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Cellular hierarchy insights reveal leukemic
stem-like cells and early death risk in acute
promyelocytic leukemia

Wen Jin 1,2,4, Yuting Dai 1,4, Li Chen 1, Honghu Zhu 3, Fangyi Dong1,
Hongming Zhu1, Guoyu Meng 1, Junmin Li1, Saijuan Chen 1, Zhu Chen1,2 ,
Hai Fang 1 & Kankan Wang 1,2

Acute promyelocytic leukemia (APL) represents a paradigm for targeted dif-
ferentiation therapy, with aminority of patients experiencing treatment failure
and even early death.We here report a comprehensive single-cell analysis of 16
APL patients, uncovering cellular compositions and their impact on all-trans
retinoic acid (ATRA) response in vivo and early death. We unveil a cellular
differentiation hierarchy within APL blasts, rooted in leukemic stem-like cells.
The oncogenic PML/RARα fusion protein exerts branch-specific regulation in
the APL trajectory, including stem-like cells. APL cohort analysis establishes an
association of leukemic stemness with elevated white blood cell counts and
FLT3-ITD mutations. Furthermore, we construct an APL-specific stemness
score,whichproves effective in assessing early death risk. Finally, we show that
ATRA induces differentiation of primitive blasts and patients with early death
exhibit distinct stemness-associated transcriptional programs. Our work pro-
vides a thorough survey of APL cellular hierarchies, offering insights into cel-
lular dynamics during targeted therapy.

The landscape of cancer-targeted therapies has shifted frommolecular
target identification to cellular heterogeneity characterization and
targeting1,2. The direct targeting of molecular changes driving tumor-
igenesis has proven to enhance therapeutic efficacy in cancer, as
exemplified by the success of molecular targeted therapy in acute
promyelocytic leukemia (APL)3. APL is characterized by its driver
oncogenic fusion protein (PML/RARα), which plays a crucial role in
initiating APL leukemogenesis, as supported by substantial evidence,
including insights frommurine models4,5. Notably, two drugs, all-trans
retinoic acid (ATRA) and arsenic trioxide (ATO), have already achieved
remarkable therapeutic outcomes by directly targeting this oncogenic
fusion protein6. We7–11 and others12,13 have long been focusing on
molecularmechanisms to illustrate how ATRA and ATO directly target

the stability of PML/RARα to reverse transcriptional deregulation,
affecting the proliferation and differentiation of APL cells. It is well-
established that intratumoral heterogeneity at the cellular level is a
critical factor in leukemogenesis, disease progression, and therapy
response14. Advances in single-cell genomics technologies have
uncovered the cellular heterogeneity of chronicmyeloid leukemia and
lung cancer1,15, demonstrating the potential for exploring hetero-
geneous features to improve cancer therapy success rates. In the
context of APL, it has now become imperative to explore whether
leukemic cells driven by the same oncogenic driver, PML/RARα,
exhibit diverse cellular states; if so, to what extent the cellular com-
position and transcriptional heterogeneitymight impact theoutcomes
of targeted therapy in APL.
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Long-term therapeutic efficacy in cancer seems to be attributable
to targeting a rare cell populationwith stemness potentials16–18, such as
leukemic stem cells (LSCs) in APL, although APL LSCs are far from
clear, particularly in terms of cell-of-origin and their relationship with
genetic events. Studies in mice have suggested that APL might arise
from myeloid-committed progenitors, including committed myeloid
progenitors (CMPs) and granulocyte-monocyte progenitors
(GMPs)19–21. Alternatively, APL LSCs might arise from more primitive
progenitors that are earlier than CMPs, as PML/RARα has been
reported to be detectable in both CD34+CD38+ and CD34+CD38−
populations isolated fromAPL patients22. To reconcile these seemingly
conflicting observations, it is imperative to gain a comprehensive
understanding of APL cellular compositions, with a particular
emphasis on the rare LSCs.

Furthermore, extensive investigations into the molecular
mechanisms underlying effective targeted therapies in APL have pri-
marily relied on in vitro analyses or in vivo murine models3,7,8. These
studies have sought to elucidate the effectiveness of ATRAand/orATO
in reversing the aberrant transcriptional regulatory activity of PML/
RARα. Additionally, functional analyses of cell behavior have show-
cased the efficient induction of terminal granulocyte
differentiation3,7,8. However, the genuine in vivo responses of APL cells
to ATRA, particularly its impact on different cellular compartments,
remain ill-defined. This limitation restricts our ability to explain the
effectiveness of ATRA in treating APL patients with varying prognoses.

In this work, we use the single-cell RNA sequencing (scRNA-seq)
technology to comprehensively dissect the cellular heterogeneity in
APL and its potential impact on ATRA therapy in vivo and early death,
as outlined in Fig. 1a. We generate a single-cell transcriptome resource
on the malignant APL blasts from 16 newly diagnosed APL patients.
Subsequently, we conduct a series of data analyses to gain deeper
insights into APL cellular heterogeneity and its association with
genomic and clinical characteristics of APL patients. The resources and
findings presented in this study hold significant implications in four
aspects. Firstly, our resource enables the characterization of intratu-
moral heterogeneity with multiple branches, including a small sub-
population of APL stem-like cells at the root of the differentiation
trajectories. Secondly, at the single-cell level, we show that the stem-
ness characteristics of APL stem-like cells are determined by PML/
RARα target genes and can be further enhanced in the presence of
FLT3-ITD. Thirdly, deconvolution analysis conducted on a large cohort
of 323APLpatients reveals a significant association of higherAPL stem-
like cell proportions with elevated white blood cell (WBC) counts and
the presence of FLT3-ITD. We also successfully construct an APL-
specific stemness score, which effectively assesses prognosis, espe-
cially the risk of early death in APL patients. Lastly, our single-cell level
investigations into the in vivo effects of ATRA confirm that ATRA
directly targets APL primitive blasts, leading to their differentiation
and maturation.

Results
Study design and analysis overview
Weperformed single-cell transcriptomeanalysis onbonemarrow (BM)
samples collected from 16 newly diagnosed APL patients (Fig. 1a; also
see “Methods” section for patient selection and Supplementary Data 1
for detailed clinical characteristics and sample information). This
cohort included four patients who experienced early death, which is
defined as death occurring within 30 days from diagnosis. In this
endeavor, we generated a total of 136,497 cells by combining 16 sepa-
rate scRNA-seq datasets of APL BM samples at disease onset, forming
the foundation for a comprehensive understanding of APL cellular
composition. In parallel, we reanalyzed 23 separate scRNA-seq data of
normal BM samples from healthy individuals (Gene Expression
Omnibuswith accession IDs of GSE120221 andGSE130116) to construct
normal hematopoietic cell populations (totaling 102,792 cells) for use

as controls.We adjusted for batcheffects andperformed an integrated
analysis of both APL and normal cell populations to characterize the
malignant APL blasts and intratumoral heterogeneity (detailed in
“Methods” section).

Based on the APL blasts characterized in this study, we designed a
series of analyses and validations as follows: (i) we constructed the
cellular architecture and differentiation trajectory of APL blasts, with a
specific focus on identifying APL stem-like cells; (ii) we validated the
expression of the PML/RARα fusion gene and FLT3-ITD using targeted
scRNA-seq (scTarget) in two de novo APL patients; (iii) we determined
the association between cellular compositions and clinical presenta-
tions, including the incidence of early death, by conducting decon-
volution analysis on a large cohort of 323 APL patients (including 22
patientswith earlydeath); (iv) we explored the impact ofATRA therapy
on changes in cellular compositions for three patients, both at disease
onset and on Day 2 after ATRA treatment; and (v) we performed
deconvolution analysis on RNA-seq data from 10 newly diagnosed APL
patients before and after ATRA treatment to establish the association
of cellular compositions, especially APL stem-like cells, with ATRA
responses in vivo.

