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Improved modeling of human vision by
incorporating robustness to blur in
convolutional neural networks

Hojin Jang 1,2,3 & Frank Tong 1

Whenever a visual scene is cast onto the retina,muchof it will appear degraded
due to poor resolution in the periphery; moreover, optical defocus can cause
blur in central vision. However, the pervasiveness of blurry or degraded input
is typically overlooked in the training of convolutional neural networks
(CNNs). We hypothesized that the absence of blurry training inputs may cause
CNNs to rely excessively on high spatial frequency information for object
recognition, thereby causing systematic deviations from biological vision. We
evaluated this hypothesis by comparing standardCNNswithCNNs trainedon a
combination of clear and blurry images. We show that blur-trained CNNs
outperform standard CNNs at predicting neural responses to objects across a
variety of viewing conditions. Moreover, blur-trained CNNs acquire increased
sensitivity to shape information and greater robustness to multiple forms of
visual noise, leading to improved correspondence with human perception.
Our results provide multi-faceted neurocomputational evidence that blurry
visual experiencesmaybe critical for conferring robustness to biological visual
systems.

A hallmark of human vision lies in its robustness to challenging or
ambiguous viewing conditions. Consider the difficulties of navigating
traffic in a snowstorm, detecting a pedestrian in the corner of one’s
eye, or identifying a distant building that is veiled in fog. In laboratory
settings, researchers have characterized the robustness of human
object recognition to visual noise, blur, and other forms of image
degradation1–6. Our ability to recognize objects depends on the ventral
visual pathway, which extends from early visual areas (V1-V4) to higher
level object-sensitive areas in the occipitotemporal cortex7–14. Neuroi-
maging studies have investigated the functional selectivity and topo-
graphical organization of the ventral visual system, informing our
understanding of the neural bases of object recognition under clear
viewing conditions9,15 as well as conditions of visual ambiguity16–18.

To understand the neurocomputational bases of object recogni-
tion, researchers have sought to develop computational models that
can effectively predict the visual system’s responses to complex

objects. Indeed, recent studies have found that deep convolutional
neural networks (CNNs) trained on tasks of object recognition provide
the best current models of the visual system, allowing for reliable
prediction of visual cortical responses in humans19–24 and neuronal
responses in the macaque inferotemporal cortex25–29. While these
initial findings are highly promising, a mounting concern is that CNNs
tend to catastrophically fail where humans do not, especially when
presented with noisy, blurry or otherwise degraded visual
stimuli5,6,30–32. Such findings demonstrate that the computations and
learned representations of these CNNs are not truly aligned with those
of the human brain.

We considered the susceptibility of CNNs to visual blur to be of
particular interest, as blur is pervasive in everyday human vision33,34.
A common misperception is that our visual world is entirely clear,
when much of what we see is either blurry or processed with low
spatial resolution. The density of cone photoreceptors, bipolar
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neurons, and ganglion cells decreases precipitously from the fovea to
the periphery; thus, only stimuli that appear near the center of gaze
can be processed with high spatial resolution35. To capitalize on the
much higher resolution of the fovea, humans make multiple eye
movements every second to bring objects of interest to the center of
gaze36,37. However, eye movements that involve large changes in ver-
gence will cause foveated objects to initially appear blurry, due to the
sluggish nature of lens accommodation38,39. Moreover, even after a
central object is accurately fixated and accommodated, a parafoveal
object that appears at a different depth plane may also appear blurry
due to defocus aberration33,34. Thus, low-resolution vision and blur are
prominent features of everyday vision. By contrast, the image datasets
commonly used to train CNNs predominantly consist of clear, well-
focused images40,41.

There is a general bias to consider blurry vision as suboptimal,
problematic, and in need of correction. However, such assumptions
may overlook the potential contributions of blur for real-world vision
and object recognition. For example, humans can leverage blurry
contextual information to support more accurate object
recognition17,42, and both face and object recognition remain quite
robust to substantial levels of blur3,6,43. Recent work has further
revealed that defocus blur provides an important cue for depth
perception44. Neurophysiological studies have also found that shape-
selective neurons in the visual cortex can be tuned to varying degrees
of blur, with some neurons preferring blurry over clear depictions of
2D object shapes45. Thus, blur appears to be an important feature that
is encoded by the visual system.

Here, we evaluated the hypothesis that the omission of blurry
training inputs may cause CNNs to rely excessively on high spatial
frequency information for object recognition, thereby causing sys-
tematic deviations from biological vision. To address this question, we
compared the performance of standard CNNs trained exclusively on
clear images with CNNs trained on a combination of clear and blurry
images. By testing standard versus blur-trained CNNs on a diverse set
of neural, visual, and behavioral benchmarks, we show that blur-
trained CNN models significantly outperform standard CNNs at pre-
dicting neural responses to object images across a variety of viewing
conditions, including those that were never used for training.

Unlike standard CNNs, blur-trained CNNs favor the processing of
lower spatial frequency information, allowing for greater sensitivity to
global object shape. Finally, contrary to the notion that CNNs are very
poor at recognizing objects in novel or challenging viewing conditions,
we show that CNNs trained on clear and Gaussian-blurred images
exhibit greater robustness to multiple forms of blur, visual noise, as
well as various types of image compression. From these findings, we
conclude that instances of blurry vision are not fundamentally pro-
blematic for biological vision; instead blur may constitute a positive
feature that can promote the development of more robust object
recognition in both artificial and biological visual systems.

Results
Neural predictivity of standard and blur-trained CNNs
We compared the performance of 8 standard CNN models trained on
clear images only with the sameCNNarchitectures trained using either
weak or strong levels of blur (see Fig. 1). For weak-blur CNN training,
clear images (σ = 0) occurredwithmuch greater frequency than blurry
images to mimic the extent to which defocus blur would likely occur
for future saccade targets in natural viewing tasks34. For the strong-blur
CNNs, a Gaussian blur kernel of varying size (σ = 0, 1, 2, 4 or 8 pixels)
was applied with equal probability to the training images. This
manipulationwas informedby the fact that visual acuity systematically
declines from the fovea to the periphery35,46, such that varying degrees
of spatial resolution are always present in one’s visual experience.
Further details regarding CNN model training can be found in the
Methods.

