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Time-integrated BMP signaling determines
fate in a stem cell model for early human
development

Seth Teague 1, Gillian Primavera1, Bohan Chen 2, Zong-Yuan Liu3, LiAng Yao3,
Emily Freeburne3, Hina Khan3, Kyoung Jo3, Craig Johnson3 &
Idse Heemskerk 1,2,3,4,5

How paracrine signals are interpreted to yield multiple cell fate decisions in a
dynamic context during human development in vivo and in vitro remains
poorly understood. Here we report an automated tracking method to follow
signaling histories linked to cell fate in large numbers of human pluripotent
stem cells (hPSCs). Using an unbiased statistical approach, we discover that
measured BMP signaling history correlates strongly with fate in individual
cells. We find that BMP response in hPSCs varies more strongly in the duration
of signaling than the level. However, both the level and duration of signaling
activity control cell fate choices only by changing the time integral. Therefore,
signaling duration and level are interchangeable in this context. In a stem cell
model for patterning of the human embryo, we show that signaling histories
predict the fate pattern and that the integral model correctly predicts changes
in cell fate domains when signaling is perturbed. Our data suggest that
mechanistically, BMP signaling is integrated by SOX2.

Secreted signaling molecules (morphogens) play key roles in cell fate
decisions during embryonicdevelopment in vivo, aswell as in stemcell
models in vitro1–5. However, the relationship between morphogen
signaling and cell fate patterning remains incompletely understood. It
is generally accepted that the concentrations of signaling molecules
determine gene expression and subsequent cell fate choices6–9. How-
ever, thismodel does not account for time: concentrations of signaling
molecules and downstream signaling activity inevitably change as an
embryo develops and cells are therefore unlikely to see a constant
signaling environment for the duration of a particular cell fate decision
(competence window). This problem is particularly acute in early
mammalian development, where no maternal cues are present and
signaling gradients are formed in feedback loops by the same cells that
differentiate in response to them4.

To understand how signaling controls cell fate one should
therefore measure the full signaling history instead of focusing on a

single point in time. This is technically challenging because differ-
entiation takes place in a crowded, changing cellular environment and
for mammalian cells can take multiple days10–13. In addition to the
technical challenge, considering signaling histories raises a new con-
ceptual problem. Rather thandealingwith a static signaling level as the
sole parameter, the signaling history in a cell has a formally infinite
number of parameters, including rate of signal change, duration, and
relative timing of different signals. Therefore, unbiased exploration by
direct manipulation of these parameters is impractical. Instead, we
pursue an indirect approach leveraging spontaneous heterogeneity in
signaling activity.

BMP is a key morphogen with a conserved role in dorsoventral
patterning across the Bilateria5,14. How BMP controls embryonic pat-
terning has been extensively studied and yet remains controversial.
For example, two recent studies in zebrafish came to different con-
clusions about whether expression domains of different BMP targets
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are consistent with a gradient-threshold model15,16. Current data fall
short in at least two respects. First, previous studies do not account for
signaling history. Although the BMP signaling gradient in zebrafish and
other model systems is known to change over time15,17, it remains
unclear how this affects gene expression patterns. In other settings,
dynamics of signaling gradients were essential in explaining final gene
expression domains18–20. Second, studies to date have typically linked
average signaling activity with average gene expression. Predicting the
approximate fate boundaries along a single axis (such as the dorsal-
ventral axis in zebrafish) provides only a few data points with uncer-
tainty introduced by averaging overmeaningful heterogeneity, such as
patterns along the orthogonal axes or subpopulations of cells with
qualitatively different signaling dynamics21. In contrast, relating sig-
naling to fate in single cells provides thousands of data points in the
same embryo, enabling more stringent tests of different models.

Upon BMP4 treatment, hPSCs with colony geometry that is pre-
cisely controlled using substrate micropatterning undergo self-
organized spatial patterning into concentric rings of different fates
that are specified during gastrulation in vivo. This makes micro-
patterned hPSCs a useful model for human gastrulation known as a 2D
gastruloid22. Due to its reproducibility and high throughput, this sys-
tem is ideal for quantitative studies of differentiation and has led to
many insights into the mechanisms of mammalian gastrulation23–25,
some confirming previous findings in the mouse26,27 and others later
confirmed in the mouse28,29 or exploring human-specific aspects of
development30.

Here we used micropatterned hPSCs as a model for early human
development to test if and how fate choices in response to BMPmight
be quantitatively explained by signaling history. To this end we per-
formed live-cell imaging of signaling activity followed by iterative
immunofluorescence staining to relate signaling to fate in the same
cells. We found that combined histories of BMP and Nodal signaling
accurately predict cell fate patterns in micropatterned colonies. To
limit the combinatorial effects of different pathways27,30,31, we then
created conditions to isolate the relationship between BMP signaling
and fate. This simplified patterning to a binary decision between
epiblast-like and amnion-like cell fates.

To test which features of BMP signaling histories most strongly
correlate with fate and to establish causality, we complemented ana-
lysis of micropatterned hPSCs with experiments in standard culture
conditions where increased heterogeneity can be leveraged to detect
how signaling and cell fate are related. We performed automated
tracking of signaling linked to cell fate in large numbers of individual
hPSCs. Using an unbiased statistical approach, we showed that mea-
sured BMP signaling heterogeneity strongly correlates with cell fate
heterogeneity at the single-cell level. We found that the initial and final
levels of BMP signaling were relatively uniform across cell fates and
conditions but that the duration of signaling varied strongly and cor-
related with cell fate heterogeneity. However, by direct manipulation
of signaling level and duration we demonstrated that the level and
duration cause differentiation only by changing the time integral of
signaling. Thus, a lower level of signaling for a longer duration leads to
similar differentiation as higher signaling for a shorter duration, and
there is no absolute threshold in the duration or the level of signaling
to achieve differentiation.

We then screened for genes that directly reflect the integral of
signaling to determine the mechanism by which cells integrate sig-
naling activity over time, which yielded SOX2 as a candidate among
several other genes. We confirmed this using live imaging of endo-
genous SOX2 and constructed a simple mathematical model that
accounts for all our data by assuming SOX2 represses differentiation
genes and decreases in proportion to the time integral of BMP sig-
naling. Finally, we confirmed a prediction of our model in which
overexpression of SOX2 would reduce differentiation to amnion-like
fate in response to BMP.

Results
Signaling dynamics in a stem cell model for human gastrulation
predict fate pattern
BMP, Wnt, and Nodal function in a transcriptional hierarchy during
self-organizedpattern formation inmicropatterned hPSCs26,27 (Fig. 1A).
Wnt and Nodal, as well as FGF signaling are required for primitive
streak-like and primordial germ cell-like differentiation, whereas BMP
alone is sufficient for amnion-like differentiation22,26,27,30–32. We pre-
viouslymeasured the activity of the BMP andNodal signaling pathways
and found that SMAD4 signaling is dynamic, so static level thresholds
cannot account for the final cell fate pattern33. Moreover, at the single-
cell level, BMP signaling at the end of differentiation correlates poorly
with cell fate, even under conditions where other signals are pharma-
cologically inhibited (Supplementary Fig. 1A, B). Here, we therefore
asked if and how dynamic signaling could instead explain the cell fate
pattern.

We began by live imaging hPSC colonies over 48 h of differ-
entiation in cells expressing either GFP::SMAD434 or RFP::SMAD135 at
the endogenous locus and quantified nuclear SMAD levels relative
to cytoplasmic levels as a proxy for signaling activity (Fig. 1B–D).
Although SMAD1 responds only to BMP, SMAD4 responds to both
Nodal and BMP (Fig. 1B). To analyze spatiotemporal signaling pat-
terns we exploited the approximate rotational symmetry of the
system and averaged signaling over cells at the same distance from
the colony edge (Fig. 1E, F). Consistent with previous work,
GFP::SMAD4 signaling was initially uniform but became restricted
to the edge around 12 hours with a wave of increased signaling
starting around 24 hours33. RFP::SMAD1, which had not been mea-
sured during patterning before, matched GFP::SMAD4 except for
the late signaling wave (Supplementary Fig. 1C, D), confirming our
previous finding that this wave reflects Nodal activity, since
RFP::SMAD1 does not respond to Nodal2.

We then asked if unbiased data analysis could uncover structure
in the radially averaged signaling histories. Principal component ana-
lysis on the SMAD4 signaling histories revealed a tripartite zigzag
structure in the signaling histories (Fig. 1G) that we therefore compu-
tationally divided into three clusters (Fig. 1H, methods). Cluster means
revealed that these represented cells in which signaling was always
high (red), high then low (green), or high then low then high again
(blue) (Supplementary Fig. 1E). The signaling clusters formed a spa-
tially coherent pattern even though the clustering did not use spatial
information (Fig. 1I). We then determined fate patterns in the same
colonies by bleaching fluorescent proteins after live imaging and
subsequently staining for fate markers in the same channels (Fig. 1J,
Supplementary Fig. 1F). The resultant fate pattern closely resembled
the pattern of signaling clusters (Supplementary Fig. 1G). We also
computed the pattern for other numbers of signaling clusters but
these did not divide the PCA plot into its obvious three parts and their
biological relevance is unclear (Supplementary Fig. 1H).

We conclude that qualitatively different classes of signaling
histories predict cell fate (in the statistical sense, which does not
imply causality). Our computational approach thereby recovers
previous qualitative observations that sustained BMP signaling
leads to amnion-like differentiation while transient BMP followed by
Nodal correlates with primitive streak-like differentiation and
transient BMP without Nodal remains pluripotent27,33,34. Never-
theless, this result can be considered surprising for several reasons.
First, enough information was provided by measurement of only
one signaling protein that is part of two pathways (BMP, Nodal) out
of at least four different pathways that are essential for pattern
formation (alsoWnt and FGF). Second, this result implies qualitative
differences in signaling behavior between the fates: a smooth static
signaling gradient would not allow the prediction of cell fate
domains because it contains no information on where the down-
stream thresholds that determine fate boundaries are. Third, there
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have been claims that the initial state of a cell predicts its fate36,37,
which seems at odds with the signaling determining its fate unless
the signaling response and initial state are correlated.