Single-cell characterization of APL blasts
To unravel the cellular diversity within APL, we first performed analysis
by comparingBMsamples collected fromAPLpatientswith those from
healthy individuals. Using 23 normal BM samples, we established the
baseline of cellular diversity, which revealed seven major cell popula-
tions, consistent with previously published findings23,24. These popu-
lations included hematopoietic stem/progenitor cells (HSPCs), GMPs,
monocytes (Mono), dendritic cells (DCs), B cells, T/Natural Killer (NK)
cells, and erythroid (Ery) cells (detailed in “Methods” section and
Supplementary Fig. 1).

Next, we employed UMAP to project 136,497 cells from 16 newly
diagnosed APL patients, along with normal hematopoietic cell popu-
lations identified above, onto a two-dimensional space (Fig. 1b). While
lymphoid and erythroid populations from APL patients formed clus-
ters that corresponded to cell types also annotated by normal hema-
topoietic cells, APL cells were predominantly grouped into a distinct
cluster. The accuracy of APL blast identification was confirmed by the
exclusive presence of PML/RARα expression, as observed in two APL
patient samples using PML/RARα-targeted scRNA-seq (Fig. 1b, right
panel, and Supplementary Fig. 2). This cluster exhibited a high
expression level of the gene MPO, which encodes a widely used diag-
nosticmarker for APL25, and also differed from the normal spectrumof
hematopoietic cell populations (such as HSPCs and myeloid cell
populations; Fig. 1b, c). The established markers of APL cells were
highly expressed in this cluster, as highlighted by genes activated by
PML/RARα-associated super-enhancers8 (e.g., STAB1, CITED2, CCND2,
and GFI1) (Fig. 1d). This finding further reinforced our previous find-
ings, highlighting the role of PML/RARα in determining the identity of
APL blasts through super-enhancer regulation8. Moreover, this cluster
exhibited significantly elevated expression levels of GMP-specific
genes, such as azurophilic granule genes (MPO, AZU1, ELANE, and
CTSG) (Fig. 1d), supporting the notion that APL blasts may be blocked
at the GMP stage14,23.

We proceeded to compare the functional and regulatory char-
acteristics of the APL blasts with those of the normal GMP cluster.
Firstly, we conducted gene ontology (GO) enrichment analysis on
differentially expressed genes (DEGs) calculated using Seurat26. The
analysis revealed that significantly upregulated genes (adjusted P-
value < 0.05) in APL blasts were of functional relevance to several key
processes, including HSC self-renewal/differentiation (RUNX1, MYC,
and JAG1), histone modification (EP300) and DNA methylation
(DNMT3A and MBD1), cell cycle arrest and cell growth (CDK6, CCNA1,
andWT1), as well as the response to endoplasmic reticulum stress and
unfolded protein (XBP1, ATF6, and USP14) (Fig. 1e and Supplementary
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Fig. 3a). In contrast, genes that were significantly downregulated
(adjusted P-value < 0.05) in APL blasts were enriched for immune
response-related functions, including antigen processing and pre-
sentation (PSMB9, PSMB10, and CTSS), MHC class II protein complex
(CD74, HLA-DPA1, and HLA-DRA), regulation of cytokine production
(CLEC7A, CCR2, and CCL3), and response to interferon-gamma (IRF8,
IRF5, and IFI30) (Fig. 1f and Supplementary Fig. 3b). These findings

confirmed the disruption of antigen presentation in APL cells27. Sec-
ondly, we used VIPER28 to infer the transcription factor (TF) activity
differentially between the two clusters. Our analysis suggested that the
hematopoietic TFs and cofactors (such as SPI1, ERG, FOS, and RXRA)
were repressed in APL blasts (Fig. 1g), supporting the differentiation
blockade observed in APL blasts. Also repressed in APL blasts were the
mediators of interferon (IFN) signaling (e.g., STAT1, IRF8, and IRF1).
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Conversely, oncogenic TFs (e.g., RB1, HIF1A, and MAX), epigenetic
regulators (e.g., SMAD4, MBD1, YY1, and SP3), and cell proliferation-
associated TFs (e.g., RNF6, ELF2, and TOP2B) were activated in APL
blasts compared to normal GMPs (Fig. 1g). Consistent with these
findings, cell cycle analysis showed that the APL cluster significantly
accumulated in the S or G2/M phases compared with normal myeloid
cells, further indicating the highly proliferative state of APL blasts
(Supplementary Fig. 4).

Characterizing the intratumoral heterogeneity of APL blasts
reveals a complex cell-state transition trajectory with leukemic
stem-like cells sitting at the top
Next, we determined the cellular architecture and differentiation tra-
jectory within the characterized APL blasts. Through unsupervised
clustering and UMAP analysis, we identified 18 clusters, each char-
acterized by distinct expression patterns of known marker genes23

(Fig. 2a and Supplementary Data 2). Among these clusters, the 12 APL
clusters (C1-C12) accounted for 82.9% of the cells and, as expected,
exhibited high expression of GMP-specific genes23, particularly those
associated with azurophilic granules, such as ELANE, CTSG, and AZU1
(Fig. 2b, right panel). Notably, these GMP-like clusters displayed sig-
nificant heterogeneity. For example, the three major clusters C1-C3
exclusively expressed GMP-specific genes, whereas clusters C6-C10
showed high expression of cell proliferation-related genes (TOP2A,
MKI67, and PCNA)29, and clusters C11-C12 were marked by the highly
expressed S100 family genes (S100A8/A9/A10).

Of striking interest, clusters C14-C16 exhibited stemness-like
characteristics with high expression of marker genes specific to early
HSPCs and/or LSCs (such as CD20030, CD4431, CD9932, CD233, and
FAM30A34) (Fig. 2b), master stemness-related TF genes (such as SOX435

and MYC36), as well as APL characteristic genes (such as MPO) (Sup-
plementary Fig. 5). Comparatively, C15 had the highest expression
levels of stemness- andprogenitor-specific genes compared toC14 and
C16. In addition, C14 also expressed CD38, while C16 highly expressed
marker genes associatedwithmonocyte-DC progenitors (MDP)37, such
as CSF1R/CD115 and FLT3/CD135. Collectively, the cells in C15 appeared
to resemble the most primitive cells among APL blasts, possibly
representing leukemic stem-like cells.

Next, we performed RNA velocity analysis to verify the differ-
entiation trajectory from the leukemic stem-like cell cluster (C15) to
theGMP-like cell clusters. The 18APL clusterswere reorganized into six
branches (Supplementary Data 3), with the stem-like cell cluster (C15)
sitting at the root of differentiation trajectories, supported by both the
velocity-based cell-state transition probabilities and the similarity of
expression patterns (Fig. 2c, d). Likely going through the Prog-like
branch (C14), the stem-like cell cluster (C15) gave rise to the threemain
branches of APL blasts: the GMP-like branch (C1-C5 and C13), the
cycling GMP-like branch (C6-C10), and the S100hiGMP-like branch (C11
and C12) (Fig. 2c, d and Supplementary Fig. 6). Another trajectory
starting from C15 led to the MDP-like cell cluster (C16), which subse-
quently differentiated into cells in the CD1C+ PrecDC-like cell cluster

(C17) and the CD14+ Promonocyte-like cell cluster (C18). This trajec-
tory supports the current view that, instead of being derived from
GMPs37, MDPs might represent an earlier stage, possibly even earlier
than the CMP stage. Furthermore, Monocle2 pseudotime ordering
trajectory analysis also showed that the stem-like cell cluster was the
starting point of APL blasts, giving rise to the S100hiGMP-like andGMP-
like branches (Fig. 2e). This analysis also revealed that RUNX1, RUNX2,
and interferon-related factors (i.e., STAT1 and FOS) might be involved
in the GMP-like differentiation trajectory, while CEBP family members
(CEBPA, CEBPB, and CEBPE), MAFB, JUNB, and JUND were likely asso-
ciated with the lineage decision towards the S100hiGMP-like APL
blasts (Fig. 2f).

