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Zirconium and hafnium catalyzed C–C single
bond hydroboration

Sida Li1,2, Haijun Jiao 3 , Xing-Zhong Shu 4 & Lipeng Wu 1,5

Selective cleavage and subsequent functionalization of C−C single bonds
present a fundamental challenge in synthetic organic chemistry. Traditionally,
the activation of C−C single bonds has been achieved using stoichiometric
transition-metal complexes. Recently, examples of catalytic processes were
developed in which use is made of precious metals. However, the use of
inexpensive and Earth-abundant group IVmetals for catalytic C−C single-bond
cleavage is largely underdeveloped. Herein, the zirconium-catalyzed C−C
single-bond cleavage and subsequent hydroboration reactions is realized
using Cp2ZrCl2 as a catalytic system. A series of structures of various γ-
boronated amines are readily obtained, which are otherwise difficult to obtain.
Mechanistic studies disclose the formation of a N–ZrIV species, and then a β-
carbon elimination route is responsible forC–C single bondactivation. Besides
zirconium, hafnium exhibits a similar performance for this transformation.

Selective cleavage and subsequent functionalization of C−C single
bonds present a fundamental challenge in catalysis and synthesis1–11.
This is mainly due to the relatively high bonding energy (BE, about
355 kJ/mol) and directional σ orbitals of C−C bonds. In addition, the
competitive C−H bond activation (about 400 kJ/mol, but statistically
abundant) also causes chemoselectivity problems12–22. Nevertheless,
cleavage and functionalization of C−C single bonds are attracting
increasing attention in synthetic organic chemistry because it offers a
unique and straight route to target molecules/structures. Synthetic
chemists have developed various strategies for the activation of C−C
single bonds. They are mainly classified into two mechanistic cate-
gories: oxidative addition and β-carbon elimination, associated with
metal centers (Fig. 1a). Besides the use of stoichiometric transition-
metal complexes23–26, examples of catalytic processes have been
reported in recent years—most involve the use of precious metals27–45.

Early-transition metals have different electron configurations
from late ones. Thus, their complexes often show other or orthogonal
reactivities with late-transition metal complexes46–61. In addition, they
are also Earth-abundant (e.g., zirconium is almost as abundant as car-
bon in the Earth’s upper continental crust). However, zirconium

usually exists in the ZrIV oxidation state, which is not viable for direct
oxidative addition activation of a single chemical bond. Thus, in situ
generated or isolable low-valent zirconocene complexes (ZrII), such as
Negishi’s (Cp2ZrBu2)

62 and Rosenthal’s reagents (Cp2Zr(py)
Me3SiC≡CSiMe3)

63, for the activation of B−H64,65, Si−H66–69 bonds were
reported. C−C single bond cleavage by a zirconium species has also
been reported intermittently since the 1990s70–73. In 1994, Rosenthal
described the activation of conjugated C−C single bonds of a 1,3-
butadiyne moiety (C≡C−C≡C) using Rosenthal’s reagent, resulting in a
dimeric complex (Fig. 1b)74. Dimmock and Whitby also found that
zirconocene η2-alkene and η2-imine complexes with adjacent cyclo-
propane rings could undergo cyclopropane ring cleavage75. Then, in
2014, Marek reported an expedient approach, including allylic C−H
activations followed by C−C single bond activation (Fig. 1c)76. It is also
worthmentioning that since the 1990s,Negishi, Takahashi, andXi have
studied the chemistry of zirconacycles, the transformation of which
with other unsaturated molecules usually involved a β, β’-C−C bond
cleavage77–81. All the former instances used (over) stoichiometric
amounts of zirconium, and no precedents of catalytic methods using
homogeneous zirconium catalysis had been developed—to the best of
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our knowledge (The use of heterogeneous zirconium catalysis for C−C
bond cleavage was reported by Basset82–84). Consequently, activating
C−C singlebondswith zirconiumcatalysis for chemical transformation
remains a significant challenge. It is of considerable scientific and
practical interest to synthetic organic chemistry to address this.
Herein, we report the development of an unprecedented catalytic
system that resulted in the realization of the zirconium- and hafnium-
catalyzed C−C single-bond hydroboration (Fig. 1d). Mechanistic stu-
dies support the formation of N−ZrIV species and then a β-carbon
elimination route for C−C single bondactivation. Ourworkprovides an
alternative catalytic method for C−C single bonds hydroboration, and
establishes the bond activation models and catalytic application of
group IV transition metals.