We first sought to compare standard and blur-trained CNNs on
their ability to account for functional magnetic resonance imaging
(fMRI) responses obtained from the human visual cortex while
observers viewed clear, low-pass or high-pass filtered object images by
analyzing the data fromapublicly available neuroimagingdataset47. To
do so, we performed representational similarity analysis (RSA) on the
response patterns to the set of object images that were found in
individual human visual areas and in each layer of a CNN15,19, and then
computed the Pearson correlational similarity between the two RSA
matrices of interest. Peak correlations were typically observed in an
intermediate CNN layer (Supplementary Fig. 1) and this value was used
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Fig. 1 | Examplesof imagesused for 3different CNNtrainingparadigms. Forweak-blur and strong-blur CNNs, object imageswereblurredbyGaussiankernels of varying
width and presented with varying frequencies, as indicated. Images from the authors.

Article https://doi.org/10.1038/s41467-024-45679-0

Nature Communications |         (2024) 15:1989 2



to quantify the degree of correspondence between a CNN model and
the response patterns found in a human visual area.

The leftmost panel of Fig. 2 shows the average correspondence
between the CNN models and the RSA matrix found in each partici-
pant’s visual areawhen considering all viewing conditions combined. It
can be seen that blur-trained CNNs significantly outperformed stan-
dardCNNs at predicting cortical responses in early visual areas (V1-V4)
as well as high-level object-sensitive areas (LOT, VOT). Moreover,
strong-blur CNNs outperformed weak-blur CNNs in V1 through V4,
suggesting that stronger levels of blur training may be particularly
beneficial for CNN models to better account for neural responses in
early visual areas.

An analysis of individual viewing conditions revealed a similar
advantage for blur-trained CNNs in predicting fMRI responses in the
early visual cortex to clear images and to high-pass filtered images,
although nodifferenceswere noted for the low-passfiltered condition.
Better prediction of cortical responses to high-pass filtered images is
notable, as the blur-trained CNNs were not directly trained on high-
pass filtered images. This somewhat counterintuitive result was due to
the fact that early visual areas exhibited highly confusable responses to
the different high-pass filtered object images, whereas standard CNNs
excelled at discriminating high-pass filtered stimuli (see Supplemen-
tary Fig. 2). By comparison, blur-trained CNNs exhibited more con-
fusable responses to the high-pass filtered objects that led to closer
resemblance to human cortical responses.

We next sought to determine whether blur-trained CNNs might
show an advantage at predicting the responses of individual neurons
recorded from the macaque visual cortex, as single neurons can
exhibit far greater stimulus selectivity than is otherwise possible to
obtain from fMRI measures of locally averaged neural activity. We first
evaluated a popular dataset called BrainScore48 in which monkeys
viewed clear images of objects on natural scene backgrounds while
neuronal activity was recorded from areas V1, V2, V4 and infer-
otemporal cortex (IT). We adopted BrainScore’s regression-based
approach of using the layer-wise activity patterns of each CNN to fit
each neuron’s response to a set of training images, and then evaluated
its ability to predict responses to independent test images (Supple-
mentary Fig. 3). These analyses revealed that strong-blur CNNs were
better able to predict V1 responses than standard CNNs (Fig. 3A,
t(7) = 3.97, p =0.0054, d = 1.41). Moreover, both strong-blur CNNs
(t(7) = 5.35, p = 0.0011, d = 1.89) and weak-blur CNNs (t(7) = 2.97,
p =0.0208, d = 1.05) outperformed standard CNNs at predicting neu-
ronal responses in V2. For areas V4 and IT, predictive performancewas
comparable across standard and blur-trained CNNs.

We also tested CNN performance on another dataset that con-
sisted of neuronal recordings from macaque V1 during the presenta-
tion of thousands of natural and synthetic images49. In agreement with

our findings above, we found that both strong-blur CNNs (t(7) = 4.53,
p =0.0027, d = 1.60) and weak-blur CNNs (t(7) = 4.65, p =0.0024,
d = 1.64) showed better neural predictivity for area V1 than standard
CNNs (Fig. 3B and Supplementary Fig. 4). Across both studies, we find
that blur-trainedCNNs are better able to predict neuronal responses in
early visual areas such as V1 and V2. These findings are noteworthy
given that the monkeys were tested with clear images only, implying
that CNNs that are trained on an exclusive diet of clear images acquire
learned representations that deviate from biological vision.

Visual tuning properties of standard and blur-trained CNNs
How might training a CNN with a combination of blurry and clear
images modify its visual tuning properties, such that it can better
account for neural responses in the visual cortex? To address this
question, we presented oriented gratings of varying spatial frequency
to each CNN and determined which spatial frequencies led to the
strongest responses for each convolutional unit in a given layer. This
analysis revealed that standard CNNs prefer a much higher range of
spatial frequencies, whereas weak-blur CNNs prefer intermediate
spatial frequencies and strong-blur CNNs prefer the lowest range
of spatial frequencies (Fig. 4A). We further assessed the bandwidth of
spatial frequency tuning, a measure that reflects the range of spatial
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Fig. 2 | Correlational similarity between CNN model responses and neural
responses in different human visual areas to clear, high-pass filtered and low-
pass filtered images. A set of 8 different standard CNNs (red), weak-blur CNNs
(blue) and strong-blur CNNs (purple) were evaluated using human fMRI data
(n = 10) obtained from Xu and Vaziri-Pashkam (2021). Error bars represent ±1 stan-
dard error of the mean (SEM). Two-tailed paired t-tests were used to compare the