Furthermore, we investigated the role of PML/RARα in the
identified APL trajectory. PML/RARα-targeted scRNA-seq confirmed
that PML/RARα was uniformly expressed across all six branches of
APL blasts, with notable expression in the stem-like cell cluster
(Fig. 2g, h and Supplementary Fig. 7a). Furthermore, we integrated
PML/RARα chromatin occupancy data31 obtained from CUT&Tag-seq
(Cleavage Under Targets and Tagmentation sequencing) in an APL
patient-derived cell line, NB4 (Supplementary Data 4 and Supple-
mentary Fig. 7b). Notably, each branch possessed a considerable
number of distinct PML/RARα targets (Fig. 2i and Supplementary
Data 5), suggesting the presence of branch-specific expression pat-
terns for PML/RARα targets across the APL trajectory. GO analysis
provided insights into their functional significance, revealing that
these targets were associated with distinct functional pathways
(Supplementary Fig. 7c). For instance, the PML/RARα targets located
within the APL stem-like cells were found to be predominantly
involved in stem cell maintenance. Those within cycling GMP-like
cells were mainly linked to E2F targets involved in the G2-M check-
point. Those within GMP-like cells exhibited marked enrichment in
ribosomal functions. These results collectively illuminate the
impact of PML/RARα in shaping the intratumoral heterogeneity of
APL cells.

The characteristics of APL stem-like cells were determined by
PML/RARα target genes and further enhanced by FLT3-ITD
To delve into the characteristics of the APL stem-like cells defined in
our study, we identified APL-specific leukemic stemness genes by
comparing the transcriptome data between the APL stem-like cell
cluster (C15) in Fig. 2a and the HSPC cluster in Fig. 1b (Supplementary
Data 6). We obtained the following findings.

First, PML/RARα targets were significantly enriched in these APL-
specific leukemic stemness genes (Fig. 3a and Supplementary Fig. 8).
Notably, well-known LSC marker genes16,38–40, such as FCGR2A, CD9,
ITGA5, IL1RAP, and CD82, were exclusively expressed in APL stem-like
cells but not in HSPCs. They were also direct targets of PML/RARα
(Fig. 3b and Supplementary Fig. 9). Moreover, well-known stemness/
self-renewal-related PML/RARα targets8, such as HCK and GFI1, were
highly expressed in APL stem-like cells. Genes closely related to APL
leukemogenesis, such as FLT3 and JAG141,42, were not only targets of

Fig. 1 | CharacterizationofAPLblasts through an integrative analysis of scRNA-
seq data from APL and normal bone marrow (BM) cells. a Overview of the
experimental strategy.bUMAPplots of APL andnormal BMcells (n = 239,332 cells),
with color-coding indicating sample types (left panel), inferred cell populations
(middle panel), and PML/RARα-positive cells detected by scTarget in two APL
samples (right panel). Cells detected with more than three PML/RARα fusion reads
are illustrated. HSPCs hematopoietic stem/progenitor cells, GMPs granulocyte-
monocyte progenitors, NKNatural Killer, Ery erythroid. cUMAPplotswith each cell
(n = 239,332 cells) colored according to their normalized expression ofMPO, CD14,
CD3E, CD79A, and CA1, respectively. d Normalized expression level and expression
percentage of cell type-specific genes in eight cell populations in APL and normal
BM cells. e, f Gene Ontology (GO) enrichment analysis showing significantly enri-
ched biological process terms for upregulated genes (e) and downregulated genes

(f) in APL blasts compared with GMPs. g Inferred activated (red) and repressed
(blue) TFs in APL blasts compared to normal GMPs. The central two-row graph
illustrates the distribution of activated targets (depicted in red) and repressed
targets (depicted in blue) of different TFs, with positions ranked according to the
differential expression between APL blasts and normal GMPs (leftmost: most
downregulated in APL blasts, rightmost: most upregulated in APL blasts). The
regulatory model was based on the ARACNe-inferred interactome, provided in the
build-in function of the VIPER R package. The P-value is shown on the left of the
column, and the inferred differential activity level is shown on the right. The P-
values were calculated using the msviper function in the VIPER R package. Two-
sided P-values were calculated. APP antigen processing and presentation; MHC
major histocompatibility complex.
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PML/RARα but also exhibited elevated expression in APL stem-like
cells (Fig. 3b).

Second, we performed pathway enrichment analysis to reveal the
involvement of the PML/RARα-dysregulated signaling pathways in APL
stem-like cells. This analysis identified numerous LSC-associated
pathways, including classical WNT, MAPK, VEGF, P53, and mTOR
signalings43,44 (Fig. 3c), all crucial for maintaining the LSC population.
Furthermore, pathway crosstalk analysis based on these LSC-
associated PML/RARα target genes indicated that they coordinated
the regulation of APL stem-like cells (Supplementary Fig. 10 and Sup-
plementary Data 7).

Third, we performed VIPER analysis to elucidate potential TFs
involved in the PML/RARα-induced transcriptional network in APL
stem-like cells (Fig. 3d). By comparing with normal HSPCs, we found
that stemness-associated TFs, such as TGIF1 and HIF1A45,46 were acti-
vated, suggesting their potential roles in regulating the stemness of
APL cells. Additionally, we observed the activation of regulators
associated with histone modification, including MBD2/3 (methylated-
DNA binding proteins) and PRDM2 (H3K9 methyltransferase), in APL
stem-like cells. Thesefindings suggested their potential involvement in
epigenetic control of self-renewal and quiescence of APL stem-like
cells47. TFs linked to malignant transformation and stemness
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properties, such asOLIG2 andARID3B48,49, were also found to be active
in APL stem-like cells. These findings highlighted the critical roles of
PML/RARα in regulating APL stem-like cells at the single-cell level.

Fourth, weproceeded to associate the cellular architecture of APL
blasts with the cooperating genetic alterations commonly found in
APL, including FLT3 (FLT3-ITD and FLT3-TKD), WT1, and NRAS muta-
tions. As illustrated in Fig. 3e, FLT3-ITD was significantly associated
with a more primitive disease phenotype than other investigated
mutations, suggesting that the presence of FLT3-ITD might play a
significant role in enhancing the leukemic stemness. We further used
two established leukemic stemness scorings34,50, LSC17 and LSC6, to
compare the stemness characteristics between APL stem-like cells with
and without FLT3-ITD. The analysis revealed that the stem-like cells
with FLT3-ITD received significantly higher scores than those without
FLT3-ITD (Fig. 3f), supporting the notion that FLT3-ITDmight enhance
the stemness characteristics. Moreover, we performed FLT3-ITD-
targeted scRNA-seq in two APL patients to verify its existence and,
more importantly, to confirm its higher expression in APL stem-like
cells (Fig. 3g, h).

The predictive power of the APL stemness score in early death
and therapy outcome in APL
In this section, we explored how APL stem-like cells defined by scRNA-
seq can be utilized to predict the clinical obstacles in APL, more pre-
cisely, the occurrence of early death, risk stratification, and therapy
outcome. We first established deconvolution-based prediction proce-
dures, as graphically illustrated in Fig. 4a anddetailed in the “Methods”
section, anddemonstrated their robustness andperformance (Fig. 4b).
At Step 1, we applied the CIBERSORTx algorithm51 to scRNA-seq data,
generating an APL-specific signature matrix that involved six APL blast
cell populations (i.e., stem-like, Prog-like, GMP-like, cycling GMP-like,
S100hiGMP-like, and MDP-like) and three non-leukemic cell types (i.e.,
T/NK, B, and erythroid cells). At Step 2, weprepared the transcripts per
kilobase of the exon model per million mapped reads (TPM) matrix
from bulk RNA-seq data. At Step 3, we employed support vector
regression (SVR)52 to deconvolute both the signature and TPM matri-
ces, resulting in a coefficient matrix. The percentage of each cell type
in the coefficientmatrixwasused to build a linear regressionmodel for
benchmarking. At Step 4, we constructed an 11-gene scoring model
through LASSO to evaluate the stemness of APL blast cells from bulk
RNA-seq data, where a higher score indicates a higher stemness.
Additionally, we designed a leave-one-out test to demonstrate the
robustness of the inferred APL stem-like cell proportions (median
R = 0.933, 95% CI = 0.922–0.945, Fig. 4b). In other words, our decon-
volution approach could accurately predict APL stem-like cells from
bulk APL transcriptomes.