To further challenge our computational approach for predicting
fate from signaling, we repeated the analysis after blocking Wnt
secretion, which led to the absence of both endogenous Wnt and
Nodal signaling due to the Wnt-Nodal hierarchy (Fig. 1A, Supplemen-
tary Fig. 1I). As expected, the late signaling wave in GFP::SMAD4 was
eliminated (Fig. 1K), whereas RFP::SMAD1 was unaffected (Supple-
mentary Fig. 1JK). SMAD2/3 staining showed a drop similar to SMAD4
(Supplementary Fig. 1L–N), consistent with the SMAD4wave reflecting

Nodal signaling that is lost upon Wnt inhibition. PCA of
SMAD4 signaling now yielded only two parts connected by an elbow
(Fig. 1L), and clustering correctly predicted a binary fate pattern of
amnion-like andpluripotent cells (Fig. 1MN, Supplementary Fig. 1O–S).
The fact that the two signaling clusters are still connected after elim-
inating themiddle cluster from Fig. 1G is explained by radial averaging.
Eliminating primitive streak-like cells creates a boundary between
amnion-like and pluripotent cells, where it leads to averaged signaling
between these fates. This suggests that the signaling clusters would be
better separated at the single-cell level. Overall, these results demon-
strate that this approach correctly predicts cell fate patterns from
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Fig. 1 | Sgnaling dynamics in a stem cell model for human gastrulation predict
fate pattern. A Schematic of the BMP, Wnt, and Nodal signaling hierarchy and cell
types induced by these signals. B SMAD1 translocates to the nucleus in response to
BMP while SMAD4 translocates to the nucleus in response to both BMP and Nodal.
C Nuclear translocation of fluorescently tagged SMAD4 (top) and SMAD1 (bottom)
proteins in response to BMP4 treatment, and segmentation of nuclei (color) and
cell bodies (white) in cells expressing GFP::SMAD4. D Micropatterned colony of
RUES2 cells expressing GFP::SMAD4 at t = 30hours after treatment with BMP4. E A
heatmap of average spatiotemporal SMAD4 signaling dynamics (kymograph) in
N = 5 micropatterned colonies treated with BMP4. F Plot of radially averaged sig-
naling histories colored for distance from the colony edge.G Scatterplot of the first
twoprincipal components (PCs) of radially averaged signaling histories, colored for

soft k means cluster assignment. H Plot of radially averaged signaling histories
colored for cluster assignment. I Signaling clusters; each radial bin is assigned a
color according to the dominant cluster of signaling histories within that bin, over
N = 5 replicate colonies. J Immunofluorescence image of ISL1, SOX2, and BRA in a
BMP4-treated colony (left) and the discretized fate map, averaged over replicate
colonies (right). Each radial bin is colored for the dominant cell fate within that bin.
K SMAD4 kymograph averaged overN = 5 replicate colonies treatedwith BMP4and
WNTi. L Scatterplot of the first two PCs of radially averaged signaling histories,
colored for cluster assignment split 1 in Supplementary Fig. 1S (see methods).
M Signaling clusters, created as in I. N IF image of a colony (left) and average fate
map (right). Scale bars 50um. Source data are provided in a Source Data file.
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signaling and recapitulates known biology even after signaling
disruption.

Although GFP::SMAD4 and RFP::SMAD1 looked qualitatively
similarwithWnt inhibition,wenoticed adifference in the timeatwhich
uniform BMP signaling is restricted to the edge (Fig. 1K, Supplemen-
tary Fig. 1J). However, RFP::SMAD1 and GFP::SMAD4 dynamics mat-
ched exactly (Supplementary Fig. 1T–W) when the two cell lines were
mixed in the same colony. This suggests that the dynamics in (Fig. 1K,
Supplementary Fig. 1J) reflect colony-level differences in excluding
BMP from reaching the receptors28, rather than distinct SMAD4 and
SMAD1 dynamics downstream of BMP, so that both can be used
interchangeably as readouts of BMP signaling when Wnt secretion is
inhibited.

A pipeline relating single-cell signaling history to fate
Having established that qualitatively distinct signaling histories match
the cell fate pattern in micropatterned colonies, we asked if and how
specific signaling features correlate with fate. To avoid the full com-
plexity of dynamic combinatorial signaling,we focusedon thedecision
between amnion-like and pluripotent cells controlled by BMP in the
absence of WNT (and downstream Nodal). The analysis in Fig. 1 sug-
gests that BMP response is high throughout differentiation in future
amnion-like cells. However, it cannot be determined whether there is a
minimum level or duration of response required for amnion-like dif-
ferentiation since only a very small range of levels and durations are
represented and each history is an average over a cell population. To
address this problem, we therefore developed an experimental and
computational pipeline to obtain cell signaling histories linked to fate
in individual cells and applied this to a disorganized initial state (i.e.,
standard culture conditions) to leverage “spontaneous” heterogeneity
and sample as broad a range of signaling responses as possible (Fig. 2,
methods).

To obtain single-cell signaling histories we modified a broadly
used automated tracking approach38, in particular to better handle cell
division (Fig. 2C, methods). Because tracking dense cells over multiple
days is challenging, we labeled sparsely (10-20%) to obtain more reli-
able tracks. Manual verification yielded a linking accuracy of 98.8%
between frames. To match signaling histories to fate we fixed cells
after live imaging, immunofluorescence stained them, and reimaged
the samepositions. Images of nuclei from live and fixed data were then
registered and cells were linked between images to obtain a data
structure that contains gene expression data and signaling history for
each cell, all in a fully automated manner (Fig. 2). Per experiment we
could obtain several hundred to a thousand signaling histories linked
to fate.

Because the cells express two different fluorescent proteins the
number of cell fate markers that could be stained and imaged inde-
pendently is reduced. As for the micropatterned colonies in Fig. 1, we
therefore photobleached fluorescent proteins before staining39, free-
ingup all channels. For someexperimentswe combined thiswith the4i
iterative immunofluorescence protocol to obtain multiple rounds of
staining data40. Following previous work, we log-transformed and
normalized expression data for cell fate markers to facilitate down-
stream analysis (see methods).

We optimized cell density and BMP dose for maximal cell fate
heterogeneity (50% differentiation), which we expected to be most
informative about the relationship between signaling and cell fate and
obtained this at several densities with different doses of BMP4 (Sup-
plementary Fig. 2A, B). We then evaluated SMAD4 signaling distribu-
tion over time at intermediate cell density (Supplementary Fig. 2C).
Consistent with previous work, different concentrations of BMP yiel-
ded similar high initial signaling levels but differed in when signaling
started decreasing33,34. BMP degradation provides an explanation for
dose-dependent decrease33 but not for saturation in duration of
response and more rapid shutdown at high doses (Supplementary

Fig. 2C). However, we noticed that reduced BMP response at high
doses coincided with colonies merging and cells reaching a high
degree of confluence, in line with earlier work showing BMP response
is restricted to colony borders28 (Supplementary Fig. 2D). Consistently,
media transferred from cells whose response to high BMP had drop-
ped induced a strong response in untreated cells at lower densitywhile
adding fresh BMP to the original cells no longer elicited a response
(Supplementary Fig. 2D, E). This suggests a combination of BMP
degradationand receptor accessibility causesBMPsignalingdynamics.
It also explains why in micropatterned colonies signaling does not
drop across all cells: micropatterning ensures that colony edges with
high BMP response are maintained. However, we emphasize that this
work focused on how signaling dynamics control fate, and to address
this question the upstream regulation of signaling onlymatters insofar
as it generates a wide enough range of dynamics to infer their rela-
tionship with fate. Consistent with signal interpretation being inde-
pendent of upstream events, we observed throughout this work that
similar BMP signaling under otherwise different conditions led to
similar differentiation (e.g. shutdown from confluence versus small
molecule inhibitors).

We repeated the experiments from Supplementary Fig. 2A–C
with RFP::SMAD1 cells (Supplementary Fig. 2F–H), but differentia-
tion was severely reduced, indicating that RFP::SMAD1 may be
functionally compromised. However, consistent with Supplemen-
tary Fig. 1T–W, RFP::SMAD1 dynamics matched GFP::SMAD4, sug-
gesting that SMAD1 localization is not affected and faithfully
reports BMP response. Nevertheless, measurement noise in
RFP::SMAD1 cells was greater than for GFP::SMAD4 (Supplementary
Fig. 2I–K) and increasing light exposure to improve signal-to-noise
led to phototoxicity. Therefore, we decided to focus on
GFP::SMAD4 cells for relating signaling to differentiation and used
RFP::SMAD1 as a control for average BMP signaling dynamics. To
confirm that GFP::SMAD4 dynamics reflect only BMP signaling in the
presence of Wnt inhibitor, we treated with the TGF-β receptor
inhibitor SB431542 (TGFβRi), which reduced nuclear SMAD2/3 but
had no effect on baseline GFP::SMAD4, suggesting GFP::SMAD4
does not respond to low constant levels of TGF-β signaling in base
medium (Supplementary Fig. 2L, M). In contrast, Activin treatment
induced a strong response in both SMAD4 and SMAD2/3. Staining
for phospho-SMAD1/SMAD5/SMAD9 (pSMAD1/5/9) after BMP
treatment strongly correlated with nuclear GFP::SMAD4 and cor-
respondingly showed response to different doses of BMP that was
initially similar but diverged later (Supplementary Fig. 2N, O). In
summary, we established an automated pipeline to obtain signaling
histories corresponding to high-dimensional cell fate data in large
numbers of individual hPSCs and determined the optimal condi-
tions to apply this pipeline to BMP signaling.