Results
Catalytic reaction investigations
As a synthetically significant transformation in organic chemistry,
hydroboration of C=C bonds is well-studied. However, catalytic
hydroboration of C−C single bonds remains underdeveloped. Only
two systems using Ir and Rh are known for the hydroboration of
cyclopropanes, as developed by Yamaguchi85 and Shi86,87. Besides
making use of preciousmetals andN- or P-ligands, it is noticed that for

the Ir system, the careful choice of a chiral tBu-Quinox ligand is crucial
for the C−Cbondhydroborationover the C−Hboration88–90. For the Rh
system, the PPh3 ligand is essential in inhibiting side reactions such as
the formation of alkenes. Furthermore, in the former case, cleavage of
Cβ−Cβ‘ bond is observed, while the latter cleavages Cα−Cβ bond. Thus,
it is still highly desirable to develop a facile and inexpensive catalytic
system for the hydroboration of C−C single bonds.

We commenced our investigation using 0.2mmol of N-Piv-cyclo-
propylamines (1a) with 1.5 equiv. pinacolborane (HBpin) in 1mL
toluene at 120 °C as the model reaction, using 5mol% Cp2ZrCl2 as
catalyst (Table 1). Our preliminary investigations unveiled that the
addition of 1 equiv. of base is the key for the zirconium-catalyzed C−C
bond hydroboration (Supplementary Table 1); K2CO3 was the optimal
choice (Table 1, entry 1, 81% yield of 2a). Various other zirconium
complexes were then tested but were unsuccessful. There was no
reaction with the sterically bulkier Cp*2ZrCl2 (Table 1, entry 2). With
Cp2ZrHCl as catalyst, a 50% yield of 2a was obtained, whereas with
Cp2ZrMe2 only 10% 2a was produced (Table 1, entries 3 and 4). It was
evident that without Cp2ZrCl2 or K2CO3 no reaction proceeded
(Table 1, entries 5 and 6). Interestingly, using Cp2TiCl2 instead of
Cp2ZrCl2 also gave no reaction (Table 1, entry 7). An attempt was then
made to reduce the amount of K2CO3. Pleasingly, even with 0.1 equiv.

Fig. 1 | Strategies for C−C single bond activation. a Transitionmetalmediated C−C single bond activation;b, c stoichiometric amount of zirconium-mediated C−C single
bond activation; d zirconium and hafnium catalyzed C−C single bond activation.
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K2CO3 already had a 68% yield of 2a (Table 1, entry 8). Finally, a much
higher yieldof2a (91%)wasobtainedwith just0.3 equiv. K2CO3 (Table 1,
entry9). In addition, 95%yieldof2awasobtainedusing 5mol%Cp2ZrH2

as catalyst without K2CO3 (Table 1, entry 10). However, considering the
simplicity of using readily available and inexpensive Cp2ZrCl2 as the
catalyst, we conducted the following studies using Cp2ZrCl2/K2CO3

system (Table 1, entry 9). The results with Cp2ZrH2 gave us some clues
for the subsequent mechanism studies (vide infra).

Substrates scope studies
Having the reaction conditions for the Zr-catalyzed hydroboration of
cyclopropylamines in hand (Table 1, entry 9), various cyclopropane
rings were investigated to establish the generality of our methodol-
ogy (Fig. 2).