Next, employing our established deconvolution prediction pro-
cedures, we examined a large cohort comprising 323 APL patients53 to
explore the correlation between APL stem-like cells and the clinical

characteristics of APL patients (Supplementary Data 8). Firstly, a
higher proportion of APL stem-like cells was significantly associated
with an elevatedwhite blood cell (WBC) count (P <0.0001) and a lower
platelet count (P = 4.0e-3) (Fig. 5a). Notably, the APL stem-like cell type
showed the strongest correlation with the WBC count, followed by
GMP-like and cycling GMP-like cell types (Supplementary Figs. 11, 12
and Supplementary Data 9). This finding also emphasized the inter-
tumoral heterogeneity among APL patients. Further analysis revealed
that a higher proportion of stem-like cells was significantly associated
with a higher percentage ofAPL blasts in BMcells (R = 0.53, P <0.0001;
Supplementary Fig. 13a) and a higher blast count in peripheral blood
(R =0.35, P <0.0001; Supplementary Fig. 13b). This was also notably
correlatedwith an increasedWBC (P <0.0001; Supplementary Fig. 14).
These results indicated that APL patients with a higher percentage of
APL stem-like cells in APL blasts might have an increased tendency for
blasts to circulate in peripheral blood. Secondly, we examined the
relationship between the percentage of APL stem-like cells and
recurrentmutations inAPLpatients, including three common isoforms
of PML/RARα (L-type, S-type, and V-type)54, FLT3 mutations (ITD and
TKD), andmutations involvingWT1, NRAS, and ARID1A. Remarkably, a
higher percentage of APL stem-like cells was significantly associated
with the S-type PML/RARα transcript (S-type vs. L-type: P <0.0001;
S-type vs. V-type: P = 7.3e-3; Fig. 5a and Supplementary Fig. 15) and
FLT3-ITD (P < 0.0001). In addition, FLT3-ITDwas identified as themost
significant co-occurrence event, supporting the importance of FLT3-
ITD in enhancing the stemness activity of APL stem-like cells (Fig. 3f).

Given the close association of APL stem-like cells with potential
unfavorable prognostic factors (including the high WBC count, S-type
PML/RARα, and FLT3-ITD), we sought to develop a stemness scoring
system tailored for APL blast cells. Employing the LASSO algorithm,we
established an APL-specific stemness score based on the estimated cell
proportions of APL stem-like cells, which was then utilized to quantify
the stemness of leukemic cells in each patient (detailed in “Methods”
section; Supplementary Fig. 16). We identified eleven genes (SKAP2,
IL1RAP, PLD1, HOPX, TRIM47, MAP2K1, TNFSF4, OLFML2A, P2RY14,
NPTX2, and RALA) to construct the APL stemness score, which showed
a significant correlation with the proportion of APL stem-like cells
(Pearson’s correlation = 0.802; P <0.0001). We then explored the
relationship between the APL stemness score and prognosis, including
overall survival (OS), event-free survival (EFS), anddisease-free survival
(DFS). Remarkably, a high APL stemness score was significantly asso-
ciated with a poorer OS (P = 5.7e-3) and EFS (P =0.0342), but not DFS
(P = 0.731; see Fig. 5b, with the cutoff optimized using the R ‘maxstat’
algorithm). Univariate Cox analysis also revealed that patients with a
higher APL stemness score had a poor prognosis, as reflected by OS
(P = 3.4e-4; Fig. 5c) and EFS (P = 4.6e-4; Fig. 5d) using the optimized
cutoff. Multivariate Cox analysis confirmed the APL stemness score as
an independent prognostic factor for OS and EFS (Supplemen-
tary Fig. 17).

Fig. 2 | Characterization of intratumoral heterogeneity in APL blasts reveals a
complex trajectory with multiple branches and a small subpopulation of APL
stem-like cells. aUMAPplot of APL blasts (upper panel;n = 126,802 cells). Eighteen
clusters are labeled in different colors and numbers (lower panel). GMP
granulocyte-monocyte progenitors, EOS eosinophils, Prog progenitors, MDP
monocyte-DC progenitors, PrecDC pre-conventional dendritic cells, Promono
promonocytes. b The left heatmap shows Spearman’s correlation between the 18
APL clusters, calculated using the average expression profiles of the clusters. The
right heatmap illustrates the expression levels of cell type-specific genes in each
cluster. c Visualization of RNA velocity-based cell-state transitions of APL blasts.
d UMAP plot of APL blasts with six branches, i.e., stem-like, Prog-like, S100hiGMP-
like, GMP-like, cycling GMP-like, and MDP-like branches. e Pseudotime-ordered
analysis of four major branches in APL blasts, including stem-like, Prog-like,
S100hiGMP-like, and GMP-like branches. f Heatmap showing the dynamic changes
in gene expression (n = 116 genes) along the pseudotime. Cell branches are labeled

by colors (upper panel), including stem-like cells (center), S100hiGMP-like cells
(left), and GMP-like (right). Characteristic transcription factors (TFs) are listed on
the right. g UMAP plots of the targeted scRNA-seq (scTarget) data from two APL
patients, with color coding for sample types (left panel) and branches (right panel).
On the right panel, cells detected more than three PML/RARα fusion reads were
illustrated. h The expression levels of PML/RARα in six branches of APL blasts.
i Branch-specific expression patterns for PML/RARα targets across the APL trajec-
tory. The left heatmap visualizes the single-cell expression of PML/RARα-regulated
branch-specific marker genes across branches, with rows representing genes and
columns for cells. To offer a clear and representative depiction of the branch-
specific expression patterns for PML/RARα targets, we selected 1000 cells from
each branch for interpretation. The right heatmap displays the mean gene
expression (n = 1758 genes) across branches, accompanied by the annotations of
representative marker genes on the right side. Cor. correlation, Exp. expression.
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Fig. 3 | The crucial role of PML/RARα and FLT3-ITD in regulating the properties
ofAPL stem-like cells. aGene set enrichment analysis (GSEA) plot of top 500PML/
RARα targets. The gene set for GSEA analysis was defined based on the top
500 PML/RARα targets according to adjusted P-values derived from CUT&Tag.
Geneswere rankedby the fold changebetweenAPL stem-like cells andHSPCs at the
mRNA level. NES normalized enrichment score. The P-value was calculated using
GSEA. A two-sided P-value was calculated. b Violin plots illustrating representative
genes highly expressed in APL stem-like cells compared with HSPCs. c GO enrich-
ment analysis showing the KEGG pathways enriched in upregulated (left panel) and
downregulated (right panel) PML/RARα targets in APL stem-like cells compared
with HSPCs. d Master regulator analysis to explore activated (red) and repressed
(blue) transcription factors (TFs) in APL stem-like cells compared with HSPCs.
e Comparison of the percentages of each branch with and without indicated
mutations. n = 16 patients with FLT3-ITD/TKD mutation information and n = 12
patientswithNRAS/WT1mutation information. Error bars inbar plots represent the

means ± SE. The P-values were calculated using Student’s t-test and labeled in red
when P-values < 0.05. Two-sided P-values were calculated. f Comparison of the
LSC17 score (left panel) and the LSC6 score (right panel) of the stem-like cells inAPL
patients with or without FLT3-ITD. n = 2344 stem-like cells were used for visuali-
zation, excluding those with a score of 0 due to the absence of detected gene
expression. In the boxplot, a black line within the box marks the median. The
bottom and top of the box are located at the 25th and 75th percentiles, respectively.
The bars represent values more than 1.5 times the interquartile range from the
border of each box. The P-valueswere calculated using theWilcoxon rank-sum test.
Two-sided P-values were calculated. g Visualization of FLT3 expression through
projection onto the UMAP of APL blasts using the scTarget data from two patients.
Cells detected with more than three FLT3-ITD mutated reads were color-coded
according to the different branches. h The expression levels of FLT3-ITD in the six
branches ofAPL blasts, analyzedusingdata fromFLT3-ITD-specific targeted scRNA-
seq (scTarget).
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Notably, a higher APL stemness score was significantly associated
with an increased risk of early death (P = 8.3e-3; Fig. 5b). This finding
was consistent with our scRNA-seq data, revealing that compared to
patients without early death, those patients with early death had a
relatively higher proportion of stem-like cells, as well as elevated
expression of stemness-associated genes, such as FCGR2A, IL1RAP,
MAP2K1, and KLF9 (Supplementary Fig. 18). Moreover, further analysis
showed that our APL stemness score was an independent risk factor
(HR = 5.627; 95% CI, 1.981–15.980; P =0.001) with a superior predictive
value for early death (Supplementary Fig. 19). These results collectively
underscore the utility of the APL stemness score in assessing APL risk,
including the risk of early death in APL.