The time-integral and duration of BMP signaling correlate with
cell fate at the single-cell level
We tracked GFP::SMAD4 signaling histories for 42 h in the medium
density condition with maximal heterogeneity and stained for seven
transcription factors after live imaging: ISL1, GATA3, TFAP2C, and
HAND1, which mark amnion-like cells and SOX2, NANOG, and OCT4
marking pluripotent cells. We first analyzed the structure of the sig-
naling histories by themselves. Individual signaling histories varied
around a sigmoidal mean (Fig. 3A, Supplementary Fig. 3A). To discern
the dominant modes of variation between histories we again used
principal component analysis. Visual inspection suggested an inter-
pretation for the first three principal components (PCs) corresponding
toduration, level of initial response and level offinal response (Fig. 3B).
To support this interpretation, we directly fitted a sigmoid curve to
each signaling history to obtain these features (Fig. 3C) and correlated
them with the PCs (Supplementary Fig. 3B). This confirmed PC2,3
respectively showed strongest correlation with high level and low
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level. However, PC1 correlated strongly with all three signaling
features.

The scatterplots of fit parameters versus PC1 contained outliers
corresponding to histories with poor fitting of the sigmoid due to
noise, to which the duration was most sensitive (Fig. 3D, Supplemen-
tary Fig. 3C,D). Signaling histories share with single-cell RNA-sequen-
cing data that they are noisy high-dimensional single-cell

measurements. We therefore tested if we could effectively reduce
noise in these signaling histories by data diffusion using MAGIC, an
algorithm developed for single-cell RNA-sequencing data41. Weighted
averaging of signaling between histories that are most similar using
data diffusion visibly reducednoise in signaling histories (Fig. 3E), after
which fits improved (Supplementary Fig. 3C, D) and outliers dis-
appeared (Fig. 3D), making the relationships between fitted signaling
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features andprincipal componentsmoreapparent. After denoising the
total variance explained by the leading three principal components
went from48% to 83%with sub-leading componentsmaking very small
contributions, suggesting that these sub-leading components mostly
capture noise, consistent with the fact that they had no obvious

interpretation (Supplementary Fig. 3E). Although denoising increased
the correlation between duration and PC1 relative to other features
(Fig. 3F), the correlation was still high between all parameters and PC1.
This suggested that PC1 may represent the time integral (i.e., total
amount) of signaling, which increases with any one of the parameters.
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The resemblance of PC1 to duration in Fig. 3B is explained by differ-
ences in duration dominating variation in the integral. Indeed, we
found that the integral of signaling correlatesmuchmore stronglywith
PC1 than other features (Fig. 3F, Supplementary Fig. 3F).

Having discovered duration, high level, low level, and integral as
the key features of a signaling history, with integral as the dominant
mode of variation, we askedwhether these signaling features correlate
with cell fate. We first looked at the fate data alone. As expected, the
markers separated into two groups representing amnion-like and
pluripotent cells (Fig. 3G, Supplementary Fig. 3G, H). Based on the
seven-dimensional cell fate data we then clustered the cells into two
discrete fates: amnion-like or pluripotent (differentiated or undiffer-
entiated) (Supplementary Fig. 3H–K, methods), and calculated the
average signaling history in each cluster. Strikingly, we found that on
average the two fates have nearly identical initial and final (high and
low) signaling levels but they differ significantly in theirmean duration
and integral (Fig. 3H). We confirmed this result with RFP::SMAD1
(Supplementary Fig. 3L), although SMAD1 data was much noisier.
These key findings show that the dominant mode of variation in BMP
signaling, the integral, correlates with the fate.

We then asked if signaling history is not only different between
discrete cell fates but whether it correlates with expression levels of
fate markers, that can be interpreted as coordinates along a differ-
entiation trajectory42. We found that log expression ratio of ISL1 and
NANOG, log(ISL1/NANOG), best separates the fates (Supplementary
Fig. 3H–K, methods). We therefore focused on this single continuous
variable along the fate trajectory for further analysis. A heatmap of
signaling histories versus this continuous fate variable showed a clear
pattern of higher and longer signaling for more differentiated cells
(Fig. 3I). To reveal the relationship between specific signaling features
and the degree of differentiationmore clearly, we again denoised, with
controls for artifacts (seemethods). However, regardless of denoising,
we found stronger correlation between fate and signaling duration or
integral than between fate andhighor low level (Fig. 3J, Supplementary
Fig. 3M), consistent with the means in Fig. 3H.

We next asked if the relationship between signaling and fate
remains fixed when their distributions are changed by varying cell
density and BMP dose. This would be expected in simple models
relating signaling and fate, although a more complex context-
dependent relationship is possible. We indeed found a consistent
relationship between signaling and fate across two different densities
and two different BMP doses (Fig. 3K). Mean signaling for amnion-like
cells in any condition was separated from mean signaling for plur-
ipotent cells in any condition (Fig. 3L, Supplementary Fig. 3N), and the
heatmap of combined histories versus fate showed a consistent trend
that was muchmore pronounced than for a single condition (Fig. 3M).
Finally, different conditions combined to form a clear threshold-like
relationship between signaling features and fate with plateaus for
undifferentiated and fully differentiated cells (Fig. 3N, Supplementary
Fig. 3O). Importantly, consistent with (Supplementary Fig. 2C), varying

BMP concentration and cell density changed the duration of the
response but showedminimal variation in the initial and final signaling
levels (Fig. 3L).

Although the integral showed the highest correlation with fate, all
features correlated strongly with fate and with each other. We there-
fore asked if all information about fate is contained in the signaling
integral, or whether different features contain independent informa-
tion. To test this, we first calculated how well an optimal threshold for
each feature separates the fates. The percentages of cells in the
quadrants formed by the cell fate and signaling feature thresholds in
Fig. 3O then provide the confusion matrix of the Bayesian classifier
(see methods). The upper right and left quadrants respectively cor-
respond to correctly predicted amnion and amnion misclassified as
pluripotent based on the feature threshold, while the lower left and
right correspond to correctly predicted pluripotency and pluripotent
cells misclassified as amnion. We found the integral-based prediction
to be most accurate at 83% (Fig. 3O, Supplementary Fig. 3P). To esti-
mate the total information contained in signaling we trained a variety
of general classifiers, specifically artificial neural networks and support
vector machines, and found their accuracies in predicting fate from
the complete signaling history to be extremely similar, also around
83% (Fig. 3P). This suggests that the complete signaling history con-
tains no more information about fate than the integral. Although we
conservatively performed this analysis with raw data to exclude the
possibility of denoising artifacts, we found that after denoising,
integral-based prediction becomes nearly perfect (97% accuracy),
further supporting the conclusion that all information about fate is
contained in the integral.

In summary, we found that the signaling response to BMP is
characterized by a high initial plateau going down to a lower final
plateau. Although it is primarily the duration that varies between cell
fates and experimental conditions, fate is best explained by the time
integral of signaling, which in turndepends on the duration. This raises
the question of whethermechanistically either the time-integral or the
signaling duration controls fate.

The time-integral of BMP signaling controls differentiation
Having found that both the duration and time-integral of signaling
strongly correlate with fate, we asked how integral-dependent differ-
entiation can be distinguished from a level threshold combined with a
duration threshold, which is the simplest dynamic extension of the
classic morphogen model. We reasoned that if the integral controls
cell fate, lower levels of signaling can be compensated by a longer
duration, which is inconsistent with an absolute level threshold
(Fig. 4A–C).

To independently control signaling level and duration and
determine how their combination impacts fate, we could not use
treatment with different concentrations of BMP4, since these do not
yield different steady levels of response31,33 (Supplementary Fig. 2C).
Therefore, we first combined low cell density with high BMP

Fig. 3 | The time-integral and duration of BMP signaling correlate with cell fate
at the single-cell level. A Plot of 50 out of 369 signaling histories, populationmean
overlaid as a bold black line. B Separation of signaling histories along the first three
principal components (PCs). Average of histories one standard deviation above or
below the mean along each component are shown in red and blue, respectively.
C Example signaling history with a sigmoidal fit to determine signaling features.
D Scatterplot of duration vs. PC1 with and without denoising using MAGIC.
E Signaling histories from A after denoising. F Correlation between signaling fea-
tures and PCs across cells. G Correlation of fate marker expression across cells.
H Mean signaling histories for amnion-like and pluripotent cells. I Heatmap of
signaling histories sorted by log(ISL1 / NANOG). J Scatterplot of log(ISL1 / NANOG)
against signaling integral for single cells, with and without denoising. P value cal-
culated with the t-statistic in the MATLAB function corrcoef. K antibody stains for
ISL1 and NANOG at different cell densities and BMP4 concentrations. L Mean

signaling for amnion and pluripotent fate for each condition in K. M Heatmap of
signaling histories sorted by log(ISL1 / NANOG).N Scatterplot of log(ISL1 / NANOG)
against signaling integral for single cells, with and without denoising. Color is by
condition, indicated with color borders around images in K. P value is as in J.
O Heatmap of kernel density estimate after denoising of conditional distributions
of log(ISL1 / NANOG) with respect to duration and signaling integral overlaid with a
scatterplots of data points before (circles) and after denoising (dots). Dashed lines
show separation of cells into amnion-like and pluripotent based on log(ISL1 /
NANOG) or on signaling features. The percentage of cells in each quadrant is
indicated, with correct assignments in the top right and bottom left quadrant of
each heatmap. P Confusion matrix showing the performance of a neural network
(NN) and a support vector machine (SVM) in classifying cells as amnion-like or
pluripotent using the full signaling history. Source data are provided in a Source
Data file.
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concentration to obtain a high BMP response in all cells throughout
differentiation. We then controlled the SMAD4 signaling level by
treatment with different doses of the BMP receptor inhibitor
LDN193189 (BMPRi) and the duration by BMP removal combined with
a high dose of BMPRi to abruptly and completely shut down signaling
(Fig. 4D, Supplementary Fig. 4A). As before, pSMAD1 and RFP::SMAD1

responsematchedGFP::SMAD4 (Supplementary Fig. 4B, C). Therefore,
the signaling level was experimentally defined as the mean
SMAD4 signaling before signaling shutdown and the duration as the
time of the shutdown.