model performance of blur-trained CNNs versus standard CNNs (*p <0.05,
**p <0.01, and ***p <0.001, uncorrected for multiple comparisons; the exact p
values and raw values are provided in the Source Data). Elephant images from the
original publication with permission. LOT lateral occipitotemporal cortex, VOT
ventral occipitotemporal cortex.
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Fig. 3 | Correlational similarity between CNN model responses and neural
responses in macaque visual areas. A Correlation between predicted and actual
neuronal responses inmacaque visual areas V1, V2, V4 and IT for regressionmodels
based on 8 different standard CNNs (red), weak-blur CNNs (blue) and strong-blur
CNNs (purple). The Brain-Score benchmark was employed for data analysis.
B Correlation between predicted and actual neuronal responses in macaque V1 to
thousands of complex images. Error bars indicate ±1 SEM. Gray dots indicate pre-
dictive correlation values of individual CNNmodels. Two-tailed paired t-tests were
performed to determine statistical significance (*p <0.05, **p <0.01, and
***p <0.001, uncorrected; the exact p values and raw values are provided in the
Source Data).
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frequencies for which each unit is tuned. Blur training led to broader
spatial frequency tuning bandwidth in most CNNs, particularly in the
middle layers (Fig. 4B). Taken together, our findings provide support
for the recent proposal that standard CNNs trained on tasks such as
ImageNet object classification are heavily biased to emphasize the
processing of high spatial frequency for their classification decisions,
and are unable to learn or retain the ability to utilize low spatial fre-
quency information for object recognition6.

Given these shifts in preferred spatial frequency following blur
training, we asked whether blur-trained CNNs might exhibit greater
sensitivity to object shape information. Although early studies sug-
gested that standard CNNs do show some evidence of shape
selectivity22, subsequent work has revealed that CNNs rely more on
textural information than global shape in their classification of hybrid
object images50,51. Two examples of such hybrid images are shown in
Fig. 5B (left), which depicts the global shape of one object filled-in with
the texture of a different object. As expected, standard CNNs were
strongly biased to classify these hybrid images based on their textural
cues, whereas weak-blur CNNs showed a small but highly consistent

shift in favor of shape processing for all 16 object categories that were
evaluated (Fig. 5A). These findings concur with a recent study that
reported a similarly modest shift in shape sensitivity after a CNN was
trained on a combination of clear and blurry images52. By comparison,
our strong-blur CNNs exhibited a far more pronounced increase in
shape bias, and while these networks did not reach human levels of
shape bias (gray diamonds), the gapbetween humanperformance and
CNN model responses was considerably reduced by strong blur
training. These findings demonstrate that training CNNs with a subset
of highly blurred images can strongly shift their tuning in favor of
lower spatial frequency shape information, such that the CNN
responses are better aligned with those of human observers.

In addition to quantifying the degree of shape bias exhibited by
the CNNs’ classification responses, we visualized the image compo-
nents that the CNNs tended to weigh more heavily for their decisions.
We used layer-wise relevance propagation to visualize which features
contributed most to the CNN’s classification response by decompos-
ing the prediction score backward onto pixel space53. Figure 5B shows
two examples of texture-shape hybrid stimuli and their layer-wise
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relevance propagation maps. Whereas standard CNNs tended to
emphasize multiple small image patches corresponding to the texture
cues that were scattered throughout the hybrid image, the strong-blur
CNNs assigned greater weight to coherent diagnostic portions of the
primary object, such as the bottlecap on a bottle or the head region
of a dog.

Generalization to challenging out-of-distribution viewing
conditions
Given that standard CNNs are strongly influenced by high spatial fre-
quency textural information, might this account for their unusual
susceptibility to visual noise5,30,31? In a recent behavioral and fMRI
study, we found that standard CNNs not only fail to recognize objects
in moderate levels of noise, but they also fail to capture the repre-
sentational structure of human visual cortical responses to objects
embedded in noise5. Here, we compared standard and blur-trained
CNNs in terms of their ability to predict human neural responses to
clear objects and those same objects presented in either pixelated
Gaussian noise or Fourier phase-scrambled noise. Examples of such
stimuli can be seen in Fig. 6 (top row). To do so, we again performed
representational similarity analysis on the patterns of fMRI responses
in each visual area of interest and each layer of a given CNN (Supple-
mentary Fig. 5).

The benefits of blur trainingweremost evident for the strong-blur
CNNs, which outperformed standard CNNs at predicting human cor-
tical responses in both early visual areas and high-level object-sensitive
areas when all viewing conditions were analyzed together (Fig. 6, left
panel). Focused analyses on fMRI responses to clear objects also
revealed better performance for strong-blur than standard CNNs in
early visual areas V1-V3, corroborating our earlier findings (Figs. 2 and
3). The strong-blur CNNs performed particularly well at accounting for
cortical responses to objects in pixelated Gaussian noise, with
improved neural predictivity found across low-level and high-level
visual areas. However, strong-blur CNNs were also better at predicting
neural responses in early visual areas (V1-V4) to objects embedded in
Fourier-phase scrambled noise (sometimes called pink noise); such
structured noise patterns differ greatly from Gaussian white noise as
their power spectrummatches that of natural images. Taken together,
we find that blur-trained CNNs can better account for human cortical
responses to challenging out-of-distribution conditions involving
multiple forms of visual noise. These results provide compelling evi-
dence that blur-trained CNNs provide a better neurocomputational
model of the robustness of the human visual system.

Given that blur-trained CNNs showed better prediction of visual
cortical responses to clear, blurry, high-pass filtered, and noisy object
images, weweremotivated to compareboth standard and blur-trained
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***p <0.001, uncorrected; the exact p values and raw values are provided in the
Source Data). B Two examples of cue-conflict stimuli (bottle or dog shape with
clock texture) from Geirhos et al., 2019 (with permission), shown with corre-
sponding layerwise relevance propagation maps depicting the image regions that
were heavily weighted by VGG-19 in determining its classification response.

