each cluster, the arrow lengths are ranked
according to the path distance to target. See Fig. 4 for the parcel abbreviation
definitions.
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equivalent to a set of constrained, weighted, linear equations that can
be solved numerically by non-negative least-square (NNLS)
optimization48. NNLS finds the values x that minimizes the Euclidean
norm of (Ax - b) with the constraint x ≥049, where x is the
k-dimensional vector representing the fractions of neurons in each
class; b is the m-dimensional vector representing the weights of the
regional projections to each target; and A is a k-by-mmatrix with rows
representing the projections of each class (the sum of the summary
vectors of the corresponding neurons) and columns representing
target regions. NNLS was computed using the lsqnonneg function in
MATLAB.

Matrix A and vector b were based on data from the MouseLight
dataset (Source data are provided as a Source Data file) and the Allen
Mouse Brain Connectivity Atlas, respectively. Setting the target region
to the whole brain in the Connectivity Atlas and the source region to
the presubiculum resulted in 7 tracing experiments, which included
projection volumes and projection densities for each target brain
region. Cross referencing the targeted regions of the MouseLight
axonal projections with target regions that appeared in all 7 ante-
rograde tracing experiments resulted in a listing of 66 regions. Matrix
A was created with rows representing these 66 brain regions and col-
umns representing the 5 neuron classes found by pairing Levene’s test
with unsupervised hierarchical clustering of the presubiculum data
(Source data are provided as a Source Data file). The average projec-
tion volume and density values for each of the 66 regions were cal-
culated from the 7 experiments, and the averages were multiplied to
populate the columns of vector b.

To obtain the highest confidence in the NNLS analysis, matrix A
was sequentially bi-normalized first by axonal length and then by
invaded region (Source data are provided as a Source Data file). Spe-
cifically, first each cell in matrix A was normalized so that each row
summed to one. Next, each value was divided by the number of
regions, 66, and multiplied by the number of clusters, 5, such that the
sum of all values in matrix A equaled 5. Subsequently, each cell in
matrix A was normalized so that each column summed to one. Vector
b was normalized such that the sum of all values equaled to one.
Finally, the squared Euclidean norm of the residual of the MATLAB
function lsqnonnegwas calculated as a proxy for the uncertainty of the
analysis.

Soma analysis
To quantify the spatial separation among the somata among the neu-
ron projection classes in the presubiculum, we performed a convex
hull analysis for the location of the soma centers in each class using
MATLAB. To create the convex hull, outliers were removed by itera-
tively going through all points in each class and calculating the volume
of the convex hull without each point. If the volume differed by more
than 1/n of the volume of the original convex hull, which included all
points, the point was considered an outlier and removed from the
dataset. This established an algorithmic thresholding that corre-
sponded well with the visual inspection of potential outliers. However,
if removing the outliers resulted in fewer than four somata, the mini-
mal number of points required to conduct a convex hull analysis, all
points were considered. Between each pair of convex hulls, the pro-
portion of the volume of overlap to the volume of the union of the
convex hulls was used to assess the similarity between topographic
locations.

Analysis of divergence and convergence
Utilizing the original JSON data files, for every neuron in each pre-
subiculumclass, wemeasured the path distance from the soma to each
axonal point in the target region. We then calculated the median path
distance to each target region across all neurons in the class, and
performed aWilcoxon Signed Rank Test50, using theMATLAB function
ranksum, to assess whether the path distances to each characteristic

target of a particular class were significantly different. Using the same
data files, we also performed a Wilcoxon Signed Rank Test to assess
whether the path distances to each characteristic target between all
clusters were significantly different. In both sets of comparisons,
multiple testing was corrected for by False Discovery Rate to deter-
mine the significance of the resultant p-values.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source Data for Figs. 1, 3b, 4b, 6, and 7 are provided with the paper, as
are the neurons depicted in Figs. 3d and 4e, data for the Strahler order
analysis, the axonal counts for the layer 6 of the primarymotor cortex,
and the non-negative least squares analysis.

Code availability
All code is available in the GitHub repository at https://github.com/
Projectomics.
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