In vivo effect of ATRA on differentiation of primitive APL blasts
and its influence on early death risk
Administrating ATRA as early as possible has been proven essential in
reducing the early death rate in APL48,49. We then delved further into
exploring the in vivo impact of ATRA treatment on APL cellular hier-
archies, with a particular focus on the primitive blasts, as their stem-
nessmight influence treatment response.Weperformed scRNA-seq on
BM samples collected from three patients (APL03, APL04, and APL05)
after twodays of ATRA therapy. At this timepoint, a notable increase in
CD11b expression was observed (Supplementary Fig. 20a). Using the
pre-defined six branches of APL blasts at diagnosis served as the
reference, the cell types of APL cells on Day 2 after ATRA treatment
were determined by employing the KNNalgorithm in amerged dataset
that included cells from both Day 0 and Day 2. We then investigated
the in vivo effects of ATRA through changes in the abundance of cell
groups and differential transcriptional regulation. We further applied
the deconvolution method on bulk transcriptomes from RNA-seq
performedon 10APLpatients (including threewho suffered fromearly
death) before and after ATRA treatment to explore the potential
influence of leukemic stemness on the differential in vivo response to
ATRA, which might be a contributing factor to early death. The
stemness scores were indeed higher in patients who experienced early

death than those who achieved complete remission in bulk RNA-seq
data of these 10 patients, consistent with our findings from the large
cohort (Supplementary Fig. 20b).

First, comparison analysis of scRNA-seq data revealed that diag-
nostic APL samples were enriched in more primitive cells than post-
treatment samples, which were relatively enriched in more mature
progenitor cells (Fig. 6a). Especially onDay 2 after treatment, the stem-
like cells were almost undetectable in the post-treatment samples
(Fig. 6b). More precisely, ATRA treatment significantly increased the
percentages of the more mature GMP-like cell type and decreased the
percentages of three primitive cell types (stem-like, Prog-like, and
S100hiGMP-like), with stem-like cells almost undetectable after the
treatment, suggesting that ATRA had a notable impact on primitive
APL cells, especially the stem-like cells (Fig. 6c, d). To confirm the
ability of ATRA to induce the differentiation of APL primitive blasts
towards more mature progenitor cells, we also employed the estab-
lished score to quantify the matureness of leukemic cells14, and
observed a significant increase in this score in the 2-daypost-treatment
samples compared to samples at diagnosis (Fig. 6e), indicating that
APL blasts became more mature upon ATRA treatment. Similar find-
ings were also obtained by analyzing bulk transcriptomes of 7 APL
patients who achieved complete remission before and after ATRA
treatment. As illustrated in Fig. 6f, the proportion of APL stem-like cells
and the stemness of leukemic cells were notably decreased following
ATRA treatment, especially on Day 2.

Next, we looked at the expression changes of hematopoietic
differentiation-related CD markers and TFs to show that ATRA could
induce a stepwise differentiation, starting from APL stem-like cells
towards more mature cells. Notably, we observed a significant down-
regulation of APL stemness CD markers (such as CD200, CD34,
FCGR2A/CD32, CD9, and IL3RA/CD123) and TFs (such as HHEX, MYC,
JAG1, and ERG) in primitive cell types (Fig. 6g and Supplementary
Data 10). Conversely, markers and TFs associated with mature hema-
topoietic cell lineages were upregulated following ATRA treatment.
For example, CD38, CD84, CEBPA, and ELF4 were upregulated in the
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Fig. 4 | Construction of an 11-gene APL stemness score. a Schematic depicting
the APL deconvolution approach and the generation of the APL stemness score
using the 16 APL scRNA-seq data as the reference. This improved deconvolution
approach is based on the support vector regression (SVR) algorithm: (1) gen-
eration of signatures from scRNA-seq populations, including the six APL blasts
branches and T/NK cells, B cells, and erythroid cells; (2) calculating the TPM
matrix of bulk RNA-seq of the 12 patients with matched scRNA-seq (detailed in
“Methods” section); (3) using SVR to calculate the coefficients of each scRNA-seq
population from bulk RNA-seq and performing linear regression to benchmark
the percentage and the coefficient of each population; (4) generation of APL

stemness signature genes, which were PML/RARα targets highly expressed in APL
stem-like cells; and (5) the APL stemness score was calculated by the mean
expression level of APL stemness signature genes. b Model performance of the
deconvolution approach to predict the APL stem-like cell percentage from bulk
RNA-seq of the 12 patients. The performance of the model is evaluated by Pear-
son’s correlation coefficients between the observed APL stem-like cell percentage
from scRNA-seq and the predicted APL stem-like cell percentage from the
deconvolution approach. Leave-one-out (LOO) is used to evaluate the robustness
of the model. The P-values were calculated using the Pearson’s correlation. Two-
sided P-values were calculated.
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Prog-like cells; ITGAM/CD11b, C5AR1, TFEC, and MAFB were upregu-
lated in the S100hiGMP-like cells; and CD24, CEACAM6, CEBPE, and
CEBPB upregulated in the GMP-like cells (Fig. 6h and Supplementary
Data 10).

Of particular interest, we identified distinct transcriptional
responses induced by ATRA in APL patients with and without early
death. As illustrated in Fig. 6i, the consistent downregulation of several
stemness-associated CDmarkers (CD200 and CD9) and TFs (HHEX and
NFATC2) was not observed in APL patients with early death (Supple-
mentary Data 11). Similarly, the consistent upregulation of
differentiation-related CD markers (FUT4 and IL1R1) and TFs (FOS and
EGR1) was also not observed in patients with early death (Fig. 6j and
Supplementary Data 11). GO analysis revealed similar results: in addi-
tion to the induction of differentiation, the repression of stemness-
associatedpathways, such as theMAPKcascade,was alsonot observed
in patients with early death after ATRA treatment (Supplementary
Fig. 20c, d). Additionally, a significant decrease of the APL stemness
scores after ATRA treatment was observed in patients who achieved
complete remission, but not in patients who experienced early death
(Supplementary Fig. 20b). Our findings suggest that ATRA treatment
had a lesser impact on the stemness program in APLpatients with early

death, potentially explaining the significant association we observed
between the stemness activity of leukemic cells and early death, as
revealed by our deconvolution analysis of transcriptomes from 323
APL patients (Fig. 5b).

Discussion
Single-cell RNA sequencing (scRNA-seq) provides a powerful means to
precisely identify complex cell type compositions, especially rare cell
types. In this study, we employed scRNA-seq to comprehensively
decipher APL heterogeneity and draw an overall picture of the APL
hierarchy composition at the single-cell level. Our findings illuminated
the pivotal role of PML/RARα in orchestrating the intratumoral het-
erogeneity of APLblasts,with a special emphasis on its influenceon the
stem-like cells identified in our study. Furthermore, we discovered that
FLT3-ITD further enhanced the stemness attributes of these cells. By
integrating scRNA-seq data with a large cohort of bulk RNA-seq data
and in vivo ATRA treatment data, we uncovered the complex and
multifaceted contributions of APL stem-like cells to early death in APL.
This included a notable increase in cell proportion, elevated expres-
sion of stemness-associated genes, and the persistence of the stem-
ness program post-ATRA treatment in patients with early death. More
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Fig. 6 | In vivo analysis revealing direct targeting of APL primitive blasts
(including stem-like cells) by ATRA and induction of their differentiation and
maturation. aUMAPplot showing the integration of APL BMcells (n = 39,415 cells)
collected on Day 0 (red) and Day 2 after ATRA treatment (blue). b UMAP plots
showing all defined cell populations of APL BM cells (n = 39,415 cells) collected on
Day 0 and Day 2 after ATRA treatment. c Comparison of the percentages of six
branches before (red) and after two days of ATRA treatment (blue). d Comparison
of the percentagesof the stem-like, Prog-like, S100hiGMP-like, andGMP-like cells on
Day0 (red,n = 3 samples) andDay 2 after ATRA treatment (blue,n = 3 samples). The
P-values were calculated using Student’s t-test. A one-sided P-value was calculated.
In the boxplot, a black linewithin the boxmarks themedian. The bottom and top of
the box are located at the 25th and 75th percentiles, respectively. e Comparison of
the Primitive-to-Mature scores ofAPL blasts onDay0 (red,n = 13,966 cells) andDay
2 after ATRA treatment (blue, n = 10,852 cells). f Comparison of APL stem-like cell
percentages (left panel) and stemness scores (right panel) on Day 0 (in red,
n = 7 samples), Day 2 (in blue, n = 7 samples treated with ATRA alone), and Day 5 (in
orange,n = 5 samples treatedwith ATRA+ATO). Notably, within theboxplot shown