We first varied duration while holding level fixed (Fig. 4E). Con-
sistent with our findings in Fig. 3 we found a sharp duration threshold
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around 26 hours, above which cells predominantly differentiated to
amnion-like fate (Fig. 4F, Supplementary Fig. 4D). We then repeated
thiswhile lowering the level with a small dose ofBMPRi throughout the
experiment and found that the duration threshold went up to around
32 hours (Fig. 4E, F and Supplementary Fig. 4D), consistent with our
hypothesis that there are no fixed level and duration thresholds.
Moreover,whenweplotted the duration-differentiation curves for two
different levels against the time-integral of signaling, these collapsed
on top of each other with an identical integral threshold (Fig. 4F). Of
note, theduration threshold inFig. 4F is slightly later than that found in
Fig. 3, which is also consistent with integral control of fate because the
final signaling level after BMPRi treatment is lower than in cells where
the BMP response goes down spontaneously. Overall, the fact that the
duration required for differentiation changes at different signaling
levels but the integrated signaling remains the same provides strong
quantitative support for the integral model.

To further support our integral hypothesis, we then explored a
wide range of signaling levels while holding the duration fixed
(Fig. 4G). We found a sharp threshold in level above which plur-
ipotency was lost that was shifted upward when the duration of sig-
nalingwasdecreased (Fig. 4H). These level-differentiation curves again
collapsed on a common integral threshold (Fig. 4H). We confirmed the
relationship between integrated signaling and differentiation for
pSMAD1 by fixing and staining for pSMAD1 at regular intervals (Sup-
plementary Fig. 4E, F). We then tested whether the relationship
between integrated BMP signaling and amnion-like differentiation
depends on TGF-β/Nodal signaling by repeating the experiment in the
presence of TGFβRi (Supplementary Fig. 4G, H). With TGFβRi, SMAD4
response to BMP4 with different doses of BMPRi was similar, although
slightly stronger, consistent with literature describing an inhibitory
effect of pSMAD3 on pSMAD1/5/9-SMAD4 complexes43. As expected,
TGF-β inhibition caused downregulation of NANOG but left SOX2
unaffected44 (Supplementary Fig. 4I). We therefore used log(ISL1/
SOX2) to define fate and again found that differentiation to ISL1+
amnion-like cells was predicted by the integral of SMAD4/BMP sig-
naling (Supplementary Fig. 4J).We also found that integrated signaling
correctly predicteddifferentiation formultiplepulses of BMPsignaling
(Fig. 4IJ).

Finally, we asked if the integral model can account for differ-
entiation in the micropatterned model for embryonic patterning,
where a BMP signaling gradient forms spontaneously from the edge
inward due to receptor accessibility and secretion of inhibitors28,30

(Supplementary Fig. 4K). If BMP signaling is shut down across the
colony, cells at different distances from the edge will have been at
different signaling levels for the same duration and therefore have
experienced different amounts of integrated signaling (Supplemen-
tary Fig. 4L). By shutting down BMP signaling in micropatterned
colonies at different times and measuring differentiation as a function
of distance from the colony edge we are then simultaneously testing
the effect of level and duration. We therefore live-imaged micro-
patterned colonies of GFP::SMAD4 hPSCs with BMP4+WNTi, treated
themwith a high dose of BMPRi at different times and then fixed them
after 42 h to evaluate the percentage of amnion-like cells at different

distances from the edge (Fig. 4K, L, Supplementary Fig. 4M-T). Con-
sistent with the experiments in sparse culture, we found that the sig-
naling level required for 50% differentiation was strongly dependent
on the duration of signaling, but that level-differentiation curves
approximately collapsed on a common integral threshold (Fig. 4M).

It has been claimed that GATA3 acts as an irreversible switch
driving commitment to differentiation after as little as one hour of
BMP signaling45, which seems inconsistent with our findings. For direct
comparison we therefore measured GATA3 in the same experiment
(Supplementary Fig. 4V). We found that, similar to ISL1, it reflects the
integrated signaling, but surprisingly does not show a switch-like
threshold, appearing graded instead (Supplementary Fig. 4W, X). We
therefore found no evidence of a BMP signaling duration threshold for
GATA3 activation, early or late. Altogether, our data provide strong
evidence that amnion-like differentiation is controlled by the time-
integral of BMP signaling in both standard culture andmicropatterned
colonies and that there are no absolute thresholds in level of duration
or level of signaling.

BMP signaling may be integrated by SOX2
We asked by what mechanism cells integrate BMP signaling and rea-
soned that the simplest mechanism would be a protein that increases
or decreases at a rate that is proportional to the level of BMP signaling
on a timescale comparable to that of differentiation. A threshold
response of differentiationmarkers like ISL1 or HAND1 downstream of
such an integrator gene would then explain the integral threshold
observed in Fig. 4. In the simplest case, the integrator would be a
transcription factor directly regulating the downstream genes. We
therefore looked for transcription factors showing the gradual
increase or decrease on the timescale of differentiation with immedi-
ate response at a rate roughly proportional to the level of BMP
signaling.

First, we measured protein-level dynamics of amnion and plur-
ipotency genes for different levels of BMP signaling using immuno-
fluorescence staining on a time series of fixed samples. We observed
three classes of dynamics (Fig. 5A, D, Supplementary Fig. 5A): gradual
increase with a dose-dependent slope (GATA3, TFAP2C), gradual
decrease with a dose-dependent slope (SOX2, NANOG), and delayed
increase (ISL1, HAND1). For genes showing immediate response we
related their level to the integral of SMAD4 signaling for the same dose
of BMPRi (Fig. 5B, Supplementary Fig. 5B) in the first 24 h and found an
approximately linear relationship for each (Fig. 5C, Supplementary
Fig. 5C). In contrast, for ISL1, HAND1, and OCT4 we confirmed the
threshold dependence on SMAD4 of Fig. 4 (Supplementary Fig. 5D).
Therefore, this analysis identified four of these seven genes as poten-
tial integrators (GATA3, TFAP2C, SOX2, NANOG).

We then performed similar analysis at the transcriptional level in a
genome-wide, unbiased manner. We screened for integrator genes
with bulk RNA-seq at different times after BMP treatment and at dif-
ferent levels of BMP signaling after 5 h. To focus on genes with large
expression changes we restricted our analysis to genes with a cumu-
lative fold change over time of at least one standard deviation above
the mean (Supplementary Fig. 5E). Consistent with the

Fig. 4 | The time-integral of BMP signaling controls differentiation. A Diagram
of relevant signaling history features.B–CHypothetical set of signaling histories for
which a combined level and duration thresholdmodelmakes a different prediction
of cell fate than an integral threshold model. D Schematic of the experimental
procedure used to control the level and duration of signaling. E (left) Mean sig-
naling for different durations without initial BMPRi. (right) Mean signaling for dif-
ferent duration with an initial BMPRi treatment of 10 nM. F Duration and
SMAD4 signaling integral thresholds based on logistic sigmoid fit for two signaling
levels. Data in F, H, J are presented asmean +/− standard deviation (SD) overN = 4,
3, and 3 images, respectively. Thresholds in any signaling feature aredefinedby 50%
differentiation. GMean signaling for 8 doses of BMP inhibition with LDN193189 for

durations of 42 hr (left) or 32 hr (right). H SMAD4 signaling level and integral
thresholds for both signaling durations. I Mean signaling for single pulse controls
(left) compared to mean signaling for multiple pulses of BMP signaling (right).
J Differentiation vs. integrated signaling for one vs. multiple pulses. K Kymograph
of average BMP signaling for N = 3 colonies treated with 200ng/mL BMP4 in the
presence of WNT inhibitor, treated with BMP inhibitor at 30hours. L IF data
showing amnion differentiation for each signaling duration (scale bar 50um).
M Percent differentiation against mean signaling level before shutdown for each
duration (left) and against signaling integral (right). Each point represents a radial
bin (a fixed distance from the colony edge). Error bars are standard deviation over
N = 3 colonies per condition. Source data are provided in a Source Data file.
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immunofluorescence data, hierarchical clustering of the time series
then revealed three clusters of genes undergoing large changes in
expression during differentiation: 816 continuously decreasing genes,
729 immediately increasing genes, and 696 delayed increasing genes,
of which 79, 75, and 59 were transcription factors, respectively46

(Fig. 5E, Supplementary Fig. 5F, Supplementary Data 1). We then
identified genes with an immediate response to BMP that was both
proportional and strong, by respectively filtering based on the corre-
lation with SMAD4 signaling level (above 0.9) and slope (above 0.1
normalized to the time-series maximum) in the dose-response data
after 5 h (Fig. 5F, G). Intersecting these with the set of genes from the
time series analysis left 28 immediately decreasing and 38 immediately
increasing transcription factors as candidate integrators. Reassuringly,
these respectively contained SOX2 and GATA3, TFAP2C. However,
NANOG was excluded due to low correlation with SMAD4 signaling at
5 h. This suggests NANOG is not a direct transcriptional target of BMP
signaling and its response on longer timescales measured with IF is
either indirect or post-transcriptional. Overall, the bulk RNA-seq data
identified potential integrator genes and provides a deep character-
ization of the transcriptional response to BMP4 in hPSCs.

Decreasing genes are associated with the pluripotent state and
increasing genes with amnion-like fate, raising the question of whether

the integral threshold represents a loss of pluripotency or a commit-
ment to amnion fate. These are indistinguishable in our experiments
because we excluded other fates with Wnt inhibition. However, we
found that ISL1 and HAND1 anticorrelatemore strongly with SOX2 and
NANOG than they correlate with GATA3 and TFAP2C (Fig. 3G), sug-
gesting that loss of pluripotency genes may be more important than
gain of expression of early amnion genes to drive expression of late
amnion genes. Furthermore, it was recently proposed that there is a
time window in which cells expressing amnion markers can still
acquire primitive streak-like fate by exposure to Wnt31. This also sug-
gests that our integral threshold represents a commitment to differ-
entiate, i.e. loss of pluripotency, rather than commitment to amnion-
like fate. To single out a specific candidate integrator gene we there-
fore decided to focus on pluripotency genes. We then identified SOX2
as the most likely candidate since it was the only of the so-called ‘core
pluripotency genes’ that fit the criteria for an integrator in the bulk
RNA-seq analysis.