Article https://doi.org/10.1038/s41467-024-45679-0

Nature Communications |         (2024) 15:1989 5



CNN models on their ability to deal with a variety of forms of image
degradation by employing a popular benchmark, ImageNet-C54

(https://github.com/hendrycks/robustness). This benchmark consists
of the 1000 object categories from ImageNet’s validation dataset
presented with 19 different types of image degradation (Fig. 7A). Fig-
ure 7B shows the impact of image degradation on CNN classification
accuracy with noise strength varying from 1 to 5 (i.e., weakest to
strongest).We found that blurry image trainingprovedhighly effective
at improving the robustness of CNNs to most forms of image degra-
dation. Indeed, we observed a significant improvement in perfor-
mance for 14/19 noise conditions (p <0.05).Weak-blur CNNs showed a
consistent increase in classification accuracy for all noise types when
compared with standard CNNs, while strong-blur CNNs showed an
even greater advantage in many conditions. Specifically, strong-blur
CNNs exhibited much greater robustness to both Gaussian blur and
other forms of blur (i.e., defocus, glass, motion, zoom). Moreover,
strong-blur CNNs were far more robust to all types of pixel-based
noise, including Gaussian, speckle, impulse and shot noise. We further
found that strong-blur CNNs are more robust to artificial types of
image degradation that are known to alter the local image structure of
digital images (e.g., elastic transform, JPEG compression, and pixelate).
Our findings run contrary to recent claims that CNNs trained on one
form of image degradation are unable to generalize to other forms of
image degradation31. However, strong blur trainingwas not effective at
improving robustness to manipulations involving contrast reduction,
saturation, spatter or weather-related forms of noise (e.g., Brightness,
Fog, Frost, and Snow). Thus, blur training leads to enhanced robust-
ness to many though not all forms of image degradation.

Given that our blur-trained CNNs proved more robust to many
forms of randomly generated noise, we sought to test whether they
might also exhibit greater robustness to adversarial noise. Adversarial
noise involvesmodifying the pixel values of an original object image in
a purposefully deceptive manner designed to shift the CNN’s decision
to an incorrect object category; even very modest levels of noise that
are almost imperceptible to humans can lead CNNs astray55,56. We
evaluated the adversarial robustness of each CNN by utilizing Pro-
jected Gradient Descent57 with L1 and L2 norm constraints (ϵ =0.001
and 1, respectively). Although blur-trained CNNs remained susceptible
to adversarial noise, we found that strong-blur CNNs outperformed
standard CNNs with L1 of ϵ =0.001 (19.63% vs.13.61%, t(7) = 7.92,
p =0.0001, d = 2.88), and both strong-blur (12.04%) and weak-blur
CNNs (7.14%) outperformed standard CNNs (4.47%) with L2 of ϵ = 1
(t(7) = 12.45, p < 10-5, d = 4.44 and t(7) = 4.45, p = 0.0030, d = 1.58,

respectively). Thus, blur training confers greater robustness to both
randomly generated noise and adversarial noise.

Correspondence with human behavioral responses to out-of-
distribution data
We further sought to determine whether blur-trained CNNs might
provide a better account of human behavioral responses to challen-
ging out-of-distribution conditions by leveraging a toolbox developed
by Geirhos et al. (2021). This toolbox allows for AI models to be
compared with humanperformance on 17 different object recognition
tasks, which include multiple forms of image stylization, image mod-
ification (e.g., rotation, grayscale conversion), visual noise, as well as
high-pass and low-pass filtering58. Output measures include overall
classification accuracy (called out-of-distribution accuracy), human-AI
differences in absolute accuracy, as well as measures of the con-
sistency or agreement between human and AI responses. This analysis
revealed that blur training not only improved the out-of-distribution
accuracy of CNNs (Fig. 8A), it also led to improved consistency
between human and AI responses (Fig. 8BD). For individual CNNs,
improvements in human-AI agreementweremost prevalent for strong-
blur CNNs, followed by weak-blur CNNs, with standard CNNs per-
forming the most poorly. These results demonstrate that blur training
improves CNN correspondence with human vision, encompassing
human behavioral performance across diverse image conditions.

Evaluation of recurrent network CORnet-S
We performed a further set of analyses to evaluate whether recurrent
visual processing might lead to improved neural predictivity or
increased robustness in blur-trained CNNs. Recent studies have found
that CORnet-S59, which performs within-layer recurrent computations
in its first 4 convolutional blocks, provides better predictions of neu-
ronal responses in the monkey visual cortex than most other CNN
models27,48. We compared the performance of CORnet-S with two
control networks, one that matched the number of convolutional and
fully connected layers of CORnet-S but lacked recurrent processing
(CORnet-Shallow) and another feedforward CNN with additional con-
volutional blocks to match the number of feedforward and recurrent
block operations performed by CORnet-S (CORnet-Deep). Our ana-
lyses revealed pronounced differences in neural predictivity between
these CNNs in the studies that presented low-pass and high-pass fil-
tered images as well as objects in visual noise (see Supplementary
Fig. 6). Specifically, blur trainingwasmuchmorebeneficial forCORnet-
Deep and CORnet-S in comparison to CORnet-Shallow. Likewise,
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strong blur training led to the highest levels of overall robustness to
image degradation (i.e., ImageNet-C) and also led to greater shape bias
for both CORnet-Deep and recurrent CORnet-S, with negligible dif-
ference in performance between the latter two CNNs. Our findings
indicate that increased model complexity allows a CNN to acquire
greater benefits fromblur training butwe find no additional advantage
for recurrent processing over that of feedforward processing. These
findings are in general agreement with the fact that the other CNN
architectures, excluding CORnet-S, exhibited similarly large benefits
from blur training.

Impact of blur training on visual transformer model ViT
Finally, we asked whether blur training would necessarily lead to
improved robustness, shape sensitivity, or neural predictivity, if
applied to a deep neural network model with an entirely different
architecture. Whereas CNNs perform filtering and pooling operations
designed to mimic the visual system, visual transformer models (ViT)
process the information contained in local image patches and the
relational information between combinatorial pairs of patch repre-
sentations through a series of iterative computations60. While ViT
models operate in a manner that deviates from biological visual sys-
tems, they can nevertheless achieve state-of-the-art performance on
object classification tasks. We performed standard, weak blur, or
strong blur training on 3 ViT models and then evaluated their perfor-
mance. Blur training led to prominent trends of improved prediction
of human fMRI responses, increased shape bias, and greater overall
robustness to ImageNet-C, although it did not lead to better prediction
of single-unit responses in the monkey (Supplementary Fig. 7). Given
that ViT models are not considered to be particularly biologically
plausible, the improvements in shape sensitivity and robustness to
image degradation are of greater interest here. Thus, even though ViT

models are believed to excel at extracting spatial-relational informa-
tion, blur training still appears effective at improving their sensitivity
to shape.