in (e and f), a black line marks the median, and the bottom and top of the box are
located at the 25th and 75th percentiles, respectively. The bars represent valuesmore
than 1.5 times the interquartile range from the border of each box. The P-values
were calculated using the Wilcoxon rank-sum test. Two-sided P-values were cal-
culated. g Heatmap showing the normalized expression of stemness CD markers
and TFs in APL stem-like cells, Prog-like, S100hiGMP-like, and GMP-like clusters on
Day 0 (red) and Day 2 after ATRA therapy (blue). h Heatmap showing the nor-
malized expression of differentiation markers and hematopoietic TFs in APL stem-
like cells, Prog-like, S100hiGMP-like, and GMP-like clusters on Day 0 (red) and Day 2
(blue) after ATRA therapy. iHeatmap illustrating the log2(fold changes) (log2FC) of
gene expression levels for stemness-associated CD markers and TFs between APL
samples on Day 0 and Day 2 (Day 2 vs. Day 0) in different APL patients. j Heatmap
illustrating the log2FC of gene expression levels for differentiation markers and
hematopoietic TFs between APL samples on Day 0 and Day 2 (Day 2 vs. Day 0) in
different APL patients. Gray represents patients alive after induction therapy, and
black for patients with early death.

Article https://doi.org/10.1038/s41467-024-45737-7

Nature Communications |         (2024) 15:1423 10



importantly, we developed an APL-specific stemness score that proved
to be a robust independent risk factor with superior predictive power
for poor prognosis and early death, surpassing traditional risk factors,
such as WBC, FLT3-ITD, and the Sanz score.

Our results provide valuable single-cell insights into the identi-
fication of leukemic stem cells in APL. Our scRNA-seq analysis
revealed a small portion of stem-like leukemic cells (C15) directly
from APL patients, expressing stemness markers (CD200, CD99, and
CD9) and PML/RARα, and sitting at the top of the differentiation
trajectories in the APL hierarchy. APL LSCs have not been well
defined, partly due to a lower density of the CD34 expression on APL
cells compared to other forms of AML55. Interestingly, previous stu-
dies have reported variable CD34 expression in APL, with frequencies
ranging from 20% to 31%56–58 and occasionally as high as 43% when
considering a low cutoff level59. In our study, we indeed observed
CD34 expression in a subset of APL stem-like cells. Detailed inspec-
tion showed that these CD34-positive cells within APL stem-like cells
predominantly originated from three patients who were CD34-
positive based on their immunotyping results. This observation
aligns with the known variability of CD34 expression in APL patients.
Notably, LSCs can be found in both CD34-positive and CD34-negative
populations60. In NPM1-mutated AML (commonly CD34-negative),
LSCs were found in both CD34+ and CD34− cells, suggesting that
their presence is not limited to CD34+ progenitor cells60,61. Further-
more, CD200 was identified as a novel LSC marker and highly
expressed in both CD34+ and CD34– LSCs, including those with
mutant NPM130, further validating our identification of leukemic
stem-like cells in APL for its characteristic expression of CD200.
Furthermore, APL stem-like cells co-expressed lymphoid-related
genes, such as T-lineage-affiliated glycoprotein CD2, also supporting
its more primitive status33.

Based on the discovery and characterization of APL stem-like
cells, we introduced the APL stemness score, which has demonstrated
the ability to predict the prognosis and risk of APL, notably with
regards to early death in APL patients. The concept of leukemic
stemness as a clinical predictor has gained growing attention in the
field of AML. Various measures have been developed to evaluate leu-
kemic stemness in non-APL AML, including metrics like the
LSC17 score50 and the frequency of leukemic progenitor cells. How-
ever, applying these measures to APL has been challenging due to the
limitedunderstandingofAPL stemcells.Our studymarks the endeavor
to characterize APL stem-like cells and establish a measure based on
APL leukemic stemness. In comparison to other commonly used pre-
dictors, such as high WBC counts and FLT3-ITD status, the APL stem-
ness score exhibited superior performance in predicting poor
prognosis and early death. This superiority can be partially attributed
to the central role of leukemic stemness in APL, as it significantly
contributes to the development of the disease. Incorporating our
stemness score with the examination of WBC levels and aggressive
mutations offers a valuable addition to the current APL risk assess-
ment. While the detection of WBC levels helps clinicians evaluate risk
promptly, our stemness scoremay serve as a reliablemeasure formore
intensive surveillance, which is both practical and of clinical relevance.

Early death remains a formidable obstacle to achieving favorable
outcomes in APL patients62, and considerable research efforts have
been made to investigate its underlying mechanisms53,63–65. Our data
highlight the multifaceted impacts of stem-like cells on early death in
APL, encompassing a relatively higher proportion of stem-like cells
(“quantity” aspect), elevated expression of stemness-associated genes,
and persistence of the stemness program (“quality” aspect) post-ATRA
program in patients who experienced early death compared to those
who achieved complete remission. Several studies have linked stem-
ness genes, such as CD2 and CD9, with an increased risk of thrombosis
and coagulopathy66–68, the common causes of early death in APL.
Moreover, many stemness genes encoding adhesion molecules, such

as CD99 and CD9, have been reported to play a role in leukocyte
migration69,70, potentially contributing to extramedullary infiltration.
Further investigation is required to comprehensively understand these
underlying mechanisms. We also acknowledge that early death is a
complex event influenced by numerous factors beyond the stemness
score, such as the tumor microenvironment, cooperating mutations,
epigenetic modifications, and various clinical variables such as the
patient performance status (ECOG-PS) and the treatment protocol.
Our preliminary comparative analysis, using cohort data, suggested
that the IL8-related pathway and abnormal metabolic processes might
also play a role in influencing the survival outcome of patients with
higher stemness scores (Supplementary Fig. 21). Our results high-
lighted the leukemic stemness as one of the critical factors for early
death in APL, which shed deeper insights into the complicated
mechanisms underlying early death in APL and provide promising
targets for mitigating the risk of early death.

Our study has several limitations thatwarrant consideration. First,
given the complex effects of ATRA on primitive stem cells71, further
investigations to validate andexplore the impactofATRAonAPL stem-
like cells we identified are required. Second, expanding the sample
size, particularly for patients experiencing early death, is essential to
robustly confirm our findings regarding the prognostic significance of
leukemic stemness in early death.

In conclusion, our work provides valuable single-cell insights into
APL leukemogenesis by comprehensively elucidating intratumoral
heterogeneity, the cellular composition hierarchy in APL, and their
differential responses to ATRA therapy in vivo, which may contribute
to early death in APL patients. We have characterized a small sub-
population of APL stem-like cells at the single-cell level, closely cor-
related with FLT3-ITD and poor prognosis, laying the foundation for
further exploration of cellular therapeutic targeting strategies. Future
studies will be geared towards elucidating the biological mechanisms
of APL stem-like cells to extend the success of APL-targeted therapy to
other cancers.