To test how well SOX2 levels reflect integrated SMAD4 signaling,
we again varied levels of BMPsignaling for twodifferent durations as in
Fig. 4, but now measured SOX2 over time using a cell line expressing
GFP::SOX2 in the endogenous locus (Supplementary Fig. 5G, H). With
SMAD4 signaling inferred from GFP::SMAD4 under the same

0 20 40
time (hr)

0

0.2

0.4

0.6

0.8

1

SO
X2

 (a
u)

0 20 40
time (hr)

0

0.2

0.4

0.6

0.8

1

G
A

TA
3 

(a
u)

0 20 40
time (hr)

0

0.5

1

IS
L1

 (a
u)

0
10
30
100
300
X

BMPRi (nM)

0 10 30 100 300 X
BMPRi (nM)

0

0.2

0.4

0.6

0.8

1

SM
A

D
4 

(N
:C

) l
ev

el

SOX2 is part of a class of potential integrator genes
A immediate decrease immediate increase delayed decrease B C

time (hr)
0 4 12 20 28 42

bulk RNA sequencing

SOX2 - 36 hr
0 nM D 10 nM 30 nM

100 nM 300 nM X

E

TFAP2C

SOX2
NANOG

GATA3

ISL1

HAND1

C
PM

 (n
or

m
liz

ed
)

-1 -0.5 0 0.5 1
corr with SMAD4

-0.5

0

0.5

sl
op

e 
(n

or
m

al
iz

ed
)

0.04 0.06 0.08 0.1
SMAD4 (N:C) integral

0.9

1

1.1

1.2

SO
X2

 (n
or

m
 C

PM
)

TFAP2C

SOX2

NANOG

GATA3

ISL1 HAND1

12 hr

slope = -0.354
corr = -0.941

correlation with SMAD4F

G

0

1

Fig. 5 | BMP signaling may be integrated by SOX2. A Normalized expression of
SOX2, GATA3, and ISL1 over time for different signaling levels, measuredwith time-
series IF. Data presented asmean +/− standard deviation (SD) acrossN = 6 images. A
box outlined in black shows the data points corresponding to image data in D.
B Average nuclear SMAD4 signaling level for each treatment condition in
A, determined using SMAD4 dynamicsmeasured in the same conditions and shown
in Supplementary Fig. 5B. C Cross section of A showing SOX2 and GATA3 expres-
sion at 12 hours, plotted against SMAD4 signaling integral.D Example IF image data
for SOX2 in each treatment condition at 36hours, corresponding to the points
boxed in A. Scale bar 50um. E Heatmap of time-series bulk RNA seq data (nor-
malized counts per million) with genes on the y-axis ordered by hierarchical

clustering. The cluster dendrogram is shown to the left, with lines colored for
discrete cluster assignment, and white lines are drawn on the heatmap to separate
clusters. The location in the heatmap of genes alsomeasured with IF is indicated to
the right. F Example bulk RNA seq dose-response data is shown for SOX2 with a
linear least squares fit of SOX2 with respect to SMAD4 signaling level. The slope of
the least squares fit and the correlation coefficient between SOX2 and
SMAD4 signaling level are indicated. G Scatterplot of the slope of each gene with
respect to SMAD4 signaling and that gene’s correlationwith SMAD4 signaling in the
dose-responsebulkRNA seqdata, asdetermined inF. Locations in the scatterplot of
genes forwhichwe also have IF data are indicated. Transcription factors aremarked
in blue, other transcripts in gray. Source data are provided in a Source Data file.
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conditions (Fig. 4, Supplementary Fig. 5G), GFP::SOX2 dynamics dur-
ing the first 16 hours of differentiation confirmed the linear relation-
ship between SMAD4 signaling integral and the rate of SOX2 decrease
over a wide range of SMAD4 signaling levels, as expected if SOX2
integrates SMAD4 signaling (Fig. 6AB) and consistent with similar
observations by Camacho-Aguilar et al. 31.

Our data also showed deviations from the linear relationship at
later times, in particular recovery after shutdown of BMP signaling,
likely due to protein turnover (Supplementary Fig. 5H). We asked
whether a simple model with production and degradation of SOX2
leading to exponential time-dependence could explain these devia-
tions and still be consistent with our measured integral threshold. To
answer this question, we implemented this model mathematically. We
modelled SOX2 production as decreasing linearly with SMAD4 and
decay as constant (Supplementary Fig. 5H), which resulted in SOX2
levels reflecting a weighted integral of BMP signaling that approx-
imates the true integral for slow enough turnover (Supplementary
Note 1). The simple exponential model showed generally good
agreementwith theobserved SOX2dynamics (Supplementary Fig. 5H).
However, for high levels of BMP signaling, SOX2 did not plateau as
expected and average SOX2 recovery rates were lower than expected
after BMP shutdown at 32 h. We reasoned that SOX2 becomes per-
manently repressed and therefore does not recover in differentiated
cells, which constitute a larger fraction after exposure to higher levels
of BMP signaling.Wemodeled this at the level of the populationmeans
by adding negative regulation of SOX2 by ISL1, which resolved the
observed discrepancies (Supplementary Note 1).

Our fitted model predicted a SOX2 half-life around 18h (Supple-
mentary Note 1). To test this we measured GFP::SOX2 fluorescence
recovery after photobleaching (FRAP) and obtained a half-life of 7 h
(Supplementary Fig. 5I–K), which is inconsistent with simple produc-
tion/degradation to explain the measured SOX2 dynamics. It is well
known that SOX2 regulates its own expression47 and that response can
be slowed down by positive autoregulation48. After including positive
SOX2 autoregulation in our model, we were able to fit the observed
SOX2 dynamics using the measured SOX2 half-life (Fig. 6B–D). Fur-
thermore, analysis of published ChIP-seq data49–51 for SOX2 and
ISL1 showed both SOX2 and pSMAD1 bind enhancers near ISL1 as well as
the SOX2 promoter, consistent with our model (Supplementary Fig. 5L)
and previous work showing direct regulation of SOX2 by BMP
signaling52–54.More generally, our results illustrate the signalingmemory
of the system can bemuch longer than the lifetime of proteins involved.

To test the role of SOX2 directly we then created a doxycycline-
inducible SOX2 cell line (Supplementary Fig. 5M, N). We found that
doxycycline-induced SOX2 overexpression for all 42 h of differentia-
tion prevented upregulation of amnion markers, suggesting SOX2
represses these genes (Supplementary Fig. 5O, P). However, NANOG
expression was also lost, consistent with the known requirement for
the right stoichiometry between pluripotency genes to maintain
pluripotency55,56. To stay within the range of SOX2 levels where plur-
ipotency is possible, we then treated cells with doxycycline for 12 h
after 12 h of BMP treatment, when endogenous SOX2 levels have
already decreased significantly. We found that this significantly
decreased differentiation to ISL1+ amnion but maintained plur-
ipotency in the ISL1- cells (Fig. 6E–H). We repeated this experiment in
micropatterned colonies and found that SOX2 overexpression
reduced ISL1 but not GATA3, consistent with our model wherein only
delayed differentiation genes are controlled by the integral threshold
mediated by SOX2 (Fig. 6I–K, Supplementary Fig. 5Q).

Discussion
We showed that the time-integral of BMP signaling determines
amnion-like fate in human pluripotent stem cells. Importantly, this
challenges the idea of level thresholds controlling differentiation since
the same integrated signaling level can be reached by short high

signaling and long low signaling. These findings therefore potentially
have broad repercussions for our understanding of developmental
patterning, while providing specific insight into early human cell fate
decisions and heterogeneous stem cell differentiation in vitro. We
identified ‘integrator genes’, whose levels reflect the time integral of
BMP and provide evidence that SOX2 mechanistically implements the
time-integration of BMP signaling.While the full GRN interpreting BMP
is likely more complex and remains to be elucidated, the linear rela-
tionship between integrator gene expression and signaling is not
generically expected and is in some sense the opposite of sharp level
thresholds. Therefore, their identification provides additional support
to the integral model.

To investigate how signaling is interpreted by cells we leveraged
spontaneous signaling heterogeneity. Supplementary Fig. 2D, E and
previous work suggest signaling heterogeneity is due to receptor
localization and inhibitor secretion combined with local differences in
cell density and confluence28. However, our conclusion that integrated
signaling controls differentiation does not depend on how signaling
heterogeneity arises.

In interpreting our data, we made several idealizations. First, the
level of SOX2 and similar integrators cannot perfectly reflect the sig-
naling integral due to finite turnover as well as cross- and auto-
regulation. Our model (Fig. 6D) showed that this is a good approx-
imation (Fig. 6B–D), although larger deviations from an exact integral
threshold are predicted for low levels combined with longer durations
thanwe experimentally tested. Second, we used the term fate for ISL1+
amnion-like cells versus SOX2+ pluripotent cells, but as this is the first
step of differentiation from pluripotency in a long series of develop-
mental events, we do not expect the differentiation markers to truly
mark a stable cell fate. Rather, our amnion-like cells may represent an
intermediate state towards further differentiation. Nevertheless, we
showed commitment to differentiation, as the pluripotency gene
SOX2does not recover even after removal of BMP in cells that pass the
threshold for differentiation (Fig. 6).

There are several potential advantages to integrating cell signal-
ing over time. Integration reduces noise and is insensitive to brief
signaling perturbations in the sameway as averaging. It also allows for
flexible tuning of fate patterns, sincean integral threshold is equivalent
to a level threshold that can be tuned by changing the duration, e.g.
with a delayed negative feedback loop, which may be more straight-
forward than scaling the morphogen gradient itself. This also implies
that if the duration of signaling is the same for all cells, a signaling
gradient interpreted by integration over time would produce cell fate
patterning consistent with the classic French flag model despite the
absence of absolute thresholds in signaling level.