Discussion
In this study, we rigorously compared standard versus blur-trained
CNNs on their ability to account for neural responses in the visual
cortex by leveraging multiple datasets obtained from both monkeys
and humans. We reasoned that the existing gap between CNN models
andbiological visual systems5,19,22,25,31,47,50,61,62maybe ascribed, at least in
part, to inadequate diversity in the set of images that are commonly
used to train CNNs. In particular, we hypothesized that blur may be a
critical property of natural vision34,44,45 that contributes to the devel-
opment and maintenance of robust visual systems. Although we and
others have previously posited that exposure to blurry visual input
may have the potential to confer some robustness to biological or
artificial visual systems, the evidence to support this notion so far has
been mixed6,52,63–65.

Our study reveals that blur-trained CNNs provide a much better
neurocomputational model of the visual system’s responses to diverse
sets of object images. Across multiple neural datasets, we found that
blur-trained CNNs outperform standard CNNs at predicting neural
responses to clear images in the early visual areas of monkeys48,49 and
human observers47,66. Blur-trained CNNs also showed superior neural
predictivity for out-of-distribution conditions, including high-pass fil-
tering, objects in pixelated Gaussian noise, and objects in Fourier
phase-scrambled noise. Moreover, when we compared CNN versus
human performance on a large number of out-of-distribution image
datasets58, blur-trained CNNs consistently outperformed standard
CNNs in terms of their ability to account for human behavior. Thus, by
incorporating blurry images into the visual diet of CNNs, we can
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Fig. 8 | Alignment between human and CNN responses in out-of-distribution
scenarios. A Classification accuracy for standard (red), weak-blur (blue) and
strong-blur CNNs (purple) based on aggregated performance for 17 out-of-
distribution datasets provided by Geirhos et al. (2021). Note that 1 of 17 conditions
involved blurry images, which was not out-of-distribution for the blur-trained

CNNs. B Accuracy difference between humans and CNNmodels. C,D Consistency
of responses and error responses between humans and CNNs; higher values indi-
cate better human-AI alignment, with gray bars indicating human-to-human con-
sistency. Source data are provided as a Source Data file.
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construct computationalmodels that are better alignedwith biological
visual systems across a wide range of viewing conditions including
those involving visual noise.

This improved robustness to noise is striking given that most
state-of-the-art CNNs are severely impaired when Gaussian or other
forms of visual noise are added to an object image5,30–32. Moreover, it
has been reported that if a CNN is trained on one form of visual noise
(e.g., Gaussian), one typically observes negligible benefit if it is sub-
sequently tested with a different type of noise (e.g., salt-and-pepper
noise)31 (but see also5,67). Here, we evaluated whether blur training
might lead to a more generalized improvement in robustness by
evaluating the performance of standard and blur-trained CNNs on
ImageNet-C54. We found that Gaussian blur-trained CNNs can suc-
cessfully generalize to multiple forms of blur and visual noise, as well
as various forms of image compression. That said, blur training did not
lead to improved robustness across all conditions; in particular those
involving the simulation of noisyweather conditions remained visually
challenging. Nevertheless, our findings demonstrate the efficacy of
blur training for improving the robustness of CNNs to many forms of
image degradation in addition to enhancing their neural predictivity.

How does blur training modify the visual representations learned
by CNNs, such that they become both more robust and better aligned
with the human visual system? We believe that one key factor is the
shift in spatial frequency tuning to favor the processing of lower fre-
quencies and coarser visual features. Another possible contributing
factor could be the expanded frequency tuning bandwidth that arose
after blur training. Excessive sensitivity to high spatial frequency
information appears to be related to a CNN’s susceptibility to adver-
sarial noise68 as well as its ability to learn arbitrary mappings from
image datasets with randomly shuffled labels69. Thus, the way that
standard CNNs process high spatial frequency information seems to
deviate considerably from human vision.

In recent work, we have shown that if CNNs are trained on Ima-
geNet object classification with a series of images that gradually pro-
gresses from blurry to clear, the CNNs can initially discriminate blurry
objects but this ability is quickly lost as they learn to leverage higher
spatial frequency information to attain superior classification perfor-
mance with clearer object images6. Such catastrophic forgetting of
how to recognize blurry objects clearly deviates from our own visual
abilities. Moreover, the image datasets that are commonly used to
train CNNs lack the diversity of biological vision as they consist almost
entirely of clearly photographed images. Here, by introducing blurry
images throughout the training regime of CNNs, the networks must
both learn and retain their ability to utilize lower spatial frequency
information in order to recognize objects.

Related to this increased sensitivity to low spatial frequency
information, we found that blur-trained CNNs become more sensitive
to global shape and less sensitive to texture. Several recent studies
have suggested that CNNs trained on standard tasks of object classi-
fication are unduly influenced by high spatial frequency textural
information6,50–52,65,68,69. For example, when CNNs are presented with
cue conflict stimuli that consist of the global shape of one object and
the textural properties of another, their classification decisions are
strongly biased by the texture cues50,51. Our findings with weak-blur
CNNs concurwith another recent study, which found that trainingwith
moderate levels of blur can lead to a modest increase in shape bias,
while the gap between CNN and human shape preference remains
large52. Here, we found that strong-blur CNNs exhibited a far greater
degree of shape bias than standard or weak-blur CNNs, such that they
were predisposed to classify the cue conflict stimuli according to their
shape rather than their texture over 60% of the time. While blur
training alone may not be sufficient to induce the degree of shape
sensitivity exhibited by human observers, it does appear to help sub-
stantially narrow the gap between artificial and biological vision.

Other methods to increase the shape sensitivity of CNNs have
also been proposed. For example, large numbers of hybrid shape-
texture conflict stimuli can be generated using style transfer
methods70 so that CNNs can be directly trained to categorize these
cue-conflict stimuli according to their shape51. Another approach is to
train CNNs to become more robust to adversarial noise, which can
also improve shape sensitivity and decrease texture bias71. Interest-
ingly, a recent study found that CNNs trained with adversarial noise
show shifted tuning in favor of lower spatial frequencies in a manner
that seems to better match the spatial frequency preferences of V1
neurons68.