First, the tolerance of substituents on the para-position of the
phenyl ring was studied. We found that electron-neutral, electron-
donating, and electron-withdrawing groups are tolerated;moderate to
good yields were obtained (2a-2k, 40-82% yields). In general, electron-
donating groups (−Me, −OMe, −tBu, −SMe, 2c−2e, 2k) gave better
results than electron-withdrawing groups such as −CF3 (2f). Halide
substituents −F, −Cl, −Br, which likely undergo competitive hydro-
dehalogenation or boration reactions, are untouched in our system
(2g−2i). We found that steric effects have some influence on the
results, as changing the substituents from the para-position to the
meta- and ortho-position, led to slightly decreased yields or the need
for higher reaction temperatures (2l−2o). Significantly, naphthyl,
benzodioxole, alkyne, and heteroaromatic rings such as furyl and
thiophene substituents are all compatible in our system, with yields in
the range of 71 − 78% (2p−2t). Similarly, good results were obtained
when the phenyl group is at the β’ position (2u). Changing R1 from an
aryl to an alkyl group was also successful, with both acyclic and cyclic
alkyl substituents (up to 77% yield, 2v−2ac). Pleasingly, products
2q, 2ab and 2ac were obtained in 69%, 77%, and 67% yields, respec-
tively, with no double or triple bond interference. Moreover,
cyclopropane rings with two substituents on the R1 and R2 positions
were also suitable (2ad−2ae).

The effect of the substituent on the amide groups was then stu-
died. When R is 1-methylcyclohexyl, the hydroboration product 2af
was obtained in 76% yield. Changing R to a sterically bulkier adamantly
group resulted in a slightly lower yield (2ag, 56%). Substrates with 2,2-
dimethylbutyl and 1-methylcyclopropyl, and substituents containing
chloride are all converted to their corresponding hydroboration

products 2ah−2aj in yields of up to 64%. Sulfonamide is also tolerated
in our system, which get the hydroboration product 2ak in 66% yield.
The reaction also proceeded with thioamide (2al). Finally, we found
that cyclopropylamines derived from Oleanolic Acid and Gemfibrozil
also reacted well in our system; the corresponding products, 2am and
2an, were obtained in yields of 49% and 59%, respectively.

Hafnium-catalyzed reaction
Compared with zirconium, hafnium has received less attention as a
homogeneous catalyst in organic reactions. To our knowledge, reac-
tivity toward C−C single bonds activation is also unknown. After suc-
cessfully establishing zirconium-catalyzed C−C single bond activation
of cyclopropylamines and their subsequent hydroboration, we further
explored the reactivity of a hafnium complex towards C−C single
bonds. We established that the base plays an essential role in tuning
the reactivity. Eventually, Cs2CO3 was found to be the optimal base
(Supplementary Table 5). Then, under the optimal reaction conditions,
we conducted substrate scope generality studies (Fig. 3). We found
that the hafnium system is not only suitable for substrates that work in
the zirconium system but also for substrates that do not work there.
For example, substrates with a −CN group do not react with the zir-
conium catalyst, but a 50% yield of product 2ao was obtained with
hafnium. Product 2ap, with two fluorides on the phenyl ring, was also
obtained in 51% yield. Additionally, cyclohexyl- (2aq) and phenyl-
substituted substrates (2ar) were also applicable in the hafnium
system.

Synthetic derivation
The practical utilization of our system was then demonstrated on a
gram scale (Fig. 4).Whenwe subjected 10mmol of 1a to our standard
reaction conditions, we obtained 2a in 73% yield (1.97 g). Further-
more, the synthetic derivatization of 2awas demonstrated. Using the
aminoazanium of DABCO as an amination reagent91, and then pro-
tecting the amine with TFAA, the corresponding TFA-amide 3a was
obtained in 66% yield. γ-Boronated amine 3b, which is otherwise
difficult to obtain92, was obtained in 72% yield by reducing the amide
functional group to an amine and then protecting it with TsCl. Pro-
duct 2a can be transformed into potassium trifluoroborate salt 3c
using KHF2 (82% yield). Treating 2a with furan-2-yllithium followed
by NBS afforded the arylated product 3d in 74% yield. Finally, Pd-
catalyzed Suzuki−Miyaura coupling of 2a with Estrone-derived tri-
flate gave 3e in 45% yield.