Given these advantages, temporal integration of cell signalsmight
be expected throughout development. Indeed, there is evidence for
integration of ERK signaling in mammary epithelial cells57, and Nodal
signaling in zebrafish58. In many other contexts where a strong
dependence on signal duration was found, this could be a dependence
on integrated signaling, depending on whether duration thresholds
change with signaling level. For example, our finding that BMP dose
primarily affects the average duration of signaling (Fig. 3) is reminis-
cent of SHH signaling in the neural tube, where concentration
increases increase the duration but not the level of signaling18,20.
Strikingly, BMP signal duration is also important in neural tube pat-
terning, but it remains unclear whether dorsal interneuron identity
depends on the time-integral of BMP signaling or on level, duration,
and other signaling features separately17. In addition to the time-
integral of signaling possibly controlling fate more generally, the
potential mechanism of BMP integration by SOX2 may also extend to
other cell fate decisions, since several fate decisions controlled by BMP
involve suppression of SOX2 including neural versus non-neural
ectoderm59–61 and foregut versus hindgut62. An important related
question is whether our inability to obtain steady response at different
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levels by varying exogenous BMP concentration is typical or depends
on developmental stage and the combination of BMP ligands and
receptors63,64.

Several papers previously considered the role of BMP signaling in
hPSC differentiation. Gunne-Braden et al.45 claimed that GATA3 med-
iates fast, irreversible commitment to differentiation after less than 1 h
of BMP exposure. In sharp contrast, our work shows that a substantial
duration (over 24 h) of BMP signaling is required for both differ-
entiation and high GATA3 expression even at maximal signaling levels.
Moreover, Supplementary Fig. 4V–X and Fig. 5 show a gradual rela-
tionship betweenGATA3 expression and the duration of BMPsignaling
that supports our integral model and is inconsistent with switch-like
behavior. Consistent with our data, a large body of literature supports
the conclusion that BMP inhibition at any time during differentiation
has a clear impact on cell fate27,28,34,65–67.

Tewary et al.32 also studied how BMP concentration and duration
affect micropatterned hPSC colonies. However, they only

mathematically modeled BMP gradient formation and did not quan-
titatively investigate the relationship between signaling and fate.
Qualitatively, they proposed final pSMAD1 levels determine fate
boundaries, but this seems inconsistent with their finding that marker
genes are expressed earlier at higher doses of BMP. BMP signaling in
micropatterned colonies does not increase over time (Fig. 1) so cells
above a pSMAD1 level threshold for a givenmarker would be expected
to be always above it and thus show similar expression dynamics. In
contrast, the integral model predicts earlier expression at higher sig-
naling levels. Their data therefore appear consistent with our
integral model.

Nemashkalo et al.34 showed duration rather than the initial BMP
response correlates with fate at the population level and proposed a
duration threshold. Although they performed single-cell tracking, this
was for a small number of cells in a single condition and not for the full
duration of differentiation. Consequently, they were unable to quan-
titively relate signaling to fate and did not demonstrate a fixed

Fig. 6 | SOX2 perturbation reduces amnion-like differentiation in agreement
with a mathematical model. A Plot of the change in each GFP::SOX2 curve in
Supplementary Fig. 5H over the first 16 hours of differentiation against SMAD4-
signaling integral in that time. SMAD4 integral is determined in each condition
based on data in Fig. 4. A dashed line indicates a linear fit of the data. BMeasured
(thick, solid lines) and simulated (thin, semi-transparent lines) GFP::SOX2 dynamics
over the course of 42 hours of differentiation with indicated treatments applied for
42 (left) or 32 (right) hours. C Measured (left) and simulated (right) ISL1 level as a
function of SMAD4 integral for the conditions in B. Data presented as mean +/- SD
across N = 4 images.D Equations used tomodel the regulation of SOX2 and ISL1 by
BMP-SMAD4 signaling, and their mutual inhibition. E–H Example IF data (E) and

quantification showing ISL1 (F), SOX2 (G), and NANOG (H) expression after
42 hours of differentiation in standard culture with 50ng/mL BMP4 + WNTi, +/-
doxycycline from 12 to 24hours. Violin plots show expression distributions over
n = 2867 cells (-DOX) and n = 3081 cells (+DOX) in one of two independent
experiments. The box plot within the violin shows the 25%, 50% (median), and 75%
quartiles, with whiskers to the maximum and minimum values in the data. I–K
Example IF data (I) and radial expression profiles (J, K) in micropatterned colonies
after 42 h of differentiationwith 50ng/mL BMP4 +WNTi, without (J) orwith (K) the
addition of doxycycline from 12 to 24 hours. Scale bars 50um. Source data are
provided in a Source Data file.
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duration threshold. They also did not study large micropatterned
colonies that model embryonic patterning. In contrast, here we
showed there is no duration threshold but rather an integral threshold
and we provide a downstreammechanism that quantitatively explains
fate from signaling in both standard culture and micropatterned
colonies.

Finally, concurrently with and complementary to this work,
Camacho-Aguilar et al.31 explored the effect of concentration versus
duration of BMP treatment on cell fate in a different context where
BMP acts combinatorially with downstream Wnt to control a decision
between primitive streak-like and amnion-like fate. In contrast, we
were able todeterminewhich features of BMP signaling history control
gene expression only by inhibiting Wnt. However, their results are
consistent with ours in showing that different concentrations of BMP
primarily affect the duration of response.

Future work will have to address the molecular mechanism of
BMP integration inmore detail. For example, it is not clear how the rate
of SOX2 decrease is controlled by BMP signaling and how SOX2
represses late differentiation genes, including ISL1. Perhaps most
importantly, we do not understand why there are early differentiation
genes, including TFAP2C and GATA3, which also meet all the
requirements to be integrator genes in addition to late differentiation
genes such as ISL1 and HAND1 whose expression appears to mark a
commitment to differentiation. One possibility is that these genes act
as integrators complementary to SOX2, e.g., our data are consistent
with the possibility that ISL1 upregulation requires both SOX2 down-
regulation and GATA3 upregulation. Either way it seems likely SOX2 is
embedded in a larger gene regulatory network than we were able to
explore.

There has been debate about whether heterogeneous differ-
entiation in human pluripotent stem cells is primarily due to a het-
erogeneous initial state or heterogeneous signaling response68 and
several papers found initial levels of pluripotency markers to be pre-
dictive of differentiation36,37 although the simplest models for tissue
patterning assume a fixed relationship between signaling and fate.
Intuitively it is clear that both shouldmatter and that it depends on the
specific context, which dominates. However, our findings unify these
contrasting results in the literature more concretely by providing a
direct connection between the initial levels of the pluripotency factor
SOX2, which sets the threshold for integrated BMP signaling, allowing
calculation of the relative contributions of signaling heterogeneity and
initial heterogeneity in SOX2.

Our tracking approach in standard culture is easily generalized to
widely used differentiation protocols and future work will investigate
whether the same mechanism for BMP interpretation is reused at dif-
ferent developmental stages. Equally important is investigating at the
single-cell level how combinatorial signaling histories are interpreted,
for example, in the human germline, where the relative timing and
duration and BMP and Nodal signaling appear to play a key role in
determining fate.

Methods
Cell lines
We used the embryonic stem cell lines ESI017 (XX; ESI BIO) and RUES2
(XX; gift of Ali Brivanlou, Rockefeller). Genetically modified variants of
these two cell lines were RUES2 GFP::SMAD4 (Nemashkalo et al., 2017;
gift of Ali Brivanlou), RUES2 RFP::SMAD1 (Yoney et al., 2018; gift of Ali
Brivanlou), and ESI017 tetO-SOX2 (this paper). We additionally used
the genetically modified induced pluripotent stem cell line WTC11
GFP::SOX2 (XY; Allen Institute, identifier AICS-74; RFP nuclear marker
added in this work).

Cell culture and differentiation
Human pluripotent stem cells were cultured in the pluripotency-
maintenancemediamTeSR1 (StemCell Technologies) on Cultrex (R&D

Systems)-coated 35mm tissue culture plates. During routine main-
tenance, cells were passaged every 2-4 days, either in whole colonies
with L7 69, or in single-cell suspension with Accutase. Seeding for dif-
ferentiation experiments was done in single-cell suspension after dis-
sociationwith Accutase.When passaging in single-cell suspensionwith
Accutase, cells were kept for 24 hours in ROCK inhibitor (RI) after
passaging. RUES2 GFP::SMAD4 cells were selected with 24 hours of
blasticidin treatment at every passage. Blasticidin was removed
24 hours after passaging, and was always excluded during differ-
entiation experiments.

For differentiation experiments in standard (not micropatterned)
culture, cells were passaged and seeded into μ-Slide 18-well plates
from Ibidi (with the exception of bulk RNA seq experiments, which
used 24-well Ibidi plates) 16–20 hours before treatment with BMP.
When performing live-cell imaging, media was changed from standard
mTeSR to mTeSR without phenol red 2.5 hours before BMP4 treat-
ment. For experiments in which cells were not maintained in RI over
the course of differentiation, RI was removed 2.5 hours before treat-
ment time. For experiments in Fig. 3, cells were sparsely labeled to
facilitate automated single-cell tracking. For sparse labeling, 10-20%
GFP::SMAD4 RUES2 cells were mixed thoroughly with 80-90% wild-
type RUES2 cells and seeded at the desired density.

To differentiate cells in micropatterned colonies, we followed the
procedure described in Jo et al.30, adapted from the protocol in
Deglincerti et al.70. Briefly, cells were dissociated with Accutase,
resuspended in a single-cell suspension, and seeded at 470k cells/cm2

onto laminin-coated micropatterns in mTeSR with RI. Colonies were
washed 2x with PBS−/− 45minutes after seeding to clear away those
binding non-specifically in the well outside of micropatterned colo-
nies. Two hours after seeding, RI was removed and BMP4 treatment
added. Micropatterning experiments were performed in 18-well Ibidi
slides prepared according to the protocol in Azioune et al., 200971. All
micropatterned colonies hada diameter of 700μm. Signaling reagents
and treatment concentrations are listed in Supplementary Table 1.
Cells were routinely tested for mycoplasma contamination and nega-
tive results were recorded.