While training with such artificially generated stimuli can improve
the shape sensitivity of CNNs, it is not clear how these contrived
methods can explain how the human visual system acquires robust,
shape-sensitive object representations. Also, although humans do
encounter some forms of natural visual noise on occasion (e.g., snow,
rain, dust storm), the pervasiveness of blur in everyday vision leads us
to posit that blur likely has a primary role in bolstering the robustness
of the human visual system.

One might further ask whether the non-uniform application of
blur, say to simulate the lower spatial resolution of peripheral vision,
might lead to similar improvements in robustness and neural pre-
dictivity. Motivated by this question, we conducted an exploratory
analysis by training AlexNet on a mixture of clear images and images
with progressively stronger blur applied to the periphery (see Meth-
ods). The model was then evaluated while withholding the application
of peripheral blur. We found that peripheral-blur-trained AlexNet
showed much better prediction of human fMRI responses (Supple-
mentary Fig. 8A, B), enhanced shape bias (E), and improved robustness
to image degradation (F), and also appeared to show some improve-
ment over clear-trained AlexNet at accounting for neuronal responses
in macaque V2, V4 and IT (C). (Previous studies that have explored the
impact of peripheral blur training have reported more limited
benefits72, though it can be difficult to compare methodology and
findings across studies.) While we are cautious about interpreting the
potential neuroscientific implications of these findings, as multiple
computational approaches could potentially be adopted to approx-
imate the lower spatial resolution of human vision in the periphery,
these findings indicate that multiple options for blur training can be
successfully adopted to improve the robustness, shape sensitivity, and
neural predictivity of CNNs.

Our results have important implications for both current and
future deep learning models of human vision. While considerations
such as network architecture and the objective learning function are
certainly important for developing more realistic neural network
models of the visual system, we propose that the property of blur is
likely to be a critical training ingredient for any neural network to
learn human-aligned representations of the visual world. Moreover,
our findings are not only relevant to the development of better
neurocomputational models of the visual system, they may also
inform the development of future computer vision applications that
must operate in challenging real-world settings. Indeed, by simply
incorporating a subset of blurry images into a CNN’s training regime,
one can attain superior robustness, enhanced shape sensitivity, and
much better human-AI alignment with minimal downsides in per-
formance. A variety of image augmentations have been proposed to
help bolster the performance of CNNs, including some that have
become routine (e.g., random cropping and flipping) and others that
are more exotic73. Based on our findings, we believe it would be
suitable to recommend incorporating blur as a standard form of
image augmentation for most computer vision applications. Along
these lines, our CNN training code and the weights of our trained
networks can be found on a publicly available website with links
provided herein.
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Methods
Training of convolutional neural networks
We evaluated the impact of blur training on 8 CNN architectures
implemented in PyTorch: AlexNet74, VGG16 and VGG1975, GoogLeNet76,
ResNet18, ResNet50 and ResNet10177, and CORnet-S59. After random
initialization, the CNNs were trained to classify 1000 object categories
from the training dataset of ImageNet40 for 70 epochs using stochastic
gradient descentwith afixed learning rate of 0.001,momentumof 0.9,
and weight decay of 0.0001. Standard CNNs were trained with clear
images only, whileweak-blur and strong-blur CNNswere trainedwith a
combination of clear and blurry images. All training images were
grayscaled, resized to 224 × 224 pixels, randomly rotated by ±10
degrees, and flipped horizontally on 50% of occasions. The images
were then normalized using the mean and standard deviation of the
pixel intensities of the ImageNet training samples.

For the weak blur condition, the distribution of blur levels was
informed by empirical measures of defocus blur that were obtained
from binocular eye and scene tracking data34 while observers per-
formed 1 of 4 different everyday tasks (i.e., ordering coffee, making a
sandwich, indoor or outdoor walking). By calculating a scene-based
stereo-depth map (spanning 10° eccentricity) with concurrent mea-
sures of binocular fixation position, it was possible to calculate the
depth distance of objects relative to fixation in each video frame. From
these data (courtesy of Sprague et al.), we calculated the extent to
which a future fixation target would appear blurred relevant to current
fixation (i.e., blur circle size) based on diopter measures of relative
depth, measures of mean pupil size (~5.8mm), and simplifying
assumptions pertaining to eye size and other factors78. A frequency
distribution of blur magnitudes was then obtained, with the different
tasks weighted according to their estimated frequency based on
Sprague et al.‘s analysis of the American TimeUse Survey (ATUS) from
the U.S. Bureau of Labor Statistics. The weighted distribution of blur
circle sizes for subsequently foveated targets was then used to inform
the application of blur to the training images (224 × 224 pixels) by
assuming that the images were photographed using a 35-mm camera
with a 54° horizontal field of view. An exponential functionwas used to
obtain a smoother estimate of the distribution of blur magnitudes. We
also adopted a Gaussian blur kernel with FWHM matched to the dis-
tribution of blur circle diameters, as blur circles do not adequately
account for additional sources of blur such as chromatic aberration.
This procedure resulted in a preponderance of clear image presenta-
tions (69.4% with σ = 0) and frequencies of 21.3%, 6.5%, 2.0%, 0.6% and
0.2% for which the Gaussian blur kernel was set to a sigma value of 1, 2,
3, 4 or 5 pixels, respectively. It should be noted our assumption of
photo zoomsizewas fairly conservative; if certain training imageswere
taken with a more zoomed-in view (e.g., 50–105mm), then a greater
level of blur would need to be applied to simulate defocus blur for
that image.

For the strong blur condition, wepresented images at various blur
levels with equal frequency (see Fig. 1) based on the fact that the visual
resolution steadily declines as a function of eccentricity or distance
from the fovea35,46. Thus, different levels of resolution remain con-
tinually present during natural vision. In addition to clear images, we
presented imageswithGaussianblur kernels of increasing size (σ = 1, 2,
4, or 8 pixels) to approximate how visual resolution declines from the
fovea to the mid-periphery. With the largest blur kernel, the spatial
frequency content of the training images (224 x 224 pixels) would be
attenuated below 50% amplitude for frequencies exceeding 6 cycles
per image, which would impair but not abolish human recognition
performance3,6.