Methods
Patient samples
Bone marrow (BM) samples were collected according to the Declara-
tion of Helsinki at the initial diagnosis of APL. Patients were randomly
recruited in the clinical setting andwe also confirmed that the patients
in each analysis were representative of the broader APL patient
demographic. The selection/recruitmentwas also contingent upon the
availability of high-quality samples, which is a prerequisite for the
reliable scRNA-seq analysis that our study relies on. Written informed
consent was obtained from the patient allowing for the publication of
clinical information, and ethical approval was obtained from the Ethics
Committees of Ruijin Hospital, Shanghai Jiao Tong University School
of Medicine (2021/154).

Single-cell sequencing alignment and data preprocessing
Single-cell RNA sequencing data (10X Genomics) from 23 healthy BM
samples were obtained from the Gene Expression Omnibus (GEO)
public database with accession IDs of GSE12022172 and GSE13011673.
Raw sequencing data of healthy BM cells were downloaded and con-
verted into FASTQ format using SRA-toolkit (version 2.11.0). Our
scRNA-seq data for the 16APLBMsampleswere generated through the
separate scRNA-seq experiments and were integrated to explore cel-
lular heterogeneity in APL cells. To obtain gene expression matrices
from both healthy and APL BM cells, we used cellranger (10X Geno-
mics, default settings, version 6.0.2) to align the scRNA-seq data to the
human GRCh38 reference (2020-A version). Both the cellranger soft-
ware and the human reference were downloaded from the 10X
Genomics website (https://www.10xgenomics.com). The gene
expression matrices were then imported into the Seurat R package26.
For quality control, cells expressing fewer than 300 genes, having
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unique counts exceeding 30,000 or falling below 500, expressing
mitochondrial RNA exceeding 10%, or identified as doublets using
DropletUtils (https://bioconductor.org/packages/DropletUtils/) were
excluded. As a result, a total of 102,792 cells from healthy BM cells and
a total of 136,497 from APL BM cells were retained for downstream
data analysis.

Annotation of cell populations of healthy BM cells
We used Seurat to perform highly variable gene identification,
dimensionality reduction, graph-based clustering, and differentially
expressed genes (DEGs) calculation. For identifying cell populations
of healthy BM cells, the top 3000 highly variable genes were selected
using the “FindVariableFeatures” function and enrolled for principal
component analysis (PCA). The R package Harmony was used for
sample-wide batch effect adjustment. Uniform Manifold Approx-
imation and Projection (UMAP) and t-distributed Stochastic Neigh-
bourhood Embedding (tSNE) were performed for dimensionality
reduction using cell embeddings generated by Harmony. UMAP was
chosen for visualization to better interpret the hematopoietic line-
age. We first performed cell annotation on normal BM cells. Unsu-
pervised clustering was performed on the 102,792 cells from 23
normal BM samples using the default parameters of the “FindClus-
ters” function. After unsupervised clustering, 26 clusters were clas-
sified. Marker genes for each cluster were calculated using the
“FindAllMarkers” function and defined under the following criteria:
log2(fold changes) (log2FC) > 0.58 (FC > 1.5), min.pct >0.1, and
adjusted P < 0.05. Cells were annotated using bothmachine-learning-
based software SingleR and high expression of canonical hemato-
poietic markers (i.e., CD34 for hematopoietic stem/progenitor cells
(HSPCs), CD14 for monocytes, CD1C for dendritic cells, CD3 for
T cells, CD79A for B cells, and CA1 for erythroid cells) in each cluster.
Finally, a total of seven major cell populations (HSPCs, GMPs,
monocytes, DCs, B cells, T/NK cells, and erythroid cells) from normal
BM cells were identified.

Characterizing malignant APL blasts through integration with
healthy BM cells and batch effect correction using Harmony
To characterize malignant APL blasts, we performed the integration of
the scRNA-seq data from both APL and normal BM cells. We first
identified the top 3,000 highly variable genes across APL and healthy
BM cells, and then adjusted batch effects using Harmony. UMAP was
performed to visualize the cell distribution of healthy andAPL BMcells
before (Supplementary Fig. 22) and after batch effect adjustment
(Fig. 1b). The classification of APL blasts was determined based on the
following criterion: cells were grouped into a distinct cluster that was
clearly separated from cell populations of healthy BM cells, as
observed in the UMAP plot. This classification was further validated
using the following methods: (i) targeted scRNA-seq analysis, (ii)
examination of the expression of canonical APL markers (such as
clinical immunophenotype markers like MPO) and other genes like
azurophilic granule genes (AZU1, ELANE, and CTSG); and (iii) annota-
tion as progenitor cells using SingleR.

Differentially expressed genes analysis and transcription factors
activities estimation of scRNA-seq
Differentially expressed genes (DEGs) between different cell popu-
lations were calculated using the “FindMarkers” function in Seurat
with logfc.threshold set to 0.01 and min.pct set to 0.01. Significance
level of DEGs was set to log2FC > 0. 26 (FC > 1.2) and adjusted
P < 0.05. Two methods, VIPER28 and DoRothEA74, were used to esti-
mate the protein activities of transcription factors (TFs). Themsviper
function from VIPER package was used for master regulator infer-
ence analysis and visualization. P < 0.05 was set as the significance
level to demonstrate the difference of TF activities between different
cell types.

Constructing single-cell trajectories of APL blast populations
The APL blasts were subjected to downstream analysis using Seurat.
To ensure robust results and account for potential batch effects
across samples, we applied the Harmony algorithm for batch corre-
lation. Subsequently, UMAP was employed to visually demonstrate
the effectiveness of our batch correction (Supplementary Fig. 23).
Additionally, the results in Supplementary Fig. 23b, c demonstrated
that factors such as age and gender did not affect our identified
clusters of APL blasts. To estimate the potential dynamic process of
cell differentiation in APL blasts, we performedRNA velocity analysis.
Velocyto was used to run the RNA velocity analysis and generate the
spliced, unspliced, and ambiguous fractions of each cell. A
likelihood-based dynamical model was utilized to learn the tran-
scriptional states and infer intratumoral differentiation of APL blasts
using scVelo75. To gain additional insights into genes during differ-
entiation, the pseudotime transitional trajectory of the four APL blast
cell populations was utilized using the R package Monocle2 (version
2.24.0)76. To eliminate the effects of cell cycle blasts and better
interpret intratumoral heterogeneity, cells that were APL stem-like,
Prog-like, S100hiGMP-like and GMP-like were enrolled to construct
the trajectory. To reduce computation time, the cell number of each
cell type was down-sampled to 2,000. The DDRTree method was
used to perform dimensionality reduction based on the top 30 DEGs
in each cell type. Based on the trajectory result, APL stem-like cells
were defined as the initiating point of the trajectory. Differentially
expressed TFs in S100hiGMP-like and GMP-like branches were calcu-
lated using the BEAM subprogram in Monocle2. Q-value < 0.05 was
used to filter TFs. The visualization was performed via the plot_gen-
es_branched_heatmap function.