Control of signaling level and duration
In experiments in which we controlled the level and duration of
SMAD4 signaling at the population level, we used a modified experi-
mental protocol. Cells were seeded in Ibidi μ-Slide 18-well plates at a
low density of 1.5×104 cells/cm2 16–20hours before treatment. To
ensure uniformly high signaling, in addition to sparse seeding density,
cells were maintained in RI over the course of differentiation and
treated with a high BMP4 dose of 100 ng/mL. The signaling level was
tuned by varying the concentration of BMPRi (LDN193189) added
concurrently with BMP4, and duration was controlled by removing
BMP4 and adding a saturating dose of 1000 nM BMPRi. Wnt ligand
secretion inhibitor WNTi (IWP2) was included over the course of dif-
ferentiation in all such experiments. A similar approach was used to
generate the pulses of signaling in Fig. 4I, with inhibitor washed out
and replaced with 100ng/mL BMP4 to upregulate signaling again after
inhibition. However, to inhibit BMP4 signaling we used 250ng/mL
NOGGIN instead of LDN193189, as we found that signaling was not
increased back to maximal level after washing and restoring a high
dose BMP4without LDN, suggesting that it is difficult to wash out LDN
completely.

Immunofluorescence staining
Samples were washed twice in PBS without calcium and magnesium
(PBS−/−), fixed with 4% paraformaldehyde for 20minutes at room
temperature (RT), and then washed with PBS−/− two more times. They
were then incubated in a permeabilization buffer (0.1% Triton X-100 in
1X PBS−/−) for 10minutes at RT and rinsed twice more with PBS−/−. Cell
lines expressing fluorescent proteins were photobleached according
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to Lin et al., 2015 by incubating for 1 hour at room temperature in a
bleaching buffer (3% H2O2, 20mM HCL diluted in PBS−/−) under an
incandescent lamp, followed by two washes with PBS−/−. After per-
meabilization and optional bleaching, blocking was done with a
blocking buffer (3% donkey serum + 0.1% Triton X-100 diluted in 1X
PBS−/−) for 30minutes at RT. Following blocking, samples were incu-
bated overnight at 4 oC in a solution of primary antibodies diluted in
blocking buffer (antibodies and dilutions are listed in Supplementary
Table 2). Followingprimary antibody incubation, sampleswerewashed
3x with PBST (0.1% Tween 20 in 1X PBS−/−), with 20minutes incubation
at RT between each wash. Samples were incubated in a solution of
secondary antibodies diluted in blocking buffer (antibodies and dilu-
tions described in Supplementary Table 3) and DAPI (1μg/mL; Ther-
moFisher Scientific) for 30minutes at RT in the dark. After incubation,
two fast PBST washes were performed, followed by two PBST washes
with 20minutes incubation at RT between each. Cells were stored in
1xPBS−/− with 0.01% sodium azide, and were transferred to imaging
buffer (700mM N-Acetyl-Cysteine in ddH2O, with pH adjusted to 7.4;
Gut et al., 201840) immediately before imaging to prevent photo-
crosslinking of antibodies.

Generation of the ESI017 tetO-SOX2 cell line
An enhanced piggyBac Puromycin selectable and DOX inducible vec-
tor was digested with EcoRI-NotI and ligated with PCR-amplified
human SOX2 from the FUW-tetO-hSOX2 plasmid (Addgene#20724).
Transfection into hPSCs was done using Lipofectamine Stem Reagent
per the manufacturer’s instructions. Transfected cells were selected
with 1ug/ml Puromycin for 1 to 2 weeks until only single colony clones
remained.

Repeat staining
To perform iterative immunofluorescence, we adapted the protocol
described in Gut et al.40 for elution and sample re-staining as described
in Freeburne et al.72. After the previous iteration of immuno-
fluorescence imaging, the sample was washed three times with PBS−/−

and three rounds of antibody elution were performed; in each round
the sample was incubated for ten minutes at room temperature in an
elution buffer (0.5M L-Glycine, 3M urea, 3M guanidine hydrochloride,
and 70mM TCEP, diluted in ddH2O, pH adjusted to 2.5) while being
shaken at 50 rotations per minute (RPM) on a tabletop orbital shaker.
The sample was washed three more times with PBS−/−, and blocked on
the orbital shaker in a blocking buffer for 30minutes at room tem-
perature. Primary antibody dilutions and incubation were done as for
initial IF staining. Secondary antibody staining was performed as in
initial staining, with the incubation in the solution of secondary anti-
bodies extended from 30min to an hour, and done on an orbital
shaker at 50 RPM. Storage and imaging buffers are as for initial IF
staining.

Imaging
Imaging was performed with an Andor Dragonfly/Leica DMI8 spinning
disk confocal microscope with a ×40, NA 1.1 water objective and a x20
air objective using Andor Fusion software version 2.3.0.31, as well as a
Nikon/Yokogawa spinning disk confocal microscope with a x20 air
objective using NIS Elements AR software version 5.41.02. Live-cell
imaging was performed with controlled temperature (37o), CO2 con-
centration (5%), and humidity (>60%). Experiments for which single-
cell tracking was performed (Fig. 3) were performed using the x40
water objective. Other experiments were generally performed with a
x20 air objective. Live-cell experiments in disordered culture were
imaged every 10minutes, using a z stack with 4 slices spaced 3 to 3.33
microns apart. Live-cell imaging of micropatterned colonies was done
with a time interval of 20minutes using a z stackwith 4 slices spaced 4
to 5 microns apart. Media and treatment changes were performed in
the time between imaging intervals without removing the sample from

themicroscope stage. For experiments inwhichboth live andfixed-cell
image datawas quantified for the same cells, the samemicroscope and
objective was always used; upon the conclusion of live-cell imaging,
the sample was immediately taken for fixation to minimize the
movement of cells between the conclusion of live-cell imaging and
fixation and facilitatematching of live tofixednuclei. PFAwas added to
the sample within 10minutes of the conclusion of live imaging.

Image analysis
In immunofluorescence data, nuclei were segmented based on DAPI
staining using bothCellpose73 (v1) and the pixel classificationworkflow
in Ilastik74 (v1.3.3post2). Ilastik and Cellposemasks weremerged into a
single segmentation as previously described30. After consolidating
these segmentations, the object classification workflow in Ilastik was
used to identify and discard missegmented (junk) objects. Cells in
disordered culture form amonolayer and their nuclei were segmented
based on the maximal intensity projection (MIP) of the z stack of DAPI
images. Formicropatterned colonies in which cellsmay be layered two
or three cells deep, we segmented nuclei in each z slice and merged
nuclear masks across z slices into a single 3D segmentation as pre-
viously described30.

In live imagingmontages of micropatterned colonies, nuclei were
segmented in the sameway as in immunofluorescence data. In live cell
images in sparser disordered culture, a nuclear segmentation pipeline
optimized for single-cell tracking using only Ilastik was used. To
facilitate single cell tracking after pixel classification, an additional step
of Ilastik object classificationmarked segmentedobjects as interphase,
metaphase (chromosomes aligned along the metaphase plate, imme-
diately prior to splitting), other dividing (prophase - chromatin is
visibly condensed but not aligned; anaphase - sister chromatids are
moving apart but may not yet be segmented as two separate objects).
For immunofluorescence data, an additional class was included to
discard missegmented objects. Finally, a custom algorithm for
approximate convex decomposition30 was applied to interphase-
labeled foreground objects in the nuclear segmentation to split over-
lapping or touching nuclei into distinct masks.

Downstream quantification was carried out with a custom image-
processing pipeline written in MATLAB (versions 2019b – 2023a).
Expression levels were calculated as mean intensity in each channel
within the nuclear mask. Both for segmentations of the MIP and 3D
segmentations, the intensity was quantified for each nucleus in the z
slice in which that nucleuswasmost in-focus, determined based on the
intensity profile of the nuclear marker (DAPI or H2B) in z.

In live-cell images of GFP::SMAD4 or RFP:SMAD1, we additionally
used Ilastik pixel classification to segment cell bodies as foreground,
and used the inverse of this mask to detect the image background. To
determine cytoplasmic intensity for each cell, a watershed operation
was performed with nuclear masks imposed as minima for the water-
shed. For each nucleus, a cytoplasmic mask was constructed as an
offset annulus about the nucleus, intersected with both the watershed
basin corresponding to that nucleus and foreground mask of SMAD4
or SMAD1. Values in the cytoplasmwere calculated asmean intensity in
the cytoplasmicmask in the same z slice inwhich nuclear intensity was
computed. SMAD4 nuclear to cytoplasmic ratio was taken as
background-subtracted nuclear intensity divided by background-
subtracted cytoplasmic intensity. For RFP::SMAD1, the cytoplasmic
values were very close to background, so we directly computed
nuclear to cytoplasmic ratio without background subtraction to
reduce sensitivity to noise.

For the quantification of multiple rounds of immunofluorescence
staining and imaging, phase correlation-based image registration was
used to find a rigid shift aligning consecutive rounds of imaging to the
first round. For cells in disordered culture, the same segmentation was
used from the first round of imaging to quantify expression in sub-
sequent rounds after alignment. For micropatterned colonies, a 3D
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segmentation was generated for each round of imaging separately,
and individual cells were linked between rounds based on aligned x
and y and normalized z centroid positions of each cell, using the
algorithm for matching live to fixed cells described in the single-cell
tracking supplement (Supplementary Note 2).

In micropatterned colonies of hPSCs, we performed analysis
based on edge distance by subdividing the colony into 30 bins with
equal numbers of cells in each bin. In each bin, all cells within that bin
are within a similar distance from the colony edge. The average
expression or signaling value for each bin was taken as the median
among the cells in that bin.