We performed an additional analysis to explore the effect of
simulating low-resolution vision in the periphery by applying pro-
gressively stronger levels of blur as a function of distance from the
center of each training image. To achieve this, we applied a linear
increase to the size of the Gaussian blur kernel from the center of the

image (coordinates 112, 112 pixel position) to the periphery, starting
with a standard deviation of 0 pixels (i.e., clear) at the center and
reaching amaximumstandarddeviationof 8pixels for eccentricities of
112 pixels ormore.We trained AlexNet with a combination of clear and
peripheral blur images; the results of which are reported in Supple-
mentary Fig. 8.

Comparisons between CNN models and human
neuroimaging data
We evaluated the correspondence between CNNs and human visual
cortical responses by analyzing two publicly available neuroimaging
datasets; detailed information can be found in thoseoriginal papers5,47.
The first dataset was acquired from 10 observers who viewed clear,
high-pass filtered and low-pass filtered images in a 3T MR scanner47.
Images from 6 different object categories (bodies, cars, chairs, ele-
phants, faces, andhouses)were presented using ablockparadigm.The
high-pass filtered images had a cutoff frequency of 4.40 cycles per
degree, while the low-pass filtered images had a cutoff frequency of
0.62 cycles per degree.We analyzed the fMRI datamade available for 6
regions of interest: visual areasV1 throughV4, lateral occipitotemporal
cortex (LOT), and ventral occipitotemporal cortex (VOT). The second
dataset was acquired using a 7T MRI scanner from 8 human partici-
pants (3 females) while they viewed 16 different clear object images
and the same images presented in either pixelated Gaussian noise or
Fourier phase-scrambled noise5. The object images were selected from
8 object categories (i.e., bear, bison, elephant, hare, jeep, sports car,
table lamp, teapot) obtained from the ImageNet validation dataset.
The brain regions of interest consisted of visual areas V1 through V4,
lateral occipital complex (LOC), fusiform face area (FFA) and para-
hippocampal place area (PPA).

Representational similarity analysis (RSA) was used to assess the
similarity of visual representations across CNN models and human
observers. To do so, we calculated the Pearson correlational similarity
of the response patterns across all relevant stimulus conditions to
obtain a correlationmatrix for each visual area of an observer and each
layer of a CNN.We could then assess the similarity betweenhuman and
CNN matrices by calculating their Pearson correlation with the main
diagonal excluded. We chose to use Pearson correlation over alter-
native approaches such as Spearman correlation79, as the latter allows
for non-linear relationships between predicted and actual response
patterns that could allow for excessivemodel flexibility.Moreover, our
analyses of the monkey neurophysiology data relied on linear regres-
sion; therefore, the use of Pearson correlation to evaluate the human
fMRIdata seemedmore appropriate. Nevertheless, it can be noted that
almost identical results were obtained when we applied Spearman
correlation instead for our analyses. For the fMRI block paradigm
study, the analysis was performedon themean fMRI response patterns
observed for each object category, and on the averaged CNN
responses across the 10 images in each object category. For the fMRI
objects-in-noise study, the analysis was performed on the mean fMRI
responses for each of the 16 object images across the 3 viewing con-
ditions (48 stimulus conditions total).

For the feedforward hierarchical CNNs (e.g., AlexNet, VGG), we
performed RSA analysis on every convolutional and fully-connected
layer after ReLU non-linearity was applied. For the inception, residual
and recurrent networks, we focused our analysis on the layers in which
all parallel or recurrent features were combined at the end of each
computational block (see Supplementary Table 1).

We calculated the Pearson correlational similarity between each
CNN and the response patterns found in a given visual area for each
observer and then averaged the results across observers to obtain 8
correlational similarity values (1 per CNN architecture), which allowed
us to test for differences in performance between standard, weak-blur
and strong-blur CNN training. Statistical tests consisted of repeated
measuresANOVAapplied acrossCNN training regimes and visual areas
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of interest, followed by planned paired t-tests (two-tailed, uncorrected
for multiple comparisons) to directly compare the predictive perfor-
mance of the different CNN training regimes. For these statistical
analyses, all correlation coefficients were first converted to z values
using Fisher’s r-to-z transformation.

Comparisons between CNN models and monkey neuronal data
We evaluated the correspondence between CNNs and single-unit
responses obtained from the macaque visual cortex by analyzing two
publicly available datasets. The first set of analyses focused on data
made available (https://github.com/brain-score) as part of the Brain-
Score benchmark (http://www.brain-score.org), a site designed to
facilitate the evaluation of neural network models and their ability to
account for behavioral and neural responses to visual stimuli48. We
largely adopted the analysis pipeline implemented by Brain-Score to
evaluate our CNNs. This involved extracting CNN responses to the
object images from each layer, applying PCA to reduce the dimen-
sionality of these responses (to 300 dimensions), and then applying
linear partial least squares regression to predict neuronal responses.
The Pearson correlation between actual and predicted neuronal
responseswas calculatedusing separate sets of images for training and
testing, and the median predictivity score across all neurons from a
visual area of interest (V1, V2, V4, IT) was then outputted by the Brain-
Score toolbox.

Our second set of analyses focused on V1 neuronal data obtained
from two alert male monkeys aged 12 and 9 years while they viewed a
large set of 7250 natural and synthetic images presented
parafoveally49. We followed the analysis pipeline of the original study
after recoding the analysis in PyTorch. Layerwise CNN responses to the
object images were normalized using batch normalization, and a
regression model was fitted to the responses of each neuron by using
80% of the images formodel training and 20% of the images formodel
testing. Specifically, a linear/non-linear regression model was trained
to minimize a Poission-based loss function via the Adam optimizer. In
addition, three regularization constraints were applied to the weights
of the regression model: L1-norm sparsity (λ = 0.01), spatial smooth-
ness (λ = 0.1), and group sparsity (λ =0.001), where λ denotes the
regularization rate. The correlation between predicted and actual
neuronal responses to the independent set of test images was used to
evaluate the neural predictivity of the CNN models.