Table 1 | Zr-catalyzed hydroboration of cyclopropylamines—condition optimizationa

Entry Catal. x 2a yield (%)b

1 Cp2ZrCl2 1 81

2 Cp*2ZrCl2 1 -

3 Cp2ZrHCl 1 50

4 Cp2ZrMe2 1 10

5 Cp2ZrCl2 0 -

6 - 1 -

7 Cp2TiCl2 1 -

8 Cp2ZrCl2 0.1 68

9 Cp2ZrCl2 0.3 91

10 Cp2ZrH2 0 95
aReaction conditions: 0.2mmol 1a, HBpin (1.5 equiv.), catalyst (5mol%), K2CO3 (0.1−1 equiv.), and 1mL toluene in a 15mL pressure tube at 120 °C for 24 h.
bYields were determined by GC using dodecane as an internal standard.
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Mechanistic studies
To shed light on the reactionmechanism, several control experiments
were performed (Fig. 5). The possible formation of an alkene inter-
mediate via ring-opening of cyclopropanes followed by hydroboration
was studied. However, no alkenes were detected after 3 or 12 h under
standard reaction conditions with or without HBpin (Fig. 5Aa, Sup-
plementary Fig. 1). Utilization of alkenes 1a’ and 1a” afforded less than
6% 2a (Fig. 5Ab). When enantioenriched substrate (1S, 2R)-1as was
applied, the desired product (R)-2as was obtained without erosion of
the enantioselectivities (Fig. 5Ac, Supplementary Figs. 2, 3). Those
results excluded a consecutive cyclopropane ring opening-
hydroboration process. Then, the possibility of a reaction pathway
that involved a radical species was investigated. TEMPO (2,2,6,6-tet-
ramethylpiperidinyloxyl) (1−2 equiv) had almost no effect on the
results. However, upon increasing the amount thereof (4 equiv.) the
yields of 2a decreased to 44% (Fig. 5B). At this point, it should beborne

in mind that TEMPO inhibition experiments can sometimes provide
ambiguous results93. Thus, additional experiments with the addition of
9,10-dihydroanthracene (DHA) were conducted; no effect on the yield
of 2a was detected (Fig. 5B). The results with TEMPO and DHA exclu-
ded a radical mechanism.

Then, the active zirconium catalytic species was studied. Upon the
combination of Cp2ZrCl2 and K2CO3 in d8-Tol heated at 120 °C for 12 h, a
new species appeared around 6.0 ppm in the 1H NMR spectrum
(Fig. 5Ca). With 2 equiv. K2CO3 and heating for a longer reaction time,
theCp2ZrCl2was fully converted to this newspecies (Fig. 5Cb). Then, the
isolated new species was characterized by IR spectroscopy and was
currently assigned to Cp2ZrCO3 by comparation with literature data
(Supplementary Fig. 4)94,95. Nevertheless, upon further adding HBpin to
the above solution, we could detect the formation of Zr–H species in the
1H NMR spectrum by trapping with acetone (Fig. 5Cc, Supplementary
Fig. 5). This finding, togetherwith the fact that Cp2ZrHCl or Cp2ZrH2 can

Fig. 2 | Zirconium-catalyzed hydroboration of cyclopropylamines—generality
studies. a,b aReaction conditions: 0.2mmol 1, HBpin (1.5 equiv.), K2CO3 (30mol%),
Cp2ZrCl2 (5mol%) and 1mL toluene in a 15mL pressure tube at 120 °C for 24h;

bIsolated yields are given; c130 °C for 24h; d150 °C for 24 h; eHBpin (2.0 equiv.),
K2CO3 (60mol%), Cp2ZrCl2 (10mol%) at 150 °C for 24h; fHBpin (2.0 equiv.),
Cp2ZrH2 (5mol%) at 150 °C for 24 h.
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catalyze the C−C bond hydroboration process without K2CO3 (65% and
95% yields, Supplementary Table 2), we concluded that Zr−H species are
essentially the active catalysts via the consecutive reactions of Cp2ZrCl2,
K2CO3, and HBpin (Fig. 5Cd). According to the work from Ganem96,
Rosenthal97, and Cantat98, the active Zr−H species can interact with 1a to
formN−Zr species viametathesis with N−Hbond. This is further proved
in our case that Cp2ZrHCl reacts with the N−H group of 1a with the
release of H2 or HDwhen 1a-D was used (Fig. 5D, Supplementary Fig. 6).
To add furtherproofof the importanceof theN−H,N-methylated analog
substrate 1a-Me, and replace the N−H with CH2 or O substrates 1a-C,
1a-O were subjected to our reaction conditions. As expected, no corre-
sponding C−C bond hydroboration product were observed (Fig. 5E).