For the RFP::SMAD1 and GFP::SMAD4 cells mixed in the same
colonies in Supplementary Fig. 1T-W, the same excitation captured
images of GFP::SMAD4 and the H2B::mCitrine nuclear marker of the
RFP::SMAD1 cells. Likewise, the same excitation captured
RFP::SMAD1 and the H2B::RFP nuclear marker of the GFP::SMAD4
cells. Because fluorescence intensity of the tagged H2B proteins was
much higher than that of the SMAD proteins, we were able to use
Ilastik pixel classification to classify pixels in each channel as nuclei,
SMAD, background, or junk. Quantification of nuclear to cyto-
plasmic intensity for each signaling protein was then performed as
described above, with intensities in a small radius around nuclei of
SMAD4 cells excluded from the SMAD1 quantification and vice-
versa. The quantification of cells in the two lines was consolidated,
with a label added for cell type for the downstream analysis in
Supplementary Fig. 1U-W. To make the visualization in Supple-
mentary Fig. 1T, nuclear segmentation masks were used to com-
putationally separate the much brighter H2B::RFP and
H2B::mCitrine signal from RFP::SMAD1 and GFP::SMAD4 and com-
bine them into a contrast-adjusted false-color image.

Single-cell tracking
Fully automated single-cell tracking was performed with a custom
algorithm written in MATLAB described in detail in Supplementary
Note 2, modified from Jaqaman et al. 38 and similar to the imple-
mentation used in Trackmate75. Most importantly, to better handle cell
divisionwe appliedmachine learning74 to label nuclei as dividing based
on morphological and image intensity information, and adjusted the
linking function to handle nuclei during and after cell division (Sup-
plementary Fig. 2). For each single-cell tracking experiment, a subset of
cell tracks were manually validated and results for the larger dataset
were corroborated with the subset of validated tracks. Live cells were
matched to fixed cells using the same algorithm used for tracking live
cells as described in Supplementary Note 2.

Analysis of signaling histories
Analysis of single-cell signaling histories was carried out in MATLAB
and Python. In Fig. 1, clustering of signaling histories was done using
soft k-means with k = 3 in MATLAB with fcm. To compare the fate
pattern to the signaling cluster pattern, we discretized the profile of
fatemarkers, assigning themost prevalent fate at each position, and
then averaged this over multiple colonies as a way to visualize
(minimal) variation between colonies (Fig. 1J, Supplementary
Fig. 1G). The prediction of the fate boundary from signaling was
initially less accurate with Wnt inhibitor than without (Supple-
mentary Fig. 1O–R), but we found that this could be attributed to the
fact that there is no objective way to assign the elbow fate, and the
clustering algorithm produced the wrong assignment. Manually
changing the cluster assignment of the elbow led to closer agree-
ment with the fate pattern (Supplementary Fig. 1S), and this is what
we showed in main Fig. 1LM.

In Fig. 3, signaling features were fit in MATLAB using lsqnonlin.
Single-cell histories were denoised in Python with MAGIC (Markov
Affinity-based Graph Imputation of Cells) using three nearest neigh-
bors (knn = 3) and the diffusion operator to third power (t = 3).

Clustering by fate was first performed by fitting a two-component
Gaussian mixture model to the seven-dimensional immuno-
fluorescence data. We determined which markers best separate the
clusters by calculating cluster separation as the difference in the
means over the sum of the standard deviations for a specific marker
(Supplementary Fig. 3H, I). As an alternative approach, we also pro-
cessed our seven-dimensional immunofluorescence data in the same
way as single-cell RNA-sequencing data, clustered it with the Leiden
algorithm and calculated differential expression between the clusters
(Supplementary Fig. 3J, K). Both approaches yielded ISL1 and NANOG
as top genes.

To determine the relationship between signaling and fate, we had
the option of denoising both history and fate based on the cells with
most similar fate marker expression, the cells with the most similar
signaling histories, or some linear combination of the two. Therefore,
we compared the two extremes and to ensure we were not simply
creating artificial correlations included a control where signaling his-
tories were randomly assigned tomarker expression before denoising,
which reassuringly did not yield any correlation (Supplementary
Fig. 3M, bottom). We found that denoising based on fate yielded
higher correlation between signaling and fate and better preserved the
bimodal distribution of fate markers (Supplementary Fig. 3M). More-
over, this approach is conceptually appealing because it directly
extends the averaging over all cells with two discrete fates in Fig. 3H to
essentially more fine-grained averaging of histories between small
numbers of cells with most similar fate marker expression. We there-
fore applied fate-based denoising for combined analysis of signaling
and fate.

To test howmuch information each feature contains about fate
we determined the accuracy (% true positives + true negatives) of a
Bayesian classifier, which is formally optimal76 and determines the
most probable fate given the value of a signaling feature from the
conditional probability P(fate|feature). Because of the monotonic
relationship between fate and features this came down to deter-
mining an optimal threshold in the signaling feature. The four
quadrants made by the fate threshold and the signaling threshold
then provide the confusion matrix of the resulting binary classifier,
with amnion-like cells (log(ISL1/NANOG) > 0) above/below the sig-
naling feature threshold corresponding to true/false positive pre-
dictions, and pluripotent cells (log(ISL1/NANOG) < 0) above/below
the signaling feature threshold corresponding to false/true nega-
tives, respectively. From this one can then formally calculate the
information contained about fate in the signaling features as a sin-
gle number called the decoder-based mutual information77, which
has the nice property that it is zero for pure chance, whereas the
total accuracy (true positives + true negatives) is 50% for pure
chance in this binary classification, but for simplicity we chose to
present the accuracy.

We compared the Bayesian fate prediction based on integrated
signaling to fate prediction based on the full signaling history using
generic classifiers. Specifically, we trained various neural networks
implemented using PyTorch and Support Vector Machines using
scikit-learn. Performance was evaluated using 5-fold cross-valida-
tion. The neural network results shown in Fig. 3P correspond to a
network without hidden layers and sigmoid activation function. We
found that addition of a 20-neuron hidden layer led to similar per-
formance. The support vector machine result in Fig. 3P used a
quadratic kernel.

RNA sequencing and analysis
For RNA sequencing of the time series after BMP treatment, total RNA
extraction was performed with the Invitrogen RNAqueous micro kit
according to the manufacturer’s instructions. Cells were collected and
lysed with the provided lysis buffer at specified times and the lysate
was frozen and stored at −80oC. Whole RNA was prepared and DNase-
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treated for all samples at the same time, per kit instructions. The
University of Michigan Advanced Genomics Core performed library
preparation formRNAswith ribosomalRNAdepletion, and sequencing
was performed in an Illumina NovaSeq S4 Flowcell with a sequencing
depth of 57M reads per sample.

For the dose-response, total RNA extraction was performed with
the QIAGEN RNeasy micro kit according to the manufacturer’s instruc-
tions. Five hours after BMP4 treatment cells were lysed with lysis buffer
RLT and lysate was collected. Whole RNA was prepared and DNase-
treated according to the kit instructions. The University of Michigan
Advanced Genomics Core performed library preparation for mRNAs
with polyA selection, and sequencing was performed in an Illumina
NovaSeq S4 Flowcell with a sequencing depth of 33M reads per sample.

Reads from FASTQ files were trimmed using Cutadapt v2.3
(Martin, 2011) and mapped to the reference genome GRCh38
(ENSEMBL), using STAR v2.7.8a (Dobin et al., 2013). Count estimates
were generated with RSEM v1.3.3 (Li and Dewey, 2011). Alignment
options followed ENCODE standards for RNA-seq.

For analysis of time-series sequencing data, low-expressed genes
were defined as those with less than 2.5 counts per million averaged
over all conditions and filtered out. We further filtered out those
showing relatively little change by keeping only genes with an absolute
cumulative log2 fold change greater than ~1.55 (one standard devia-
tion). After filtering, eachgenewasnormalized to itsmaximumvalue in
the time series. Agglomerative hierarchical clustering was performed
in MATLAB after normalization using euclidean distance and Ward’s
linkage.

ChIP-seq analysis
Chip-seq analysis was performed in Integrative Genomics Viewer78.
GEO reference numbers GSE18763649, GSE6147551, GSE1731250.

Mathematical modeling
Dynamics of SOX2 and ISL1 expressionwere simulatedwith a nonlinear
system of two first-order ordinary differential equations. Idealized
SMAD4 dynamics with levels inferred from live imaging experiments
were used as input to the model, and numerical simulations were
performed in MATLAB. Rationale for the model construction and
details of fitting to expression data are described in Supplemen-
tary Note 1.

Fluorescence recovery after photobleaching (FRAP)
We used FRAP to measure the half-life of GFP::SOX2. Photobleaching
of GFP::SOX2 was carried out using a Zeiss LSM800 confocal micro-
scope (Zeiss, Germany). A square regionof interestwasphotobleached
by scanning with the 488 nm laser at full (100%) power, requiring
10 seconds to photobleachmost of theGFP::SOX2 fluorescence. Image
acquisition before and after the photobleaching was carried out using
the Andor Dragonfly / Leica DMI8 spinning disk confocal microscope.
Photobleaching and transferring the sample between microscopes
took 10-15minutes. We quantified mean GFP::SOX2 fluorescence
intensity in cells inside the bleached region relative to mean intensity
in cells in a region of interest far outside of the bleached region. To
determine protein half-life from the measured dynamics, we fit an
exponential function of the form A0 +Að1� e�λtÞ and determined half-
life as lnð2Þ=λ where ln is the natural log. Because FRAP reduces only
fluorescence of SOX2 rather than its total level, recovery from pho-
tobleaching results from turnover in equilibrium and follows a simple
exponential, unaffected by the positive autoregulation that we inclu-
ded in our model.

Statistics and reproducibility
All experiments were performed at least twice with the exception of
the RNA sequencing in Fig. 5. All attempts at replication were suc-
cessful. The results shown in Fig. 1C were replicated in more than 10

independent experiments. The results in Fig. 1D were replicated in 3
independent experiments. Figure 2 results were replicated in 5 inde-
pendent experiments. Similar results to those shown in Fig. 5D and
Fig. 6E, I were obtained in 2 independent experiments each.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
RNA-sequencing data generated in this study have been deposited in
GEOunder accession numberGSE229675.Minimal processed data and
code to reproduce key results is on GitHub, linked in Code Availability.
Raw image data are available upon request but are too large to prac-
tically host in a public repository. Source data are provided with
this paper.

Code availability
All code for data analysis andmodel simulations is available on https://
github.com/idse/BMPintegral and on Zenodo https://doi.org/10.5281/
zenodo.1007677379.
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