Targeted single-cell RNA sequencing data analysis
To validate the expression level of PML/RARα and FLT3-ITD tran-
scripts, two samples (APL06 and APL08) were performed for targeted
single-cell RNA sequencing (scTarget; Singleron Biotechnologies) and
bulk RNA-seq. For gene expression analysis and cell type annotation of
scTarget, gene expression matrices of cells were generated using
CeleScope (https://github.com/singleron-RD/CeleScope) with default
parameters. We used the K-nearest neighbor (KNN)23 algorithm to
predict cell types, and the calculation steps were described as follows:
(i) build a single-cell-based expression reference using the pre-
annotated 16 APL blasts (10X Genomics); (ii) integrate the expression
profiles of the 16 APL blasts and the two scTarget samples. Batch
effects adjustment was performed across samples using Harmony; (iii)
for each cell from scTarget, the top 50 nearest cells were calculated
using the KNN algorithm by the R package BiocNeighbors; (iv) the
annotations were based on the highest frequency of the annotated
nearest cell types; (v) cells from scTarget were projected onto the
UMAP of APL blasts for visualization. Next, for the identification of
PML/RARα and FLT3-ITD transcripts, the calculation steps were
described as follows: (i) build a reference that contained wild-type
gene regions of PML, RARA, and FLT3, and the different isoforms of
PML/RARα fusion transcripts; (ii) FLT3-ITDwere called frombulk RNA-
seq using RNAmut; (iii) preprocessing steps of scTarget data to dis-
cover fusions/mutations were performed using CeleScope; (iv) a 12-bp
of nucleotides across the PML/RARα fusion point was used to scan the
reads that mapped onto PML and RARA genes and identify the
expression level of PML/RARα transcripts of each cell; (v) detection of
FLT3-ITD according to the mutated nucleotides obtained from bulk
RNA-seq; (vi) merge the expression level of PML/RARα and FLT3-ITD
transcripts with gene expression data. There were, however, certain
limitations in scTarget. For example, the presence of dropouts, a well-
known challenge in single-cell analysis77, implies that only a fraction of
the transcriptome in each cell may have been captured. Therefore,
there is room for improving the sensitivity and accuracy of scTarget in
detecting targeted gene expression at the single-cell level.
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Bulk RNA sequencing, alignment, and data analysis
Raw FASTQ files of bulk RNA sequencing (RNA-seq) data were aligned
to the human reference genome GRCh38 (release 38). The human
reference genome and its annotation file were downloaded from the
GENCODE database (https://www.gencodegenes.org/). Salmon (ver-
sion 1.5.1) was used to generate the count and transcripts per kilobase
of the exon model per million mapped reads (TPM) matrix. For cal-
culating differentially expressed genes, the limma package was used
with significance level settings of adjusted P <0.05 and log2FC > 0.58
or < −0.58. The R package pheatmap (https://CRAN.R-project.org/
package=pheatmap) was used to perform and visualize hierarchical
clustering in the heatmap plot.

Deconvolution analysis and construction of the LASSO
score model
Deconvolution analysis was performed to estimate APL cell popula-
tions from bulk RNA-seq data. The reference was constructed from
scRNA-seq of the 16 de novo APLs. 10,000 cells were randomly selec-
ted from the total 136,497 cells of APL BM cells. The normalized
expression profile was uploaded to CIBERSORTx (https://cibersortx.
stanford.edu/) and the generation of the signature matrix of the six
APL branches (stem-like, Prog-like, S100hiGMP-like, GMP-like, cycling
GMP-like, and MDP-like) and three non-APL populations (B cells, T/NK
cells, and erythroid cells) was performed. Then the signature matrix
containing 3388 genes was generated and enrolled for deconvolution
analysis. Support Vector Regression (SVR) was performed to estimate
the coefficients of each cell type from the bulk TPM matrix using R
package e1071 (https://CRAN.R-project.org/package=e1071). The
coefficients couldbe used to reflect the abundanceof cell types in bulk
RNA-seq. In this study, we had data from 12 patients who had both
scRNA-seq and matched bulk RNA-seq data available. To estimate the
cell proportions, we employed the linear regression model to link the
coefficients calculated from the bulk RNA-seq and the observed cell
proportions from scRNA-seq. For evaluation, leave-one-out (LOO)
cross-validation was performed using the 12 patients as the “ground
truth” to assess the accuracy and reliability of the model. The model
was then applied to the 323 de novo APL cohort (GSE172057)53 to
estimate cell proportions. For better application on bulk RNA-seq, we
constructed a least absolute shrinkage and selection operator (LASSO)
based score model to reveal the stemness score of APL. This model
considered two factors: (i) the proportion of APL stem-like cells by
using genes that were exclusively expressed in APL stem-like cells
relative to other APL blast populations (quantity-driven); and (ii) the
characteristics of APL stem-like cells by analyzing differentially
expressed genes (DEGs) between APL stem-like cells and normal
HSPCs (quality-driven). From this analysis, 898 significant DEGs were
selected for use in the LASSO regression model. The optimal value of
the penalty parameter λ was determined through 10-fold cross-vali-
dation, using the R package glmnet (https://CRAN.R-project.org/
package=glmnet). The top 10% estimated proportions of APL stem-
like were used to separate the samples. Finally, eleven genes were
selected for constructing the APL stemness score model.

Analysis of APL BM cells after ATRA treatment
For scRNA-seq analysis, cells from Day 0 and Day 2 (after ATRA treat-
ment) were integrated using Seurat. Batch effects were adjusted using
Harmony. In the realm of cell type annotation, the cell types identified
in Day 0 samples were consistent with annotations from the original
analysis of 16 de novo APL scRNA-seq datasets. Subsequently, for Day
2 samples, we annotated cell types based on the KNN algorithm,
considering their top 50 nearest cells in Day 0. For bulk RNA-seq
analysis, we leveraged deconvolution analysis to estimate the pro-
portions of the 9 APL cell types, providing insights into the cellular
composition within the samples.

Functional enrichment analysis and pathway crosstalk analysis
Gene ontology (GO) enrichment and gene set enrichment analysis
(GSEA) were performed using the clusterProfiler package. Gene sets
used in GSEAwere downloaded fromMSigDB.We used single-sample
GSEA (ssGSEA) to evaluate the expression level of pathways in each
sample through the GSVA package. The public gene sets used in
GSEA were downloaded from MSigDB, including Hallmark gene sets
(H) and KEGG gene sets (C2). To perform GSEA analysis with PML/
RARα targets generated from CUT&Tag (GSE195776)78, we initiated
NES evaluation by randomly selecting 500 PML/RARα targets with
different random seeds spanning from 1 to 100 (Supplementary
Fig. 24). Genes included in the GSEA analysis were ranked based on
their log2FC between APL stem-like cells and normal HSPCs. The
ultimate gene set of PML/RARα targets was defined according to the
top 500 PML/RARα targets, determined by adjusted P-values
derived from CUT&Tag. We employed OpenXGR79 to identify path-
way crosstalk through integrative analysis of differential expression
data (PML/RARα targets expressed in APL stem-like cells compared
with HSPCs) and KEGG-derived pathway interaction data. Enrichr80

was also conducted for functional enrichment analysis of differen-
tially expressed genes. The differentially expressed pathways depic-
ted were the most relevant to hematological malignancies or
stemness.

Statistics and reproducibility
Statistical analysiswasperformedusingRversion4.2.1. Thedetailed
descriptions of the statistical tests used were provided in the
legends of the corresponding figures. APL patient samples were
randomly recruited in the clinical setting without sample size cal-
culated. All analyses are reproducible using codes available through
the project-dedicated website ‘TACH’ (http://www.genetictargets.
com/tach).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The rawsequencing data reported in this paper have beendeposited in
the Genome Sequence Archive in National Genomics Data Center,
China National Center for Bioinformation/Beijing Institute of Geno-
mics, Chinese Academy of Sciences (https://ngdc.cncb.ac.cn/gsa-
human). These data are accessible under the accession number ‘GSA-
Human: HRA003777’. These data are under controlled access by
human privacy regulations and are only available for research pur-
poses. Access to the data can be granted following approval from the
Data Access Committee of the GSA-human database, as detailed at
https://ngdc.cncb.ac.cn/gsa-human/document/GSA-Human_Request_
Guide_for_Users_us.pdf. Data are accessible to researchers who meet
the criteria for access as defined by the GSA-human database guide-
lines. Access requests are usually processed within approximately four
weeks and data will be available for three months once access is
granted. All sequencing data, including scRNA-seq and bulk RNA-seq
data, are also available in NODE under the accession number
OEP003829. The public datasets utilized in this study are available in
the GEO database. These include scRNA-seq data from 23 healthy BM
samples (accession code GSE120221 and GSE130116), the APL cohort
data (GSE172057), and the PML/RARα target data generated from
CUT&Tag (GSE195776). Accession links are as follows: GSE12022172,
GSE13011673, GSE17205753, and GSE19577678. Source data are provided
as a Source Data file within the paper, also accessible through the
project-dedicated website ‘TACH’ (http://www.genetictargets.com/
tach). The remaining data are available within the Article, Supple-
mentary Information, or Source Data file.
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Code availability
The single-cell RNA data were processed using cellranger (https://
www.10xgenomics.com, version 6.0.2) and analyzed using the R
package Seurat (https://satijalab.org/seurat, version 4.3.0). The codes
used in the paper are available on GitHub (https://nrctm-bioinfo.
github.io/APL_stemness) and Zenodo (https://doi.org/10.5281/zenodo.
10437695)81.
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