Spatial frequency tuning preferences of CNN models
Wemeasured the spatial frequency tuning of the convolutional units in
each layer of a CNN by presenting whole-field sinusoidal grating pat-
terns that varied in spatial frequency (4.48, 8.96, 13.44,…, 112 cycles/
stimulus), orientation (0, 12, …, 168°), and spatial phases (0, 90, 180,
270°), following previously describedmethods6. The spatial frequency
tuning curve was then obtained for individual convolutional units
(otherwise known as channels) by averaging the responses across all
orientations, phases, and spatial positions. The spatial frequency that
elicited the maximum response was identified as the preferred spatial
frequency of that unit. We further assessed the bandwidth of spatial
frequency tuning by fitting a Gaussian function to spatial frequency
response profile of the units on a logarithmic scale, calculating the full
width at half maximum, and scaling this value relative to the center
frequency of the peak response.

Texture versus shape bias of CNN models
WeevaluatedwhetherCNNclassificationdecisionsweremore strongly
influenced by shape or texture cues by presenting shape-texture cue
conflict stimuli that were generated using style transfer methods70 in
the following study51. The stimulus set consisted of 1280 images from
16 ImageNet categories that includedairplane, bear, bicycle, bird, boat,
bottle, car, cat, chair, clock, dog, elephant, keyboard, knife, oven, and
truck (available at https://github.com/rgeirhos/texture-vs-shape). For

each hybrid image, the category with the highest confidence response
among the 16 categories was identified as the CNN’s classification
response. The degree of shape bias exhibited by a CNN was then
quantified as the proportion of classification decisions that corre-
sponded with the hybrid object’s shape in comparison to the total
number of shape-consistent and texture-consistent decisions made by
that CNN for a given hybrid stimulus set. TheseCNN results could then
be compared with the classification judgments of 10 human partici-
pants who were evaluated in the original study.

Layer-wise relevance propagation
We performed layer-wise relevance propagation to identify the diag-
nostic features of objects that account for a network’s classification
decision53. This approach works best with strictly hierarchical feed-
forward CNNs; we therefore focused our analysis efforts by primarily
working with VGG-19 using methods and parameter settings we have
described elsewhere5. To create pixel-wise heatmaps, the relevance
score of the unit corresponding to the correct category in the last fully
connected layer was set to a value of 1 while all other units were set to
0. Relevance scores were then back-propagated to the input layer to
construct heatmaps in pixel space. Only positive values were used to
focus on category-relevant features of the target object, and the
resulting heatmap was linearly adjusted to a range of 0 to 1.

Evaluation of adversarial robustness
To evaluate the adversarial robustness of each CNN model, we per-
formed a Projected Gradient Descent-based white-box attack57. A key
feature of Projected Gradient Descent is its perturbation limit, which
controls the extent of input changes. This constraint is vital for
ensuring the practicality of the adversarial examples and for setting a
uniform standard for comparison, allowing for the evaluation of
diverse models under identical conditions. Specifically, this method
generates adversarial examples by iteratively updating gradient-based
image perturbations with bounded constraints, as formulated by:

xt + 1 =P xt +α�signð∇xL xt

� �Þ� �

where xt is the perturbed image at t-th step, Pð�Þ is the projection
operator to ensure that the adversarial perturbations applied to the
image do not exceed a specified threshold, α is the step size, and L is
the loss function. The projection operator maps the perturbed image
back onto the surface of an lp-norm ball centered at the original image
x and bounded by ||l||p ≤ ϵ. With a random initialization of x, the
adversarially perturbed data were generated with 15 iterations using a
step size of 0.001. We evaluated both l∞ and l2 norm-bounded
perturbations with ϵ =0.001 and 1, respectively.

Comparisonof CNNoutputs andhumanbehavioral responses to
out-of-distribution image datasets
We evaluated how closely the outputs of CNNs align with human
behavioral responses under out-of-distribution conditions. This com-
parison was based on publicly available benchmark datasets from
Geirhos et al. (2021), encompassing 17 diverse datasets. Twelve of
these datasets include parametric variations such as changes in color
(both color and grayscale), contrast level, high-pass and low-pass fil-
tering, phase noise, power equalization, opponent color processing,
rotation, and three types of Eidolon transformations (I, II, III), as well as
uniform noise. The other five datasets focus on nonparametric image
alterations, including sketches, stylized, edge, silhouettes, and texture-
shape cue conflict. The assessment extends beyond simple accuracy
measurements, incorporating three additional metrics: 1) the accuracy
difference, which compares CNN and human accuracy across various
out-of-distribution tests; 2) observed consistency, whichmeasures the
proportion of instances where both humans and a CNN model either
correctly or incorrectly identified the same sample; and 3) error
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consistency, which examines whether the observed consistency
exceeds that of two independent decision-makers with similar accu-
racy levels. The relevant code and datasets are accessible online at
https://github.com/bethgelab/model-vs-human.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All datasets employed in this study are open to public access and are
sourced from their original publications, i.e., two fMRI datasets
(https://osf.io/tsz47/, https://osf.io/bxr2v/), BrainScore (https://
github.com/brain-score), Macaque V1 data (https://doi.org/10.12751/
g-node.2e31e3/), ImageNet-C (https://github.com/hendrycks/
robustness), and Model-vs-human (https://github.com/bethgelab/
model-vs-human). All of the source data used to create the figures in
this paper are available as a Source Data file. Source data are provided
with this paper.

Code availability
The codes used for training and visualization, along with the trained
weights for individual CNN models, are available on the Open Science
Framework at https://osf.io/upf5w/. The blur augmentation technique
used in this study is implemented using Python 3.7 with the PyTorch
library version 1.13.1 and the Kornia library version 0.5.8. The details
are described on our GitHub page at https://github.com/hojin89/
BlurTraining (https://doi.org/10.5281/zenodo.10468454).
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