Keep in mind that β-carbon elimination is one of the main pathway for
C−Cbond cleavage. It is natural to think that after the formation ofN−Zr
species, a β-carbon elimination may proceed to cleavage the C−C bond
to produce an imino propyl zirconium species. This is consistent with
the fact that we can observe the presence of the putative imine inter-
mediate both on GC/MS and 13C NMR when substrate 1 u was used
(Fig. 5F, Supplementary Figs. 7, 8).

Based on the above mechanistic study and our DFT calculation
results (Supplementary Fig. 9), we conclude the following general
reaction pathway for our Cp2ZrCl2/K2CO3 system (Fig. 6). First, the in-
situ formed Zr−H species reacts with N−H bonds of the substrates to
form N−ZrIV species A via H2 release (i). Next, the C−C single bond is

Fig. 3 | Hafnium-catalyzed hydroboration of cyclopropylamines—generality
studies. a,b,c aReaction conditions: 0.2mmol 1, HBpin (2.0 equiv.), Cs2CO3

(30mol%), Cp2HfCl2 (5mol%) and 1mL toluene in a 15mL pressure tube at 150 °C

for 24h; bHBpin (3.0 equiv.), Cs2CO3 (60mol%), Cp2HfCl2 (10mol%) and 1mL
toluene in a 15mL pressure tube at 150 °C for 72 h; cIsolated yields are given.
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cleaved via β-carbon elimination of intermediate A to form the imino
propyl zirconium species B (ii). Subsequently, intermediate B reacts
withHBpinvia C−Zr andH−Bbondmetathesis to giveC and regenerate
Zr−H species (iii). In the second catalytic cycle, Zr−H hydride transfer
to intermediateCgives intermediateD (iv),which is further reducedby
the previously released H2 to 2a with hydrogenolysis or H2 metathesis
(v). The last step is supported by the experiment that when we intro-
duced 1 atm of deuterium gas into the standard reaction, 29% deu-
terium labeling at the α-carbon adjacent to N−H of 2a could be

obtained (Fig. 5G, Supplementary Fig. 10), suggesting that hydrogen
metathesis occurred99–101.

In summary, anunprecedented zirconium- andhafnium-catalyzed
C−C single bond activation and subsequent hydroboration is realized
using a catalytic system based onCp2ZrCl2 and Cp2HfCl2. Our catalytic
approach applies to various cyclopropylamines. Selective cleavage of
the proximal Cα−Cβ single bond was achieved, with the tolerance of
multiple functional groups as well as bio- and medicine-derived sub-
strates. Mechanistic studies disclose that the in-situ generated Zr−H
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species and the free N−H group of the substrates play key roles in this
transformation via Zr−H and N−H metathesis to form N−ZrIV species,
and the subsequent C−C single bond activation is realized via a β-
carbon elimination route. Our work presents an unprecedented group
IV metal-catalyzed C−C single bond activation and hydroboration
reaction. The C−C single bond activation model that was well studied
for late-transition metals, were also elaborated to be applicable to the
group IV metals.

Methods
General procedure for the Zr-catalyzed hydroboration of
cyclopropylamines
In a nitrogen-filled glovebox, to a 15mL pressure tube with a magnetic
stirrer was added catalytic amount of Cp2ZrCl2 (0.01mmol, 2.9mg),
K2CO3 (0.06mmol, 8.3mg), corresponding cyclopropylamine sub-
strates (0.2mmol), HBpin (0.3mmol, 43.5μL), and toluene (1mL) in a
sequence manner. Then, the pressure tube was taken out of the glove
box and allowed to stir at 120 °C for 24 h. Upon completion, all the
solvent was evaporated, and the crude product was isolated on silica
gel using flash chromatographywith dichloromethane/ethyl acetate as
the eluent to give the corresponding products.

Data availability
Experimental details, Synthetic Procedures, Tables for condition
optimizations (Supplementary Tables 1–5), Figures for mechanistic
studies, and DFT calculations, NMR spectra (Supplementary
Figs. 1–248), products characterizations are included in the Supple-
mentary Information. All other data are available from the corre-
sponding author upon request.
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